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Abstract—A neural dendritic computational circuit design is
presented here. The circuit models the result of action potentials
applied to biological synapses on a portion of a dendritic tree. The
resultant excitatory post synaptic potentials (EPSPs) are com-
bined in a dendritic tree that demonstrates linear, superlinear and
sublinear summation of both spatially and temporally separated
EPSPs. The synapse circuit models include neurotransmitter
action, reuptake and membrane potentials. The output of the
circuit is a combined Excitatory Post Synaptic Potential (EPSP).
The circuit is simulated using carbon nanotube SPICE models.
Variations of this design can be implemented to create a variety
of dendritic computational subunits.

I. INTRODUCTION

Within the neurons in the cortex, significant dendritic com-
putations occur that affect the probability and frequency of
neural firing. Action potentials arriving at the synapses create
post-synaptic potentials on the dendritic arbor that combine in
complex ways (e.g. [1], [2], [3]). There is growing consen-
sus among neuroscientists that aspects of dendritic behavior
contribute significantly to cortical functioning.

The biological synapse is complex, with controllable trans-
mitters that can decrease or increase the excitability of the
postsynaptic receptors. The activation probability of a given
synaptic junction is regulated by the amount and timing of
presynaptic and postsynaptic activity. Neurotransmitters must
be present in sufficient amounts to develop post-synaptic po-
tentials (PSPs), and the concentration of transmitters released
can affect the height and duration of the PSP [4].

A second area of complexity is the ion channel, modeled
biomimetically, e.g. by Hasler [5]. Ion channel conductance in
turn affects membrane potential. Action potentials impinging
on the synaptic cleft could result in temporal summation of the
resulting PSPs, increasing the likelihood of the post-synaptic
neuron eventually firing.

A third area of complexity involves the dendritic computa-
tions that occur on the EPSPs [6] [2]. These computations
include linear, sublinear and superlinear additions whereas
modeling inhibitory inputs is the subject of a future paper.

Carbon nanotubes may support the scale and interconnec-
tion density of a synthetic cortex. They are extremely small (a
few nm. in diameter), current flow is largely ballistic (like the
flow of electrons in free space), capacitances are in attofarads,
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and rise and fall times in picoseconds. Appropriate interfaces
can convert to biological signal levels and delays. Channel
resistance is primarily due to the quantum resistance at the
junction between the nanotubes and metallic connections, cre-
ating a challenge for analog circuit design. Carbon nanotubes
have been shown to form dendritic structures, which may facil-
itate their use in synthetic neurons [7]. Finally, nanotubes have
been shown to induce minimum immune system reactions in
living tissue, making prosthetic devices with carbon nanotubes
desirable [8].

We designed and simulated a carbon nanotube transistor
circuit model of a neural synapse that captures, in a coarse
manner, the actions of neurotransmitters, ion channel mecha-
nisms, and temporal summation of PSPs. We have focused on
excitatory PSPs (EPSPs) first, and have chosen economy of
size over exact replication of waveforms, to facilitate scaling
to cortical-sized biomimetic structures.

We have constructed a voltage adder [9] to implement some
dendritic computations, and have simulated this circuit using
carbon nanotube SPICE models. This adder is tunable to
support sublinear to superlinear summations of PSPs. We have
constructed a small portion of a dendritic arbor, and shown
how action potentials impinging on the presynaptic terminals
of the arbor produce output PSPs that are a function of the
EPSPs invoked at each synapse of the arbor.

II. BACKGROUND

Many electronic neurons have biomimetic features (e.g.
[10]). The most notable research includes Mead’s artificial
retina [11]. This significant work originated with Mahowald
and Mead [12], followed by Boahen [13] [14] and more
recently Hasler [5]. Hynna and Boahen report on a circuit
that generates a calcium spike with attention paid to exact
replication of waveforms, and describe incorporation of the
calcium spike circuit in an entire neuron circuit [15]. Some
mixed-signal electronic models close to biological neurons
include Liu and Frenzel’s spike train neuron, with a 10-
transistor mixed-signal synapse [16], and Pan’s bipolar neuron
[17]. An 8-transistor CMOS synapse [18] is close in scale and
nature to our synapse, although they plan to use the synapse
for summation of inputs from many pre-synaptic sites. Analog
synapses have been reported by Pinto et al. [19] and Lee et
al. [20] and a phase-lock loop synapse has been reported by
Volkovskii [21]. The strength of our model and similar models
is the correspondence between individual circuit elements and



specific physiological mechanisms in the biological neuron
that allows us to vary synapse behavior easily with control
inputs. This, and our choice of carbon nanotube technology,
differentiates this work.

Elias modeled dendritic computations as early as 1992 [22].
Hasler and Farquhar also model dendritic transmission [5],
[10], as do others (e.g. Arthur [23] and Rasche [24]). Existing
cable models could be integrated with our computations for a
complete dendritic model.

Single-walled carbon nanotubes avoid most of the fun-
damental scaling limitations of silicon, making them suit-
able for a synthetic cortex [25]. Liu, Han and Zhou have
demonstrated directional growth of high-density single-walled
carbon nanotubes on a- and r-plane sapphire substrates over
large areas [26]. This technique may enable registration-free
fabrication of nanotube devices and lead to integrable and
scalable nanotube systems, including synthetic cortex circuits.
They have developed a novel nanotube-on-insulator (NOI)
approach, and a way to transfer these nanotube arrays to
flexible substrates.

Efforts have been made in recent years on modeling CN-
FETs [27] [28] and CNT interconnects [29] [30], to evaluate
the potential performance at the device level. Most of the
reported models to date used a single lumped gate capacitance
and ideal ballistic model to evaluate the dynamic performance
[31] [32]. To evaluate CNFET circuit performance with im-
proved accuracy, a CNFET device model with a more complete
circuit-compatible structure and including the typical device
non-idealities was constructed [33]. This recent publication
presents a novel circuit-compatible compact SPICE model for
short channel length (5nm 100nm), quasi-ballistic single wall
carbon nanotube field-effect transistors (CNFETs).

III. THE CARBON NANOTUBE SYNAPTIC CIRCUIT

The carbon nanotube synaptic circuit [34] [35] is shown
in Figure 1. Action potentials (see Figure 2) arrive from the
presynaptic neuron and terminate in our synaptic circuit. The
simple action potential used here is an approximation of a
typical biological action potential [36]. An incoming action
potential will cause the potential in the synaptic cleft to rise.
The PFET limits the peak amplitude of the synaptic cleft
potential by turning off before the synaptic cleft potential rises
to Vdd. The synaptic cleft potential in the electronic neuron
(Figure 1) models the biological release of neurotransmitters
stored in the presynaptic neuron into the cleft, where they bind
to receptor proteins on the recipient (postsynaptic) neuron,
causing the potential across the postsynaptic neural membrane
to change. Once the neurotransmitters are released from the
presynaptic terminal and bound in the postsynaptic terminal,
they will be cleared from the synaptic cleft for reuse by
reuptake mechanisms modeled via the pull-down network
attached to the synaptic cleft [4].1 The re-uptake control

1Since the SPICE model used in this study is geared toward short gate
length transistors with near-ballistic transport, we use three transistors in series
to model the resistance that represents the reuptake delay. The quantum contact
resistances of the three transistors are added in series.

Fig. 1. The Carbon Nanotube Synaptic Circuit

Fig. 2. The Action Potential and PSP at the Dendritic Trunk under Normal
Operation

voltage, R allows the efficiency of the reuptake mechanism
to be tuned. The action potential is inverted and used to block
pull down of the synaptic cleft potential to delay reuptake of
the neurotransmitter at the presynaptic neuron while there is a
positive action potential. Reuptake can be inhibited or slowed
by lowering the reuptake control voltage R.

The increase in potential in the synaptic cleft will temporar-
ily turn on the transistor connected to the ion electromotive
force control, E Channel, causing the potential at Synaptic In-
terior to rise. This models the change in biological membrane
potential due to the increased conductance of neurotransmitter
gated ion channels and the subsequent influx of charge carry-
ing ions (e.g. sodium). A tunable pull-down network 2 controls
the cell interior’s return to resting potential (steady state).

The synaptic interior potential is transferred through a
resistive connection to the dendritic trunk, which carries the
postsynaptic potential (PSP) to the neuron cell body. The
weight control allows the importance of this synapse to be
tuned with learning. The dendrite trunk terminates on the gate
of a single test load NFET that is removed when the synapse
is connected to other neural components.

In the archetypical biological neuron we are modeling,
potentials range from around -75mV to +40mV with action
potentials peaking around +40mV. Since the carbon nanotube
synapse is designed to operate with Vdd around 0.9V and with
0.0V (Ground) as the resting potential, the potentials were
scaled accordingly, with 0V circuit potential corresponding to
-75mV biological potential and 0.9V circuit potential corre-

2Three transistors in series provides the Rpulldown resistance.
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Fig. 3. The Voltage Adder

Fig. 4. The Dendritic Arbor Portion

sponding to 40mV biological potential. Likewise, the speed
of the carbon nanotubes allowed us to scale the delays with
about 1 ms in the biological neuron scaling to about 2 ps in
the nanotube neuron [36].

IV. THE VOLTAGE ADDER AND DENDRITIC ARBOR

The adder circuit [9] is shown in Figure 3. A block diagram
of the dendritic arbor portion is shown in Figure 4. There are
four synapses in the arbor, each on a separate dendritic branch.

V. EXPERIMENTS WITH THE DENDRITIC ARBOR CIRCUIT

We performed several experiments with the dendritic arbor
circuit. First, we simulated four synapses in the dendritic
arbor excited with action potentials arriving at the same time,
with linear addition. Then we simulated the addition of two
synapses with action potentials arriving at varying times. For
the third phase of the simulations, we varied the additions to be
sublinear and superlinear. Finally we simulated the dendritic
arbor with some PSPs weakened as a result of reduced neuro-
transmitter concentration (modeled by decreasing the source
voltage on the PMOS pull up transistor in the synapse).

The postsynaptic potential appearing at the dendritic trunk
is shown in Figure 2. This potential is approximately 14%
of the action potential and the duration is about 6 times as
long as the action potential, similar to EPSPs described in the
literature.

In the first experiment, we tuned the dendritic PSP adders
by adjusting transistor sizes to be linear, and all four synapses
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Fig. 6. The Temporal and Spatial Summation of Two EPSPs Excited by
Action Potentials Arriving at Different Times

were excited simultaneously, as shown in Figure 5. In the
second experiment, we simulated two action potentials (APs)
arriving at staggered times so that the two EPSPs peaked at
different times, demonstrating temporal and spatial summa-
tion. The resultant total EPSP is shown in Figure 6. A third
experiment shows the types of PSP computation possible using
our circuitry: superlinear, sublinear and linear, shown in Figure
7. The final experiment (Figure 8) illustrates the summation
of weak and strong EPSPs.

VI. CONCLUSIONS

A typical carbon nanotube synapse has been designed and
simulated using SPICE. This synapse has been replicated
and used in a portion of a dendritic arbor to illustrate some
varieties of dendritic computations that occur. The dendritic
computation shown is one of several types of computations
that occur.
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