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AbstractÐThe thermal shock resistance of a brittle solid is analysed for an orthotropic plate suddenly
exposed to a convective medium of di�erent temperature. Two types of plate are considered: (i) a plate
containing a distribution of ¯aws such as pores, for which a stress-based fracture criterion is appropriate,
and (ii) a plate containing a single dominant crack aligned with the through-thickness direction, for which
a critical stress intensity factor criterion is appropriate. First, the temperature and stress histories in the
plate are given for the full range of Biot number. For the case of a cold shock, the stress ®eld is tensile
near the surface of the plate and gives rise to a mode I stress intensity factor for a pre-existing crack at the
surface of the plate. Alternatively, for the case of hot shock, the stress ®eld is tensile at the centre of the
plate and gives rise to a mode I stress intensity factor for a pre-existing crack at the centre of the plate.
Lower bound solutions are obtained for the maximum thermal shock that the plate can sustain without
catastrophic failure according to the two distinct criteria: (i) maximum local tensile stress equals the tensile
strength of the solid, and (ii) maximum stress intensity factor for the pre-existing representative crack
equals the fracture toughness of the solid. Merit indices of material properties are deduced, and optimal
materials are selected on the basis of these criteria, for the case of a high Biot number (high surface heat
transfer) and a low Biot number (low surface heat transfer). The relative merit of candidate materials
depends upon the magnitude of the Biot number, and upon the choice of failure criterion. The e�ect of
porosity on thermal shock resistance is also explored: it is predicted that the presence of porosity is gener-
ally bene®cial if the failure is dominated by a pre-existing crack. Finally, the analysis is used to develop
merit indices for thermal fatigue. # 1998 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All
rights reserved.

1. INTRODUCTION

A common measure of thermal shock resistance is

the maximum jump in surface temperature which a
brittle material can sustain without cracking. The

subject is old and the literature large, yet existing
theoretical models are not able to rank the shock

resistance of materials in the observed manner. It is
generally accepted that the thermal shock fracture

resistance of a material depends on a number of
material properties including the thermal expansion

coe�cient a, thermal conductivity k, thermal di�u-
sivity k, elastic modulus E, fracture toughness KIC,

tensile strength sf, and upon the additional par-
ameters of heat transfer coe�cient h, specimen size

H, and duration of thermal shock (which is often
overlooked).

A material with high fracture resistance under
one set of thermal shock conditions may become

de®cient under other conditions. For instance, when
quenched in air, BeO (beryllium oxide) exhibits

much better shock resistance than aluminium oxide
(Al2O3), but the order of merit switches when both
materials are water quenched [1]. Additionally, ex-

perimental experience suggests that porosity is detri-
mental to the cold-shock resistance of ceramics but

is bene®cial to hot-shock resistance [2]. Current

knowledge of the underlying mechanisms behind

these phenomena appears to be rather limited.

A commonly used thermal shock parameter is the

merit index of sf=Ea. This parameter only captures

the initiation of thermal shock cracking in brittle

materials under extreme conditions where the Biot

number Bi � hH=k is in®nite. An alternative ther-

mal shock parameter, suggested by Hasselman [3],

measures the ratio of the fracture energy for crack

initiation to the fracture energy for continuous

crack propagation. This parameter neglects the

thermal conductivity of the material, a parameter

considered central to thermal shock response. Other

parameters for various geometries and thermal

shock environments are also proposed [2, 4±10], and

it appears that the details of the thermal ®elds must

be coupled with material properties and geometrical

parameters in order to successfully predict the frac-

ture behaviour of a component subjected to thermal

shock.

The present paper revisits the old problem of a

plate of ®nite thickness, with faces suddenly

exposed to a convective medium of di�erent tem-

perature. The main feature that di�erentiates this

work from most previous studies (cf. for instance,

Emery et al. [11], Nied [8], and Rizk and

Radwan [9] who analyse the thermal shock fracture

of an edge-cracked elastic plate) is that new non-
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dimensional parameters capable of characterizing

the thermal shock resistance of a brittle material

are obtained in closed form over the full range of

Biot number.

The paper begins by reviewing the transient tem-

perature and stress distributions in a homogeneous

orthotropic plate over the full range of Biot num-

ber, Bi � hH=k. Closed-form expressions are

obtained for the maximum stress, as well as its time

of occurrence, attained at the surface and at the

centre of the plate. Next, the fracture response of

the plate is addressed, by assuming the plate con-

tains a mode I crack extending perpendicular to the

plate surface. For cold shock, the most damaging

crack geometry is taken to be an edge crack,

whereas for hot shock a centre-cracked plate is con-

sidered. It is reasonable to assume that the presence

of these cracks has no e�ect on the one-dimensional

temperature distribution within the plate. The mode

I stress intensity factor for each crack geometry is

calculated from the transient thermal stress ®eld.

Two distinct failure criteria are considered for

thermal shock resistance:

(i) A local tensile stress criterion, correspond-

ing to the initiation of tensile fracture in a solid

containing a distribution of ¯aws. For the sake

of simplicity, the statistics of ¯aw distribution is

neglected and it is assumed that the solid has a

deterministic strength sf. Fracture occurs when

the maximum tensile stress smax attains the

strength sf.
(ii) A fracture toughness criterion, whereby the

largest pre-existing ¯aw advances when the maxi-

mum stress intensity factor Kmax attains the frac-

ture toughness KIC. It is assumed that this ¯aw is

of the same length scale as the thickness of the

structure. In most practical circumstances it will

be demonstrated that this criterion is more

restrictive than (i); this toughness criterion is,

however, relevant to a ceramic component con-

taining manufacturing ¯aws or service-induced

¯aws which scale with the size of the structure.

For each failure criterion, the maximum jump in

surface temperature DTmax to withstand fracture is

calculated for a single cold shock and for a single

hot shock. The value of DTmax is sensitive to the

magnitude of the surface heat transfer coe�cient,

via the Biot number Bi. Appropriate non-dimen-

sional groups are identi®ed that govern the thermal

shock resistance of brittle solids over the full range

of Biot number; these non-dimensional groups con-

tain material, thermal and geometric parameters.

The paper concludes with a discussion of the poten-

tial of porosity for increasing the thermal shock re-

sistance of a solid, and on application of thermal

shock analysis to thermal fatigue.

2. EVOLUTION OF TEMPERATURE AND STRESS

A crack-free in®nite plate of thickness 2H is con-

sidered, with Cartesian coordinates embedded at

the centre of the plate, as shown in Fig. 1. Initially,

the plate is at a uniform temperature Ti, and at

time t= 0 its top and bottom faces (at z =2H)

are suddenly exposed to a convective medium of

temperature T1.
Surface heat ¯ow is assumed to satisfy

kz
@T

@z
�3h�T1 ÿ T �, at z �2H �1�

where kz is the thermal conductivity of the solid in

the z-direction, h the coe�cient of heat transfer,

and T(z,t) the temperature of the solid. Heat ¯ow

within the solid induces a transient temperature dis-

tribution T(z,t) and a stress state s(z,t). The plate is

assumed to comprise a uniform, linear thermo-elas-

tic solid with axes of orthotropy aligned with the

Cartesian coordinates (x,y,z) given in Fig. 1. The

strain state e is given by

exx � 1

Ex
sxx ÿ �xy

Ey
syy ÿ �xz

Ez
szz � ax�T ÿ Ti� �2a�

eyy � ÿ �xy
Ey

sxx � 1

Ey
syy ÿ �yz

Ez
szz � ay�T ÿ Ti� �2b�

ezz � ÿ �xz
Ez

sxx ÿ �yz
Ez

syy � 1

Ez
szz � az�T ÿ Ti�: �2c�

Here, �Ex,Ey,Ez� are the elastic moduli in the �x,y,z�
directions, respectively, ��xy,�xz,�yz� the Poisson

ratios, and �ax,ay,az� the coe�cients of thermal

expansion. Symmetry dictates that the shear stress

and shear strain components vanish.

The con®guration in Fig. 1 is analysed under the

constraint that the plate is free to expand with van-

ishing axial force �H
ÿH

sxx dz � 0

and �H
ÿH

syy dz � 0

and vanishing normal stress in the through-thick-

Fig. 1. A ®nite-thickness plate suddenly exposed to a con-
vective medium of di�erent temperature.
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ness direction szz � 0. The geometry and boundary
conditions are such that the strain e is independent

of all spatial dimensions including z, and depends
only on time t: the plate stretches uniformly but
does not bend.

It follows from equations (2) that the transient
thermally-induced stress sxx�z,t� associated with the
temperature distribution T�z,t� is

sxx�z,t� � ÿ�E�a�T ÿ Ti� �
�E�a
2H

�H
ÿH
�T ÿ Ti� dz �3a�

where

�E � 1

Ex
ÿ �

2
xy

Ey
, and �a � ax � �xyay �3b�

The two elastic parameters, �E and �a, are extensively
used in this paper. A parallel relation exists for the
thermal stress syy�z,t�, and can be found directly

from equation (3a) upon rotating the plate by 908
about the z-axis. Here, it is assumed without loss of
generality that the stress component initiating frac-
ture is sxx�z,t� and attention is restricted to this

stress component only.

2.1. Temperature distribution

Heat ¯ow in the through-thickness direction for
the orthotropic plate shown in Fig. 1 is governed

by

@ 2T

@z2
� 1

kz

@T

@ t
, jzjRH �4a�

where kz is the thermal di�usivity of the solid in the

z-direction. Upon introducing the dimensionless
spatial variable �z � z=H and dimensionless time
�t � kzt=H 2, equation (4a) simpli®es to

@ 2T

@�z2
� @T
@�t

, j�zjR1: �4b�

It can be seen immediately that the thermal di�usiv-
ity kz dictates the time-scale for the transient stress
state within the plate, but does not a�ect the level
of thermal stresses. Equation (4) is solved with heat

transfer boundary condition (1) by a standard sep-
aration-of-variables technique [12], giving

T�z,t� ÿ Ti

Ti ÿ T1
�ÿ 1� 2

X1
n�1

exp

�
ÿ b2n

kzt
H 2

�

� sin bn cos�bnz=H �
bn � sin bn cos bn

�5�

where bn are the roots of

bn tan bn � Bi �6�
and the non-dimensional heat transfer coe�cient
Bi � hH=kz is the Biot number for the orthotropic
solid. In the limit of perfect thermal insulation
Bi = 0, bn � np and T�z,t� � Ti. At the other limit

of perfect heat transfer, Bi =1, bn � �n� 1=2�p
and equation (5) simpli®es to

T�z,t� ÿ Ti

Ti ÿ T1
�ÿ 1� 4

p

X1
n�0

�ÿ1�n
2n� 1

� exp

�
ÿ �2n� 1�2p2

4

kzt
H 2

�

� cos

� �2n� 1�p
2

z

H

�
: �7a�

For ®nite values of Bi, the coe�cient bn is deter-

mined numerically and is bounded by the two limit-
ing values given above

np<bn<�n� 1=2�p, n � 0,1,2, . . . �7b�

2.2. Transient stress distribution

The thermal stress s�z,t� � sxx�z,t� is obtained
directly from equations (3a) and (5), and is written

in non-dimensional form as

�s � s�z,t�
�E�a�Ti ÿ T1�

� T�z,t� ÿ Ti

Ti ÿ T1
ÿ 1

2H

�H
ÿH

T�z,t� ÿ Ti

Ti ÿ T1
dz

� 2
X1
n�1

exp

�
ÿ b2n

kzt
H 2

�
sin bn

bn � sin bn cos bn

�
�
cos

�
bn

z

H

�
ÿ sin bn

bn

�
: �8�

In the limit Bi = 0, the plate is everywhere stress
free (i.e. s�z,t� � 0) while, if Bi =1

�s � s�z,t�
�E�a�Ti ÿ T1�

� 4

p

X1
n�0

exp

�
ÿ �2n� 1�2p2

4

kzt
H 2

�

�
� �ÿ1�n
2n� 1

cos

� �2n� 1�p
2

z

H

�
ÿ 2

�2n� 1�2p

�
: �9�

When Bi is small (Bi < 2), it has been established
that the stress distribution is dominated by the ®rst
two terms of equation (8).

The evolution of dimensionless stress,
�s�z,t� � s�z,t�=�E�a�Ti ÿ T1�, is plotted against
dimensionless time, �t � kzt=H 2 in Fig. 2, at selected
locations through the thickness of the plate,

�z � z=H and for Bi =1, 10 and 1. Under cold
shock conditions (Ti>T1), the surface layers ex-
perience a tensile stress transient while a compres-

sive zone is developed at the centre of the plate.
For all values of Bi, the maximum tensile stress is
attained at the surface and the compressive stress is

largest at the centre of the plate. The overall magni-
tude of the stresses increases with increasing Bi.
The transient tensile stress at the surface explains

the common observation that, during cold shock, a
crack initiates at the surface and grows unstably
until it enters the central compressive region.
Alternatively, during a hot shock event (T1>Ti)
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the centre of the plate is under tension and is prone

to cracking; spalling of a surface layer due to large

compressive stress is also a possibility [2, 5]. This

study will focus on failure due to tensile stress at

the surface of the plate in cold shock, and at the

centre of the plate in hot shock. (Notice that an

edge crack may also grow under hot shock if the

crack is su�ciently long [13], but this scenario is

not considered in the analysis presented below.) It

is convenient to change the sign in the de®nition of

�s for hot shock: from now on, �s is re-de®ned for

hot shock as �s�z,t� � s�z,t�=�E�a�T1 ÿ Ti� so that

both �s and s are positive at the centre of the plate.

The transient tensile stress at the surface of the

plate in cold shock, and at the centre of the plate in

hot shock, is plotted in Figs 3(a) and (b), respect-

ively, for selected values of Bi. For the limiting case

of an ideal cold shock (Bi=1), a maximum value

of �s � 1 is achieved at the surface of the plate at
�t � 0. For an ideal hot shock (Bi =1), the maxi-

mum tensile stress achieved at the plate centre is

�smax � 0:3085 at a time �t* � 0:115 by equation (9).

The maximum tensile stress �smax achieved at the

surface during cold shock is plotted against 1/Bi in

Fig. 3(c); for comparison purposes, the maximum

tensile stress at the centre of the plate during hot

shock is included in the ®gure. It is clear that the

magnitude of �smax increases with increasing Bi for

both hot shock and cold shock. Further, the magni-

tude of �smax is always less for hot shock than for

cold shock, at any give value of Bi. The maximum

surface stress in cold shock is adequately described

by the relation

�smax�2H,t*� �
�
1:5� 3:25

Bi
ÿ 0:5eÿ16=Bi

�ÿ1
�10a�

whereas, to an excellent approximation, the maxi-

mum stress developed at the centre in hot shock is

given by

�smax�0,t*� � 0:3085

1� �2=Bi � �10b�

as shown by the comparison in Fig. 3(c). The semi-

empirical equation (10a) was suggested by

Manson [14], based on an earlier result of

Buessem [15]; this relation has subsequently been

widely used, together with the maximum tensile-

stress criterion, to calculate the resistance of both

brittle and ductile materials to crack initiation

under cold shock conditions [1, 4, 5].

For completeness, the time of occurrence of �smax

at the surface during cold shock and at the centre

during hot shock is plotted against 1/Bi in Fig. 3(d).

The time t* needed for the surface layer to reach

the maximum stress in cold shock is given approxi-

mately by

�t* � kzt*=H 2 � 0:48

1� 1:8Bi
: �11a�

Similarly, the time for the centre of the plate to

attain the maximum tensile stress under hot shock

is approximated by

�t* � kzt*=H 2 � 0:115� 0:45

1� 2:25Bi
: �11b�

equations (11a) and (b) describe closely the time

dependence of maximum thermal stress at the sur-

Fig. 2. Evolution of dimensionless stress �s�z,t� as a func-
tion of dimensionless time �t at selected locations z/H for:

(a) Bi =1; (b) Bi = 10; (c) Bi= 1.
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face and at the centre, respectively, as shown by the
comparison in Fig. 3(d). So far a maximum tensile
stress criterion for fracture initiation has been dis-

cussed. In the case of a structure containing defects
on the order of the structural dimension it is more
appropriate to determine the temperature jump for
which a pre-existing crack will grow.

3. CRACKING DUE TO COLD SHOCK

Consider again the in®nite plate of Fig. 1 sub-
jected to a cold shock. If the plate contains a num-
ber of large cracks on the scale of the plate

thickness then it is expected that cracking will com-
mence from the ``worst ¯aw''. A rational de®nition
of ``worst ¯aw'' is the one which has the largest

transient mode I stress intensity factor. The pro-
blem is idealized to the highly simpli®ed case of a
plate containing an isolated mode I edge crack of

depth a, as shown in Fig. 4(a). For this crack the
stress intensity factor K is calculated during a cold
shock event, for 0 < BiR1. Since the crack plane
is normal to the face of the plate, it does not per-

turb the transient temperature distribution. The

stress intensity factor K associated with the thermal

stress s�z,t� is derived by straightforward numerical

integration making use of the appropriate weight

function, to give

K

K 0
� lÿ3=8���

n
p 2

p
���������
a=H
p

�1
1ÿa=H

�
�

F1�z=H,a=H ��s�z=H,t�
�1ÿ a=2H �1:5

���������������������������������
1ÿ ��H ÿ z�=a�2

p �
d

�
z

H

�
:

�12�

Here, K 0 � �������
pH
p

�E�a�Ti ÿ T1� is a reference stress

intensity factor, and F1�z=H,a=H � is a non-dimen-

sional function de®ned in equation (A1) of

Appendix A. The concept of orthotropic re-

scaling [16] has been used to account for material

anisotropy. With the aid of the orthotropic stress±

strain relation (2), the two non-dimensional elastic

parameters l, n are de®ned as

Fig. 3. (a) Surface stress �ssurface in cold shock and (b) centre stress �scentre in hot shock as a function of
time �t for selected values of Biot number, Bi; (c) maximum surface stress and maximum centre stress,
�smax, and (d) their time of occurrence, �t*, as functions of 1/Bi. The dashed lines in (c) and (d) represent

the empirical relations (10) and (11).
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l �
�Ez

�Ex

, n �
�����������
1� z
2

r
where

z �
�����������
�Ex

�Ez

p
2Gxz

�
1ÿ 2�xz

Gxz

Ez

�
1ÿ Ez

Ey

�xy�yz
�xz

��
�13�

and �Ex � �E, �Ez � �1=Ez ÿ �2zy=Ey�ÿ1. The shear

modulus in the x±z plane is denoted by Gxz.

Positive de®niteness of the strain energy density

requires l>0 and ÿ1 < z <1. For the sake of

brevity only the case of a transversely isotropic

solid will be considered for which the material is

isotropic in planes normal to the y-axis and

l= z = 1.

The normalized stress intensity factor
�K � K=K 0 � K=

�������
pH
p

�E�a�Ti ÿ T1� is plotted

against dimensionless time �t � kzt=H 2 in Fig. 4(b),

for selected normalized crack length �a � a=H. For

illustrative purposes, results are presented only for

the case Bi= 10; results over the full range of Biot

number (0 < BiR1) are qualitatively similar to

those shown. At any given crack length a, K dis-

plays a peak value after a ®nite time and decreases

to zero as t 4 0 and as t41. It is further noted

that the magnitude of K depends upon crack length,

and achieves a peak value for a crack of length

a=H11=3. Thus, for a given Biot number Bi, K

achieves a global maximum value Kmax at a time t*

and at a crack length a*. Non-dimensional values

of Kmax and the corresponding non-dimensional

values �t* � tkz=H 2 and �a* � a*=H are plotted in

Fig. 4(c) as a function of 1/Bi. Simple curve ®ts to

the plots of Kmax and ��t*,�a*� against 1/Bi are given

by

�Kmax � Kmax

K 0
� 0:222

�
1� 2:12

Bi

�ÿ1
�14a�

�t* � kt*

H 2
� 0:08� 0:4

1� 1:4Bi
�14b�

�a* � a*

H
� 1

3
�14c�

and are in satisfactory agreement with the precise

values. It is clear from Fig. 4(c), and from

equations (14) that K attains its maximum value ap-

proximately at a=H � 1=3 and kt*=H 2 � 0:1, for

Bi>5. It is important to note that the limiting

value Kmax � 0:222K 0 is the largest stress intensity

factor attained for any crack length, under the most

severe thermal shock boundary condition (Bi =1).

This limit also applies to an edge crack under hot

shock [13] and a centre crack under hot shock (see

the results in the next section).

For the purposes of material selection for cold

shock, it is assumed the plate contains a ``worst

¯aw'': this ¯aw is taken as an edge crack of length

a* � H=3 which maximizes K during the cold

shock. Assume that failure occurs when Kmax given

by equation (14a) equals KIC for the solid. The sub-

sequent path of propagation of the edge crack

remains to be discussed. After propagating straight-

ahead towards the centre of the plate, the crack

increasingly feels the presence of compressive stres-

ses in the central portion of the plate and K drops.

As soon as the crack enters the central portion of

the plate under compression, the T-stress at the

crack tip changes from negative to positive [17]

which, according to Cotterell and Rice [18], causes

the straight-ahead advance of the crack to become

con®gurationally unstable. More speci®cally, in the

Fig. 4. (a) Geometry and conventions for a single edge
crack under cold shock, (b) dimensionless stress intensity
factor �K as a function of dimensionless time �t for Bi= 10,
(c) �Kmax and the corresponding non-dimensional values �t*

and �a* plotted as functions of 1/Bi. The dashed lines in
(c) and (d) represent the empirical relations (14).
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presence of a positive T-stress, the crack may de¯ect
parallel to the surface, resulting in crack branching

or spalling. De¯ection is encouraged by compressive
residual stresses in ceramic laminates (and by other
crack de¯ectors such as pores and weak interfaces);

this has been the subject of several recent
studies [16, 17, 19, 20]. Development of these con-
cepts is left to a later study.

4. CRACKING DUE TO HOT SHOCK

Now consider the plate of Fig. 1 subjected to a
hot shock: initially the plate is at a uniform tem-

perature Ti. At time t= 0 the top and bottom sur-
face of the plate are exposed to an environment at
temperature T1(>Ti), and the surface heat transfer

condition is again given by equation (1). As dis-
cussed above, the hot shock induces transient tensile
stresses at the centre of the plate, with peak value
speci®ed by equation (10b).

A plate under hot shock is most likely to develop
mode I cracks in the centre of the plate where maxi-
mum tensile stress is attained. In order to develop a

thermal shock criterion, the magnitude of hot shock
required to propagate a pre-existing centre crack of
length 2a, symmetrical with respect to z = 0 is

determined [Fig. 5(a)]. The mode I stress intensity
factor associated with the thermal stress transient
(9) is given by integration of s�z,t� over the crack

face, with respect to the appropriate weight func-
tion

K

K 0
� lÿ3=8���

n
p

������������������
2

p
tan

pa
2H

r
�

�a=H
0

F2�z=H,a=H ��s�z=H,t�����������������������������������������������
1ÿ

�
cos

pa
2H

cos
p
2

z

H

�s 2

2666664

3777775d
�

z

H

�
: �15�

The dimensionless function F2�z=H,a=H � is given

by equation (A2) of Appendix A. Note that under
hot shock, the parameter K0 is de®ned by
K 0 � �������

pH
p

�E�a�T1 ÿ Ti� since T1>Ti. For brevity,
again attention is restricted to transversely isotropic

plates (l = z = 1).
The non-dimensional stress intensity factor K/K0

is evaluated by numerical integration of

equation (15), and is plotted against time in
Fig. 5(b), for selected values of crack length and for
the particular choice Bi = 10. The qualitative shape

of the response is similar for other Biot numbers: K
increases from zero to a maximum value, and then
decays back to zero. It can be noted from Fig. 5(b)

that K attains an overall maximum value Kmax

at a particular time t* and at a particular crack
length 2a*. The values of �Kmax,t

*,a*� depend
upon the Biot number, as shown in Fig. 5(c).

As expected, Kmax achieves a peak value

��Kmax � Kmax=K
0 � 0:177� for the case of perfect

heat transfer Bi =1. With decreasing Bi, Kmax

decreases in a monotonic manner. A curve ®t to the

plot of �Kmax � Kmax=K
0 vs 1/Bi is included in

Fig. 5(c), and is adequately approximated by

�Kmax � 0:177

�
1� 2:12

Bi

�ÿ1
: �16a�

For the full range of Biot number (0 < BiR1) K

is largest for a crack length of approximately

a=H � 0:5. Accurate curve ®ts for �t*,a*� are

Fig. 5. (a) Geometry and conventions for a centre crack
under hot shock, (b) dimensionless stress intensity factor
�K as a function of dimensionless time �t for Bi = 10, (c)
�Kmax, and the corresponding non-dimensional values �t*

and �a* plotted as functions of 1/Bi. The dashed lines in
(c) and (d) represent the empirical relations (16).
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included in Fig. 5(c), and are given by

�t* � kt*

H 2
� 0:08� 0:4

1� 1:4Bi
�16b�

�a* � a*

H
� 0:5 �16c�

In order to select a material of optimal thermal
shock resistance, the plate containing a centre crack
of length 2a* is considered such that K is maxi-

mized during the hot shock. Assume that failure
occurs when Kmax given by equation (16a) equals
KIC for the solid. It is clear from a comparison of

equations (14a) and (16a), and from a comparison
of equations (10a) and (b) that the hot shock resist-
ance for a centre-cracked plate is greater than the

cold shock resistance for an edge-cracked plate,
regardless of whether failure is strength-controlled
or toughness-controlled. In the latter case, this is
true for all values of Bi, as long as the crack length

does not exceed a critical length acritical where the
stress intensity factor under cold shock equals that
under hot shock. For an edge-cracked plate having

a>acritical, a hot shock then becomes more severe
than a cold shock [13]. Also, as K increases continu-
ously with increases in a for an edge crack under

hot shock, crack propagation is inherently unstable;
under cold shock, crack extension is stable once the
crack length reaches a* thereafter dK=da<0 [cf.

Fig. 4(b)]. For a ®nite plate with two symmetrical
edge cracks subjected to severe thermal shock
Bi =1, it has been found that acritical � 0:6H [13].

5. THERMAL SHOCK MATERIAL PARAMETERS
FOR ENGINEERING CERAMICS

Thermal shock resistance is a major issue in the
selection of engineering ceramics for thermal appli-

cations, such as furnaces and engine parts. A cen-
tral problem in designing against thermal shock is
the identi®cation of appropriate material selection

criteria in order to select the most shock resistant
material for a given application. Material perform-
ance indices are summarized for both strength-con-
trolled failure and toughness-controlled failure.

5.1. Merit indices for strength-controlled failure

A stress-based fracture criterion for cold shock is

that smax�2H,t*� attains the fracture strength of
the solid sf; similarly, for hot shock smax�0,t*�
attains the value sf. The maximum temperature

jump sustainable by the solid DT in the extreme
case of perfect heat transfer (Bi =1) follows from
equations (10a) and (b) as

DT � A1
sf
Ea

�17�

where A111 for cold shock, and A113.2 for hot
shock. Here, and in the following, the distinction
between E and �E, and between a and �a has been

dropped, as broad material selection criteria are
concerned with, and terms of minor signi®cance are

neglected. The temperature jump sustainable
increases with decreasing Biot number, so that in
the limit of small Biot number (Bi< 1), DT follows

from equations (10a) and (b) as

DT � A2
sf
Ea

1

Bi
� A2

sf
Ea

k

hH
�18�

where A213.2 for cold shock, and A216.5 for hot
shock. It is clear from equation (17) that for perfect
heat transfer the highest temperature jumps are

achieved for materials with a large value of sf=Ea.
In the case of poor surface heat transfer (Bi< 1),
the best materials have the largest value of the ma-

terial property group ksf=Ea.
It is instructive to map engineering ceramics on a

plot with axes ksf=Ea and sf=Ea, as shown in

Fig. 6(a). The Cambridge Materials Selector
software [21] is particularly useful for this purpose.
Materials of high thermal shock resistance under
conditions of ideal heat transfer lie to the right of

the diagram, and materials of high thermal shock
resistance under conditions of poor heat transfer lie
to the top of the diagram. Glass ceramics and

graphites lie at the extreme top, right portion of the
diagram and have the highest shock resistance
among ceramics over the full range of heat transfer

coe�cient. It is also clear from the ®gure that the
relative order of merit can switch between compet-
ing materials, depending on the magnitude of Bi.
For example, beryllium oxide, BeO, has a higher

value of ksf=Ea than alumina, Al2O3, and is prefer-
able for applications of low heat transfer (small Bi).
When surface heat transfer is high (large Bi), sf=Ea
becomes the relevant material parameter, and
alumina has a superior shock resistance to BeO.

5.2. Merit indices for toughness-controlled failure

A similar strategy can be employed to rank ma-
terials on the basis of failure from a dominant
crack by thermal shock. The toughness-based frac-
ture criterion for hot and cold shock is taken to be

that Kmax�a*,t*� attains the fracture toughness of
the solid KIC. The maximum temperature jump sus-
tainable by the solid DT in the extreme case of per-

fect heat transfer (Bi =1) follows from
equations (14a) and (16a) as

DT � A3
KIC

Ea
�������
pH
p �19�

where A314.5 for cold shock, and A315.6 for hot
shock. The temperature jump sustainable increases
with decreasing Biot number, so that in the limit of

small Biot number (Bi < 1), DT follows from
equations (14a) and (16a) as

DT � A4
KIC

Ea
�������
pH
p 1

Bi
� A4

KIC

Ea
�������
pH
p k

hH
�20�
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Figures 6(a) and (b). Caption overleaf.
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where A419.5 for cold shock, and A4112 for hot

shock.

From equations (19) and (20) it can be deduced

that, for toughness-controlled thermal shock, the

best candidate materials have a high value of KIC/

Ea for ideal heat transfer (Bi =1), and a high

value of kKIC=Ea for poor heat transfer (Bi < 1). A

large number of engineering ceramics are displayed

on a map with kKIC=Ea and KIC=Ea as axes, see

Fig. 6(b). The relative location on the map is quali-

tatively similar to that given in Fig. 6(a) for

strength-controlled thermal shock, and similar con-

clusions can be drawn from the map. For example,

glass ceramics and graphites have the best thermal

shock resistance amongst the ceramics. The relative

order of merit depends somewhat on the Biot num-

ber: alumina has a superior shock resistance to ber-

yllium oxide for ideal heat transfer, but is inferior

for poor heat transfer.

There are two separate detrimental e�ects of

increasing specimen size on thermal shock resist-

ance, for both cold shock and hot shock. For

toughness-controlled failure, dimensional consider-

ations dictate that the thermal shock resistance

decreases with increasing plate thickness 2H, at all

Biot numbers; this is clear from examination of

equations (19) and (20). Further, when surface heat

transfer is imperfect (Bi <1) the maximum tem-

perature jump for both strength- and toughness-

controlled failure decreases with increasing Biot

number, see equations (18) and (20); thus, DT
decreases with increasing H. Plate thickness has no

e�ect on thermal shock resistance only for the case

of strength-controlled failure with perfect heat

transfer, see equation (17).

The issue of deciding whether a material selection

procedure should be based on a strength criterion

or a toughness criterion is a delicate one. It is

instructive to plot data for engineering ceramics on

a map for ideal heat transfer, with axes KIC=Ea and

sf=Ea, as shown in Fig. 6(c). Ceramics with a high

shock resistance from the strength viewpoint lie in

the regime of large sf=Ea value; and, ceramics with

a high shock resistance from the toughness view-

point lie in the regime of large KIC=Ea value. It is

clear from the map that material data cluster along

the leading diagonal: materials such as glass cer-

amics with a high sf=Ea value also have a large

KIC=Ea value. Equivalently, the ranking of ma-

terials by the strength criterion is the same as that

given by the toughness criterion.

Fig. 6. (a) The merit indices for strength-controlled failure ksf=Ea at low Bi values vs sf=Ea at high Bi
values, (b) merit indices for toughness-controlled failure kKIC=Ea vs KIC=Ea, and (c) KIC=Ea vs sf=Ea,
with the guide lines Hf added to help in selecting materials according to both strength- and toughness-

based fracture criteria.

LU and FLECK: THERMAL SHOCK RESISTANCE4764



Dimensional analysis, and consideration of
equations (17)±(20) reveal that the admissible tem-

perature jump for both cold shock and hot shock is
less for toughness-controlled fracture than for
strength-controlled fracture, at a su�ciently large

plate thickness. A transition plate thickness value
Ht exists for which DT is equal for toughness-con-
trolled failure and for strength-controlled failure.

Consider ®rst the case of ideal heat transfer,
Bi =1. Then, upon equating the DT values for the
strength criterion (17) and for the toughness cri-

terion (19), it is found that

Ht1
�
KIC

sf

�2

�21�

for both cold and hot shock. In the other limit of

poor heat transfer (Bi < 1), equating DT according
to equations (18) and (20) gives

Ht1
�
KIC

sf

�2

Bi �22�

for both cold and hot shock. Lines of constant Ht

according to de®nition (21) have been added to

Fig. 6(c), and may be interpreted as follows.
Materials which lie along a line of constant Ht have
the same thermal shock resistance according to the

strength criterion and to the toughness criterion, for
a plate of thickness 2Ht. For plates of this thick-
ness, the strength-based criterion is conservative for
materials lying above the line, and the toughness-

based criterion is conservative for materials lying
below the line. Materials with a large value of Ht

can be considered to have high damage tolerance,

compared with materials of low Ht value: thus, the
Ht value can be thought of as a useful measure of
damage tolerance.

6. CASE STUDY: THE POTENTIAL USE OF
CERAMIC FOAMS FOR THERMAL SHOCK

APPLICATIONS

At ®rst sight, it is unclear whether a ceramic

foam has a superior or inferior thermal shock resist-
ance to that of a fully dense ceramic. The presence
of porosity in a foam reduces its thermal conduc-
tivity, fracture toughness, failure stress, elastic mod-

ulus, and many other physical properties. The
coe�cient of thermal expansion and thermal di�u-
sivity are generally not a�ected by porosity pro-

vided the pores contain gases and not liquids. In
this section, the thermal shock resistance of a brittle
foam is estimated compared to that of the solid ma-

terial.
Consider, for illustration, the in¯uence of poros-

ity on the thermal shock fracture resistance of an

insulation plate made of ceramic foam. On writing
r* for the density of the foam, and rs for the den-
sity of the cell wall material, the relative density can
be expressed as r*/rs and, to ®rst order, dictates

the properties of the foam. For simplicity, it is

assumed that the foam consists of open cells and

the surfaces of the foam plate are insulated to pre-

vent the penetration of convective medium into the

foam cells. The elastic modulus of the foam E* de-

rives mainly from the bending of struts making the

cell edges, and is given approximately by [22]

E * � Es�r*=rs�2: �23�
Here and below, the superscript ``*'' is used to

denote foam properties and the subscript ``s'' for

properties of the solid material of which the foam is

made. According to Gibbon and Ashby [22], the

strength of the foam in compression s*
f is related to

the cell wall strength sfs by

s*
f � 0:2sfs

r*

rs

 !3=2

: �24�

The fracture toughness of the foam scales with the

relative density, cell size l and fracture strength of

the cell wall material according to

K *
IC � 0:65�r*=rs�3=2sfs

�����
pl
p

: �25�
It is convenient to relate the tensile strength of the

cell wall material sfs to the fracture toughness K s
IC

and the intrinsic ¯aw size a of the cell wall material

sfs � K s
IC������
pa
p �26�

and thereby write the fracture toughness of the

foam as

K *
IC � 0:65�r*=rs�3=2K s

IC

�������
l=a

p
: �27�

This expression is physically meaningful only for

the case l>>a: it is assumed that ¯aws within the

cell wall material are on a much smaller length

scale than the cell size.

The thermal expansion coe�cient for the foam is

taken to be equal that of the cell wall material, and

the thermal conductivity of the foam is taken as

k* � �2=3�ks�r*=rs�: �28�
Here, the relatively small contributions from gas-

eous conduction and thermal radiation have been

neglected [22].

To proceed, the estimated thermal shock resist-

ance of the foam DT* is compared to that of the

cell wall material DTs from equations (17) and (18)

for crush strength-controlled failure, and from

equations (19) and (20) for toughness-controlled

failure. Then, for both cold shock and hot shock, it

is found that

DT *

DTs
� 0:2

r*

rs

 !ÿ1=2
�29�

for ideal heat transfer, crush strength-based failure
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DT *

DTs
� 0:133

r*

rs

 !1=2

�30�

for Bi < 1, crush strength-based failure

DT *

DTs
� 0:65

r*

rs

 !ÿ1=2 ���
l

a

r
�31�

for ideal heat transfer, toughness-based failure, and

DT *

DTs
� 0:43

r*

rs

 !1=2 ���
l

a

r
�32�

for Bi < 1, toughness-based failure.
For the sake of argument take l = 10a in

equations (31) and (32). (Note that the precise
value of l/a has only a moderate e�ect on the ex-

pression for DT*/DTs due to the square root depen-
dence on l/a.) Typically, the relative density of
ceramic foams is in the range 0.03±0.3, and

equations (30) and (32) suggest that foams are in-
ferior to their fully dense parent materials, at low
Biot numbers, due mainly to their poor conduc-

tivities. However, in the case of high surface heat
transfer, equation (29) reveals that foams have a
higher shock resistance than the parent solid for r*/
rs<0.04, based on the crush strength criterion. In
similar fashion, for high surface heat transfer,
equation (31) reveals that foams have a higher
shock resistance than the parent solid for all r*/rs
less than unity, based on the toughness criterion. In
conclusion, at large Bi numbers, open-cell foams
have promise for improved thermal shock resist-

ance, provided the relative density is su�ciently
low. Indeed, from Figs 6(a) and (b), it can be seen
that graphite and zirconia (ZrO2) foams, among

others, lie to the right of their respective parent
solid materials.
If, during thermal shocking, the convective med-

ium can in®ltrate into the interior structure of

open-celled brittle foams, the situation is more com-
plicated due to the coupling of global thermal stress
and the thermal stress induced at the strut level. A

preliminary study of thermal shock damage under
such conditions can be found in Orenstein and
Green [23].

7. APPLICATION TO THERMAL FATIGUE

The results of the current study can also be used

to estimate the thermal fatigue resistance of cer-
amics, metals and polymers. Repeated thermal
shock of a plate can lead to the initiation and
growth of fatigue cracks. A conservative approach

is to design for in®nite fatigue life, and to consider

two failure criteria:

(i) A stress-based criterion for the initiation of

fatigue cracks. It is assumed that cracks do not

initiate when smax for each thermal shock is less

than the endurance limit of the material se; here,
se is de®ned as the stress amplitude at a fatigue
life of 107 cycles in a fully reversed fatigue test.

(ii) A stress-intensity based criterion for the

propagation of an existing crack. It is assumed

that a thermally-shocked plate has in®nite crack

growth life provided the stress intensity Kmax for

each thermal shock is less than the fatigue

threshold DKth of the material. Here, the fatigue

threshold is de®ned as the value of the cyclic

stress intensity, DK, corresponding to a crack

growth rate of 10ÿ10 m/cycle, in a test for which

the minimum load of each cycle equals zero.

The merit indices for stress-controlled fatigue

crack initiation are kse=Ea for Bi < 1 and se=Ea
for ideal heat transfer Bi =1. Alternatively, when

the plate contains cracks on the length scale of its

thickness, the pertinent merit indices become

kDKth=Ea and DKth=Ea for Bi < 1 and Bi =1, re-

spectively.

It is instructive to compare the thermal fatigue

properties for a range of ceramics, metals, and poly-

mers with their thermal shock resistance, for the

case of ideal heat transfer, see Figs 7(a) and (b).

The data are taken primarily from the Cambridge

Materials Selector [21] and from Fleck et al. [24].

Figure 7(a) takes as axes the thermal shock merit

indices sf=Ea and KIC=Ea, and Fig. 7(b) adopts the

equivalent parameters se=Ea and DKth=Ea. The

particular choice of materials is such as to de®ne

the outer boundaries of material behaviour for the

generic classes of solid: ceramics, metals and poly-

mers. Consider ®rst Fig. 7(a). It is noted that the

high fracture toughness exhibited by metals a�ords

them a high thermal shock resistance for the case of
a pre-cracked plate. When strength is the dominant

failure criterion, certain ceramics (such glass cer-

amics, graphites and silica glass) out perform the

metals. It is notable that the ®eld of ceramics covers

a wide range, which partly explains the need for

careful materials selection for thermal shock appli-

cations. Polymers have a relatively low Young's

modulus, and thereby a reasonable thermal shock

resistance: they lie between the data for metals and

ceramics. Now consider the thermal fatigue re-

sponse, as shown in Fig. 7(b). The ®eld for metals

moves downwards by about an order of magnitude

as the fatigue limit for metals is about an order of

magnitude less than their fracture toughness. The

drop in strength property from sf to se is less:

about a factor of two. Thus, metals have a signi®-

cantly worse thermal fatigue performance compared
to their behaviour under a single thermal shock. In

contrast, for polymers and ceramics, there is only a
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small drop in values of se=Ea and DKth=Ea com-

pared with the static properties sf=Ea and KIC=Ea,
respectively. It is clear from Fig. 7(b) that the ®eld
for metals lies within that for ceramics: there is little
advantage in using metals for thermal fatigue appli-

cations in preference to ceramics, unless other fac-
tors dominate (such as cost and manufacturability).
For completeness, the transition plate thickness Ht

is de®ned for the fatigue case in a similar manner
to that given in equation (21)

Ht1
�
DKth

se

�2

: �33�

Contours of Ht are included for the fatigue case in
Fig. 7(b), and for the static case in Fig. 7(a) making

use of equation (21). It is noted that the values of
Ht are consistently smaller for fatigue loading than
for static loading: the materials are less damage-tol-

erant under fatigue loading than under static load-
ing.
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APPENDIX A

De®nition of Green's function F1�z=H,a=H � in equation (12)

The dimensionless function F1�z=H,a=H � appearing in equation (12) is given by [25]

F1

�
z

H
,
a

H

�
� f1

�
a

H

�
� f2

�
a

H

��
H ÿ z

a

�
� f3

�
a

H

��
H ÿ z

a

�2

� f4

�
a

H

��
H ÿ z

a

�3

�A1�
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f1

�
a
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�
� 0:46� 3:06
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:

De®nition of Green's function F2�z=H,a=H � in equation (15)

The dimensionless function F2�z=H,a=H � appearing in equation (15) is given by [25]

F2�z=H,a=H � � 1�
�

p�������������
p2 ÿ 4
p ÿ 1

��
1ÿ cos

pa
2H

� �����������������������
1ÿ

�
z

H

�2
s

: �A2�
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