
Canon in G Major: Designing DHTs with Hierarchical Structure

Prasanna Ganesan
Stanford University

prasannag@cs.stanford.edu

Krishna Gummadi
University of Washington

gummadi@cs.washington.edu

Hector Garcia-Molina
Stanford University

hector@cs.stanford.edu

Abstract

Distributed Hash Tables have been proposed as flat, non-
hierarchical structures, in contrast to most scalable dis-
tributed systems of the past. We show how to construct hi-
erarchical DHTs while retaining the homogeneity of load
and functionality offered by flat designs. Our generic con-
struction, Canon, offers the same routing state vs. routing
hops trade-off provided by standard DHT designs. The ad-
vantages of Canon include (but are not limited to) (a) fault
isolation, (b) efficient caching and effective bandwidth us-
age for multicast, (c) adaptation to the underlying physical
network, (d) hierarchical storage of content, and (e) hierar-
chical access control. Canon can be applied to many differ-
ent proposed DHTs to construct their Canonical versions.
We show how four different DHTs—Chord, Symphony, CAN
and Kademlia—can be converted into their Canonical ver-
sions that we call Crescendo, Cacophony, Can-Can and
Kandy respectively.

1. Introduction

A Distributed Hash Table (DHT) is simply a hash ta-
ble that is partitioned among a dynamic set of participat-
ing nodes. There is no central directory describing which
node manages which partition. Instead, nodes are arranged
in an overlay network, so that queries for any key can effi-
ciently be routed to the appropriate node.

DHTs have been proposed as a substrate for large-scale
distributed applications. The traditional approach to build-
ing scalable distributed applications has almost always re-
volved around exploiting a hierarchical structure. Applica-
tions ranging from overlay multicast and distributed file sys-
tems to the current internet architecture and the DNS sys-
tem, all achieve scalability via hierarchical design. In stark
contrast, all DHT solutions we know of have been flat and
non-hierarchical, which has both advantages and disadvan-
tages. In this paper, we argue that one can obtain the best
of both worlds, without inheriting the disadvantages of ei-

DB DS AI

CS

Stanford

EE

Figure 1: A portion of a hierarchy of nodes

ther, by designing hierarchically structured DHTs using a
paradigm we call Canon.

Why flat design? The primary advantage of flat DHT de-
sign is that there is a uniform distribution of functionality
and load among the participating nodes which also ensures
that there is no single point of failure.

Why hierarchical design? Herbert Simon, in The Archi-
tecture of Complexity [1], argues that hierarchy emerges in-
evitably in any complex system. Butler Lampson, when de-
scribing the design of a global name system [2] observes:
“Hierarchy is a fundamental method for accommodating
growth and isolating faults”. In our DHT context, hierar-
chical design offers the following advantages: fault isola-
tion and security, effective caching and bandwidth utiliza-
tion, adaptation to the underlying physical network, hierar-
chical storage, and hierarchical access control.

Our proposed design, Canon, inherits the homogeneity
of load and functionality offered by flat design, while pro-
viding all the above advantages of hierarchical design. The
key idea behind Canon lies in its recursive routing struc-
ture. Figure 1 depicts an example fragment of the hierarchy
of machines at Stanford University. The rectangular boxes
stand for participant nodes in the DHT. We refer to the inter-
nal nodes in the hierarchy as domains, to distinguish them
from the actual system nodes. When we refer to the “nodes
in domain D”, we refer to all the system nodes in the sub-
tree rooted at D. The design of Canon ensures that the nodes
in any domain form a DHT routing structure by themselves.
Thus, for example, the nodes in the “DB” domain would
form a DHT structure by themselves, as will the set of all
nodes in the CS domain, and the entire set of nodes at Stan-
ford.

The DHT corresponding to any domain is synthesized by

merging its children DHTs by the addition of some links.
Thus, the DHT for CS is constructed by starting with the
individual DHTs for domains DB, DS and AI, and adding
links carefully from each node in one domain to some set of
nodes in the other domains. The challenge we face is to per-
form this merging in such a fashion that the total number
of links per node remains the same as in a flat DHT design,
and that global routing between any two nodes can still be
achieved as efficiently as in flat designs.

The Canon principle can be applied to transform many
different DHT designs into their Canonical versions. Much
of this paper will focus on Crescendo, the Canonical version
of the popular Chord [3] DHT. However, we will also de-
scribe how to adapt other DHTs, including nondeterminis-
tic Chord [4, 5], Symphony [6], CAN [7] and Kademlia [8],
a variant of Pastry [9].

The rest of this paper is organized as follows. In Sec-
tion 2, we discuss the design of the basic routing framework
for Canon, explaining how it is used to construct Crescendo,
and show how it provides fault isolation. In Section 3, we
explain how to construct Canonical versions of other DHTs,
and offer enhancements to provide support for physical-
network proximity in all our constructions. In Section 4, we
discuss the usage of the hierarchy in content storage and re-
trieval, access control, and caching policies. In Section 5,
we validate our design and quantify its advantages by means
of experiments. Section 6 discusses related work.

2. Crescendo: A Canonical version of Chord

In this section, we discuss a hierarchical version of
Chord that we call Crescendo1. We first describe the
“static” structure of Crescendo, discuss how routing oc-
curs in this structure, and then explain how this structure is
maintained dynamically.

2.1. The Routing Structure of Crescendo

Chord: Chord [3] is a distributed hash table storing key-
value pairs. Keys are hashed into a circular N-bit identifier
space [0, 2N). (Identifiers on the circle are imagined as be-
ing arranged in increasing order clockwise.) Each node is
assigned a unique ID drawn uniformly at random from this
space, and the distance from a node m to a node m′ is the
clockwise distance on the circle from m’s ID to m′’s. Each
node m maintains a link to the closest node m′ that is at
least distance 2i away, for each 0 ≤ i < N . We will re-
fer to the set of nodes forming a Chord network as a Chord
ring.

Crescendo, our hierarchical DHT, requires all the nodes
in the system to form a conceptual hierarchy reflecting their

1 A sequence of ever-rising Chords

0

10

5

12

0

10

5

12

3

8

13

3

8

13

Ring BRing A The Merged Ring

2 2

Figure 2: Merging two Chord rings

real-world organization, such as the one in Figure 1. We
note that no global information about the structure of the
hierarchy is necessary; it suffices for each node to know
its own position in the hierarchy, and for two nodes to be
able to compute their lowest common ancestor. (One pos-
sible practical implementation is to assign each node a hi-
erarchical name as in the DNS system.) The hierarchy may
also evolve dynamically with the introduction of new do-
mains.

Each node in Crescendo is assigned a unique ID from
the circular N-bit space, just as in Chord. However, the
link structure in Crescendo is recursive in nature. Each set
of nodes in a leaf domain2(e.g., DB in Figure 1) forms a
Chord ring just as in Chord. At each internal domain, the
Crescendo ring, containing all nodes in that domain, is ob-
tained by merging all the “children” Crescendo rings into
a single, larger Crescendo ring. Applying this construction
recursively at higher levels of the hierarchy leads to merg-
ing larger and larger rings to eventually produce the global
DHT containing all the nodes in the system.

We first use an example to show how two separate Chord
rings are merged into one Crescendo ring. Say there are two
Chord rings A and B, each with four nodes as shown in Fig-
ure 2. All nodes choose a globally unique random integer ID
in [0, 16). We will focus on the edges created by two nodes:
node 0 in ring A and node 8 in ring B. Recall that node 0 es-
tablishes its links in ring A by finding, for each 0 ≤ k < 4,
the closest node that is at least distance 2k away. Conse-
quently, it creates links to nodes 5 (corresponding to dis-
tances 1, 2 and 4) and 10 (distance 8). Similarly, in ring B,
node 8 forms links to nodes 13 and 2.

When the two rings are merged, nodes retain all their
original links. In addition, each node m in one ring creates
a link to a node m′ in the other ring if and only if:

(a) m′ is the closest node that is at least distance 2k away
for some 0 ≤ k < N , and

(b) m′ is closer to m than any node in m’s ring.

Note that condition (a) is just the standard Chord rule for
creating links, applied on the union of the nodes in the two
rings. Condition (b), however, says that node m should cre-

2 Since our hierarchy is a “conceptual hierarchy”, nodes are assumed to
be hanging off the leafs rather than being leafs themselves.

ate only a subset of these links, specifically, only the links
to nodes that are closer to it than any other node in its own
ring.

Returning to our example, let us consider the links to be
created by node 0. Condition (a) suggests that node 0 link
to node 2 (for distances 1 and 2), and to node 8 (for distance
8). However, condition (b) rules out node 8, since it is fur-
ther away than the closest node in Ring A (node 5). Thus,
node 0 establishes an additional link only to node 2. Note
that there is no link from node 0 to node 3. As another ex-
ample, consider node 8 in Ring B. Condition (a) suggests
nodes 10 (distances 1 and 2) , 12 (distance 4) and 0 (dis-
tance 8) as candidates. We again use condition (b) to rule
out node 0.

Note that some nodes may not form any additional links
at all. For example, node 2 has node 3 in its own ring as
the closest node, due to which condition (b) is violated for
all other nodes. One may wonder whether our construc-
tion leads to a skewed degree distribution among the nodes.
However, such is not the case. Our evaluation in Section 5
will show the actual skew in degree distribution compared
to standard Chord.

The above approach for merging two rings naturally gen-
eralizes to merging any number of rings rather than just
two. Each node once again forms links to nodes other than
those in its own ring if they satisfy conditions (a) and (b).
This algorithm for link creation is applied bottom-up on
the hierarchy, merging sibling rings to construct larger and
larger rings until all the nodes belong to the same ring. We
state the following theorems on node degrees in Chord and
Crescendo. (Note that the degree of a node refers to its out-
degree, and does not count incoming edges.) We present
formal proofs in a technical report [10].

Theorem 1 In a Chord ring of n nodes, with nodes choos-
ing their ID uniformly at random, the expected degree of a
node is at most log(n − 1) + 1, for all n > 1.

The above theorem bounds the expected degree of a node
in Chord and our work appears to be the first to claim it.
The following theorem provides a somewhat weaker bound
on the expected degree for Crescendo. However, our exper-
iments in Section 5 show that, in practice, the average de-
gree of a node in Crescendo is slightly less than in Chord,
and that it decreases as the number of levels in the hierar-
chy increases.

Theorem 2 In a Crescendo ring of n nodes, with nodes
choosing their ID uniformly at random, the expected degree
of a node is at most log(n − 1) + min(l, log n) if n > 1,
where l is the maximum number of levels in the hierarchy.

The following theorem shows that a node in Crescendo
has a logarithmic degree with high probability.

Theorem 3 The degree of any node in Crescendo is
O(log n) with high probability (w.h.p.) irrespective of the
structure of the hierarchy.

2.2. Routing in Crescendo

Routing in Crescendo is identical to routing in standard
Chord, namely, greedy clockwise routing. If a node wishes
to route a message to a destination d, it simply forwards the
message to its neighbor that is closest to d while not over-
shooting the destination.

Observe that greedy clockwise routing in Crescendo is
naturally hierarchical. In order to get to a destination d, a
node m initially attempts to take the largest possible steps
towards the destination, which implies that the node implic-
itly routes to the closest predecessor of d in the lowest-level
Crescendo ring it belongs to. In Figure 2, if node 2 in ring
B wished to route to node 12, it would route along ring B to
node 8. Node 8 then switches to routing on the merged ring,
i.e., using the ring at the next level of the hierarchy. It uses
greedy, clockwise routing to forward to node 10, which in
turn forwards to node 12, completing the route.

In general, when there are multiple levels of the hierar-
chy, greedy clockwise routing routes to the closest prede-
cessor p of the destination at each level, and p would then
be responsible for switching to the next higher Crescendo
ring and continue routing on that ring. We can now see two
crucial properties of this routing protocol.

Locality of intra-domain paths: The route from one node
to another never leaves the domain in the hierarchy, say D,
that contains both nodes. This is clearly true, since rout-
ing uses progressively larger Crescendo rings, and would
be complete when the ring contains all nodes in D.

Convergence of inter-domain paths: When differ-
ent nodes within a domain D (at any level of the hier-
archy) route to the same node x outside D, all the dif-
ferent routes exit D through a common node y. This
node is, in fact, the closest predecessor of x within do-
main D.

The locality of intra-domain paths provides fault isola-
tion and security, since interactions between two nodes in
a domain cannot be interfered with by, or affected by the
failure of, nodes outside the domain. We discuss its impli-
cations for hierarchical storage and access control in Sec-
tion 4. The convergence of inter-domain paths enables effi-
cient caching and multicast solutions layered on Crescendo.
We discuss caching in more detail in Section 4. We now
characterize the number of hops required for routing in
Chord and Crescendo. We refer the reader to our techni-
cal report [10] for proofs.

Theorem 4 In a Chord ring of n nodes, with nodes choos-
ing their integer ID uniformly at random from [0, 2N), the

expected number of routing hops between two nodes is at
most 1

2
log(n − 1) + 1

2
, if n > 1.

The above theorem pertains to the routing cost in Chord
and, to the best of our knowledge, has not been proved
prior to this work. The following theorems offer a weak
upper bound on the expected number of routing hops in
Crescendo, and show that routing between any two nodes
takes only O(log n) hops with high probability. In Sec-
tion 5, we experimentally show that routing in Crescendo
is almost identical in efficiency to routing in Chord, irre-
spective of the structure of the hierarchy.

Theorem 5 In a Crescendo ring of n nodes, with n > 1
and nodes choosing their ID uniformly at random, the ex-
pected number of routing hops between two nodes is at most
log(n − 1) + 1, irrespective of the hierarchy structure.

Theorem 6 In a Crescendo ring of n nodes, with nodes
choosing their IDs uniformly at random, the number of rout-
ing hops to route between any two nodes is O(log n) w.h.p.

2.3. Dynamic Maintenance in Crescendo

So far, we have discussed the Crescendo structure with-
out describing how it is constructed and maintained in the
face of node arrivals and departures. Dynamic maintenance
in Crescendo is a natural extension of dynamic maintenance
in Chord. We describe only the protocol for nodes joining
the system. The protocol for nodes leaving is similar.

When a new node m joins the system, it is expected to
know at least one other existing node in its lowest-level do-
main. (If m is the first node in this lowest-level domain, then
m is expected to know an existing node in the lowest do-
main of m in which some other node exists in the system.)
This knowledge can be provided by many different mecha-
nisms. For example, a central server could maintain a cache
of live nodes in different portions of the hierarchy, and new
nodes could contact the server for this information. Alterna-
tively, each domain could have its own server maintaining
a list of nodes in the system. (For example, the local DNS
server could be modified to provide this information.) As a
third alternative, this information can be stored in the DHT
itself, and a new node can simply query the DHT for the
requisite information if it knows any live node in the sys-
tem.

Let us say the new node m knows an existing node m′ in
its lowest-level domain. Then, the new node “inserts” itself
using the standard Chord technique for insertion, applied at
each level of the hierarchy. Specifically, node m routes a
query through m′ for its own ID, and the query reaches the
predecessor of m’s ID at each level of the hierarchy. (This
is due to the convergence of inter-domain paths.) At each
such level, going successively from the lowest-level domain
to the top, m inserts itself after this predecessor and sets up

appropriate links to other nodes in that domain. (As an op-
timization, it can use its predecessor’s links in each domain
as a hint for finding the list of nodes m needs to link to in
that domain.)

Once m has established its links in all the domains, m in-
forms its successor in each domain of its joining. The suc-
cessor at each level, say sl, ensures that all nodes at that
level which now “erroneously” link to sl instead of to m,
are notified. This notification can either be done eagerly, or
can be done lazily when such an erroneous link is used to
reach sl for the first time. The total number of messages
necessary to ensure all links in the system are set up cor-
rectly after a node insertion is O(log n) which is the same
as in normal Chord.

Leaf Sets: In Chord, each node needs to “remember” a
list of its successors on the ring, called the leaf set, to deal
with node deletions. In Crescendo, each node maintains a
list of successors at every level of the hierarchy. Note that
leaf sets are cheap to maintain since they can be updated by
passing a single message along the ring, and do not cause
state overhead since they do not correspond to actual TCP
links.

3. General Canon and Physical-Network
Proximity

Having seen how to construct a hierarchical version of
the Chord DHT, we now generalize our approach to cre-
ate other Canonical constructions. We then discuss how to
adapt all our constructions to optimize for the proximity of
different nodes in the physical network.

3.1. Canonical Symphony : Cacophony

Symphony [6] is a randomized version of Chord, where
each node m creates O(log n) links (where n is the number
of nodes in the system) to other nodes, each chosen inde-
pendently at random, such that the probability of choosing
a node m′ as a neighbor is inversely proportional to the dis-
tance from m to m′. In addition, each node maintains a link
to its immediate successor on the ring.

The construction of Canonical Symphony, or Ca-
cophony, is similar to that of Crescendo. Each node
creates links in its lowest-level domain just as in Sym-
phony, but choosing only blog nlc random links, where
nl is the number of nodes in that domain. At the next
higher level, it chooses blog nl−1c links by the same ran-
dom process, where nl−1 is the number of nodes in the do-
main at that level, but retains only those links that are closer
than its successor at the lower level. In addition, it cre-
ates a link to its successor at the new level.

This iterative process continues up to the top level of
the hierarchy. It is again possible to show that Cacophony

achieves logarithmic routing when each node has degree
O(log n). Note that both Symphony and Cacophony require
the ability to estimate the number of nodes in a domain, and
it is possible to perform this estimation cheaply and accu-
rately [6]. It is actually possible to route in Symphony us-
ing only O(log n/ log log n) hops using a modification to
greedy routing. Cacophony also appears to achieve the same
performance improvements as Symphony using the modi-
fied routing protocol.

3.2. Canonical Nondeterministic Chord : Nonde-
terministic Crescendo

Yet another variant of Chord is nondeterminis-
tic Chord [4, 5], where a node chooses to connect to any
node with distance in [2k−1, 2k) for each 0 ≤ k < N , in-
stead of connecting to the closest node that is at least
distance 2k−1 away. Nondeterministic Chord has rout-
ing properties almost identical to Symphony. The con-
struction of nondeterministic Crescendo is very simi-
lar to Crescendo, with the nondeterministic Chord rule
for link selection instead of the deterministic rule. How-
ever, when rings are merged, a node m can exercise its non-
deterministic choice only among those nodes that are closer
to it than any other node in its own ring.

For example, consider a node m in some ring A and say
the node closest to m on A is m′ at distance 12. Let us say
there are two nodes p and q belonging to the next higher do-
main, which are distances 10 and 14 away from m. Since
nondeterministic Chord only requires a link to any node be-
tween distances 8 and 15, node m may decide to consider
node q to link to and not node p. However, since q is fur-
ther away than m′, node m would consequently decide not
to link to either p or q which is erroneous. Instead, node
m is allowed to exercise its nondeterministic choice only to
choose among nodes which are between distances 8 and 12
away.

3.3. Canonical Pastry/Kademlia : Kandy

Pastry [9] and Kademlia [8] are hypercube versions of
nondeterministic Chord. We will describe Kademlia and its
Canonical version. Pastry is similar to Kademlia but has
a two-level structure that makes its adaptation more com-
plex. Kademlia defines the distance between two nodes us-
ing the XOR metric rather than the clockwise distance on
a ring. In other words, the distance between two nodes m
and m′ is defined to be the integer value of the XOR of the
two IDs. Just like in nondeterministic Chord, each node m
is required to maintain a link to any node with distance in
[2k−1, 2k), for each 0 ≤ k < N . (For resilience, Kadem-
lia actually maintains multiple links for each of these dis-
tances but we ignore them in this discussion.) Routing is

still greedy, but works by diminishing this XOR distance
rather than the clockwise distance.

Our Canon construction for nondeterministic Crescendo
carries over directly to Kademlia. Each node creates its links
in the lowest-level domain just as dictated by Kademlia. At
the next higher level, it again uses the Kademlia policy and
applies it over all the nodes at that level to obtain a set of
candidate links (with the same caveat as in nondeterminis-
tic Crescendo). It then throws away any candidate whose
distance is larger than the shortest distance link it possesses
at the lower level. The construction is repeated at succes-
sively higher levels of the hierarchy, just as normal.

3.4. Canonical CAN : Can-Can

CAN [7] was originally proposed as a network with con-
stant expected degree, but can be generalized to a log-
arithmic degree network. The set of node identifiers in
CAN form a binary prefix tree, i.e., a binary tree with left
branches labeled 0 and right branches labeled 1. The path
from the root to a leaf determines the ID of a node corre-
sponding to that leaf.

Since leaf nodes may exist at multiple levels of the tree,
not all IDs are of the same length. We therefore make IDs
equal-length by treating a node with a shorter ID as multi-
ple virtual nodes, one corresponding to each padding of this
ID by different sequences of bits. For example, if there are
three nodes with IDs 0, 10 and 11, the first node is treated as
two virtual nodes with IDs 00 and 01. Edges correspond ex-
actly to hypercube edges: there is an edge between two (vir-
tual) nodes if and only if they differ in exactly one bit. Rout-
ing is achieved by simple left-to-right bit fixing, or equiva-
lently, by greedy routing using the XOR metric.

Canonical CAN, Can-Can, is constructed in a by-now-
familiar fashion. Again, traditional CAN edges are con-
structed at the lowest level of the hierarchy, and a node
creates a link at a higher level only if it is a valid CAN
edge and is shorter than the shortest link at the lower level.
Again, the properties of Can-Can are almost identical to that
of logarithmic-dimensional CAN constructed in the fashion
we have described here.

3.5. Further Generalizations

The use of hierarchical routing offers us even more flex-
ibility in choosing routing structure. We observe that there
is no explicit requirement that the routing structure created,
and the routing algorithm used, be the same at different lev-
els of the hierarchy. For example, say the nodes belonging
to the same lowest level of the hierarchy are all on the same
LAN. In such a case, it may make sense to use a routing
structure other than Chord to link them up. For example,
there may be efficient broadcast primitives available on the

LAN which may allow setting up a complete graph among
the nodes. It may also be useful to implement messaging via
UDP rather than TCP to reduce communication overhead.
As another example, it may be possible to leverage detailed
information about the location, availability, and capacity of
nodes within an organization to build much more intelligent
and efficient structures than a homogeneous Chord ring.

When “merging” different LANs at the next higher level
of the hierarchy, we could still use the same approaches as
described earlier, for example, to construct Crescendo. Each
node creates links to some nodes outside its LAN, but en-
suring that the distance covered by the link is smaller than
the distance to its closest neighbor within the LAN (in the
same ID space as earlier). Routing takes place hierarchi-
cally. At the lowest level, the complete graph is exploited to
reach the appropriate node in one hop. This node then for-
wards on the Crescendo ring at the next level of the hierar-
chy using greedy, clockwise routing.

3.6. Adapting to Physical-Network Proximity

All the constructions we have seen so far exploit the like-
lihood of nodes within a domain being physically close to
each other to produce natural adaptation to the physical net-
work. However, this natural adaptation is likely to break
down at the top levels of the hierarchy. For example, the
top level of the hierarchy could have hundreds of children
domains spread all over the world. Some of these domains
may be in North America while others are in Europe, Africa
and Asia. In such a case, we would like to preferentially
connect nodes in North America to other nodes in North
America, (and among such nodes, nodes on the West coast
to other nodes on the West coast) and so on, without hav-
ing to explicitly create additional levels of hierarchy to cap-
ture such preferences.

In such a case, it is possible to introduce such preferen-
tial connections, or adaptation to the physical network, in
a transparent fashion that is independent of the DHT struc-
ture being constructed. The intuition is to introduce multiple
choices of neighbors for each link that a node needs to set
up, alowing the node to randomly sample some small num-
ber of these choices, and select the “best” one as its neigh-
bor.

Such a construction can be applied both to flat and hierar-
chical DHTs, with deterministic or nondeterministic topolo-
gies. The details of this construction are discussed in [11],
and in our extended technical report. The only point we
make here is that the use of such proximity adaptation in
a hierarchical DHT affects the link construction only at
the top level of the hierarchy, and is applicable to any hi-
erarchical DHT. We will refer to the versions of Chord
and Crescendo using such proximity adaptation as Chord
(Prox.) and Crescendo (Prox.) respectively.

4. Storing and Retrieving Content

In this section, we first discuss the basic mechanism for
storing and retrieving content in a hierarchical fashion. We
then discuss how caching may be exploited by the system.
We discuss how to achieve partition balance, i.e., ensure that
content is distributed across the nodes in as even a fashion
as possible, in the technical report [10].

4.1. Hierarchical Storage and Retrieval

DHTs are designed to store and retrieve content, consist-
ing of key-value pairs, by hashing the key into the space
[0, 2N). For convenience, we will refer to the hash value of
a key as the key itself. In a flat DHT, the hash space is par-
titioned across the different nodes, and the key-value pair
is stored at the unique node “responsible” for the partition
containing the key. The assignment of responsibility is sim-
ple. Each node is responsible for all keys greater than or
equal to its ID and less than the next larger existing node
ID on the ring3. Thus, there is no choice available in deter-
mining where a key-value pair is stored. A query for a spe-
cific key is answered simply by routing with the key as the
“destination”, which automatically results in routing termi-
nating at the node responsible for that key.

The hierarchical design of a DHT offers more alterna-
tives for content storage. When a node n wishes to insert
content, it can specify the content’s storage domain, i.e.,
a domain containing n within which the content must be
stored. Node n can also specify the content’s access do-
main, a superset of the storage domain, to all of whose
nodes the content is to be made accessible.

Say, node n requires a key-value pair 〈k, v〉 to be stored
within storage domain Ds. In such a case, the key-value
pair is stored at the node in Ds whose ID is closest to, but
smaller than, k, i.e., it is stored at the location dictated by
the DHT consisting solely of nodes in Ds. If the content is
to be accessible within a larger access domain Da, rather
than only within Ds, an additional pointer to the content is
stored at the node in Da whose ID is closest to, but smaller
than, k.

A search for a key k occurs by hierarchical, greedy rout-
ing just as described earlier, with two changes. The first
change is that a node m along the path, which switches
routing from one level to the next, may have “local” con-
tent that matches the query key. A key-value pair 〈k, v〉 will
be returned by m as a query answer if and only if its ac-
cess domain is no smaller than the domain defined by the
current routing level4.

3 Chord actually inverts this definition to make a node responsible for
keys less than it and greater than the next smaller node ID. However,
our definition is an improvement on Chord’s both in terms of effi-
ciency and coding complexity.

If the application allows only one value for each key, then
search can terminate when the first node along the path finds
a hit for the key. Note that this implies that a query for con-
tent stored locally in a domain never leaves the domain. If
the application requires a partial list of values (say one hun-
dred results) for a given key, the routing can stop when a
sufficient number of values have been found for the key.

The second change to the routing algorithm occurs be-
cause a node m may have pointers to content matching the
key, without having the content itself. In such a case, this in-
direction is resolved and the actual content is fetched by m
(and possibly cached at m) before being returned to the ini-
tiator of the query.

Greedy routing thus automatically supports both hierar-
chical storage and access control. A query initiated by a
node automatically retrieves exactly that content that a node
is permitted to access, irrespective of whether parts of this
content are stored locally in a domain or globally.

4.2. Caching

The hierarchical routing of queries naturally extends to
take advantage of the caching of query answers. As we have
already seen, the convergence of inter-domain paths imply
that, in each domain D, a query Q for the same key ini-
tiated by any node in D exits D through a common node
pQ,D which we call the proxy node for query Q in domain
D. (This node pQ,D is also responsible for storing content
with the same key and storage domain D.) Thus, answers
to Q may be cached at pQ,D for any, or all, choices of the
level of domain D in the hierarchy.

We propose caching the answer to query Q at the proxy
node pQ,D at each level of the hierarchy encountered on
the path to the query’s answer. If nodes exhibit locality of
access, it is likely that the same key queried by a node m
would be queried by other nodes close to m in the hierarchy.
Say another node m′ initiates a query for the key queried by
m. The routing algorithm ensures that the cached copy of
the answer is discovered at the lowest-level domain which
contains both m and m′.

We discuss caching, and cache-replacement policies, in
more detail in the extended technical report. We simply
note here that the above caching scheme offers many advan-
tages over caching in flat DHTs. Caching solutions for flat
DHT structures all require that the query answer be cached
all along the path used to route the query, creating many
cached copies of each query answer, and leading to higher
overhead. Moreover, the absence of guaranteed local path
convergence implies that these cached copies cannot be ex-

4 This routing level can either be maintained as a field in the query mes-
sage, or can be computed by finding the lowest common ancestor of
m and the query source.

10

11

12

13

14

15

16

17

1024 2048 4096 8192 16384 32768 65536

A
vg

. #
 E

dg
es

/N
od

e

Number of Nodes

Chord
Levels=2
Levels=3
Levels=4
Levels=5

Figure 3: Average Number of Links per Node

ploited to the fullest extent, and may not capture locality of
access patterns.

5. Evaluation

We now present an experimental evaluation of the differ-
ent routing and path convergence properties of Crescendo.

5.1. Basic Routing Properties

Our first set of experiments evaluates the number of links
vs. number of routing hops tradeoff offered by Crescendo
and shows that Crescendo is very similar to Chord. All our
experiments for this subsection use a hierarchy with a fan-
out of 10 at each internal node of the hierarchy. The num-
ber of levels in the hierarchy is varied from 1 (a flat struc-
ture) to 5. The number of nodes in the system is varied from
1024 to 65536, and all nodes choose a random 32-bit ID.

We used two different distributions to assign nodes to po-
sitions in the hierarchy: (a) uniformly random assignment of
each node to a leaf of the hierarchy (b) a Zipfian distribu-
tion of nodes where the number of nodes in the kth largest
branch (within any domain) is proportional to 1/k1.25. The
results obtained with the two distributions were practically
identical and here, we show graphs corresponding to the
Zipfian distribution.

Figure 3 plots the average number of links per node, as
a function of the size of the network, for different numbers
of levels in the hierarchy. Note that Chord corresponds to
a one-level hierarchy. We notice that the number of links
is extremely close to log n irrespective of the number of
levels. We also observe that the number of links decreases
slightly as the number of levels increases. (The reason for
this drop in edges lies in Jensen’s inequality. To illustrate,
consider the merging of two rings A and B with m nodes
each. The expected number of B nodes between two con-
secutive A nodes is 1. However, the expected number of
inter-domain links set up by an A node is less than 1 be-
cause E(log(X + 1)) ≤ log(E(X) + 1) for any random

4.5
5

5.5
6

6.5
7

7.5
8

8.5
9

1024 2048 4096 8192 16384 32768 65536

A
vg

. #
 R

ou
tin

g
H

op
s

Number of Nodes

Chord
Levels=2
Levels=3
Levels=4
Levels=5

Figure 4: Average Number of Routing Hops

variable X > 0.) We discuss the distribution of the num-
ber of links per node in the extended technical report.

Figure 4 depicts the average number of hops required to
route between two nodes, as a function of the network size.
We see that the number of routing hops is 0.5 logn + c,
where c is a small constant which depends on the number
of levels in the hierarchy. The number of hops required in-
creases slightly when the number of levels in the hierarchy
increases, which is explained by the corresponding drop in
the number of links created. We note, however, that this in-
crease is at most 0.7 irrespective of the number of levels in
the hierarchy (even beyond what we have depicted on this
graph).

5.2. Adaptation to Physical-Network Proximity

We now evaluate routing in terms of actual physical-
network latency, rather than in terms of the number of hops
used. All experiments hereonin use the following setup:
We used the GT-ITM [12] topology generator to produce
a 2040-node graph structure modelling the interconnection
of routers on the internet. In this model, routers are broken
up into transit domains, with each transit domain consist-
ing of transit nodes. A stub domain is attached to each tran-
sit node, and the stub domain is itself composed of multiple
stub nodes interconnected in a graph structure. The latency
of a link between two transit nodes is assigned to be 100ms,
with transit-stub links being 20ms and stub-stub links be-
ing 5ms.

To construct a Crescendo network with a desired num-
ber of nodes, we uniformly attach an appropriate number of
Crescendo nodes to each stub node, and assume that the la-
tency of the link from a Crescendo node to its stub node is
1ms. This GT-ITM structure induces a natural five-level hi-
erarchy describing the location of a node (root, transit do-
main, transit node, stub domain, stub node).

We evaluate the performance of four different systems:
Chord and Crescendo, with and without the top-level prox-
imity adaptation discussed in Section 3.6. Figure 5 depicts
the performance of these four systems using two different

1

2

3
4

7

2048 4096 8192 16384 32768 65536

400

700

1000

1600

2400

S
tr

et
ch

La
te

nc
y

(m
s)

Number of Nodes

Chord (No Prox.)

Crescendo (No. Prox.)

Chord (Prox.)

Crescendo (Prox.)

Figure 5: Routing Stretch on Crescendo and
Chord

measures on the y-axis. The right axis shows the average
routing latency, while the left axis shows the stretch, which
is the same quantity normalized by the average shortest-path
latency between any two nodes in our internet model. Thus,
a stretch of 1 implies that routing on the overlay network is
as fast as directly routing between nodes on our model of
the internet.

We observe that the routing latency of plain Chord is
again linearly related to log n, which is not too surpris-
ing. Plain Crescendo, on the other hand, fares much bet-
ter than Chord, and produces an almost constant stretch of
2.7 even as the number of nodes increases. The reason why
the stretch is constant is that an increase in the number of
nodes only results in the lowest-level domain under each
stub node increasing in size. Thus, the “additional hop” in-
duced by the number of nodes quadrupling is effectively a
hop between two nodes attached to the same stub, which
costs only 2ms in our model.

When proximity adaptation is used, the stretch for Chord
(Prox.) improves considerably but is still about 2 on a 64K-
node network. Again, we notice that the stretch is a lin-
ear function of log n, albeit with a smaller multiplicative
factor than earlier. Crescendo (Prox.), which uses proxim-
ity adaptation at the top level of the hierarchy, again pro-
duces a constant stretch of 1.3 for all network sizes, and
thus continues to be considerably better than Chord (Prox.).
These curves illustrate the important scaling advantage of
Crescendo-style bottom-up construction, which results in
constant stretch, compared to random sampling to find a
nearby node, whose performance is a function of the num-
ber of nodes in the system.

5.3. Locality of Intra-domain paths

We now illustrate the advantages of intra-domain path
locality. Again using our GT-ITM models, we compare the
expected latency of a query as a function of its locality of
access. Thus, a “Top Level” query would be for content
present anywhere in the system, a “Level 1” query initi-

0

150

300

450

600

750

900

Top Level Level 1 Level 2 Level 3 Level 4

La
te

nc
y

(m
s)

Query Locality Level

Chord (Prox.)
Crescendo (No Prox.)

Crescendo (Prox.)

Figure 6: Latency as a function of query locality

ated by a node would be for content within its own tran-
sit domain, and so on. Figure 6 plots the latency as a func-
tion of the locality of the query for three different systems:
a 32K-node Chord network with proximity adaptation, and
a 32K-node Crescendo network with and without proxim-
ity adaptation. We do not show plain Chord since its per-
formance is off by an order of magnitude. Also note that the
use of proximity adaptation in Crescendo only improves the
performance of top-level queries, since it applies only to the
top level of the hierarchy.

The left end-points of the lines depict the query latency
for top-level queries and, as observed earlier in Figure 5,
Crescendo with proximity adaptation performs the best. As
the locality of queries increases, the latency drops drasti-
cally in Crescendo and becomes virtually zero at Level 3,
where all queries are within the same stub domain. On the
other hand, Chord, even with proximity adaptation, shows
very little improvement in latency as query locality in-
creases.

This graph establishes two points: (a) search for local
content is extremely efficient in Crescendo, from which we
deduce that local caching of query answers will improve
performance considerably, and (b) Chord does not offer
good locality of intra-domain paths.

5.4. Convergence of inter-domain paths

We now illustrate the advantages of inter-domain path
convergence for caching. Evaluation for multicast is de-
scribed in [10].

Say a random node r initiates a query Q for a random
key. Let r belong to domain D, and let the path taken by the
query be P . Consider a second node chosen at random from
D which issues the same query Q, and let P ′ be the path
taken by the query from this node. We define the hop over-
lap fraction to be the fraction of the path P ′ that overlaps
with path P . We define the latency overlap fraction to be the
ratio of the latency of the overlapping portion of P ′ to the
latency of the entire path P ′. The expected values of these
quantities can be viewed as simple metrics capturing the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Top Level Level 1 Level 2 Level 3 Level 4

O
ve

rla
p

F
ra

ct
io

n

Domain Level

Crescendo (Latency)

Crescendo (Hops)

Chord (Latency) Chord (Hops)

Figure 7: Overlap Fraction versus domain level

bandwidth and latency savings respectively, obtained due to
the first node’s query answer being cached along the query
path. (We note that practical bandwidth savings would be
much higher, because inter-domain bandwidth is generally
much more expensive than intra-domain bandwidth.)

Figure 7 depicts the expected value of the hop overlap
fraction and the latency overlap fraction for both Crescendo
and Chord (with proximity adaptation), as a function of the
level of the domain within which the nodes are drawn. We
see that the overlap fraction, for both hops and latency, is ex-
tremely low for Chord, even for low-level domains. On the
other hand, the overlap fraction increases considerably as
the level of the domain increases in Crescendo. As is only
to be expected, the overlap fraction is higher for latency,
since the non-overlapping hops have very low latency.

6. Related Work

There have been many different Distributed Hash Table
designs that have been proposed recently [7, 3, 9, 13, 6, 14,
15, 16, 17] all of which use routing structures that are vari-
ants of the hypercube. All of them can be viewed as provid-
ing routing in O(log n) hops on an n-node network when
each node has degree Θ(log n). (Some of these construc-
tions are for constant-degree networks but they may be gen-
eralized to use base log n, and thus have logarithmic num-
ber of links [15, 14].)

Some of these networks also use locality heuristics [9,
18, 13, 5, 11] to ensure that nodes nearby on the physical
network are preferentially connected to each other. In con-
sequence, they achieve some convergence on inter-domain
paths due to this “clustering” effect. However, such conver-
gence is heuristic in nature and is dependent on the number
of nodes in the system, the characteristics of the underly-

ing physical network and the relative stability of the differ-
ent nodes.

Another recent system which provides some DHT func-
tionality is SkipNet [19]. SkipNet behaves just like a nor-
mal DHT when routing for content outside the local domain
(and thus provides no, or heuristic, convergence for inter-
domain paths). However, SkipNet provides explicit path lo-
cality when searching for content within the domain. This
locality is achieved by using a separate routing protocol
which requires maintaining more state at each node. Fur-
thermore, SkipNet does not ensure convergence of inter-
domain paths, a property essential for efficient caching and
multicast implementations.

SkipNet also offers storage of content within an arbitrary
storage domain, but at the expense of modifying the key of
the content. This may be acceptable, or desirable, for some
applications such as DNS. Our aim, on the other hand, is
to allow arbitrary storage domains without modifying the
key, which is necessary for true DHT functionality. Finally,
SkipNet offers the additional ability to query in a names-
pace, a feature not present in other DHTs. It is possible to
inherit this feature by building a Canonical version of Skip-
Net, the details of which we postpone to a future work.

7. Conclusion

We have described Canon, a general technique for con-
structing hierarchically structured DHTs. We have shown
how this technique can be applied to construct different
DHTs, Crescendo, Cacophony, Can-Can and Kandy. We
demonstrated the advantages of hierarchical DHT construc-
tion and routing in terms of fault isolation, and quantified
the advantages of our design in terms of caching, bandwidth
utilization, adaptation to the physical network, hierarchical
storage and hierarchical access control, by means of exper-
iments.

Acknowledgments

We thank Steve Gribble for valuable discussions on the
use of hierarchies in DHTs which helped crytallize the ideas
presented in this paper.

References

[1] H. Simon, The Sciences of the Artificial, MIT Press, 1996.

[2] B. Lampson, “Designing a global name service,” in Proc.
4th ACM Symposium on Principles of Distributed Comput-
ing, Minaki, Ontario, 1986, pp. 1–10.

[3] I. Stoica, R. Morris, D. Karger, M. Frans Kaashoek, and
H. Balakrishnan, “Chord: A scalable peer-to-peer lookup
service for internet applications,” in Proc. ACM SIGCOMM
2001, 2001.

[4] Frank Dabek, M. Frans Kaashoek, David Karger, Robert
Morris, and Ion Stoica, “Wide-area cooperative storage with
CFS,” in Proc. 18th ACM Symposium on Operating Systems
Principles (SOSP 2001), 2001, pp. 202–215.

[5] K. Gummadi, R. Gummadi, S. Gribble, S.Ratnasamy,
S.Shenker, and I.Stoica, “The impact of DHT routing geom-
etry on resilience and proximity,” in Proc. ACM SIGCOMM,
2003.

[6] G. S. Manku, M. Bawa, and P. Raghavan, “Symphony: Dis-
tributed hashing in a small world,” Proc. 4th USENIX Sym-
posium on Internet Technologies and Systems (USITS), 2003.

[7] S. Ratnasamy, P. Francis, M. Handley, and R. M. Karp, “A
scalable content-addressable network,” in Proc. ACM SIG-
COMM 2001, 2001, pp. 161–172.

[8] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-
peer information system based on the xor metric,” in Proc.
1st Intl. Workshop on Peer-to-Peer Systems (IPTPS 2002),
2002.

[9] A. I. T. Rowstron and Peter Druschel, “Pastry: Scalable, de-
centralized object location, and routing for large-scale peer-
to-peer systems,” in IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware 2001), 2001, pp.
329–350.

[10] P. Ganesan, K. Gummadi, and H. Garcia-Molina,
“Canon in G major: Designing DHTs with hierarchi-
cal structure,” Tech. Rep., Stanford University, 2003,
http://dbpubs.stanford.edu/pub/2003-74.

[11] G. S. Manku and P. Ganesan, “DHT design: A modular ap-
proach,” Technical Report.

[12] Ellen W. Zegura, Kenneth L. Calvert, and Samrat Bhattachar-
jee, “How to model an internetwork,” in IEEE Infocom, San
Francisco, CA, March 1996, IEEE, vol. 2, pp. 594–602.

[13] Kirsten Hildrum, John D. Kubiatowicz, Satish Rao, and
Ben Y. Zhao, “Distributed object location in a dynamic net-
work,” in Proc. 14th ACM SPAA, 2002, pp. 41–52.

[14] D. Malkhi, M. Naor, and D. Ratajczak, “Viceroy: A scalable
and dynamic emulation of the butterfly,” in Proc 21st ACM
Symposium on Principles of Distributed Computing (PODC
2002), 2002, pp. 183–192.

[15] F. Kaashoek and D. R. Karger, “Koorde: A simple degree-
optimal hash table,” in Proc. 2nd Intl. Workshop on Peer-to-
Peer Systems (IPTPS 2003), 2003.

[16] G. S. Manku, “Routing networks for distributed hash ta-
bles,” in Proc. 22nd ACM Symp. on Principles of Distriuted
Systems (PODC 2003), Jul 2003.

[17] I. Abraham, B. Awerbuch, Y. Azar, Y. Bartal, D. Malkhi, and
E. Pavlov, “A generic scheme for building overlay networks
in adversarial scenarios,” in Proc. Intl. Parallel and Dis-
tributed Processing Symp., Apr 2003.

[18] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron,
“Topology-aware routing in structured peer-to-peer overlay
networks,” in Proc. Intl. Workshop on Future Directions in
Distrib. Computing (FuDiCo 2002), 2002.

[19] N. J. A. Harvey, M. Jones, M. Theimer, and A. Wolman,
“Skipnet: A scalable overlay network with practical local-
ity properties,” Proc. 4th USENIX Symposium on Internet
Technologies and Systems (USITS), 2003.

