
TestEra: A Tool for Testing Java Programs Using
Alloy Specifications

Shadi Abdul Khalek∗, Guowei Yang∗, Lingming Zhang∗, Darko Marinov†, Sarfraz Khurshid∗
∗Electrical and Computer Engineering, University of Texas at Austin

Email: ak.shadi@utexas.edu, gyang@ece.utexas.edu, zhanglm@utexas.edu, khurshid@ece.utexas.edu
†Department of Computer Science, University of Illinois at Urbana-Champaign, Email: marinov@illinois.edu

Abstract—This tool paper presents an embodiment of TestEra
– a framework developed in previous work for specification-based
testing of Java programs. To test a Java method, TestEra uses
the method’s pre-condition specification to generate test inputs
and the post-condition to check correctness of outputs. TestEra
supports specifications written in Alloy – a first-order, declarative
language based on relations – and uses the SAT-based back-end
of the Alloy tool-set for systematic generation of test suites. Each
test case is a JUnit test method, which performs three key steps:
(1) initialization of pre-state, i.e., creation of inputs to the method
under test; (2) invocation of the method; and (3) checking the
correctness of post-state, i.e., checking the method output. The
tool supports visualization of inputs and outputs as object graphs
for graphical illustration of method behavior. TestEra is available
for download to be used as a library or as an Eclipse plug-in.

I. INTRODUCTION

The TestEra framework [1], [2] introduced systematic,
black-box testing of Java programs using Alloy [3] specifi-
cations. Alloy is a declarative language based on sets and
relations. The Alloy tool-set provides a fully automatic SAT-
based analysis engine for solving Alloy formulas. TestEra
uses Alloy as an enabling technology and provides bounded-
exhaustive testing, where a program is tested against all (non-
equivalent) inputs within a given input size. Such systematic
testing was shown effective at finding bugs in various ap-
plications that take structurally complex test inputs [1], [4],
including a resource-discovery system, a fault-tree analyzer,
compilers, and refactoring engines.

The use of Alloy enables writing specifications at an intu-
itive abstract level. Solving pre-condition constraints provides
generation of abstract inputs, which are concretized into actual
inputs. Test execution runs the computation under test against
these inputs to produce outputs. Correctness checking abstracts
the outputs and checks them using the post-condition. Alloy’s
relational basis supports a natural view of the program heap:
an edge-labeled graph with a set of nodes (one for each object)
and a collection of edges (one for each field) [5].

TestEra was originally developed [1] for Alloy-alpha, an
initial version of the Alloy language that had a flat represen-
tation of state, and later re-implemented [2] for Alloy 2.0,
which introduced a hierarchical representation of state. Both
these implementations were for in-house experiments and not
released. This paper presents a tool embodiment of TestEra
that supports Alloy 4.0 – the latest release of the Alloy tool-
set – and is the first publicly available version of TestEra.

This paper makes the following contributions:
• TestEra tool. It presents the TestEra tool, which can be

used as a library or installed as an Eclipse plug-in to
generate JUnit test suites.

• Annotations for test generation. It presents Alloy an-
notations for Java programs to enable automated testing.

• Visualization. TestEra supports graphical illustration of
executions of automatically generated tests using its data
translation API and Alloy’s visualization API.

II. EXAMPLE

This section illustrates how programmers can use TestEra
to test their programs. Consider a singly-linked list with a
method addNode that appends a given value to the input list.
Fig. 1 shows the annotated Java code that declares the list data
structure and its method.

Our tool implementation introduces a “@TestEra” annota-
tion for classes and methods (Section III). For a Java class,
programmers can specify its class invariant that should be
satisfied by all instances of the class. In our example, the
invariant element of the annotation includes two universally
quantified formulas. The first formula states directed acyclicity

@TestEra(invariant={
"all l: LinkedList |

all n: l.header.*next | n !in n.ˆnext",
"all l: LinkedList | l.size = #l.header.*next"})

public class LinkedList {
public ListNode header;
public int size = 0;

@TestEra(preCondition={"x >= 0",
postCondition={"this.size’ = this.size + 1"},
runCommand="1 LinkedList, 3 ListNode, 3 int")

public void addNode(int x) {
ListNode n = new ListNode();
n.value = x;
n.next = header;
header = n;
size++;

}
}
public class ListNode {

public int value;
public ListNode next;

}

Fig. 1. TestEra annotated Java program of Linked List

@Test
public void test5() {
// TestEra Auto-Comment: Initialization statements
LinkedList LinkedList_0 = new LinkedList();
LinkedList_0.size = 0;
// TestEra Auto-Comment: Pre-state abstraction
StateManager sm = new StateManager();
sm.addToState("LinkedList_0", LinkedList_0);
sm.generatePreState();
// TestEra Auto-Comment: Invoke method under test
LinkedList_0.addNode(0);
// TestEra Auto-Comment: Post-state checking
TestEra.checkPostState(

sm, "dataStructures.list.LinkedList",
"addNode", "LinkedList_0", "0");

}

Fig. 2. A JUnit test example

property by ensuring that a traversal that starts at a node cannot
revisit that node. The keyword ‘all’ represents universal
quantification and the dot operator ‘.’ represents relational
join. An expression header.next represents the relational
join of the next relation with the header element, which
is equivalent to de-referencing the next field in the header

object. The ‘*’ and ‘ˆ’ operators represent reflexive transitive
closure and transitive closure respectively. Thus, the expres-
sion header.*next represents the set of all nodes reachable
from the header including the header element itself. The
second invariant formula ensures that the size of the list is
equal to the number of nodes reachable from the list’s header.
We use the ‘#’ operator, which denotes set cardinality, to count
the number of nodes reachable from the header. More details
on ALloy are available elsewhere [3].

For a method under test, TestEra requires programmers to
specify the method’s pre-condition and post-condition, and a
bound on the input size, which is used in a run command
to execute the Alloy Analyzer. For addNode method in the
example, the pre-condition declares that the argument x is non-
negative and the post-condition declares that the size of the list
after executing the method is increased by 1. We use the ‘’’
operator to denote the post-state of the size field. The bound,
defined in the runCommand annotation element, declares the
scope of the LinkedList, ListNode, and primitive integers
used in the tests to be generated.

Based on the Java code and the associated annotations,
TestEra can automatically enumerate a number of JUnit tests
within the user-specified scope. Fig. 2 shows an example
generated JUnit test for the addNode method.

III. ANNOTATION

This section describes the @TestEra annotation introduced
by TestEra. Currently, we support the following five elements
of the annotation:

1. isEnabled. It instructs TestEra whether to use the anno-
tated field or class in the translation between Java and Alloy.
The default value is true. For example, the annotation

@TestEra(isEnabled=false) int f;

specifies that the associated field f not be translated.
2. invariant. It applies only to classes and specifies the class

invariants, which are translated into Alloy facts. For example,
the annotation

@TestEra(invariant={
"all l: LinkedList | l.size = #l.header.*next"})

specifies the invariant on the size and the nodes of the list.
Multiple invariants are strings separated by commas.

3. preCondition. It applies only to methods and specifies
the constraints that the test input must satisfy before executing
the method. Similar to invariants, multiple constraints are
strings separated by commas. For example, the annotation

@TestEra(preCondition={"x >= 0"})

specifies that the value of variable x must be non-negative.
4. postCondition. It applies only to methods and specifies

the constraints that the method execution must satisfy in
the post-state. The post-condition can specify a relationship
between the post-state and pre-state of the method execution.
For example, the annotation

@TestEra(postCondition={"this.size’=this.size + 1"})

specifies that size in the post-state is the size in the pre-
state plus 1. Note that the ‘’’ character (apostrophe) denotes
field traversal in the post-state. In contrast, fields without ‘’’
represent those in the pre-state. For non-static methods, the
keyword this represents the receiver object of the method
under test.

A post-condition can specify a constraint on the return value
of the method invocation, where ‘\result’ is used to denote
the return value. For example, the annotation

@TestEra(postCondition={"\result=this.header.value"})

specifies that the associated method should return the value of
the header of the LinkedList.

5. runCommand. It applies only to methods and sets the
scope for variables. For example, the annotation

@TestEra(runCommand="1 LinkedList, 3 ListNode, 3 int")

specifies the run command scope for the variables: 1 atom for
LinkedList, 3 atoms for ListNode, and 3-bit integers (-4
to 3) for the int type.

IV. TESTERA

A. Framework

In TestEra, programmers can describe class invariants and
method pre- and post-conditions using the @TestEra anno-
tations. Given a Java program and corresponding annotations,
TestEra automates generation of JUnit tests – input generation
and correctness checking. Fig. 3 shows the overview of TestEra
steps. In the first step, TestEra takes the annotations and Java
code, and translates them into corresponding Alloy models.
Given a method under test, TestEra extracts its pre-condition
and post-condition, and feeds the pre-condition together with
the translated Alloy models to Alloy Analyzer, which uses

Fig. 3. Framework of TestEra

T (comUnit) = module unitID T (classDecl)∗

T (classDecl) = T (cAnnot) sig classID
[extends classID]
T (classBody)

T (classBody) = {T (fieldDecl)∗}
T (fieldDecl) = fieldID : T (jType) → State
T (cAnnot) = fact {invariants}
T (jType) = classID | primitiveAlloy

Fig. 4. Translation rules for Java classes with TestEra annotations.

off-the-shelf SAT solvers, to generate Alloy instances which
satisfy the pre-condition. Next, TestEra concretizes each gen-
erated Alloy instance into a JUnit test case. When the JUnit
test case is executed, the runtime support of TestEra abstracts
both the test inputs and the test outputs into Alloy pre/post-
state model specifications. At the last step, TestEra checks
if the model satisfied the post-condition constraints. Note that
the model already contains the translated class invariant. A test
passes when the post-condition is satisfied and fails otherwise.

B. Alloy Model Generation

The translation step of TestEra takes the Java code with
TestEra annotations, and generates Alloy models as outputs.
Fig. 4 shows the translation rules, where “[]” denotes optional
elements, and “x*” denotes a list of xs. According to the rules,
TestEra translates each compilation unit into an analyzable
module in Alloy. TestEra translates Java classes and their
corresponding fields into Alloy signatures (sig) and their
fields, respectively. TestEra translates user-defined invariant
annotations into Alloy formulas that should be satisfied both
for pre-state and post-states (fact). Finally, TestEra maps Java
primitive types that have Alloy counterparts to those types,
and maps non-primitive Java types to the corresponding Alloy
signatures. Implementation-wise, TestEra creates a top-level
directory for storing all the generated Alloy models, and for
each Java compilation unit, TestEra creates an Alloy module
with the same name and the same path under the top-level
directory, which enables invocation of the Alloy tool-set as
described in the next section.

T (methdDecl) = modulemethodID Test
T (mAnnot)∗

T (mAnnot) = T (preAnnot)|T (postAnnot)
|T (runAnnot)

T (preAnnot) = predmethdID pre ([this : classID,]
(T (paraID) : T (jType)),∗

[result : T (jType),]){preConditions}
T (postAnnot) = predmethdID post ([this : classID,]

(T (paraID) : T (jType)),∗

[result : T (jType),]){postConditions}
T (runAnnot) = runmethdID pre for runCommand

Fig. 5. Translation rules for Java methods with TestEra annotations.

C. Alloy Input Generation

For each method under test, TestEra automatically creates
an Alloy module that includes translated method annota-
tions. For every pre-condition (or post-condition) annotation,
TestEra creates a new predicate named methodID pre (or
methodID post, respectively) with appropriate constraints.
In addition, TestEra adds the receiver object as the first
parameter of the predicate if the method under test is not static,
and adds a result parameter to represent the method’s return
value if it is not void. For a run-command annotation, TestEra
adds a run command at the end of the generated module for
running the methodID pre predicate. The run command is
then executed by Alloy Analyzer to generate Alloy instances
satisfying the pre-conditions of the module.

D. JUnit Test Case Generation

At this step, TestEra translates an Alloy instance into an
executable Java unit test. This step involves several operations:
Concretization: TestEra translates an abstract Alloy instance
into Java statements. First, for each object in the Alloy
instance, TestEra requires that the object class has a default
constructor and creates a statement that invokes the construc-
tor. Then, for each relation in the Alloy instance, TestEra
creates a Java field assignment. The current version requires
that the corresponding field be public. TestEra also adds
statements that store the pre-state of the objects. Next, TestEra
adds the call to the method under test with the input parameters
and (if needed) receiver object. Finally, TestEra adds a call to
the TestEra post-state checker. Fig. 2 shows an example output.
Abstraction: This operation is performed while running the
JUnit tests generated by TestEra. After executing the test,
and storing the pre- and post-states of the objects, TestEra
generates a new Alloy module by translating these object
states into the Alloy representation. This translation generates
relations for object fields for both pre-states and post-states.
Checking: For correctness checking, TestEra generates a
post-state predicate that checks whether the post-conditions
on the method output are satisfied. Alloy Analyzer is used
to run the post predicate: if the formula is satisfiable, then
the test passes; otherwise, the post-condition was not satisfied
by the method, and thus the test fails. In case of a passing
test, TestEra provides a visualization tool to view the change
between pre- and post-states of the input objects.

V. IMPLEMENTATION

Our TestEra implementation has two basic components: the
TestEra library that provides the core functionality, and the
TestEra plug-in that provides a friendly user interface within
Eclipse. TestEra is available online for download:

http://www.ece.utexas.edu/∼khurshid/svvat/projects/testera/

VI. ILLUSTRATION

We illustrate the key steps of TestEra using the LinkedList
example from Section II. Fig. 1 shows the annotations used to
declare the invariants of the data structure and the constraints
to generate test input for the addNode method. The first
step TestEra performs is to translate Java classes into Alloy
signatures; in this example, TestEra generates the following
Alloy modules for LinkedList and ListNode classes:

module LinkedList
open ListNode
open util/State

sig LinkedList {
header: ListNode lone-> State,
size: Int one-> State

}
fact LinkedList_fact {
all s:State {
all l:LinkedList | all n : l.(header.s).*(next.s) |

n !in n.ˆ(next.s)
all l:LinkedList | #l.(header.s).*(next.s) = l.(

size.s)
}

}

module ListNode
open util/State

sig ListNode {
value: Int one-> State,
next: ListNode lone-> State

}

module util/State
abstract sig State {}
one sig Pre extends State {}

The State signature represents the state of the relations
in the model. Since class invariants hold true in all publicly
visible states (i.e. pre- and post-states), we add a universal
quantification “all s:State” to the invariant to ensure that.

For the example addNode method, TestEra translates the
method annotations into the following Alloy predicate for
input generation:

module LinkedList/addNode_PreTest
open LinkedList

pred LinkedList::addNode_pre(x: Int){
x >= 0
}

run addNode_pre for 1 LinkedList, 3 ListNode, 3 int

Since, the addNode method is not static, we append the
class type to the predicate signature to reflect the receiver
object on which the method is called. Since the precondition

holds true only in the pre-state, TestEra uses a Pre signature,
that extends the abstract State signature, in the pre-condition
constraints.

The Alloy Analyzer runs this Alloy module and generates
instances satisfying the pre-conditions for the method under
test. TestEra then concretizes these instances into concrete
JUnit tests, an example of which is shown in Fig. 2.

While executing the JUnit test, TestEra stores the pre- and
post-states of objects using the StateManager. TestEra then
generates an Alloy module for checking whether the post-
conditions are satisfied; the following shows the module for
the JUnit test from Fig. 2:

module addNode_PostTest
open addNode_post
one sig ListNode_0 extends ListNode {}
one sig LinkedList_0 extends LinkedList {}

fact {
no LinkedList_0.(header.Pre)
LinkedList_0.(size.Pre) = 0
LinkedList_0.(header.Post) = ListNode_0
LinkedList_0.(size.Post) = 1
ListNode_0.(value.Post) = 0
no ListNode_0.(next.Post)

}

pred TESTERA(){
LinkedList_0::addNode_post [0]

}
run TESTERA for 3 but exactly 1 ListNode,1

LinkedList

module addNode_post
one sig Post extends State {}

pred LinkedList::addNode_post(x: Int){
this.(size.Post) = this.(size.Pre) + 1

}

Finally, TestEra runs the post-condition model. If it is
satisfiable, then the test passes; otherwise, the test fails. In
this example, the test passes.

ACKNOWLEDGMENTS

This material is based upon work partially supported by
the National Science Foundation under Grant Nos. CNS-
0958231, CNS-0958199, CCF-0845628, CCF-0746856, and
IIS-0438967, and AFOSR grant FA9550-09-1-0351.

REFERENCES

[1] D. Marinov and S. Khurshid, “Testera: A novel framework for automated
testing of java programs,” in Proc. of International Conference on
Automated Software Engineering (ASE), 2001.

[2] S. Khurshid, “Generating structurally complex tests from declarative
constraints,” Ph.D. dissertation, Massachusetts Institute of Technology,
2003.

[3] D. Jackson, Software Abstractions: Logic, Language, and Analysis. The
MIT Press, 2006.

[4] M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak, and
D. Marinov, “Test generation through programming in UDITA,” in Proc.
of International Conference on Software Engineering (ICSE), 2010.

[5] V. Kuncak and D. Jackson, “Relational analysis of algebraic datatypes,”
in Proc. of joint meeting of the European Software Engineering Con-
ference and the Symposium on the Foundations of Software Engineering
(ESEC/FSE), 2005.

