
  

  

Abstract—A robot interacting with humans and attempting 
to generate effective social interaction and intervention 
behaviors benefits greatly from being able to understand and 
predict the underlying intentions of actions in context. Related 
work on collaborative discourse suggests that intention can be 
described in terms of either goal-directed task completion or 
communicative behavior directed to other collaboration 
partners. This paper describes early work on a generalizable 
framework for estimating the attentional space of a human 
interaction partner, providing context for grounding action in 
terms of intentions, and using this model to perform 
contextualized robotic intervention and ambiguity resolution. 
We describe an experiment aimed at applying and validating 
the framework in a simple collaborative human-robot 
interaction scenario. 

I. INTRODUCTION 
NE of the key challenges for the development of 
autonomous robots capable of effective interaction with 

humans is accurately detecting and reacting to human 
activity in a variety of interaction contexts. Our work is 
motivated by, but not limited to, socially assistive robotics 
(SAR) [1], an area of human-robot interaction focusing on 
helping people through social interaction. Preliminary work 
in USC’s Interaction Lab has shown that SAR has the 
potential to benefit a diverse variety of target populations, 
including stroke patients, children with autism, and the 
elderly [2, 3]. 

Most existing systems for modeling human activity in 
interactive settings are closely tied to a specific control 
system, robotic platform, and task model. Adapting these 
systems to new task environments and robot embodiments is 
inherently difficult and often requires re-implementing the 
system from the bottom up. By imbuing robots with some 
form of social intelligence, we aim to unify common 
interaction mechanisms across a wide variety of populations 
and platforms. Toward these ends, we are investigating a 
general framework for monitoring the attentional space of a 
user, contextualizing specific user actions according to 
intent, and using this as a basis for formulating practical 
robot actions for intervening and communicating robot 
intention. 
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II. USER MONITORING 
Human activity in social contexts is extremely complex. 

Determining the intended effect of human action as observed 
from sensor data is difficult; it requires filtering and 
segmenting the input serial data streams, assigning one of a 
number of possible explanations for any given action, and 
contextualizing the intended action in terms of the 
interaction. 

Drawing from collaborative discourse theory [4], we 
model the interaction of the user and the robot as a 
simplified collaboration, in which the robot maintains a 
model of the user, which is then used in both human action 
recognition and robot action planning. Breazeal et al. (2004) 
have used a related approach to structure collaborative 
learning, in which a robot learns a task model from guided 
human examples [5]. While our approach uses similar 
theoretical underpinnings, it is aimed at developing a general 
social communication framework that can be applied in 
many task environments, learned or otherwise. 

A. Attention 
User attention is modeled by constructing a probability 

distribution over salient world objects. Our current approach 
takes into account the user’s position and head direction, 
extracted from camera and laser rangefinder sensors, as well 
as the relative saliency of world objects, to assign 
probability mass. For example, objects in the person’s field 
of view are assigned relatively higher weights. The saliency 
map used can be specified a priori if the task domain is 
relatively static and well specified in advance, or it can be 
computed in real time using scene analysis [6]. 

B. Intention 
Predicting human action and mapping it to underlying 

intention is a difficult problem since human activity is 
inherently complex. Neuroscience evidence suggests that 
humans accomplish this feat using mirror neurons to 
recognize actions while recruiting their own intentions for 
the recognized action and ascribing them to others [7]. Using 
a model of the current task and the estimated attentional 
space, we constrain the space of possible future actions and 
provide context to explain why a user might perform a 
particular action at a given time. 

Our current focus is on deictic gestures—such as pointing, 
head orientation, and eye gaze—since they are well 
understood as a means of establishing joint attention, and are 
easily identified and physically grounded in terms of world 
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objects. To compute possible target objects of a pointing 
gesture with respect to the user, we can utilize a Bayesian 
classifier to combine an error model of human pointing and 
the attentional distribution as a prior. We are investigating 
methods for recognizing attention and action stemming from 
more complex intentions, and distinguishing actions that are 
task-oriented, such as reaching, from those that are 
communication-oriented, such as pointing and other social 
gestures. 

III. USER INTERVENTION 
By monitoring user intentions and anticipating their effect 

on the success of an individual or collaborative task, a robot 
may determine that it is appropriate for it to intervene. Such 
an intervention may be deemed necessary to improve task 
performance or to prevent undesirable actions from being 
taken by the user. Directing user attention and intention must 
be done in as clear a way as possible to maintain a 
successful interaction between the robot and user. It is 
therefore crucial that potential ambiguity be minimized or 
resolved. 

A. Intervention 
In this preliminary work, the robot plans and executes an 

intervention strategy over possible proxemic and deictic 
actions. Proxemics here refers to the manipulation of robot 
position and orientation with respect to the human [8]. The 
robot must situate itself in the appropriate “social space” to 
maximize the effectiveness of subsequent communicative 
actions. Once the robot has positioned itself, it utilizes 
deictic gestures—such as pointing, head orientation, and eye 
gaze—to focus the attention of the user to a particular object 
or region, thus attempting to establish joint attention [9]. 
Intent is then communicated by exploiting the theory of 
perceived affordances, which suggests how an object may be 
interacted with [10]. This reliance on affordances constrains 
the interaction to simple tasks; however, in future work, we 
will investigate more complex representation and 
communication of intent [11]. 

B. Ambiguity Resolution 
In the ideal case, the appropriate application of social 

distance and deictic gestures would result in a clear user 
interpretation of the task objective and, thus, a successful 
intervention; however, in the real world, such 
communication is often noisy and potentially ambiguous. To 
resolve such ambiguity, the robot engages in perspective-
taking, considering the viewpoint of the human observer, as 
well as previous user activity. We utilize a naïve Bayes 
approach to estimate the clarity of a human’s interpretation 
of potential robot actions over the attentional space. We then 
select a robot intervention strategy by applying gradient 
decent to find a global minimum with regard to ambiguity. 

IV. IMPLEMENTATION 
We are in the process of collecting human interpretation 

data based on interactions with a physical robot. An 
experiment will be conducted to evaluate the accuracy of 

automated user attention-intention monitoring. From this, we 
can produce a probabilistic model of error in user perception 
of robot deictic gestures. This model will then be validated 
in a collaborative task to demonstrate the efficacy of robot 
intervention and ambiguity resolution strategies with a 
human user. 

A. Robot Platform 
The system is being implemented on the Bandit III robot 

platform available in the Interaction Lab, shown in Fig. 1. 
Bandit is an upper-torso humanoid robot with 17 degrees of 
freedom: 7 in each arm (shoulder forward and backward, 
shoulder in and out, elbow tilt, elbow twist, wrist twist, 
grabber open and close; left and right arms), 2 in the head 
(pan and tilt), 2 in the lips (upper and lower), and 1 in the 
eyebrows. These degrees of freedom allow the robot to be 
highly expressive through individual and combined motions 
of the head, face, and arms. An extensive gesture and facial 
expression library has been developed to enhance the 
interactive experience. The robot is closer to human-scale 
than many other humanoid platforms; mounted atop a 
Pioneer P2 base, the entire robot stands one meter tall, 
making it an adequate choice for robot interaction. An 
overhead camera and on-board laser rangefinder facilitate 
human and robot pose tracking. 

 
Fig. 1: The robot platform: Bandit upper-torso humanoid on a Pioneer base. 

B. Experiment Design 
We are investigating a concrete application of this 

framework within the realm of deictic gesture. The 
experimental design is a two-phased approach aimed at 
producing an empirical error model of both human gesture 
perception accuracy and robot gestural accuracy, and then 
applying these models using our attention, intention, and 
ambiguity resolution framework to allow a robot to engage 
in a simple collaborative task with a human partner. 



  

1) Building perceptual models: We have begun 
preliminary experiments aimed at building an error model 
for human perception based on different robot pointing 
modalities, including head, arm, and combined head and arm 
gestures. Each gesture’s accuracy is evaluated in 
experiments with human participants, in which the angle, 
distance and point location are systematically varied. Target 
points are assumed to be on an approximately 2.5 x 3.5 m (8 
x 12 ft) transparent acrylic screen. The participant is seated 
on one side of this screen, opposite the robot, as illustrated in 
Fig. 2. As the robot gestures to each point, the participant 
uses a laser pointer to indicate his perception of the target 
location on the screen. An experimenter then marks these 
points with a fiducial marker, and they are recorded using an 
upward-pointing laser rangefinder, yielding measurements 
accurate to within centimeters. 

In the first iteration of this experiment all users were 
given a random set of points on a regular grid and we to 
aimed to use within subject comparison to determine how 
error responds to changes in the state variables. After 
conducting an analysis of variance from data collected from 
11 participants we determined that errors were generally on 
the order of 30-60cm (1-2 feet), but were unable to draw 
deeper conclusions due to high variance in the sampled 
distributions. To address these issues we have redesigned the 
experiment to perform a between subjects comparison, with 
more participants. This is realized by interspersing a 
constant “calibration point,” within the randomly distributed 
points presented to a user, to ensure that within-user 
accuracy is consistent. From this output, we construct an 
error model parameterized by human-robot-point locations 
and angles. During this experiment, we are also monitoring 
the head orientation of the participant in order to empirically 
determine how head direction can be used to model 
attention. 

2) Validating attention, intention and intervention: Using 
this perceptual error model, we will conduct a further 
experiment to validate the estimated attentions and 
intentions within the context of a collaborative game-playing 
scenario. The game involves a robot indicating to the user a 
series of targets within a cluttered office environment; the 
user must then visit these targets in a specified order; this 
task is similar to, but less constrained than, that of our 

previous work [12], and was chosen specifically for 
comparison and analysis. The error model of human 
perception will be used to determine the position and 
orientation from which the robot should point to a target to 
ensure that the gesture is specified in a minimally (or 
maximally, for testing purposes) ambiguous manner. We are 
also investigating the use of a similar intention model to 
determine, at any point in time, the most likely intended 
target of a user, allowing the robot to intervene by 
redirecting the user, if necessary, to correct potential errors. 
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Fig. 2: The robot makes a deictic gesture on one side of the screen, and the user indicates the perceived point on the other side. 


