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A Simple Metric for Slew Rate of RC Circuits
Based on Two Circuit Moments

Kanak Agarwal, Dennis Sylvester, and David Blaauw

Abstract—In this paper, we introduce a simple metric for the slew rate
of an RC circuit based on the first two circuit moments. Metrics focusing
on 50% delay of RC circuits have been proposed recently that greatly im-
prove the accuracy of the traditional Elmore delay model. However, these
new models have not been applied to the determination of transition time
or slew rates (e.g., 10–90% ofV ).We study howwell existing approaches
to 50% delay modeling translate to slew-rate modeling. We first describe a
new metric called slew with two moments (S2M) that is based on Elmore’s
observation that the transition time of a step response is proportional to the
standard deviation of the corresponding impulse response. The S2Mmetric
modifies Elmore’s original formulation by deriving a new constant of pro-
portionality. This new constant is shown to be more accurate for general
RC circuits. Next, we show that metrics relying on a simple constant multi-
plied by standard deviation such as S2M and Elmore do not work well for
near-end nodes. To address this issue, we propose a new slew metric called
scaled S2M that provides high accuracy across all types of nodes, while
maintaining the advantage of a simple closed-form expression. Scaled S2M
is shown to be very accurate for both near and far-end nodes. The average
error for scaled S2M is approximately 2% with 96% of all nodes showing
less than 5% error from a large set of industrial 0.18- m microprocessor
nets.

Index Terms—Integrated circuit interconnect, interconnect delay, per-
formance optimization, RC trees, slew, timing analysis.

I. INTRODUCTION

The advancement of process technologies to nanometer-scale fea-
ture sizes has resulted in large interconnect delays that consume a large
fraction of the overall path delay. On-chip interconnects are typically
modeled as RC circuits and substantial effort has been devoted to the
delay prediction of such circuits. Many of the most common delay
metrics are based on an analogy between the nonnegative impulse re-
sponse of an RC circuit and probability density functions (PDFs). This
analogy stems from the fact that the impulse response h(t) of an RC
circuit (without a resistive path to the ground) satisfies the following
two conditions [1]:

h(t) � 0 8t
1

0

h(t)dt =1: (1)

Since these are sufficient conditions for a function to be a PDF, the
impulse response of an RC circuit is a PDF. Also, since the step re-
sponse is the integral of the impulse response, the step response of an
RC circuit can therefore be modeled as a cumulative density function
(CDF). The median of a PDF is defined such that it corresponds to the
50% point of its CDF; hence the 50% delay of an RC circuit under
step excitation can be calculated accurately by computing the median
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of the impulse response. However, it is not trivial to compute the me-
dian of many PDFs and hence Elmore proposed using the mean of this
impulse response to model the 50% delay [2]. Later, it was shown that
the mean of an RC impulse response is always greater than or equal to
its median, and hence Elmore delay is an upper bound on RC delay [3].
The mean of the impulse response is given by the first circuit moment
(described later in Section II) and is very simple to compute. This has
led to the widespread popularity of the Elmore delay metric for per-
formance optimization and delay calculation. However, Elmore delay
has been shown to be highly inaccurate in many cases since it does not
consider resistive shielding of downstream capacitance [18].

To enhance delay model accuracy, various model-order reduction
techniques based on moment matching or the Krylov subspace method
were developed and have been widely used in interconnect analysis
[4]–[6]. One such technique is called asymptotic waveform evaluation
(AWE) and approximates the response of an RC interconnect using a
reduced-order model by matching the first few circuit moments [4], [7].
The circuit moments are defined as the coefficients of a Taylor expan-
sion of the impulse response at s = 0. These moments contain useful
information about circuit behavior and can be computed efficiently by
path tracing of RC or even RLC trees [19]. Though model-order re-
duction techniques provide very high accuracy, their use in the inner
optimization loop during the design phase is limited due to a lack of
computationally efficient closed-form expressions. Various two-pole
delay metrics based on higher-order moments have been proposed to
compromise between a complex reduced order model and a simple first
moment-based Elmore approximation [8], [9]. These metrics attempt
to find a closed form solution of a two-pole approximation, but are gen-
erally lacking in accuracy [10]. An empirical delay metric called delay
with two moments (D2M) was proposed in [10] and shown to be highly
accurate and efficient.

In [11]–[13], the authors extended the probability interpretation of
the impulse response of an RC circuit by fitting it to the PDF of var-
ious statistical distributions. Though these approaches show very high
accuracy, they are not as efficient as D2M and require preconstructed
look-up tables for delay calculation.

Although there has been a large amount of work focused on accu-
rately modeling 50% delay as described above, the importance of a
comparable slew metric has been underemphasized. Modeling transi-
tion-time degradation in RC circuits is an important part of modeling
propagation delay. In static timing analysis, the input to an RC network
is usually modeled as a saturated ramp. The transition time of this ramp
should be considered in interconnect-delay estimation and must also
be propagated to fanout stages since gate and interconnect delays have
significant sensitivity to the input slews. Noise glitches and their im-
pact on timing due to coupling capacitance also strongly depend on the
transition times of aggressor nets. Accurate crosstalk noise modeling
therefore requires precise knowledge of the aggressor slews at the loca-
tion of coupling. The slew metrics currently available in the literature
are the Elmore metric [2], Bakoglu’s metric [15], and the recently pro-
posed Lognormal metric [20]. Bakoglu’s slew metric (ln 9 � Elmore)
is derived from a single dominant pole approximation and is therefore
only as accurate as the first order delay metrics. In this paper, we pro-
pose a new two-moment based slew metric called scaled slew with two
moments (S2M), that is highly accurate and efficient enough for use in
physical design optimization loops. Our metric is based on the obser-
vation made by Elmore [2] and Gupta [3] that the transition time of an
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Fig. 1. Example calculations of the first two circuit moments for a simple RLC tree.

RC circuit is similar to the standard deviation of the impulse response.
Since some existing delay metrics can be extended to compute slews,
we perform a thorough investigation of the accuracy of various slew
metrics for the first time. The results imply scaled S2M exhibits much
higher accuracy than Bakoglu, Elmore, Weibull, and D2M and is com-
parable to the more complex Lognormal metric.

II. BACKGROUND

The new slew metric is derived using a probability interpretation
of the impulse response; hence we begin by briefly reviewing some
concepts of circuit moments and probability moments.

Let h(t) be the impulse response of an RC circuit and H(s) be the
Laplace transform of h(t). From the definition of circuit moments, we
have

H(s) = m0 +m1s+m2s
2 +m3s

3 + . . . =

1

k=0

mks
k
: (2)

Also, since H(s) is the Laplace transform of h(t)

H(s) =

1

0

h(t)e�stdt =

1

k=0

(�1)k

k!
s
k

1

0

t
k
h(t)dt: (3)

The kth probability moment m̂k is defined as

m̂k =

1

0

t
k
h(t)dt: (4)

By comparing (2) and (3) and using the above definition of the prob-
ability moments, the relationship between the circuit momentsmk and
the probability moments m̂k can be expressed as

mk =
(�1)k

k!
m̂k: (5)

The circuit moments of an RLC tree can be computed efficiently by
path tracing [19]. The pth order circuit moment (p > 1) of node i (mi

p)
in an RLC tree can be expressed as

m
i
p =

k

�RikCkm
i
p�1 � LikCkm

i
p�2 : (6)

Here, the summation is taken over all nodes other than the source
node. Ck is the capacitance at node k and Rik(Lik) denotes the total

overlap resistance (inductance) in the unique paths from the source
node to nodes i and k. Example calculations of the first two circuit
moments for a simple RLC tree are shown in Fig. 1.

The circuit moments can be computed recursively using (6). Since
circuit moments are related to the probability moments, important
information about the RC impulse response PDF can be obtained from
these circuit moments. The probability moments discussed earlier
are the moments about zero. The first probability moment, which is
the negative of the first circuit moment, represents the mean (�) of a
PDF. Higher order probability moments of the distribution are usually
translated into central moments. The central moments are the moments
around the mean and they contain important geometrical information
about the PDF. The kth central moment of a PDF h(t) with mean �
can be expressed as

�k =

1

0

(t� �)kh(t)dt: (7)

Using the above definition of central moments, the first few central
moments can be expressed in terms of circuit moments.

�2 =2m2 �m
2

1

�3 = � 6m3 + 6m1m2 � 2m3

1: (8)

Here,�2 represents the variance of the distribution. It is a measure of
the spread or dispersion of the curve from the center. The third central
moment �3 is a measure of the skewness of the distribution.

III. SCALED S2M SLEW METRIC

In this section, we first derive a simple slew metric called S2M. This
metric is based on exploiting the relationship between the 10%–90%
transition time of an RC step response and the standard deviation of
the corresponding impulse response. We will show that this metric is
accurate only for far-end nodes. We then propose a modified metric
called scaled S2M, which builds upon S2M to dramatically improve
near-end accuracy.

A. Metric Derivation

The central moments of a PDF define its shape characteristics. Fo-
cusing on the slew rate, variance is the most important central mo-
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Fig. 2. RC impulse response PDF and its corresponding cumulative
distribution function (CDF). 50% delay corresponds to the median and
10%–90% slew is a function of the variance of the impulse response.

ment as it represents the spread around the mean. Fig. 2 shows an RC
impulse response PDF and its corresponding step response CDF. The
figure shows that 50% delay corresponds to the median of the impulse
response. The figure also shows that 10%–90% slew is a function of
variance as it represents the spread of the impulse response [3]. This
point supplies the basis for the new metric.

Since the step response of an RC circuit is a CDF, it can be modeled
by any monotonic function F(t) that satisfies the following conditions:

0 � F (t) � 1 8t
Lim

t�>�1

F (t) = 0

Lim
t�>1

F (t) = 1: (9)

RC responses resemble an exponential waveform; hence we model the
step response CDF as

F (t) = 1� e : (10)

The PDF of the impulse response h(t) corresponding to this CDF (step
response) can be obtained as

h(t) =
d

dt
F (t) =

1

�r
e : (11)

The mean � and the variance �2(= �2) of this impulse response PDF
can be easily computed

� =

1

0

t

�r
e dt = �r

�2 =

1

0

(t� �)2
e

�r
dt = �

2

r : (12)

We have one unknown parameter �r and can obtain its value by
matching the variance in (12) with the variance of the actual RC circuit
impulse response in (8). This is the key step in our approach because
variance is a measure of slew and thus it must be preserved for accu-
rate slew analysis. This differs from traditional delay metrics, which
are usually based on matching the mean of the impulse response

�r = 2m2 �m2

1
: (13)

This value of �r can be substituted in (10) and the step response
function F(t) can be solved for 10 and 90% points. The resulting slew
metric is given by

S2M = (ln 9) 2m2 �m2

1
: (14)

Regarding the stability of S2M, it can be seen from the definition of
the second central moment (variance) in (7) that it is positive for any
PDF. Hence the square root term in (13) and (14) is always defined and
the metric is stable.1

We point out here that if we obtain �r by matching just the first
moment, we obtain a dominant pole approximation where the domi-
nant pole is the inverse of the Elmore term. The scaled Elmore delay
(ln 2 �Elmore) and Bakoglu’s slew metric (ln 9 �Elmore) are based
on this dominant pole approximation. It should also be noted that we
do not propose F(t) as a complete output waveform model and solving
F(t) for 50% delay may not provide accurate results. Our goal is only
to find an accurate and simple closed-form slew metric. For delay cal-
culations, any two moment-based delay metric such as D2M can be
used. In fact, using S2M in conjunction with D2M provides a very ef-
ficient way to compute delays and slews without complex modeling
of the output waveform. In static timing analysis, we are interested
only in 50% delay and 10%–90% slew, rather than the exact wave-
form shape. Complex modeling approaches, such as h-gamma [12] and
AWE, attempt to capture the entire output waveform shape, but when
these waveforms are propagated to the next stages, they are approxi-
mated as saturated ramps; hence the extra computational cost of such
approaches is difficult to justify.

It should be noted that the form of S2M in (14) is similar to the
rise time metric proposed by Elmore [2]. The only difference between
S2M and Elmore’s metric is in the constant of proportionality. In El-
more’s metric, the constant of proportionality is

p
2� (for a 0%–100%

transition) instead of (ln 9) in the S2M metric. The constant
p
2� be-

comes equal to 2 for 10%–90% transitions. Both metrics are based on
Elmore’s observation that the rise time is proportional to the radius of
gyration of the area under the impulse response curve (which is es-
sentially the same as the standard deviation of the impulse response).
Elmore derived his metric by approximating the RC impulse response
with a Gaussian distribution, while S2M is derived by approximating

1The formulation in (14) is not always stable forRLC cases. For underdamped
RLC cases, the impulse response is not a PDF and the square root term in (13)
and (14) may become negative.

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 12, 2009 at 15:46 from IEEE Xplore.  Restrictions apply.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2004 1349

the step response with a single-pole exponential waveform. Though El-
more’s metric may work better for general amplifiers, S2M is more ac-
curate for RC circuits. This can be seen by considering a simple lumped
RC circuit. The response of this simple circuit is a single pole exponen-
tial of the form 1 � e�(t=RC). Solving this for 10%–90% time yields
the same result as obtained using S2M, demonstrating that S2M works
better than Elmore’s slew metric for RC circuits.

The S2M metric is derived by approximating the RC step response
with a single-pole exponential waveform. This approximation works
very well for far-end nodes. However, at near-end nodes, it can cause
high errors in slew estimation because the actual response can deviate
greatly from a single-pole exponential approximation. Similarly,
Elmore’s metric also fails at near-end nodes because its fundamental
approximation of modeling the impulse response as a Gaussian
distribution is highly inaccurate for these nodes. It has been shown
that near-end RC impulse responses are nonsymmetric [12] and hence
cannot be approximated as simple symmetric Gaussian distributions.
One approach to extend S2M to near-end nodes is by considering
higher order approximations (like AWE). Similarly, Elmore’s metric
can be extended to near-end nodes by fitting the impulse response to
more complex distributions (like Weibull, h-gamma, or lognormal)
instead of a Gaussian distribution. Both these approaches have been
implemented and are shown to be highly accurate. Their drawback
is that we lose the simplicity and efficiency of S2M or Elmore-type
metrics and hence these approaches find limited use in physical design
optimizations.

To address the above issue, we now describe a metric that is accurate
even for near-end nodes while retaining the simplicity of S2M. This
new metric is called scaled S2M. This metric is developed based on
the observed similarities of S2M as a slew metric and scaled Elmore
(= ln 2 � Elmore) as a 50% delay metric. Both these metrics are
single-pole approximations of an RC response and can be derived
by matching the second and first central moments of the RC impulse
response respectively. However, S2M is much more accurate in slew
prediction than scaled Elmore is in delay prediction. This is because
S2M uses two circuit moments while scaled Elmore is a simpler single
moment-based metric. Another similarity in these metrics is that scaled
Elmore uses the mean to approximate 50% delay (median) while S2M
uses the standard deviation to approximate 10%–90% slew. These
approximations are usually accurate for middle- and far-end nodes but
do not hold well for near-end nodes that frequently show long tails due
to resistive shielding effects. Step responses with long tails translate
to impulse responses with long tails and large skewness (third central
moment). Since such impulse responses are highly asymmetric, using
the mean and standard deviation to approximate the 50% delay and
10%–90% slew becomes inaccurate. Also, near-end impulse response
PDFsarehighly skewed in thepositivedirectioncausingS2Mandscaled
Elmore to significantlyoverestimate slewanddelay at these nodes.

The authors of [10] observed the trend that scaled Elmore signif-
icantly overestimates delay at the near-end, while slightly underesti-
mating delay at the far-end. As a result they proposed the D2M metric
by introducing an empirical multiplicative factor r = �m1=

p
m2 to

the scaled Elmore metric. This factor was found to be much less than
one for near-end nodes and slightly greater than one for far-end nodes.
Using this factor, the accuracy in delay prediction is vastly improved.
S2M shows a similar trend of overestimation at the near-end, although
it is highly accurate at far-end nodes. Based on these observations re-
lating scaled Elmore as a delay metric and S2M as a slew metric, we
propose that a similar factor be used to improve near-end accuracy. This
is the basis of a second new slew metric called scaled S2M.

Empirically, we have found a good multiplicative factor to be
�m1=

p
m2, which is the square root of the factor proposed to

improve scaled Elmore in [10]. This is intuitive since S2M is a

Fig. 3. RC circuit response waveform of a difficult near-end node compared
to S2M and scaled S2M approximations. Near-end waveforms often show long
tails resulting in overestimation of slew by S2M.

variance-based metric while scaled Elmore is mean-based. Also, S2M
shows better accuracy than scaled Elmore and hence the multiplicative
factor for S2M should be less than that for scaled Elmore (i.e., closer
to 1). The new scaled S2M metric is given by

Scaled S2M =

p
�m1p
m2

(ln 9) 2m2 �m2
1 : (15)

One justification of the multiplicative factor in scaled S2M stems
from the observation that near-end impulse responses show long tails.
Given an impulse response h(t), ideally, we need to solve the following
set of equations for 10% and 90% points.

T

0

h(t)dt = 0:1

T

0

h(t)dt = 0:9: (16)

The information contained in the probability moments (and hence cir-
cuit moments) are

1

0

th(t)dt = m̂1

1

0

t2h(t)dt = m̂2: (17)

Note that t does not appear in the integration of (16) while it
does in the integration of (17). If we use variance (

1

0
t2h(t)dt �

(
1

0
th(t)dt)2) to estimate slew, then for an impulse response with

a long tail, th(t) and t2h(t) at high values of t become significant.
Variance depends upon the entire distribution and increases with
long tails while 10%–90% slew depends only until the point where
the area below the curve is 90%. Hence, for slew purposes, the tail
of h(t) at very high values of t is not important. Empirically, we
found that one way to modify variance and nullify the effect of
the tail on variance is by multiplying variance with a function of

((
1

0
th(t)dt)=(

1

0
t2h(t)dt)), which is similar to m1=

p
m2.

Modifying variance (�2) by m1=
p
m2 results in a m1=

p
m2 term

in standard deviation.
Fig. 3 shows a simulated near-end RC response as well as both S2M

and scaled S2Mapproximations. This is a particularly difficult near-end
case as seen from the very long tail of the response. It is clear that S2M
overestimates slew due to the long tail while scaled S2M shows much
better 10%–90% fit for this test case.

Finally, the S2M metric is effectively a scaled form of the standard
deviation of the impulse response. The potential relationship between
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TABLE I
COMPARISON BETWEEN DIFFERENT SLEW METRICS AT VARIOUS NODES OF A 50 SEGMENT RC LINE.

SLEW RATES ARE GIVEN IN ps AND ERROR RELATIVE TO SPICE IS GIVEN IN ()

slew rate and the standard deviation of h(t) has been suggested previ-
ously in [2] and [3]. In this work, we provide a theoretical basis for the
use of the scaled standard deviation based on the idea that RC circuits
behave as exponential waveforms and the mapping of this waveform
to a CDF. We then develop the scaled S2M metric which is simple yet
accurate, even for difficult near-end waveforms. In the following sec-
tions, we show results for both S2M and scaled S2M and also test var-
ious other slew metrics for the first time; given the current emphasis
on 50% delay model accuracy in the literature, we feel that a thorough
comparison of slew metrics is needed.

B. Extension to Ramp Inputs

The S2M and scaled S2M metrics can be easily extended to ramp in-
puts by using the Probability distribution function Extension for Ramp
Inputs (PERI) approach described in [14]. The PERI technique is based
on the fact that when two mutually independent PDFs are convolved,
their mean and central moments add. By using this simple observation,
the authors of [14] propose the following expression to extend step slew
metrics to ramp inputs:

Slew(Ramp) = Slew2(step) + T 2

R
: (18)

Here, TR is the input slew and Slew(step) and Slew(ramp) denote
slew for step and ramp excitation respectively.

C. Application to RLC Circuits

S2M uses the probability interpretation of an RC response and
models the step response as a CDF and impulse response as a PDF.
Since any monotonic function that satisfies the requirements in (9)
can be modeled as a CDF, all overdamped and critically damped RLC
responses can be captured by the new metrics.

It is well known that inductance results in faster slews [17]. This is
due to the fact that when a positive voltage is applied to an inductor, it
takes some time to build up the current. Once the current is established,
however, it is then continuously supplied for some duration, resulting
in overall faster transition times. This effect is captured by S2M and
scaled S2M and can be explained by the second circuit moment m2.
Equation (6) shows that m2 decreases as inductance grows and thus
the variance of the impulse response reduces, resulting in faster slew
rates.

To avoid the application of S2M and scaled S2M when it does not
hold (i.e., underdamped RLC cases), the following criteria from [16]

Fig. 4. Simple RC tree.

can be used to checkwhether anRLC response is overdamped, critically
damped, or underdamped:

4m2 � 3m2

1 < 0; Underdamped

4m2 � 3m2

1 =0; Critically damped

4m2 � 3m2

1 > 0; Overdamped: (19)

We note that 2m2�m2

1 is always positive for overdamped and crit-
ically damped responses. Indeed, there exist underdamped cases for
which S2M and scaled S2M remain stable but this is not globally true
and as such these metrics cannot be applied to general underdamped
RLC systems.

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results for S2M and scaled
S2M on a variety of test cases. We compare our results with Elmore’s
metric (2 � standard deviation), Bakoglu’s metric (ln 9 � Elmore), the
Lognormal metric, and also with other delay metrics that can be ex-
tended to compute slew. Among major delay metrics, only D2M and
Weibull are readily extendable to slew. Though h-gamma can also be
extended to compute slews it requires extra look-up tables for 10% and
90% points and the generation of these tables is nontrivial. Hence, we
do not compare our results with h-gamma. D2M is altered to model
slew rates based on a single-pole approximation as described in [10]
while Weibull can be retargeted to 10%–90% delay by solving the
Weibull CDF for 10% and 90% points. We draw our preliminary ex-
ample circuits from prior literature in delay metric analysis for consis-
tency and then consider nets taken from an industrial microprocessor
design.
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TABLE II
COMPARISON BETWEEN DIFFERENT SLEW METRICS FOR TEST CIRCUIT OF FIG. 4.

SLEW RATES ARE GIVEN IN ps AND ERROR RELATIVE TO SPICE IS GIVEN IN ()

A. RC Line Test Case

First, we consider an RC line with a total line resistance of 150 

and a total line capacitance of 1 pF. The driver resistance was chosen
to be 50 
. The line was modeled as 50 segments. We look at several
intermediate nodes along the line. Table I shows the comparison be-
tween different slew metrics at various nodes in this 50 segment RC
line. The table shows that Scaled S2M outperforms all other metrics at
near-end nodes while S2M gives the best results at the far-end nodes
for this testcase.

B. RC Tree Test Case

We consider an RC tree taken from [10] and [13] and shown in Fig. 4.
Table II shows the comparison between different slew metrics for this
test case. S2M results match well with SPICE with very high accuracy
at far-end nodes but relatively larger errors at near-end. One interesting
comparison is between S2M and Elmore. S2M has a larger constant of
proportionality (ln 9 = 2:19) as compared to Elmore’s constant of 2.
Hence, the slew numbers predicted by Elmore are always smaller than
those predicted by S2M. For far-end nodes, S2M is highly accurate but
Elmore underestimates slew by around 10% (which is approximately
the percentage difference between 2.19 and 2). This result justifies the
claim that Elmore’s assumption of a Gaussian distribution is not com-
pletely valid for RC circuits. Among other metrics, the proposed scaled
S2M metric works well for all nodes including very small errors at the
near-end. Weibull also matches well with SPICE but underestimates the
near-end node slews by over 10%. The Lognormal metric works very
well across all nodes; this is somewhat expected in that this metric is
significantly more complex than the others and uses different expres-
sions for near, mid, and far-end nodes. Also, the Lognormal metric uses
three moments as compared to scaled S2M which is based only on two
moments.

C. RLC Line Test Case

We consider a 2000-�m distributed RLC line taken from [12] and
shown in Fig. 5 for this experiment. The line is driven by a step input
and the driver resistance is varied to control the damping of the system.
The line was modeled by 30 lumped RLC segments in SPICE to rep-
resent a distributed line. For a particular value of the source resistance
Rs, both theRC and RLC responses are compared with S2M and scaled
S2M. It is clear from Table III that RLC slews are much smaller than

Fig. 5. Uniform distributed RLC line.

TABLE III
COMPARISON BETWEEN PROPOSED METRICS AND SPICE FOR TEST

CIRCUIT OF FIG. 5. SLEW RATES ARE IN UNITS OF ps AND

ERROR RELATIVE TO SPICE IS GIVEN IN ()

corresponding RC slews (by 10%–30% in this case) and that this effect
of inductance is accurately modeled by both of the new metrics.

D. Results on Industrial Nets

We tested the new S2M and scaled S2M metrics on a large number
of RC interconnect examples from a 0.18-�m high-performance mi-
croprocessor design. The total number of nets considered was 6842.
These nets were extracted using a commercial extraction tool and rep-
resent the most critical and challenging nets for delay calculation. The
nodes in each of these nets were classified into near, mid, and far-end
nodes. We used the same criteria as in [13] for classifying a node as
near, mid, or far-end. Namely, if the 50% delay of a node is less than
or equal to 25% of the maximum delay of any node in that net, then
the node is classified as a near-end node. If the delay of a node falls be-
tween 25% and 75% of the maximum delay, then it is a mid-end node.

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 12, 2009 at 15:46 from IEEE Xplore.  Restrictions apply.



1352 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2004

TABLE IV
ERROR STATISTICS OF SLEW METRICS ON NEAR, MID AND FAR-END NODES OF 6842 NETS

TAKEN FROM A 0.18-�m HIGH-PERFORMANCE INDUSTRIAL MICROPROCESSOR

Similarly, the nodes with delay values greater than 75% of the max-
imum are labeled far-end nodes. We applied Bakoglu, Elmore, D2M,
Weibull, Lognormal, S2M, and scaled S2M to all nodes and computed
error relative to SPICE. The near-end nodes are the most difficult for
delay and slew metrics while the far-end nodes are relatively easy to
model, hence the performance of the metrics for near, mid, and far-end
nodes is discussed separately.

1) Near-End Nodes: The total number of near-end nodes tested
was 4093. Table IV shows the mean and standard deviation while
Table V provides error bins for the different metrics (errors are taken
as absolute values when computing the mean and error bins). Scaled
S2M was found to be very accurate with an average error of 9.5%.
With scaled S2M, 72% of the total nodes showed less than 10%
error. Weibull also performed well at these nodes while S2M, Elmore,
Bakoglu and D2M were found to be highly inaccurate. Lognormal
was found to be highly accurate with an average error of 7.8%. The
standard deviation of error is sometimes used to describe the stability
of a metric; using this approach the scaled S2M is slightly more stable
than Lognormal but with somewhat higher average error.

Fig. 6 shows stacked histograms of the relative error distributions for
the seven metrics. Some important conclusions about near-end nodes
can be drawn from these error histograms. First, the results show that
the simple variance-based S2M metric highly overestimates slew at
near-end nodes. This is because of the long tail in the near-end re-
sponse as discussed in Section III-A and seen in Fig. 3. Scaled S2M
reduces this pessimism and provides much better results. Another im-
portant observation is that metrics using a single-pole approximation
that were originally focused on 50% delay (Bakoglu and D2M) greatly
underestimate slew at near-end nodes. This can also be explained by an-
alyzing the near-end waveform from Fig. 3. It is clear from the figure
that any single-pole approximation that attempts to fit the 50% delay
point accurately will result in significant underestimation of slew. This
supports our argument that metrics developed to capture 50% delay are
not well suited to be extended for slew. These results also justify the use
of accurate closed-form slew metrics (like scaled S2M) in conjunction
with an accurate delay metric (like D2M) to capture the key points of
a waveform. Finally, the histograms show that Weibull and Lognormal
tend to underestimate slew while the proposed scaled S2M metric gen-
erally provides conservative results, which is desirable.

2) Mid-End Nodes: The total number of mid-end nodes tested
was 12 352. Table IV shows the statistics of the error distribution and
Table V shows error bins for different metrics. Mid-end nodes are
easier than near-end nodes and all metrics perform better for these
cases. Scaled S2M and Lognormal show similar error statistics. Both
perform extremely well with an average error of 1.4% and 1.3%,
respectively. These metrics also exhibit small standard deviations
indicating their stability from net to net. S2M, which was rather
inaccurate for near-end nodes, performs much better on these nodes.

Fig. 6. Error histograms of slew metrics on 4093 near-end nodes taken from
nets from an industrial microprocessor design. Histogram bins are set at 5%.
Note differing y axis scales.

Table V also shows that scaled S2M predicts the slew rate of 77% of
the nodes within 2% of SPICE.

Fig. 7 shows stacked histograms of relative error distributions for the
sevenmetrics demonstrating that scaled S2M andLognormal are highly
accurate in nearly all cases. S2M and Weibull also perform well while
D2M and Bakoglu are inaccurate and unpredictable (indicated by large
standard deviations). As was the case for near-end nodes, both S2M and
scaled S2M rarely underestimate the actual slew bymore than a few per-
cent.Whilenot strictupperboundsasElmore is fordelayprediction, they
typically provide conservative results whereas other metrics, including
LognormalandWeibull,canbefairlyoptimistic.Wemeasuredmaximum
underestimation by different metrics on these 12 352 nodes. The max-
imum underestimation for S2M and scaled S2M was 0.2% and 2%, re-
spectively, as compared to 55.9% for D2M, 32.7% for Bakoglu, 18.4%
for Weibull, 11.9% for Elmore, and 11.8% for Lognormal.
3) Far-End Nodes: The total number of far-end nodes tested was

65 250. Table IV shows the statistics of error distribution and Table V
shows error bins for different metrics. The average error of S2M is only
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TABLE V
ERROR BINS (SHOWING THE FRACTION OF CASES WITH GIVEN ERRORS) OF SLEW METRICS ON NEAR, MID AND FAR-END NODES

OF 6842 NETS TAKEN FROM A 0.18-�m HIGH-PERFORMANCE INDUSTRIAL MICROPROCESSOR

Fig. 7. Error histograms of slew metrics on 12 352 mid-end nodes taken from
nets from an industrial microprocessor design. Histogram bins are set at 1%.
Note differing y axis scales.

1.7%. Scaled S2M shows the same average error with the smallest stan-
dard deviation. Scaled S2M and S2M predictably show comparable re-
sults at far-endnodes since themultiplicative factor of scaledS2Mis typ-
ically very close to one in these cases. Table V shows that scaled S2M
predicts the slew rate of 98.9% of the sinks within 5% of SPICE. S2M is
also highly accurate with 93.9% of the nets showing less than 5% error.

Fig. 8 shows stacked histograms of relative error distributions for
the seven metrics. It is clear that Lognormal, S2M, and scaled S2M

Fig. 8. Error histograms of slew metrics on 65 250 far-end nodes taken from
nets from an industrial microprocessor design. Histogram bins are set at 1%.
Note differing y-axis scales.

are highly accurate at nearly all nodes. Weibull also performs well but
its results were found to be as optimistic as 18.5% compared to only
2.1% and 3% worst-case underestimation by scaled S2M and S2M re-
spectively. Elmore’s metric shows an average error of around �10%,
further demonstrating that for RC circuits, the constant of proportion-
ality should be (ln 9) instead of two as proposed by Elmore.

Finally, we examined the 100 far-end nodes with the highest average
error among all metrics in an attempt to focus on extremely difficult
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TABLE VI
MEAN ERROR OF INDIVIDUAL SLEW METRICS ON THE 100 MOST DIFFICULT

FAR-END NODES OUT OF A TOTAL OF 65 250 NODES TAKEN FROM A

0.18-�m HIGH-PERFORMANCE INDUSTRIAL MICROPROCESSOR

cases and ensure that the above results are not skewed by large number
of relatively easy nodes. Table VI shows the average error for indi-
vidual metrics on these 100 nodes. Scaled S2M and Lognormal re-
main the most accurate metrics when considering the most difficult
nodes. S2M (with an average error of only 1.7% while considering
all 65 250 far-end nodes) becomes highly inaccurate when only the
100 most difficult nodes are considered. This occurs since the step
responses at this subset of nodes deviate significantly from a simple
one-pole approximation. At these nodes, the responses show long tails
causing large errors in S2M. The newly proposed scaled S2M metric
performs extremely well on these difficult testcases with an average
error of only 5%, showing better accuracy than the more complex Log-
normal distribution.

V. CONCLUSION

This paper describes a new metric to accurately compute the slew
rate at any node in an RC circuit. The metric scaled S2M is a simple
closed-form function of the first two circuit moments that can be com-
puted efficiently using path tracing algorithms. We compare the accu-
racy of scaled S2M with the Elmore, Bakoglu, and Lognormal slew
models and also with extended versions of the D2M and Weibull delay
metrics. In general, scaled S2M shows higher accuracy than all other
metrics, while being comparable (but slightly less accurate) to the re-
cently proposed Lognormal metric. The advantages of scaled S2M over
Lognormal are that it is substantially simpler and tends to give conser-
vative results. On a large set of nets from an industrial microprocessor,
scaled S2M predicts the slew rate of 98.9% of the sinks within 5% of
SPICE. We further show that metrics relying on a simple constant mul-
tiplied by standard deviation, such as S2M and Elmore, do not work
well for near-end nodes. The newly proposed scaled S2M metric works
well across all nodes with an average error of 9.5% on 4093 tradition-
ally difficult near-end nodes. Furthermore, though this metric is not a
general RLC slew metric, it can be applied to overdamped and critically
damped RLC systems while maintaining good accuracy.

We suggest the use of scaled S2M along with the D2M delay metric
as both are simple expressions of the same inputs (m1;m2). This
makes the runtime necessary to compute both slew and 50% delay
equal to that of finding 50% delay alone. Also, they act in a comple-
mentary manner to provide a high degree of accuracy. The new scaled
S2M metric should be useful in a range of physical design areas such
as noise avoidance during routing, on-the-fly wire resizing/spacing,
and fast checking of slew-rate constraints.
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