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Abstract

Numerous efforts have been made in developing “intelligent” programs based on
the Von Neumann’s centralized architecture. However, these efforts have not been
very successful in building general-purpose intelligent systems. Inspired by biological
neural networks, researchers in a number of scientific disciplines are designing artificial
neural networks (ANNs) to solve a variety of problems in decision making, optimiza-
tion, prediction, and control. Artificial neural networks can be viewed as parallel and
distributed processing systems which consist of a huge number of simple and massively
connected processors. There has been a resurgence of interest in the field of ANNs for
several years. This article intends to serve as a tutorial for those readers with little
or no knowledge about ANNs to enable them to understand the remaining articles of
this special issue. We discuss the motivations behind developing ANNs, basic network
models, and two main issues in designing ANNs: network architecture and learning
process. We also present one of the most successful application of ANNs, namely

automatic character recognition.

1 Introduction

What are artificial neural networks (ANNs)?  Why is there so much excitement about

ANNs? What are the basic models used in designing ANNs? What tasks can ANNs



perform efficiently? These are the main questions addressed in this tutorial article.

Let us first consider the following classes of challenging problems of interest to computer
scientists and engineers: (i) Pattern classification, (ii) Clustering/categorization, (iii) Func-
tion approximation, (iv) Prediction/forecasting, (v) Optimization, (vi) Retrieval by content,
and (vii) Control. A number of successful attempts have been made to solve these prob-
lems using a variety of ANN models. Because of these successes, ANNs have now become a
popular tool for problem solving.

Pattern classification: The task of pattern classification is to assign an input pattern
(e.g., speech waveform or handwritten symbol) represented by a feature vector to one of pre-
specified classes. Discriminant functions or decision boundaries are constructed from a set
of training patterns with known class labels to separate patterns from different classes. The
decision boundaries can be linear, piece-wise linear, or any arbitrary shape (see Figure 1(a)).
Two important issues in a pattern classification task are feature representation/extraction
and decision making. Well-known applications of pattern classification are character recog-
nition, speech recognition, EEG waveform classification, blood cell classification, and printed
circuit board inspection.

Clustering/categorization: In clustering, also known as unsupervised pattern classi-
fication, there are no training data with known class labels. A clustering algorithm explores
the similarity between the patterns and places similar patterns in a cluster (see Figure 1(b)).
The number of clusters is often not known a priori. Therefore, clustering is a more difficult
problem than pattern classification. Well-known clustering applications include data mining,
data compression, and exploratory data analysis.

Function approximation: Given a set of n labeled training patterns (input-output
pairs), {(x1,¥1), (X2,¥2), -+, (Xn, Yn)}, generated from an unknown function p(x) (subject
to noise), the task of function approximation is to find an estimate, say f, of the unknown
function p. In the statistical literature, this problem is often referred to as regression. The
estimated function f can be made to fit the training data with an arbitrary accuracy by
adjusting its complexity. An important issue here is to avoid over-fitting to the given noisy
training data (see Figure 1(c)). Pattern classification can also be posed as a function ap-

proximation problem. Various engineering and scientific modeling problems require function



approximation.

Prediction /forecasting: Given a set of n samples in a time sequence,
{y(t1),y(t2), -, y(tn)[t1 < t2 < --- < t,}, the task is to predict the sample y(t,41) at
some future time ¢,,;. Prediction/forecasting has a significant impact on decision making
in business, science and engineering, as well as our daily life. Stock market prediction and
weather forecasting are typical applications of prediction/forecasting techniques (see Figure
1(d)).

Optimization: A wide variety of problems in mathematics, statistics, engineering, sci-
ence, medicine, and economics can be posed as optimization problems. An optimization
problem usually involves the following components: (i) a set of independent variables or
parameters which is often referred to as the state of the process; (ii) an objective function
or cost/error function to be optimized, and (iii) a set of constraints if they exist. The goal
of an optimization algorithm is to find a state satisfying the constraints such that the ob-
jective function is maximized or minimized. A combinatorial optimization problem refers to
a problem in which all the state variables are discrete and have a finite number of possible
values. A classical combinatorial optimization problem is the Traveling Salesperson Problem
(TSP), which is an NP-complete problem.

Content-addressable memory: In the Von Neumann model of computation, an entry
in memory is accessed only through its address which does not have any physical meaning
in terms of the content in the memory. Moreover, if a small error is made in calculating
the address, a completely different item would be retrieved. Associative memory or content-
addressable memory, as the name implies, can be accessed by its content. The content in
the memory can be recalled even by a partial input or distorted content (see Figure 1(f)).
Associative memory is extremely desirable in building multimedia information databases.

Control: Consider a dynamic system defined by a tuple {u(¢),y(¢)}, where u(t) is the
control input and y(¢) is the resulting output of the system at time ¢. In model-reference
adaptive control, the goal is to generate a control input u(¢) such that the system follows
a desired trajectory determined by the reference model. An example of model reference
adaptive control is the engine idle speed control (Figure 1(g)). In this example, throttle

angle is the control input, and engine speed is the output of the system. The reference



input (throttle angle) sets the engine at the desired idle speed, when the load torque is
zero. Without an adaptive control system, various load torque values would set the engine
at different idle speeds. The goal of the engine idle speed control system is to adaptively
generate the throttle angle such that the engine runs at the desired idle speed at all load
torques. Many other engineering systems require an adaptive control.

A large number of approaches have been proposed for solving the problems described in
Figure 1. While successful applications of these approaches can be found in certain well-
constrained environments, none of them is flexible enough to perform well outside the domain
for which it is designed. The field of artificial neural networks has provided alternative
approaches for solving these problems. It has been established that a large number of
applications can benefit from the use of ANNs [1, 9, 7].

Artificial neural networks, which are also referred to as neural computation, network com-
putation, connectionist models, and parallel distributed processing (PDP), are massively
parallel computing systems consisting of an extremely large number of simple processors
with many interconnections between them. ANNs were designed with the goal of building
“intelligent machines” to solve complex problems, such as pattern recognition and optimiza-
tion, by mimicking the network of real neurons in the human brain (biological computation).
Another goal of ANNs is to help us understand our brain through simulating and testing
hypotheses about network architecture and learning.

The purpose of this article is to serve as a tutorial for those readers with little or no
knowledge about artificial neural networks. The rest of this article is organized as follows.
Section 2 provides a brief introduction to biological neurons and neural networks, motiva-
tions behind developing ANNs, relationship of ANNs to other scientific disciplines, and a
brief historial note. In Section 3, we present the basic neuron model, and discuss the two
main issues in designing ANNs: (i) network architecture, and (ii) learning process. Various
ANN models are organized according to their architecture and learning process. Sections 4
- 7 provide more details about several well-known ANN models: Multilayer perceptron, Ko-
honen’s Self-Organizing Maps, ART models and Hopfield network. In Section 8, we discuss
character recognition, a popular domain for applying ANN models. Concluding remarks are

presented in Section 9.
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Figure 1: Tasks that neural networks can perform. (a) Pattern classification; (b)
clustering/categorization; (c¢) Function approximation; (d) Prediction/forecasting; (e)
Optimization (TSP problem); (f) Retrieval by content; and (g) Engine idle speed

control.



2 Motivations

This tutorial article is about the fundamentals of artificial neural networks. However, we
also need to provide a brief introduction to biological neural networks for the following
reasons: (i) ANNs are inspired by biological neural networks; (ii) a network of massively
connected simple processors (PDP model) exhibits powerful computational capabilities; (iii)
the biological neural network provides a benchmark for evaluating the performance of ANN;
(iv) biological neural networks are an existence proof of our goal of building intelligent

machines.

2.1 Biological neuron/neural networks

A neuron (or nerve cell) is a special biological cell, the essence of life, with information
processing ability. The introduction of neurons as basic structural constituents of the brain
was credited to Ramon y Cajal who won the 1906 Nobel prize for physiology and medicine
(shared with Camillo Golgi) for the crucial discovery of the extensive interconnections within
the cerebral cortez, the portion of the brain where approximately 90% of the neurons in the

human are located.
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Figure 2: A sketch of a biological neuron.

A schematic drawing of a neuron is shown in Figure 2. A neuron is composed of a cell

body, or soma, and two types of out-reaching tree-like branches: azon and dendrites. The



cell body has a nucleus which contains information on hereditary traits and a plasma con-
taining molecular equipment for the production of material needed by the neuron. The cell
membrane contains various types of electrochemical pumps which can maintain imbalances
in charge concentrations inside and outside the cell. A neuron receives signals (impulses)
from other neurons through its dendrites (receivers), and transmits signals generated by
its cell body along the axon (transmitter) which eventually branches into strands and sub-
strands. At the terminals of these strands are the synapses. A synapse is a place of contact
between two neurons (an axon strand of one neuron and a dendrite of another neuron).
When the impulse reaches the synapse’s terminal, certain chemicals, called neurotransmit-
ters are released. The neurotransmitters diffuse across the synaptic gap, and their effect is
to either enhance or inhibit, depending on the type of the synapse, the receptor neuron’s
own tendency to emit electrical impulses. The effectiveness of a synapse can be adjusted by
the signals passing through it so that synapses can learn from the activities in which they
participate. This dependence on past history acts as a memory which is possibly responsible
for the human ability to remember.

The cerebral cortex in humans is a large flat sheet of neurons about 2 to 3 mm thick with
a surface area of about 2,200 ¢cm?, about twice the area of a standard computer keyboard.
This is an amazing creation of nature because a sphere with a volume of about 1.5 liters, the
typical size of a human brain, has a surface area of only 634 cm?. It is the walnut appearance
of human brain that provides the cerebral cortex with a surface area three times larger than
a simple smooth spherical surface. The cerebral cortex contains about 10! neurons, which
is approximately the number of stars in the Milky Way! There are about 34 different types
of neurons based solely on their shape, and as many as 100 types of functionally different
neurons. Neurons are massively connected, much more complex and denser than today’s
telephone networks. Each neuron is connected to 10% — 10* other neurons. The number
of interconnections depends on the location of the neuron in the brain and the type of the
neuron. In total, the human brain contains approximately 10* — 10'® interconnections.

Neurons communicate by a very short train of pulses, typically milliseconds in duration.
The message is modulated on the frequency with which the pulses are transmitted. The

frequency can vary from a few up to several hundred Hertz, which is a million times slower



than the fastest switching speed in electronic circuits. However, complex perceptual deci-
sions, such as face recognition, are made by a human at the brain very quickly, typically
within a few hundred milliseconds. These decisions are made by a network of neurons whose
operational speed is a few milliseconds. This implies that computation involved cannot take
more than about one hundred serial stages. In other words, the brain runs parallel programs
that are about 100 steps long for such perceptual tasks. This is known as the hundred step
rule [6]. The same timing considerations show that the amount of information sent from
one neuron to another must be very small (a few bits). This implies that critical informa-
tion is not transmitted directly, but captured and distributed in the interconnections, thus
comes the name connectionist model. What is the magic that permits slow computing ele-
ments to perform extremely complex tasks rapidly? The key is the parallel and distributed
representation and computation.

Interested readers can find more introductory and easily comprehensible material on

biological neurons and neural networks in [3].

2.2 Why artificial neural networks?

Modern digital computers have outperformed humans in the domain of numeric computation
and related symbol manipulation. However, humans can effortlessly solve complex perceptual
problems (e.g., recognizing a person in a crowd from a mere glimpse of his face) at such a
fast speed and extent as to dwarf the world’s fastest computer. Why does there exist such a
remarkable difference in their performance? The biological computer employs a completely
different architecture than the Von Neumann architecture (see Table 1). It is this difference
that significantly affects the type of functions each computational model is best able to
perform.

Numerous efforts have been made on developing “intelligent” programs based on the Von
Neumann’s centralized architecture. However, such efforts have not resulted in any general-
purpose intelligent programs. ANNs are inspired by biological evidence, and attempt to
make use of some of the “organizational” principles that are believed to be used in the
human brain. This, of course, implies that the achievement of ANNs is largely dependent on

the depth of our understanding of the human brain, which is beyond our comprehension. On



Von Neumann computer Biological computer
complex simple
Processor high speed low speed
one or a few large number
separate from processor | integrated into processor
Memory localized distributed
non-content addressable content addressable
centralized distributed
Computing sequential parallel
stored programs self-learning
Reliability very vulnerable robust
Expertise numerical and symbolic perceptual problems
manipulations
Operating well-defined, poorly-defined,
environment well-constrained unconstrained

Table 1: Von Neumann computer versus biological computer.

the other hand, a successful ANN may not have any resemblance to the biological system.
Our ability to model biological nervous system using ANNs can increase our understanding
of biological functions. For example, experimental psychologists have used neural networks
to model classical conditioning animal learning data for many years [1]. The state-of-the-
art in computer hardware technology (e.g., VLSI and optical) has made such modeling and
simulation feasible.

The long course of evolution has resulted in the human brain to possess many desirable
characteristics which are present neither in a Von Neumann computer nor in modern paral-
lel computers. These characteristics include massive parallelism, distributed representation
and computation, learning ability, generalization ability, adaptivity, inherent contextual in-

formation processing, fault tolerance, and low energy consumption. It is hoped that ANNs,

motivated from biological neural networks, would possess some of these desirable character-



istics in the human brain.

2.3 Relationship with other disciplines

The field of artificial neural networks is an interdisciplinary area of research. A thorough
study of artificial neural networks requires knowledge about neurophysiology, cognitive sci-
ence/psychology, physics (statistical mechanics), control theory, computer science, artificial
intelligence, statistics/mathematics, pattern recognition, computer vision, parallel process-
ing, and hardware (digital/analog/VLSI/optical).

Figure 3 illustrates the interaction between artificial neural networks and these disciplines.
Artificial neural networks receive inputs from these disciplines. New developments in these
disciplines continuously nourish the field of ANNs. On the other hand, artificial neural net-
works also provide an impetus to these disciplines in terms of new tools and representations.
This symbiosis is necessary for the vitality of neural network research. Communications

among these disciplines ought to be encouraged.
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Figure 3: ANN’s Relationship with other disciplines.

We shall not discuss all these interactions between ANNs and other disciplines. Instead,
we shall primarily focus on the relationship between ANNs and pattern recognition and

artificial intelligence.
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Pattern recognition systems are expected to automatically classify, describe, or cluster
complex patterns or objects based on their measured properties or features. Design of a
pattern recognition system involves the following three main steps: (i) data acquisition and
preprocessing, (ii) representation or feature extraction, and (iii) decision making or clus-
tering. Jain and Mao [11] have addressed a number of common links between ANNs and
statistical pattern recognition (SPR). There is a close correspondence between some of the
popular ANN models and traditional pattern recognition approaches. Quite often, these re-
lationships are not fully exploited to build hybrid systems. Examples are perceptron versus
linear classifier, vector quantization learning by ANNs versus k-means clustering, and radial
basis function network versus Parzen window density estimation/classifier. In spite of this
close resemblance between ANN and SPR, ANNs have provided a variety of novel or sup-
plementary approaches for pattern recognition tasks. More noticeably, ANNs have provided
architectures on which many well-known statistical pattern recognition algorithms can be
mapped to facilitate hardware implementation. The adaptivity of ANNs is crucial for the
design of pattern recognition systems not only in terms of good generalization capability, but
also in terms of its performance in dynamic environments and in the presence of incomplete
information during training. At the same time, ANNs can derive benefit from some well-
known results in statistical pattern recognition. For example, the generalization ability of a
network is related to the “curse of dimensionality” problem in statistical classifiers; radial
basis function networks share many design issues with Parzen window classifiers. Most of the
efforts in the ANN research related to pattern recognition have been directed to designing a
classifier with good generalization ability. Little work has been devoted towards designing a
good representation scheme for a given problem using neural networks.

Artificial intelligence (Al) aims at building “intelligent” machines that can perform tasks
which require cognition when performed by humans. A typical Al system has three major
components: representation, reasoning, and learning (see [7]). With motivation derived from
psychology and cognitive science (mental representation), natural language (symbols, sequen-
tial processing), and logic (symbol manipulation), traditional Al systems adopt (i) symbolic
representation, (ii) searching-based reasoning using rules, logic, and knowledge database, and

(iii) expert-based learning (expert systems). Al takes the top-down strategy to solve prob-
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lems [16]: begin at the level of commonsense psychology, and hypothesize what processes
could solve a problem. If the problem can not be solved in a single step, break the problem
into subproblems. This procedure continues until a solution is obtained.

In contrast, ANNs distinct themselves from traditional AI by employing the parallel
and distributed processing (PDP) model which uses a network of massively connected sim-
ple processing units (connectionist model). Problems, knowledge, and even solutions are
represented (coded) by numeric weights and outputs which are distributed in the network.
Motivated by neurophysiology, ANNs take the bottom-up strategy: start from simple pro-
cessing units, and then move upward in complexity by studying their interconnections and
collective behavior.

Both AI and ANN paradigms have their own virtues and deficiencies (symbolic versus
connectionist, top-down versus bottom-up) [16]. Most importantly, the virtues of one ap-
proach could compensate the deficiencies of the other. Therefore, we should not exclude
any one of these two approaches based on our bias. Instead, a useful approach might be to

combine both the approaches in building structured connectionist models.

2.4 Brief Historical Review

Humans, being inquisitive creatures, have long been interested in exploring where the mind
originates and how the brain computes. These efforts may be traced back to Aristotle.
Yet, the modern era of computational neural modeling began with the pioneering work of
McCulloch and Pitts [15] in 1943, who introduced a computational model of neuron and
a logical calculus of neural networks. McCulloch-Pitts’ classic paper was widely read at
the time (and is still read), generating considerable interest over the next 15 years in the
detailed logic of networks consisting of their simple neurons. Such networks were proved to
be capable of universal computation (any Boolean function).

The next major milestone in ANNs was Rosenblatt’s work on the Perceptron in 1958. The
crowning achievement of Rosenblatt’s work was the first proof of the perceptron convergence
theorem. In 1960, Widrow and Hoff introduced the least mean square (LMS) algorithm for
the Adaline (Adaptive Linear Element). Nilsson’s book on machine learning [19] was the

best-written exposition of linearly separable patterns in hypersurfaces. ANNs generated a
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great deal of enthusiasm in the 1960’s. It appeared as if such a machine could do any type
of computation. However, this enthusiasm was dampened by Minsky and Papert’s book
[17] which demonstrated the fundamental limitations of the computing power of one-layer
perceptrons. They showed that certain rather simple computations, such as the Fzclusive-
OR (XOR) problem, could not be solved by the one-layer perceptron. It was believed that
such limitations could be overcome by multilayer perceptrons which employ intermediate
layers of units (hidden units) between the input layer and output layer. But, a difficult
problem encountered in designing a multilayer perceptron is the credit assignment problem
(i.e., the problem of assigning credit to the hidden units in the network). There was no
learning algorithm known at that time to solve this problem. Minsky and Papert doubted
that one could be found and thought it more profitable to explore other approaches to
artificial intelligence. Because of this and other reasons, research into neural networks went
into hibernation. However, the neural network field was not completely abandoned in the
1970’s. A number of dedicated researchers continued to develop neural network models.
Two important themes that emerged were associative content-addressable memory and self-
organizing networks using competitive learning.

In the 1980’s, a number of important publications appeared, which changed the course
of ANN research. Perhaps more than any other publication, the 1982 paper by Hopfield
[10] and the two-volume book by Rumelhart and McClelland in 1986 [21] were the most
influential publications. In 1982, Hopfield introduced the idea of an energy function from
statistical physics to formulate a new way of understanding the computation of recurrent
networks with symmetric synaptic connections. This formulation makes explicit the principle
of storing information as dynamically stable attractors. Many combinatorial optimization
problems, such as the classical Traveling Salesperson Problem, can be formulated in terms
of a network energy function which is minimized when the network reaches a stable state.

In 1986 Rumelhart, Hinton and Williams reported the development of the backpropaga-
tion algorithm which popularized the use of multilayer perceptron to solve a wide variety of
pattern recognition problems. In fact, the development of the back-propagation algorithm
has a colorful history. It was first developed by Werbos in 1974 in his Ph.D. thesis, and later

rediscovered independently in two other places by Parker and by LeCun in 1985.
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Over the last ten years, thousands of researchers from many diverse fields, such as neu-
roscience, psychology, medicine, mathematics, physics, computer science, and engineering,
have been involved in developing neural network models, implementing the models in hard-
ware (VLSI and optics) and software, and solving a number of important applications. These

activities continue to grow as a result of the successful applications of the ANN models.

3 Artificial Neurons/Neural Networks

This section provides an overview of ANNs. First, computational models of neurons are
introduced. Then, two important issues, network architecture and learning, are discussed.

Various ANN models are organized by their architecture and the learning algorithm involved.

3.1 Computational Models of Neurons

McCulloch and Pitts [15] proposed a binary threshold unit as a computational model for

a neuron. A schematic diagram of a McCulloch-Pitts neuron is shown in Figure 4. This
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Figure 4: McCulloch-Pitts model of a neuron.

mathematical neuron computes a weighted sum of its n input signals, z;, 7 = 1,2,.--,n,
and generates an output of “1” if this sum is above a certain threshold y, and an output of

“0” otherwise. Mathematically,

y="0 (Zwa‘l’j—ﬂ) ;
7=1

where 6(-) is a unit step function, and w; is the synapse weight associated with the 7** input.

For simplicity in notation, we often consider the threshold x as another weight wy = —p

14



which is attached to the neuron with a constant input, zg = 1. Positive weights correspond
to ezcitatory synapses, while negative weights model inhibitory synapses. McCulloch and
Pitts proved that with suitably chosen weights a synchronous arrangement of such neurons
is, in principle, capable of universal computation. There is a crude analogy (Table 2) to a
biological neuron: wires and interconnections model axons and dendrites, connection weights
represent synapses, and the threshold function approximates the activity in soma. The model
of McCulloch and Pitts contains a number of simplifying assumptions, which do not reflect

the true behavior of biological neurons. Some of these differences are:

e Biological neurons are not threshold devices, but have graded response (essentially a

nonlinear function of the inputs);

e Biological neurons perform a nonlinear summation of inputs and can even perform

logical processing;
e Biological neurons produce a sequence of pulses, not a simple output value;
e Biological neurons are updated asynchronously.

Nevertheless, the McCulloch-Pitts neuron model started a new era for computational neural

modeling.

Biological neurons | Artificial neurons
Synapses Connection weights
Axons Output wires
Dendrites Input wires
Soma Activation function

Table 2: An analogy between biological neurons and artificial neurons.

The McCulloch-Pitts neuron has been generalized in many ways. An obvious generaliza-
tion is to use activation functions other than the threshold function, e.g., a piecewise linear,

stgmotd, or Gaussian, shown in Figure 5. The sigmoid function is by far the most frequently
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used function in ANNs. It is a strictly increasing function that exhibits smoothness and

asymptotic properties. The standard sigmoid function is the logistic function, defined by
g9(z) = 1/(1 + exp (—fz)),

where (3 is the slope parameter.

B | .

Threshold Piecewise linear Sigmoid Gaussian

Figure 5: Different types of activation functions.

3.2 Network Architecture/Topology

An assembly of artificial neurons is called an artificial neural network. ANNs can be viewed
as weighted directed graphs in which nodes are artificial neurons and directed edges (with

weights) are connections from the outputs of neurons to the inputs of neurons. Based
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Figure 6: A taxonomy of network architectures.

on the connection pattern (architecture), various ANNs can be grouped into two major

16



categories as shown in Figure 6: (i) feedforward networks in which no loop exists in the
graph, and (ii) feedback (or recurrent) networks in which loops exist because of feedback
connections. The most common family of feedforward networks is a layered network in
which neurons are organized into layers with connections strictly in one direction from one
layer to another. In fact, all the networks with no loops can be rearranged in the form
of layered feedforward networks with possible skip-layer connections. Figure 6 also shows
typical networks of each category. We will discuss in this article all these networks except the
Radial Basis Function (RBF) networks (see [7]) which employ the same network architecture
as multilayer perceptrons, but different activation functions.

Different connectivities exhibit different network behaviors. Generally speaking, feedfor-
ward networks are static networks, i.e., given an input, they produce only one set of output
values, not a sequence of values. Feedforward networks are memoryless in the sense that
the response of a feedforward network to an input is independent of the previous state of
the network. An exception is the time delay feedforward network in which dynamics occurs
because of different delay factors of the neurons in the network.

Recurrent networks are dynamic systems. Upon presenting a new input pattern, the
outputs of the neurons are computed. Because of the feedback paths, the inputs to each
neuron are then modified, which leads the network to enter a new state. This process
is repeated until convergence. Obviously, different mathematical tools must be employed
to treat these two different types of networks. Dynamic systems are often described by
differential equations.

These network architectures can be either simulated in software or implemented in hard-
ware (VLSI and optical). Software simulation of a network is always necessary before im-
plementing it in hardware. A number of public and commercial software ANN simulators
are available. More and more researchers have recognized the importance of hardware im-
plementation, which is probably the only way to take the full advantage of the capacities
of ANNs. A difficulty in the VLSI implementation of ANNs is the massive connections. A
fully connected network with N neurons requires N? connections! This factor limits the
number of neurons (typically a few hundred) that we can build on a single chip using the

state-of-the-art VLSI technology. An alternative is the optical implementation of ANNs.
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But, it is still in the early stages.
Different network architectures require different learning algorithms. The next section

will provide a general overview of the learning processes.

3.3 Learning

Ability to learn is a fundamental trait of intelligence. Although what is meant by learning is
often difficult to describe, a learning process, in the context of artificial neural networks can
be viewed as the problem of updating network architecture and connection weights so that
a network can efliciently perform a specific task. Typically, learning in ANNs is performed
in two ways. Sometimes, weights can be set a prior: by the network designer through a
proper formulation of the problem. However, most of the time, the network must learn
the connection weights from the given training patterns. Improvement in performance is
achieved over time through iteratively updating the weights in the network. The ability of
neural networks to automatically learn from ezamples makes artificial neural networks very
attractive and exciting. Instead of having to specify a set of rules, ANNs appear to learn
from the given collection of representative examples. This is one of the major advantages of
neural networks over traditional expert systems.

In order to understand or design a learning process, one must first have a model of
the environment in which a neural network operates, i.e., what information is available to
the neural network. We refer to this model as a learning paradigm [7]. Second, one must
understand how weights in the network are updated, i.e., what are the learning rules which
govern the updating process. A learning algorithm refers to a procedure in which learning
rules are used for adjusting weights in the network. Finally, it is important to investigate
how much the network can learn from examples (capacity), how many training samples are
required (sample complexity), and how fast the system can learn (time complexity). The
study of capacity, sample complexity, and time complexity is what a learning theory must
deal with. Figure 7 illustrates these three aspects of a learning process.

There are three main learning paradigms, namely, (i) supervised, (ii) unsupervised, and
(iii) hybrid learning. In supervised learning, the network is provided with a correct answer

to every input pattern. Weights are determined so that the network can produce answers as
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Figure 7: Learning issues.

close as possible to the known correct answers. This is sometimes referred to as learning with
a teacher. Reinforcement learning is a special case of supervised learning where the network
is provided with only critiques on the correctness of network outputs, not the correct answers
(outputs) themselves. In contrast, unsupervised learning does not require any correct answer
associated with each input pattern in the training data set. It explores the underlying
structure in the data, or correlations between patterns in the data, and organizes patterns
into categories from these correlations. Hybrid learning combines supervised learning and
unsupervised learning. Typically, a portion of weights in the network are determined using
supervised learning, while the others are obtained from unsupervised learning.

Learning theory must address three fundamental and practical issues associated with
learning from samples: (i) capacity, (ii) sample complexity, and (iii) time complexity. The
first issue concerns whether the true solution is contained in the set of solutions that a

network can deliver. If not, we can never hope to obtain the optimal solution. This remains
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a difficult and open problem. The approximation capabilities of feedforward neural networks
have recently been investigated by many researchers (see, [9]). A fundamental result of these
studies is that 3-layer, or even 2-layer, feedforward networks with an arbitrarily large number
of nonlinear hidden units are capable of implementing any continuous mapping with a pre-
specified accuracy under certain mild conditions. Unfortunately, most of these theoretical
studies ignore the learnability problem that is concerned with whether there exist methods
to learn the network weights from empirical observations of the mappings. Furthermore,
these theoretical analyses have not introduced any new practical learning methods.

The second issue, sample complexity, determines the number of training patterns needed
to train the network in order to guarantee a valid generalization. Too few patterns may
cause the “over-fitting” problem where the network performs well on the training data set,
but poorly on independent test patterns drawn from the same distribution as the training
patterns.

The third issue is the computational complexity of the learning algorithm used to esti-
mate a solution from the training patterns. Many existing learning algorithms have high
computational complexity. For example, the popular backpropagation learning algorithm
for feedforward networks is computationally demanding because of its slow convergence.
Designing eflicient algorithms for neural network learning is a very active research topic.

There are four basic types of learning rules as shown in Figure 7: (i) error-correction,
(ii) Boltzmann, (iii) Hebbian, and (iv) competitive learning. They will be described in the

following four subsections.

3.3.1 Error-correction rules

In the supervised learning paradigm, the network is given a desired output for each input
pattern. During the learning process, the actual output, y, generated by the network may
not equal the desired output, d. The basic principle of error-correction learning rules is to
use the error signal (d — y) to modify the connection weights such that this error will be
gradually reduced.

The well-known perceptron learning rule is based on the error-correction principle. A

perceptron consists of a single neuron with adjustable weights, w;, 7 = 1,2,---,n, and
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threshold y, as shown in Figure 4. Given an input vector x = (z1,z3, -+, )%, the net input

to the neuron (before applying the threshold function) is

n
v=D wiz; — p
=1

The output y of the perceptron is +1 if v > 0, and 0 otherwise. In a two-class classification
problem, the perceptron assigns an input pattern to one class if y = 1, and to the other class

if y = 0. The linear equation
> wizj —p =0,
7=1

defines the decision boundary (a hyperplane in the n-dimensional input space) which divides
the space into two halves.

Rosenblatt [20] developed a learning procedure to determine the weights and threshold
in a perceptron, given a set of training patterns. The perceptron learning procedure can be

described as follows.

1. Initialize the weights and threshold to small random numbers.
2. Present a pattern vector (z1, 22, -+, @,), and evaluate the output of the neuron.
3. Update the weights according to
w;(t +1) = w;(t) + n(d — y)z;,
where d is the desired output, ¢ is iteration number, and n (0.0 < n < 1.0) is

the gain (step size).

Note that learning occurs only when an error is made by the perceptron. Rosenblatt
proved that if the training patterns are drawn from two linearly-separable classes, then the
perceptron learning procedure will converge after a finite number of iterations. This is the
well known perceptron convergence theorem. However, in practice, one does not know whether
the patterns are linearly separable or not. Many variations of this learning algorithm have
been proposed in the literature [9]. Other activation functions can also be used, which lead
to different learning characteristics. However, a single layer perceptron can only separate
linearly separable patterns, as long as a monotonous activation function is used. Note that
non-monotonous activation functions, such as a Gaussian function, could form non-linear

decision boundaries.
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Figure 8 shows the trajectory of the decision boundary learned using a modified percep-

tron learning algorithm for classifying the logical “AND” problem which is linearly-separable.

Figure 8: Convergence of a modified perceptron learning algorithm for the logical

“AND” problem.

The well-known backpropagation learning algorithm (Section 4) is also based on the

error-correction principle.

3.3.2 Boltzmann Learning

Boltzmann machines are symmetric recurrent networks consisting of binary units (41 for
“on” and -1 for “off”). By symmetric, we mean that the weight on the connection from unit
7 to unit 7 is equal to the weight on the connection from unit j to unit ¢ (w;; = wj;). Only a
portion of neurons, visible neurons, interact with the environment, the rest (hidden neurons)
are invisible. Each neuron is a stochastic unit which generates output (or state) according
to the Boltzmann distribution of statistical mechanics. Boltzmann machines operate in
two modes: (i) Clamped mode in which visible neurons are clamped onto specific states
determined by the environment; and (ii) Free-running mode in which both the visible and
hidden neurons are allowed to operate freely.

Boltzmann learning is a stochastic learning rule derived from information-theoretic and

thermodynamic principles (see [2]). The objective of Boltzmann learning is to adjust the
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connection weights such that the states of visible units satisfy a particular desired probability
distribution. According to the Boltzmann learning rule, the change of connection weight w;;
is given by
Awi; = n(pi; — pij),

where p,; and p;; are the correlations between the states of unit ¢ and unit j when the
network operates in the clamped mode and free-running mode, respectively. The values of
p;; and p;; are usually estimated from Monte Carlo experiments which are extremely slow.

Boltzmann learning can be viewed as a special case of error-correction rule in which error
is measured not as the direct difference between the desired output and actual output, but
as the difference between the correlations between the outputs of two neurons under two

operating conditions (clamped and free-running).

3.3.3 Hebbian rule

The oldest, yet still used, learning rule is Hebb’s postulate of learning [8]. It was proposed
by Hebb based on the following observation from neurobiological experiments: When an
azon of a cell A is near enough to excite a cell B and repeatedly or persistently takes part
in firing it, some growth process or metabolic changes take place in one or both cells such
that A’s efficiency as one of the cells firing B is increased. In other words, if two neurons on
the either side of a synapse are activated synchronously and repeatedly, then the strength
of that synapse is selectively increased [7]. Such a synapse is often referred to as Hebb’s
synapse, or correlational synapse because the change of the synapse’s strength depends on
the correlation between the presynaptic and postsynaptic activities.

Mathematically, the update of Hebb’s synapse can be described as
wis(t + 1) = wi;(t) + ny;(t)zi(t),

where z; and y; are the output values of neurons ¢ and 7, respectively, which are connected
by the synapse w;;, and 7 is the learning rate. Note that z; is the input to the synapse.

An important property of this rule is that learning is done locally, i.e., the change of
the synapse weight depends only on the activities of the two neurons connected by it. This

significantly simplifies the complexity of the learning circuit in a VLSI implementation.

23



One problem with this learning rule is that the connection weights will grow unboundedly
as learning proceeds. To deal with this problem, many modifications to the basic Hebbian
rule have been proposed [7, 9]. For example, Oja’s rule adds a weight decay proportional to

yjz to the basic Hebbian rule:

wi(t+ 1) = wi;(t) + ny;(¢) (z:(t) — y;(t)wi;).

It is interesting to note that this rule is similar to the reverse error-correction rule; Aw;;
depends on the difference between the actual input and the back-propagated output.

A single neuron trained using the Hebbian rule exhibits an orientation selectivity. Figure
9 demonstrates this property. The points depicted in Figure 9 are drawn from a 2-dimensional
Gaussian distribution and used for training a neuron. The weight vector of the neuron is
initialized to wy as shown in the figure. As the learning proceeds, the weight vector moves
closer and closer to the direction w of maximal variance in the data. In fact, w is the

eigenvector of the covariance matrix of the data corresponding to the largest eigenvalue.

X2

X1

Figure 9: Orientation selectivity of a single neuron.

It is straightforward to generalize the above behavior of a single unit and conclude that
a one-layer feedforward network with m output units can extract first m principal compo-
nents of n-dimensional data, m < n. Due to the orthogonality of the eigenvectors, the other
(m — 1) principal components lie in the subspace which is perpendicular to the first prin-
cipal component corresponding to the largest eigenvalue. Therefore, the (m — 1) principal
components can be determined recursively in subspaces in a way similar to computing the

first component. Several more elegant methods have been proposed for computing all the
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principal components simultaneously by imposing some constraints on the activities of the

output units [7].

3.3.4 Competitive Learning Rules

Unlike the Hebbian learning where multiple output units can be fired simultaneously, in
competitive learning all the output units compete among themselves for being activated. As
a result of such competition, only one output unit, or only one per group, is active at any
given time. This phenomenon is often known as winner-take-all. Competitive learning has
been found to exist in biological neural networks. Neurobiological experiments have shown
that competitive learning plays an important role in the formation of topographic maps in
the brain, and the self-organization of orientation sensitive nerve cells in the striate cortex.

The outcome of competitive learning is often a clustering or categorization of the input
data. Similar patterns are grouped by the network and represented by a single unit. This
grouping process is done by the network automatically based on the correlations in the data.

The simplest competitive learning network consists of a single layer of output units as

shown in Figure 10. Each output unit ¢ in the network connects to all the input units
X2 @— /‘2> Y
X3 .‘ U Y3

Figure 10: A simple competitive learning architecture.

via weights, w;;, 7 = 1,2,---,d. Each output unit also connects to all the other output
units via inhibitory weights, but has self-feedback with an excitatory weight. As a result of
competition, only the unit with the largest (or the smallest) net input becomes the winner,
le.,

Wi X > W; - X Vo,
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or

Iwie = xI| < Jw; = x|| V.

When all the weight vectors are normalized, these two inequalities are equivalent.

A simple competitive learning rule can be stated as follows.

n(:cé‘ — wixj), =15,

0, i A i,

Aw;; = (1)
Note that only the weights of the winner unit get updated. The effect of this learning rule
is to move the stored pattern in the winner unit (weights) a little bit closer to the input
pattern. A geometric interpretation of competitive learning is demonstrated in Figure 11.
In this example, we assume that all the input vectors have been normalized to have unit
length. They are depicted as black dots in Figure 11(a). The weight vectors of the three
units are randomly initialized. Their initial positions and final positions on the sphere after
competitive learning are shown as crosses in Figures 11(a) and 11(b), respectively. As we
can see from Figure 11, each of the three natural groups of patterns has been discovered by

an output unit whose weight vector points to the center of gravity of the discovered group.

Figure 11: An example of competitive learning: (a) before learning; (b) after learning.

One can see from the competitive learning rule that the network will never stop learning
(updating weights) unless the learning rate 7 is zero. It is possible that a particular pattern
may fire different output units (change categories) forever during the learning. This brings
up the stability issue of a learning system. A learning system is said to be stable if no pattern

in the training data changes its category after a finite number of learning iterations. One
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way of achieving stability is to force the learning rate to decrease gradually as the learning
process proceeds, and so it eventually approaches zero. However, this artificial freezing of
learning causes another problem of plasticity, which is defined as the ability to adapt to new
data. This is the well-known Grossberg’s stability-plasticity dilemma in competitive learning.

Perhaps, the most well-known example of competitive learning is vector quantization for
data compression. Vector quantization has been widely used in speech and image processing
for efficient storage, transmission and modeling. The goal of vector quantization is to repre-
sent a set or distribution of input vectors by a relatively small number of prototype vectors
(weight vectors), or a codebook. Once a codebook has been constructed and agreed upon,
we can only transmit or store the index of the corresponding prototype to the input vector.
Given an input vector, its corresponding prototype can be found through searching for the
nearest prototype in the codebook. If the Euclidean distance is used, this divides the input
space into a Voronoi tessellation. The competitive learning rule in Equation (1) can be used
for generating a codebook for a given set of input vectors.

The codebook and Voronoi tessellation generated by the unsupervised competitive learn-
ing rule may not be the best for pattern classification purposes (see Figure 12(a)). Learning
vector quantization (LVQ) [12] is a supervised competitive learning technique which uses pat-
tern class information to adjust the Voronoi vectors slightly, so as to improve classification

accuracy. In LVQ, the weight updating rule is replaced by

we(t) + n(t)[z(t) — w(t)], If pattern z(t) is correctly classified
w(t+1)= by the winning unit c,
we(t) — n(t)[z(t) — w(t)], otherwise.

Figure 12(b) demonstrates the effect of LVQ. It moves the prototypes learned using the
VQ algorithm slightly to the left in order to classify all the patterns correctly.
3.3.5 Summary of Learning Algorithms

Various learning algorithms and their associated network architectures are summarized in
Table 3. However, this is by no means an exhaustive list of the learning algorithms available

in the literature. We notice that both the supervised and unsupervised learning paradigms
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Figure 12: Vector quantization (a) versus learning vector quantization (b). Patterns
from two classes are labeled by triangles and circles, respectively. Solid patterns are

learned prototypes.

employ learning rules based on error-correction, Hebbian, and competitive learning. Learning
rules based on error-correction can be used for training feedforward networks, while Hebbian
learning rules have been used for all types of network architectures. However, each learning
algorithm is designed for training a specific network architecture. Therefore, when we talk
about a learning algorithm, it is implied that there is a particular network architecture asso-
ciated with it. Each learning algorithm is also designed for performing one or a few specific
tasks. The last column of table 3 lists a number of tasks that each learning algorithm can
perform. Due to space limitation, we will not discuss some of the other algorithms, including
ADALINE, MADALINE [22], linear discriminant analysis (see [11]), ART2, ARTMAP [4],
Sammon’s projection (see [11]), principal component analysis (see [9]), and RBF learning
algorithm (see [7]). Interested readers can further read the corresponding references. Note
that in order to reduce the size of the bibliography, this article does not always cite the first
paper that proposed a particular algorithm.
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Learning Paradigm

Learning Rule

Architecture

Learning Algorithm

Task

Error-correction

Single- or

Multi-layer

Perceptron learning algorithms

Backpropagation

pattern classification

function approximation

Perceptron ADALINE & MADALINE control
Supervised Boltzmann Recurrent Boltzmann Learning algorithm pattern classification
Hebbian Multi-layer Linear Discriminant Analysis data analysis
Feedforward pattern classification
Competitive Learning Vector Quantization within-class categorization
Competitive data compression
ART network ARTMAP pattern classification
within-class categorization
Error-correction Multi-layer Sammon’'s projection data analysis
Feedforward
Feedforward Principal Component Analysis data analysis
Unsupervised Hebbian or Competitive data compression
Hopfield Net Associative memory learning associative memory
Competitive Vector Quantization categorization
data compression
Competitive Kohonen SOM Kohonen's SOM categorization
data analysis
ART networks ART1, ART2 categorization
Hybrid Error-correction RBF network RBF Learning algorithm pattern classification

and Competitive

function approximation

control

Table 3: Well-known learning algorithms.
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4 Multilayer Perceptron

It has been recognized that multilayer feedforward networks are capable of forming arbitrarily
complex decision boundaries and can represent any Boolean function [17]. The development
of the back-propagation learning algorithm for determining weights in a multi-layer feedfor-

ward network has made these networks the most popular of all the networks.

(1) (2) (L) (L)

e O 00"
S STHASTHA
° O O O—

input layer hidden layers output layer

Figure 13: A typical 3-layer feedforward network architecture.

Figure 13 shows a typical 3-layer perceptron. In general, a standard L-layer feedforward
network! consists of one input stage, L —1 hidden layers, and one output layer of units which
are successively connected (fully or locally) in a feedforward fashion with no connections
between units in the same layer and no feedback connections between layers. We denote
w;;(!) as the weight on connection between the it* unit in layer (I — 1) to j** unit in layer [.

Recall that the task of a learning algorithm is to automatically determine the weights in
the network such that a certain cost function is minimized.

Let {(x®),d®)), (x® d®), ... (xP) d®)} be a set of p training patterns (input-output
pairs), where x() € R™ is the input vector in the n-dimensional pattern space, and d® ¢
[0,1]™ is the desired output vector in the m-dimensional hyper-cube. For classification
purposes, m is set to the number of classes. The squared-error cost function, which is most

frequently used in the ANN literature, can be defined as

1 2 2
B= 13 Iy0 a0 2)
=1

In this paper, we adopt the convention that the input nodes are not counted as a layer.
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The back-propagation algorithm is a gradient-descent method to minimize the above

squared-error cost function in Equation (2). It can be described as follows [21].

1. Initialize the weights to small random values;

2. Randomly choose an input pattern x();

3. Propagate the signal forward through the network;
4. Compute 67 in the output layer (o; = yF)

§F = g'(RE)[d — 7],

where h! represents the net input to the :** unit in the I** layer.
5. Compute the deltas for the preceding layers by propagating the errors back-

wards;

5= /(1) Yo wl ot
3
forl=(L—-1),---,1.
6. Update weights using
Awy; = néiy;!

7. Go to step 2 and repeat for the next pattern until the error in the output layer is

below a pre-specified threshold or the maximum number of iterations is reached.

A geometric interpretation (adopted and modified from [14]) shown in Figure 14 can help
us understand the role of hidden units (with the threshold activation function). Each unit in
the first hidden layer forms a hyper-plane in the pattern space; boundaries between pattern
classes can be approximated by hyper-planes. A unit in the second hidden layer forms
a hyper-region from the outputs of the first-layer units; a decision region is obtained by
performing an “AND” operation on hyperplanes. Arrange the output-layer units to perform
an “OR” operation on all the second-layer units. Remember that this scenario is depicted
only to help us understand the role of hidden units. Their actual behavior, after we train
the network, could be different from this. Moreover, multilayer feedforward networks with
sigmoid activation functions can form smooth decision boundaries rather than piece-wise
linear boundaries.

There are many issues in designing feedforward networks. These issues include: (i) how
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Figure 14: A geometric interpretation of the role of hidden units.
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many layers are needed for a given task?; (ii) how many units per layer?; (iii) what can
we expect a network to generalize on data not included in the training set?; and (iv) how
large should the training set be for “good” generalization? Although multilayer feedforward
networks with backpropagation algorithm has been widely used for classification and function
approximation (see [9]), many design parameters still have to be determined by the trial-
and-error method. Existing theoretical results only provide very loose guidelines for selecting

these parameters in practice.

5 Kohonen’s Self-Organizing Maps

Kohonen’s Self-Organizing Map (SOM) [12] has the desirable property of topology preserving
which captures an important aspect of the feature maps in the cortex of the more developed
animal brains. By topology preserving mapping, we mean that nearby input patterns should
activate nearby output units on the map. The basic network architecture of Kohonen’s SOM
is shown in Figure 15. It basically consists of a two-dimensional array of units, each of which
is connected to all the d input nodes. Let w,; denote the d-dimensional vector associated with

the unit at location (7, 7) of the 2-D array. Each neuron computes the Euclidean distance
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Figure 15: Kohonen’s Self-Organizing Map.

between the input vector x and the stored weight vector w;;.

Yi; = ||x — wyl].

Kohonen’s SOM is a special type of competitive learning network which defines a spatial
neighborhood for each output unit. The shape of the local neighborhood can be either
square, rectangle, or circle. Initial neighborhood size is often set to 1/2 to 2/3 of the network
size. Neighborhood shrinks with time according to some schedule such as an exponentially
decreasing function. During the competitive learning, all the weight vectors associated with
the winner and its neighboring units are updated.

Kohonen’s SOM learning algorithm can be described as follows.
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1. Initialize weights to small random numbers; set initial learning rate and neigh-
borhood,;
2. Present a pattern x, and evaluate the network outputs;
3. Select the unit (¢;, ¢j) with the minimum output:
1% = We.e, || = min [Jx — w]|
4. Update all the weights according to the following learning rule;
wis(t) + a(t)[x(t) = wi;(8)], if (1,7) € Nee, (1),

w;(t), otherwise,

Wij(t + 1) =

where N, (t) is the neighborhood of unit (¢;,¢;) at time ¢, and «a(t) is the
learning rate.

5. Decrease the value of a(t) and shrink the neighborhood N, (t);

6. Repeat steps 2 — 5 until the change in weight values is less than a pre-specified

threshold, or the maximum number of iterations is reached.

Kohonen’s SOM can be used for projection of multivariate data, density approximation,
and clustering. Some successful applications of Kohonen’s SOM can be found in the areas of
speech recognition, image processing, robotics, and process control [9]. The design param-
eters include the dimensionality of the neuron array, number of neurons in each dimension,

shape of neighborhood, shrinking schedule of the neighborhood, and learning rate.

6 Adaptive Resonance Theory Models

Recall that an important issue in competitive learning is the stability-plasticity dilemma.
How can our brain learn new things (plasticity) yet retain the stability that ensures the
existing knowledge not being erased or corrupted? Carpenter and Grossberg’s Adaptive
Resonance Theory models (ART1, ART2, and ARTMAP) were developed in an attempt to
overcome this dilemma [4]. The basic idea of these models is as follows. The network has
a sufficient supply of output units, but they are not used until deemed necessary. A unit is
said to be committed (uncommitted) if it is (not) being used. The learning algorithm updates

the stored prototypes of a category only if the input vector is sufficiently similar to them.
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Input and a stored prototype are said to resonate when they are sufficiently similar. The
sufficient extent of similarity is controlled by a vigilance parameter, p, with 0 < p < 1, which
also determines the number of categories. When the input vector is not sufficiently similar
to any existing prototype in the network, a new category is created and an uncommitted
unit is assigned to this new category with the input vector as the initial prototype. If no
such uncommitted unit exists, then a novel input generates no response.

ART1 takes only binary (0/1) input, while ART2 was designed for continuous-valued
input. The newer version ARTMAP makes use of pattern label information. Here, we

present only ART1 to illustrate the model.

Competitive (output) Layer

I T

Comparison (input) Layer

Figure 16: ART1 network.

Figure 16 shows a simplified diagram of the ART1 architecture (see [9]). It consists of
two layers of units, which are fully connected. Top-down weight vector w; is associated with
unit 7 in the input layer, and bottom-up weight vector W; is associated with output unit ¢;
W, 1s the normalized version of w;.

Ww;
= ?
e+ Zj W s

W,

(3)

where ¢ is a small number which is used for breaking the ties in selecting the winner. Given

an N-bit input vector x, the output of the auxiliary unit A is given by

A= Sgnop(d_z;— N> O;—0.5),
5 :
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and the outputs of input units is given by

V, = Sgnoj(z; + Y w;0; + A— 1.5)

z;, if no output O, is “on”,

z; N>, w;0;, otherwise.

A reset signal R is generated only when the similarity is less than the vigilance level.

The ART1 learning algorithm is described below.

1.
2.

Initialize w;; = 1, for all ¢, 7. Enable all the output units.
Present a new pattern x.

Find the winner unit ¢* among all the enabled output units

Wi - X > W, - X, Vi

. Vigilance test W - X

r= :
2%

If » > p (resonance), goto Step 5. Otherwise, disable unit ¢* and goto Step 3

(until all the output units are disabled).

Update the winning weight vector w;s, enable all the output units and goto

Step 2

If all the output units are disabled, select one of the uncommitted output units
and set its weight vector to z. If there is no uncommitted output unit (capacity

is reached), the network rejects the input pattern.

The ART1 model runs entirely autonomously. It is able to create new categories and

to reject an input pattern when the network reaches its capacity. However, the number of

categories in the input data discovered by ART1 is sensitive to the vigilance parameter.

7 Hopfield network

The Hopfield network is a special type of recurrent network which uses the network energy

function as a tool for designing recurrent networks and for understanding its dynamic behav-

ior [10]. It is Hopfield’s formulation that made explicit the principle of storing information as

36




dynamically stable attractors, and popularized the use of recurrent networks for associative
memory and for solving combinatorial optimization problems.

A Hopfield network with N units has two versions: binary and continuous valued net-
works. Let v; be the state or output of the ¢** unit. For binary networks, v; is either +1
or -1, but for continuous networks, v; can be any value between 0 and 1. Let w,;; be the
synapse weight on the connection from unit ¢ to unit j. In Hopfield network, w;; = wj;, V1,7
(symmetric network), and w;; = 0, Vi (no self-feedback connections). The network dynamics

for the binary Hopfield network is
v, = Sgn(z WqiV5 — ‘91), (4)
3

where Sgn(z) is the signum function which produces +1 if z > 0 and —1, otherwise. The
network dynamics for the continuous Hopfield network is

dui

T = U + Zwijg(uj) — R0, (5)
J

where u; is the net input (potential) to the ¢** unit, g is the sigmoid function, v; = g(u;),

and R; and 7; are constants. At an equilibrium point,
vi = g(D_ wiv; — i) (6)
J

The dynamic update of network states in Equation (4) can be carried out in at least
two ways: synchronously versus asynchronously. In a synchronous updating scheme, all the
units are updated simultaneously at each time step. A central clock is therefore required
to synchronize the process. On the other hand, an asynchronous updating scheme selects
one unit at a time, and updates its state. The unit for updating can be chosen randomly.
The asynchronous updating scheme is more natural for biological networks. For the contin-
uous Hopfield network, in addition to the synchronous and asynchronous updating schemes,
Equation (5) provides a continuous updating scheme which is particularly desirable for circuit
implementation.

The energy function of the binary Hopfield network in a state v = (v1,vq, -, vn)T is

given by

1
E = —§ZZwijvivj. (7)
7
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The network energy of the continuous Hopfield network is defined as
1 1 o
=33 N+ X g [0 w)de + 3 b (8
i g i AU i

The central property of these energy functions is that as the state of network evolves ac-
cording to the network dynamics (Egs. (4) and (5)), the network energy always decreases,
and eventually reaches a local minimum point where the network stays with a constant en-
ergy. Such local minimum points in the state space are often referred to as attractors, due
to the fact that starting with any point (or state) in the neighborhood of an attractor, the
network will evolve into this attractor. Such a neighborhood is called the basin of attraction
of an attractor. A sequence of state changes is named a trajectory. Figure 17 schematically

explains these terminologies.

____________________________________ / S‘§~ Attractors

State Space

Figure 17: A schematic plot of attractors, trajectories, and basin of attraction.

Suppose a set of patterns are stored in these attractors of a network. Then this network
can be used as an associative memory. A stored pattern can be retrieved by any pattern
(represented by a network state) in the basin of attraction of the attractor corresponding to
the stored pattern. This is the principle of using Hopfield network as an associative memory.

The attractors of a network can also encode the solutions of a combinatorial optimization
problem if its cost (or objective) function can be formulated as the network energy. An
optimal or sub-optimal solution is obtained as the network evolves into a local minimum
point. This is the basic idea behind the use of Hopfield network for solving combinatorial
optimization problems.

The next two subsections will discuss these two applications of Hopfield network.
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7.1 Associative Memory

A fundamental property of associative or content-addressable memory is its ability to store
a set of patterns in such a way that when presented with a new pattern which could be an
incomplete or noisy version of a stored pattern, the network can retrieve one of the stored
patterns which most closely resembles the input pattern. This property has a two-fold
meaning. First, the memory must be accessed by content. Second, the memory must be
error-correcting, i.e., an item in the memory can be reliably retrieved by noisy or incomplete
information, as long as the information is sufficient.

Associative memory usually operates in two phases: storage and retrieval. In the storage
phase, the weights in the network are determined or learned in such a way that the attractors
of the network memorize a set of p N-dimensional patterns {x!,x2 --- xP} to be stored. A
generalization of Hebbian learning rule can be used for setting connection weights w;;. Note

that the number of units in the network equals to N.

oo | ATt 4
0 1=7.
The values of all the thresholds 8, are set to zero.

In the retrieval phase, the input pattern is used as the initial state of the network, and
the network evolves according to the network dynamics. A pattern is produced (or retrieved)
when the network reaches an equilibrium state.

How many patterns can be stored in a network with N binary units? In other words, what
is the memory capacity of a network? Note that the capacity is finite because a network with
N binary units has a maximum of 2% distinct states, and not all of the states are attractors.
Moreover, not all the attractors (stable states) can store useful patterns. There also exist
spurious attractors which store patterns different from any of the patterns in the training
set [9].

It has been shown that the maximum number of random patterns that a Hopfield network

can store 1s

Pz = 0.15N.

If the number of stored patterns p < 0.15N, then almost a perfect recall can be achieved.
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If memory patterns are orthogonal vectors instead of random patterns, then more patterns
can be stored. But, the number of spurious attractors increases as p reaches the capacity
limit. The hardware efficiency of Hopfield network is extremely low, because we require
N? connections in the network to store p N-bit patterns. Several learning rules have been

proposed for increasing the memory capacity of Hopfield networks (see [9]).

7.2 Combinatorial optimization

Hopfield networks always evolve in the direction that leads to lower network energy. This
implies that if a combinatorial optimization problem can be formulated as minimizing the
network energy, then the Hopfield network can be used to find the optimal (or suboptimal)
solution by letting the network evolve freely. In fact, any quadratic objective function can
be rewritten in the form of Hopfield network energy. We present here classical Traveling
Salesperson Problem as an example of how a network is constructed.

The units in the network are organized into a two-dimensional n X n array, where n is the
total number of cities. Let the row index of a unit represent a city, and the column index be
the index of the stop in a tour. Let the output of the unit in row X and column 2 be vx;;
vx; = 1 means the city X is visited at the s** stop. Therefore, a solution to the TSP problem
is presented in an n X n permutation matrix of vx;’s. Let dxy be the distance between city
X and city Y. Now, we can construct the cost function for the TSP problem as follows.

We want to minimize the total distance

D
E, = £} 30> dxyvx vyt + vyio)
X Y#X 3

We employ a periodic boundary condition, i.e., the (n +1)** column and the 0** column are
the same as the first column and the last column, respectively.
The problem constraints are as follows:

(i) Each city must be visited once

A
E, = 7 YD) vxvxy
X i j#i
(ii) Each stop must contain one city

B
By = 5 ZZ Z VX VY,

i X Y#X
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(iii) The matrix must contain n entries

C
E4: 5(5 E ’UX’i—n)2.
X 2

The positive constants A, B, C, and D are the parameters of the problem. The total cost
of the tour is defined as
E=FE +Ey,+ Es+ Ey. (9)

Note that Equation (9) is quadratic in network outputs. After manipulating Equation (9),
we obtain a quadratic function with three terms. The coefficients of the quadratic terms in

the cost function define the connection weights in the network

wxiy; = —Adxy(1 —8;;) — Béij(1 —éxv) — C — Ddxy (85541 + 85i-1), (10)
where
1 if =
Tolo it i

The coefficients of the linear terms specify the thresholds of the units.
‘9Xi == —nC. (11)

The constant term in the total cost does not change the solution and, therefore, it can be
ignored.

A solution to the TSP problem, given a set of cities and distances, can thus be found either
by running a physical network whose weights and thresholds are determined by Equations
(10) and (11), or by computer simulation. It has been found that the continuous network
performs better than the binary network. The latter easily gets stuck in a local minimum
with poor tour length. Simulated annealing technique can be employed to deal with this
problem, but it is very time consuming. It has also been found that the performance of the
network is crucially dependent on the choice of the parameters (A, B,C, D). Ouly a good
balance among the parameter values produces valid tours satisfying the constraints. Various

modifications to the Hopfield-Tank architecture for solving TSP have been explored (see [9]).
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8 Applications

Various ANN models and learning algorithms have been successfully applied to a large variety
of problems belonging to the seven tasks shown in Figure 1. As pointed out in Section 1,
one of the important applications of ANN is pattern classification. A pattern classification
problem of high commercial importance is Optical Character Recognition (OCR). OCR deals
with the problem of processing a scanned image of text and transcribing it into a machine
readable form (for example, ASCII). The text may be machine-printed or handwritten.
Actually, the term OCR is a misnomer as there is no “optical” processing involved in the
transcription process. OCR is important in eliminating or minimizing the human labor
involved in capturing information from paper documents. Two of the major application
areas for OCR are in forms readers and text conversion in Digital Libraries. In this section
we will outline the basic components of OCR and explain how ANNs are used for pattern
classification.

The basic processing steps in an OCR system are shown in Figure 18. A paper document
is scanned to produce a gray level or binary (black-and-white) image; a scanning resolution
of 300 pixels/inch is typically used. In the preprocessing stage, filtering is applied to remove
noise, and text areas are located and converted to binary (black/white) image using a globally
or locally adaptive method.

In the segmentation step, the text image is separated into individual character patterns.
This is a particularly difficult task for handwritten text where there is a proliferation of
touching characters. It is also difficult for machine printed text when techniques such as
“kerning” are employed. Noise could cause otherwise separated characters to be touching.
Various techniques can be used to split composite patterns [5]. One effective technique is to
break the composite pattern into smaller patterns (over-segmentation) and find the correct
character segmentation points using the output of pattern classifier.

Figure 19 shows the size-normalized character bitmaps of a sample set from the NIST
character database [23]. We can see substantial intra-class variations. The goal of feature ex-
traction is to extract the most relevant measurements from the sensed data, so as to minimize

the within-class variability while increasing the between-class variability. Various feature
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Figure 18: Diagram of a typical OCR system.

extraction methods have been employed for character recognition, including projection his-
tograms, contour profiles, zoning, geometric moment invariants, spline curve approximation,
and Fourier descriptors. There is no clear evidence as to which feature set is best for a given
application. Figure 20 shows a typical scheme for extracting zone features [18]: contour di-
rection and bending points. Contour direction features are generated by dividing the binary
image array into rectangular and diagonal zones and computing histograms of chain codes
in these zones, which results in 88 features (Figure 20(a)). Bending point features represent
high curvature points, terminal points and fork points. A special geometrical mapping from
bending points and their attributes to a fixed-length (96) feature vector has been designed
(Figure 20(b)). The bending points in a normalized image are coded by positions which are
quantized into 12 (4 x 3) regions, and by their curvature orientations which are quantized
to eight (4 directions and convex or concave). The value of acuteness of a bending point is
used as the magnitude for the corresponding component in the feature vector.

In the pattern classification stage, the extracted features are passed to the input stage
of an ANN. The number of input units is equal to the dimensionality of the feature vector.

The number of output units is equal to the number of character categories; for example,
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Figure 19: A sample set of characters in the NIST data.

in the classification of numeral digits, 10 output units are required, where as for a mixed-
case alphanumeric classifier as many as 80 units may be necessary (10 for digits, 26 for
upper case, 26 for lower case, and about 18 for special symbols and punctuation marks).
The number of units in the intermediate layer is usually determined experimentally so as
to get the maximum recognition accuracy on an independent test set. In the OCR system
described in [18], a two-layer feedforward network with 50 hidden units is found to produce
good generalization ability.

Not all OCR systems explicity extract features from the raw data. A typical example
is the network developed by Le Cun et al. [13] for zip-code recognition. The network ar-
chitecture is shown in Figure 21. A 16 x 16 normalized gray level image is presented to a
feedforward network with three hidden layers. The feature extraction implicitly takes place
within the intermediate stages of the ANN. The 768 units in the first hidden layer form 12
8 x 8 feature maps. Each unit in a feature map is locally connected to a 5 x 5 neighborhood in
the input image. All the units in a feature map share the same weight vector. Constructed in
a similar way as the first hidden layer, the second hidden layer forms 12 4 x 4 feature maps.
Each unit in the second hidden layer also combines local information coming from eight out
of 12 feature maps in the first hidden layer. The third hidden layer consists of 30 hidden

units. The 10 output units correspond to the 10 classes (digits ‘0’ to ‘9’). The sub-network
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Figure 20: Zone features: (a) contour direction, (b) bending points.

from the second layer to the output layer is a standard fully-connected feedforward network.

The activation level of an output unit can be interpreted as an approximation of the a
posteriors probability of belonging to a particular class given the input pattern. The output
categories are ordered according to activation levels and passed to the post-processing stage.
In the post-processing stage, contextual information is exploited to update the output of the
classifier. Examples are looking up in a dictionary of admissible words, or applying syntactic
constraints such as for phone numbers or social security numbers.

How good are ANNs for OCR? ANNs are found to work very well in practice. However,
there is no conclusive evidence about ANN’s superiority over conventional statistical pattern
classifiers. At the First Census Optical Character Recognition System Conference in 1992
[23], more than 40 different handwritten character recognition systems were tested on the
same database. The top ten performers among them used either some type of multilayer
feedforward network or a nearest neighbor-based classifier. ANNs tend to be superior in
speed and in smaller memory requirements compared to nearest neighbor methods. Unlike
the nearest neighbor methods, classification speed using ANN is also independent of the size
of the training set. The recognition accuracies of the top OCR systems on the NIST isolated
(pre-segmented) character data were above 98% for digits, 96% for upper-case characters,
and 87% for lower-case characters. One conclusion drawn from the test is that the recognition

performance of OCR systems is comparable to the human performance on isolated characters.
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Figure 21: A network for recognizing numeric digits.

However, humans still outperform OCR systems on unconstrained and cursive handwritten

documents.

9 Concluding Remarks

Developments in ANNs have experienced a lot of enthusiasm and criticism as well. Many
comparative studies provide an optimistic outlook for ANNs, while others offer a pessimistic
view. For many tasks, such as pattern recognition, no single approach dominates the other.
The choice of the best technique should be driven by the nature of the given application. We
should try to understand the capacities, assumptions, and applicability of various approaches
developed in various disciplines, and maximally exploit the complementary advantages of
these approaches in order to develop better intelligent systems. Such an effort may lead
to a synergistic approach which combines the strengths of ANNs and other disciplines in

order to achieve a significantly better performance for challenging problems. Minsky [16]
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has recognized that the time has come to build systems out of diverse components. In such

a synergistic approach, not only are individual modules important, but also a good method-

ology for integrating various modules is the key to success. It is clear that communication

and cooperative work between ANNs and other disciplines will not only avoid repetitious

work but, more importantly, will stimulate and motivate individual disciplines.
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