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1 Introduction

The foundations of Support Vector Machin&/1) have been developed by Vapnik
[19] and are gaining popularity due to many attractive features, amwmhiging
empirical performance. The formulation embodies the Structural Risknisation

(SRM) principle, which in our work [8] has been shown to be superior to traditiona
Empirical Risk Minimisation ERM) principle employed by conventional neural
networks.SRM minimises an upper bound on the generalisation error, as opposed to
ERM which minimises the error on the training data. It is this difiee which equips
SVMs with a greater ability to generalise, which is our goaltatistical learning.
SVMs were developed to solve the classification problem, but recenyihive been
extended to the domain of regression problems [18].

In the literature the terminology fd8VMs is slightly confusing. The terrf8/M is
typically used to describe classification with support vector mettaods support
vector regression is used describe regression with support vectbodse In this
report the ternBYM will refer to both classification and regression methods, and the
terms Support Vector ClassificatioBMC) and Support Vector Regressid®vR) will

be used for specification.

The report starts with an introduction to the structural risk minimisation prindipke
SVM is introduced in the setting of classification, being both histoacal more
accessible. This leads onto mapping the input into a higher dimensahalef space
by a suitable choice of kernel function. The report then considers thesipraifi
regression. To illustrate the properties of the techniques two examples are given.

The VC dimension is a scalar value that measures the capacity of a set of functions.
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The set of linear indicator functions has a VC dimension equal to Ml figure
illustrates how three points in the plane can be shattered byttbélsear indicator
functions whereas four points cannot. In this case the VC dimensiquas ® the
number of free parameters, but in general that is not the casethe.dunction
Asin(bx) has an infinite VC dimension.
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SRM principle creates a structure
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2 Support Vector Classification

The classification problem can be restricted to consideration divihelass problem
without loss of generality. In this problem the goal is to sepdnatéwo classes by a
function which is induced from available examples. The goal is to pradualzessifier
which will work well on unseen examples, i.e. it generalises well. Consider the
example in Figure 1. Here there are many possible linealfdasshat can separate
the data well, but there is only one which maximises the margaxi(nises the
distance between it and the nearest data point of each class)in&arsclassifier is
termed the optimal separating hyperplane. Intuitively, we would expiscboundary

to generalise well as opposed to the other possible boundaries.

Figure 1 Optimal Separating Hyperplane

2.1 The Optimal Separating Hyperplane

Consider the problem of separating the set of training vectors betprgi two
separate classes.

(Y1’X1),--- 7(Y| ’XI)’X OR" ,yj_{ 1, } 1)
with a hyperplane
(Wx)+b=0 (2)

The set of vectors is said to bgtimally separated by the hyperplane if it is separated
without error and the distance between the closest vector to theplayperis
maximal. There is some redundancy in Equation (2), and without losserfadjey it

is appropriate to consider a canonical hyperplane [19], where the perameb are
constrained by,
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minjx (v +b =1 (3)

This incisive constraint on the parameterisation is preferablalte@ynatives in
simplifying the formulation of the problem. In words it states:tlia norm of the
weight vector should be equal to the inverse of the distance, of the nearest point in the
data set to the hyperplane. The idea is illustrated in Figure 2.

Figure 2 Canonical Hyperplanes

A separating hyperplane in canonical form must satisfy the following constraints,
y[wx)+p 21 i=1.. (4)
The distanced(w,b;x) of a pointx from the hyperplanéw,b) is,

|wx+b|
dlw bix) ==

()

The optimal hyperplane is given by maximising the margﬁw,b), subject to the
constraints of Equation (4). The margin is given by,

(wb) min d(wbx)+ m|n d(wb,x)

{xovi=d {xiv=
‘w&i+b‘ _ ‘Wﬂ(j+b‘

= min + min

Chewt Wl gy =4 wil

(6)
Dmln w ¥ +b+ mln w X, +bJ

”W” I:{X Vi j}‘ ‘ JyJ ‘ ‘
_ 2

I

Hence the hyperplane that optimally separates the data is the one that minimises
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o(w) = Wl )

It is independent db because provided Equation (4) is satisfied (i.e. it is a separating
hyperplane) changinlg will move it in the normal direction to itself. Accordingly the
margin remains unchanged but the hyperplane is no longer optimal i Withtbe
nearer to one class than the other.

To consider how minimising Equation (7) is equivalent to implementingSitivé
principle, suppose that the following bound holds,

Iwl< A. (8)
Then from Equation (4) and (5),
1
) =
d(w,b;x) = e 9)
Accordingly the hyperplanes cannot be nearer than 1/A to any of th@alata and

intuitively it can be seen in Figure 3 how this reduces the podsyplerplanes, and
hence the capacity.

Figure 3 Constraining the Canonical Hyperplanes
The VC dimensionh, of the set of canonical hyperplanes idimensional space is,

h< min[R?A% n| +1, (10)

whereR is the radius of a hypersphere enclosing all the data points. Hence simigimi
Equation (7) is equivalent to minimising an upper bound on the VC dimension.

The solution to the optimisation problem of Equation (7) under the constddints
Equation (4) is given by the saddle point of the Lagrange functiongrghgian)
[10],

L(w,b,a)= %||w||2 - Zai{[(xi mm)+b]yi —1} . (11)
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where a, are the Lagrange multipliers. The Lagrangian has to be miggmigth
respect tow, b and maximised with respect t, = 0. Classical Lagrangian duality

enables thgrimal problem, Equation (11), to be transformed todtsl problem,
which is easier to solve. Thigal problem is given by,

maxW(a) = maﬁ mbiri_(w b a)ﬁ (12)
The minimum with respect t@ andb of the Lagrangiar,, is given by,
oL '
—=0 O =0
b Zla ye
| : (13)
oL
P 0 O W ; XY,
Hence from Equations (11), (12) and (13),dbel problem is,
1 | | |
maax\N(O()z rrgakzgjzlaiajyiyj(xi ij)+;ui (14)
with constraints,
a, 20, i=1...,1
(15)

|
;O‘iYi =0

Solving Equation (14) with constraints Equation (15) determines the nggra
multipliers, o', and the optimal separating hyperplane is given by,

W=) ax
; 1 Iyl
(51)
b= —EW ¢b< +X
- 2 r s
wherex, andx, are any support vector from each class satisfying,
a,.a,>0, y =1 y, =-1 (17)
The classifier is then,
f (x) = sign(w x +b) (18)
From the Kuhn-Tucker conditions,
a [y (wx +b)-1 =0 (19)
and hence only for the points which satisfy,
y, (Wi, +b)=1, (20)

will the Lagrange multipliers be non-zero. These points are te@agport Vectors
(9V). If the data is linearly separable all the support vectoidieibn the margin and
hence the number o®V is typically very small. Consequently the hyperplane is
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determined by a small subset of the training set; the other pmotd be removed
from the training set and recalculating the hyperplane would producesaime
answer. Henc&/M can be used to summarise the information contained in a data set
by theSV produced. Points of interest,

||w||2:|';ai LIS LLAEY Y

Hence from Equation (10) the VC dimension of the classifier is bounded by,

h< minﬁ?iﬁi ,n§+1, (21)
SVs

and if the training data, is normalised to lie in the intervf 1",

O
hsl+nmin§6i, , 22
Vs lH ( )

2.1.1 Linearly Separable Example

||||

1 1

3 3 1
1 3 1
3 1 1
2 25 1
3 2.5 1
4 3 1

Table 1 Linearly Separable Classification Data

Given the training set in Table 1, t&/C solution is shown in Figure 4. The dotted
lines describe the locus of the margin and the circled data peimtssent thev,
which all lie on this margin.
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=] Support Vector Classification

Linear j [# Separabls

Clear Data

Classify

o jw]
I @ ¥ 5
A (R

Mo, of Support Vectars: 4 (57.1%)

Figure 4 Optimal Separating Hyperplane

2.2 The Generalised Optimal Separating Hyperplane

Figure 5 Generalised Optimal Separating Hyperplane

So far the discussion has been restricted to the case wheraitiggtdata is linearly
separable. However, in general this will not be the case, Figufdhése are two
approaches to generalising the problem, which are dependent upon prior knowledge of
the problem and an estimate of the noise on the data. In the cageitwbexpected

(or possibly even known) that a hyperplane can correctly separadatdnea method

of introducing an additional cost function associated with miscleasdn is
appropriate. To enable the optimal separating hyperplane method to lvaligede
Cortes [5] introduced non-negative variabfes2 0 and a penalty function,
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F,(5)= iz 0>0,

where thet are a measure of the misclassification error. The optirarsgtioblem is
now posed so as to minimise the classification error as wetiagnising the VC
dimension of the classifier.

The constraints of Equation (4) are modified for the non-separable case to,

y[(wix)+b[21-8, i=1.. (23)
where &, 20. The generalised optimal separating hyperplane is determined by the
vectorw, that minimises the functional,

ofw.)= Sl +CT g, @4

(whereC is a given value) subject to the constraints of Equation (23).

The solution to the optimisation problem of Equation (24) under the constadints
Equation (23) is given by the saddle point of the Lagrangian [10],

L(w,b,a):é(wwv)mZai —Zai{[(xi w)+b]y, -1+ } ZBE (@)

where a, 3, are the Lagrange multipliers. The Lagrangian has to be migghwisth
respect tow, b, £ and maximised with respect to, 3, = 0. As before, classical

Lagrangian duality enables tpemal problem, Equation (25), to be transformed to its
dual problem. Thedual problem is given by,

maxw(a) = m?@rpiirt(w bEaq, B)ﬁ (26)
The minimum with respect w, b and¢, of the Lagrangiart,, is given by,
oL !
—= L] )
b 0 ;a,y,: 0
oL !
%o 0w Yaxy. 27)
o9 _ 0 O o B= C
aEi - I T

Hence from Equations (25), (26) and (27),dbel problem is,
1 | | |
muax\N(a): n;lax—zglzlaiajyiyj(xi Dtj)+;ai (28)

with constraints,
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| . (29)

The solution to this minimisation problem is identical to the sepauedde except for

a modification of the bounds of the Lagrange multipliers. The uncepait of
Cortess approach is that the coefficie@t has to be determined. In some
circumstance€ can be directly related to a regularisation parameter [7,1&hzH4]
uses a value df=5, but ultimatelyC must be chosen to reflect the knowledge of the
noise on the data. This warrants further work, but a more practgralgsion is given

in Chapter 4.

2.2.1 Linearly Non-Separable Example

L X, | X, | Class |
1 1 -1
3 3 1
1 3 1
3 1 1
2 25 1
3 2.5 1
4 3 1
15 15 1
1 2 1

Table 2 Linearly Non-Separable Classification Data

Two additional data points are added to the separable data of Tablprdduce a
linearly non-separable data set, Table 2. %€ is shown in Figure 6. Th®/ are no
longer required to lie on the margin, as in Figure 4.

I:l Support Yector Classification

Linear =] [~ Separable Bowd [ 10

Clear Data

Classify

bkl EE

Mo. of Suppart Wectars: 7 (77.8%]

Figure 6 Generalised Optimal Separating Hyperplane Example (C=10)

In contrast asC — o the solution converges towards the solution of obtained by the
optimal separating hyperplane, Figure 7.
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=] Support Vector Classification

Linear j ™ Separable Bound Iif

Clear Data

Classify

o jw]
I @ ¥ 5
A (R

Mo, of Suppart Vectors: 9 [100.0%)

Figure 7 Generalised Optimal Separating Hyper plane Example (C=)
In the limit asC - 0 the solution converges to ??, Figure 8.

=] Support Vector Classification

Linear j ™ Sepaiable Baound 1e8

Clear Data

Classify

o jw]
I @ ¥ 5
A (R

Mo, of Support Vectars: 8 (88.9%)

Figure 8 Generalised Optimal Separating Hyperplane Example (C=10°)

2.3 Generalisation in High Dimensional Feature Space

In the case where a linear boundary is inappropriateStiid can map the input
vector,x, into a high dimensional feature spazeBy choosing a non-linear mapping

a priori, the SYM constructs an optimal separating hyperplane in this higher
dimensional space, Figure 9. The idea exploits the method of [1] whaliles the
curse of dimensionality [3] to be addressed.
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Input Space Output Space

Feature Space

Figure 9 Mapping the Input Space into a High Dimensional Feature Space

There are some restrictions on the of non-linear mapping that cambeyed, see
Chapter 3, but it turns out that most commonly employed functions aeptabte.
Among the acceptable mappings are polynomials, radial basis funatiohsertain
sigmoid functions.

The optimisation problem of Equation (28) becomes,
1 | | |
maxW(a) = rgawggjzﬂaiamyjK(xi xj)+;o(i (30)

where K(x,y) is the kernel function performing the non-linear mapping into feature
space, and the constraints are unchanged,

a, 20 i=1...
' . (31)

Solving Equation (30) with constraints Equation (31) determines the nggra
multipliers, o, and the classifier implementing the optimal separating hyperpiane
the feature space is given by,

f (x) =sigrﬁz EiyiK(xi ,x)+5ﬁ (57)
where
b = —% Sﬁi yi[K(xr,xi)+K(xs,xi)]. (33)

(Alternatively a more stable way of computimgan be done [18])

If the Kernel contains a bias term, b can be accommodated within thel Kiamction,
and hence the classifier is simply,

f(x)= sigriz q,y, K(xi x)ﬁ (57)

Many employed Kernels have a bias term and any finite Kerndbeanade to have
one [7]. Note here that provided the Kernel contains a bias terntetheb may be
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dropped from the equation of the hyperplane, simplifying the optimisationepnaty
removing the equality constraint of Equation (31). Chapter 3 discussesréndetalil
the choice of Kernel functions and the conditions that are imposed.

2.3.1 Polynomial Mapping Example
Consider the Kernel of the form,

K(xy) =[x3)+1". (35)

Applying the non-linealSVC to the linearly non-separable training data of Table 2,
produces the classification illustrated in Figure €8<). The margin is no longer of
constant width due to the non-linear projection into the input space. Thi®satuin
contrast to Figure 6-8, in that the training data is now cladsdftgrectly. However,
even thoughSVM implement theSRM principle and hence they should generalise
well, careful choice of the kernel function is necessary to produdasaification
boundary that is topologically appropriate. It is always possible to heajmput space
into a dimension greater than the number of training points and prodpeefect’
classifier on the training set. However, this will generdbiadly. The choice of kernel
warrants further investigation.

Polynomial | =] Degee 2 [V Sepaiable

Mo. of Support Vectars: B (B6.7%)

Figure 10 Mapping input space into Polynomial Feature Space

2.4 Discussion

Typically the data will only be linearly separable in some, bssvery high
dimensional feature space. It may not make sense to try andtedpardata exactly,
particularly when only a finite amount of training data which is piaély corrupted
by some kind of noise. Hence in practice it will be necessarymgog the non-
separable approach which places an upper bound on the Lagrange mulfipligrs.
raises the question of how to determine the parar@etiénis similar to the problem in
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regularisation where the regularisation coefficient has to berrdeted. Here the
parameter can be determined by a process of cross-validation,raay ie possible
to implement this here. Note that removing the training patternsatbanot support
vectors will not change the solution and hence a fast method may itzbl@verhen

the support vectors are sparse.
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3 Feature Space

3.1 Kernel Functions

The following theory is based upon Reproducing Kernel Hilbert Sp&t€dS) [2,

20, 7, 9]. The idea of the kernel function is to perform the operations imploe
space rather than the potentially high dimensional feature spaoee Hiee inner
product does not need to be evaluated in the feature space. A inner pnoidattiie
space has an equivalent kernel in input space,

K(x,y) = k(x) k(y), (36)

provide certain conditions hold. This is appropriate in our cageid a symmetric
positive definite function, which satisfies Mercer’s Conditions,

K(x.y) = 2Gmw(X)llJ(y), a. =0

(37)
[T KGy)atgly)axy >0, [g()ax <o
Popular functions which satisfy Mercer’s conditions are,
3.1.1 Polynomial
K(xy) = (x3)
d=1.. (38)

Ke)= (bcs) -3

The second is preferable as it avoids problems with the hessian becoming zero.

3.1.2 Gaussian Radial Basis Function
O (x — y)2 O

K(x,y) = ex% ?Q (39)

Classical techniques utilising radial basis functions employ sone¢hod of
determining a subset of centres. This selection is implicit vémeployed within an
SVM. This local function is attractive in the sense that the non-zgypost vectors
each contribute one local Gaussian function, centred at that data ppifurttiger
considerations it is possible to select the global basis functidthyva, using the
SRM principle [19].

3.1.3 Exponential Radial Basis Function

0 |x-yUd
K@ﬁ:w%yxﬂﬂ

20% []

(40)

This function has s
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3.1.4 Multi-Layer Perceptron
K(x,y) = tant(b(x @) - c) (41)

For some values d&if andc.

3.1.5 Fourier Series

Fourier series can be considered an expansion in the follovird 2imensional
feature space. The kernel is defined over the interval

sin(N +2)(x-y)

K(x.y) = Sin(% (x- y)) (42)

3.1.6 Linear Splines
It is also possible to use infinite spline kernels,

K(x, y) =1+xy+ xymin(x,y) - (X; y)(mir(x ,y))2 +?1),(ma>(x y))3 (43)

This kernel is defined on the interval [0,1) ( [0,inf) )

3.1.7 B, splines
The kernel is defined on the interval [-1,1]

K(x,Y) = Bpa(x-y) (44)

3.1.8 Tensor Product Splines
Multidimensional spline kernels can be obtained by forming tensor products,

() = [] Kot Vr) (45)

The

3.2 Implicit vs. Explicit Bias

The solutions with an implicit bias and explicit bias are not #raes which may
initially come as a surprise. However, the difference helps toligig the problem
with the interpretation of generalisation in high dimensional feature spaces.
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Lineat =] [ Separable
Load
Save.
.: .. .. Class &
(a) Explicit (linear) (b) Implicit (polynomial degree 1)

Figure 11 Comparison between Implicit and Explicit bias for a linear kernel.

Comparison of linear with explicit bias against polynomial of dedrevith implicit
bias.

3.3 Data Normalisation

If the data is not normalised there may be too much emphasis on onelfinpig
normalised this will effect the solution. Is this effect preatte? Also some kernels
are only valid over a restricted interval and as such demand dataalisation.
Empirical Observations suggest that Normalisation also improkescondition
number of the matrix in the optimisation problem.
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4 Classification Example: IRIS data

The iris data set is a well known data set used for demonsttagngerformance of
classification algorithms. The data set contains four attribaftes iris, and the goal
is to classify the class of iris based on these four attribUitesimplify the problem
we restrict ourselves to the two features which contain the imfostnation about the
class, namely the petal length and the petal width. The distributidheoflata is
illustrated in Figure 12.

Petal
Width

'

* e .
Versilcolor

+

o
.ﬁ_'_ Setosa
+

Viginica

, Petal

Figure 12 Iris data set

Length

This data set has been widely used and [17] has afpligdto it, which provides a
means of verifying the operation of the software. The Setosa amsilcdér classes
are easily separated with a linear boundary and the support veaiborsalsing an
inner product kernel is illustrated in Figure 13.
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=] Support Vector Classification

Linear j [# Separabls

Mo. of Suppart Vectars: 2 [1.7%]

Figure 13 Separating Setosa with a linear SYM

Here the support vectors are circled. It is evident that thereomly two support
vectors. These vectors contain the important information about thdfickism
boundary and hence suggest that the support vector machine can be usedtthextr
training patterns that contain the most information for the claasgn problem. The
separation of the class Viginica from the other two classes is not so tnviatt) two
of the examples are identical in petal length and width, but corredpoddferent
classes.

=] Support Vector Classification [_ O] <]
Polynomial ﬂ Deges 2 [ Separable

Load
Save

Clags &

Class B

Clear Data
Classify
No. of Suppart Yectars: 10 [ 8.3%]

Figure 14 Separating Viginica with a polynomial SYM (degree 2)
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[=] Support Yector Classification HIE E3

Polynomial 7| Degee [T0 [V Separable

Ho. of Support Vectors: 3(7.5%]

Figure 15 Separating Viginica with a polynomial SYM (degree 10)

] Support Vector Classification

] osews [ 7 Separsble.

Figure 16 Separating Viginica with a Radial Basis Function SYM (0=1.0)

[=] Support Yector Classification HIE E3

Polynamial | Degee 2 [~ Separable Bourd m

Ho. of Support Vectors: 14 (11.7)

Figure 17 Separating Viginica with a polynomial SYM (degree 2, C=10)
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Pt

No.of Suppot Vectors: 17 (14.2%)

Support Vector Classifcation
Lineas Spine =

I~ Sepaable Bowd [ o000

No.of Suppot Vectors: 16 (133%)

(8)C=o

(b) C = 1000

Cosse b [

No.of Suppot Vectors: 15 (125%)

Support Vector Classifcation
Lineas Spine =

I~ Sepaable Bownd 10

No.of Suppot Vectors: 19 158%)

(c) C=100

(d)C =10

oosse [

No.of Suppot Vectors: 37 (30.8%)

Vecior Classiation
ErED =

I~ Sepaable Bownd 0

\

No.of Suppot Vectors: 38 1.7%)

(e)C=1

(f) C=01

No.of Support Vectors: 108 (30.8%)

Support Vector Classifcation
Lineas Spine =

No.of Support Vectors: 120 100.0%]

(g) C=001

Figure 18 The effect of C on the separation of Versilcolor with a linear spline SYM
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Figure 18 illustrates how the classification boundary changes hétlparameteC

which controls the tolerance to misclassification errors. Intiegdyg, the range of
values [0.1,1000] provide sensible boundaries, but to know whether an open boundary
(e.g. Figure 18(e)) or a closed boundary (e.g. Figure 18(c)) is mppremiate would
require prior knowledge about the problem under consideration.

It would be expected that Figure 13 and Figure 17 would give reasonable
generalisation.

[13] appliesSVC to face recognition.
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5 Support Vector Regression

SVM can be applied to regression problems. The main difference igothet a loss
function employed. Figure 19 illustrates three possible loss functions

(a) Quadratic (b) Least Modulus @JInsensitive

Figure 19 Loss Functions

Why is this so important? because it makes the SVs sparse. Refrestsion in the
sense of Huber. Data is always non-separable? [0,inf] [-Inf,0k clf&e] [-e,-0]
regress

(a) is equivalent to standard least squares error criterion.

5.1 Linear Regression
Consider the problem of approximating the set of training vectors,

(yl,xl),... ,(yI ,xl),x OR" ¥ R (46)
with a linear function,
f(x)=(wx)+b (47)

minimise the functional,

ofwg &) =5 wm)+c[ye 3] (48)

(where C is a given value). The solution is given by,

;af(yi —s)—O(i(yi +s)

(49)

—
Q
|
Q
=
Q
|
Q
£
=
=
N—

I B

with constraints,
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O0<a; <C, i=1..,, (50)

Solving Equation (49) with constraints Equation (50) determines the nggra
multipliers, @,0 ", and the regression function is given by,

where

(ﬁi —Ei*)xi

= (51)
b =—_wix, +x]

(Alternatively a more stable way of computimgan be done [smola])
f(x)=wXx+b (55)

W =

It can be shown that,
Eiﬁf =0, i=1...,l.

Therefore the support vectors are points where exactly one of the Lagrarigdiersi|
Is greater than zero.

5.1.1 Example
Given the following training set,
L x ] v ]

1.0 -1.6
3.0 -1.8
4.0 -1.0
5.6 1.2
7.8 2.2
10.2 6.8
11.0 10.0
11.5 10.0
12.7 10.0

Table 3 Regression Data
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Mo, of Suppoart Yectors: 3 (100.0%)

Figure 20 Linear regression

5.2 Non Linear Regression

The support vector machine maps the input ve&tanto a high dimensional feature
spacegz, through some non-linear mapping, choaepriori. In this space an optimal
separating hyperplane is constructed.

(where C is a given value). The solution is given by,

quvv(a o ) = max] (53)

I o

with constraints,

O<a; <C, i=1..,. (54)
|

if the kernel function contains a bias term. Solving Equation (49) vatistcaints
Equation (50) determines the Lagrange multipliersy , and the regression function
IS given by,

f(x) = Z(ai ~a; )K(x,,x) +b (55)
where
b = —% (ﬁi —Ef)[K(xr X, ) + K(xs,xi)] : (56)

(Alternatively a more stable way of computimgan be done [smola])
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As with the SVC the equality constraint may be dropped if the Keorgains a bias
term, b being accommodated within the Kernel function, and the regressionciuncti
is given by,

f(x)= ;S(ﬁi —a; K (x;,x). (57)

5.2.1 Case 1: The Separable Case

W((X):%Zl ZlaiajyiyjK(Xi’Xj)_Zlui (58)

5.2.2 Polynomial Learning Machine

K(x,xi)z[(x&i)H]d (59)

5.2.3 Example
Given the following training set,

No. of Support Veetors: 6 (66.7%)

Figure 21 Polynomial Regression
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[l support Vector Regression [_[CTx]

Giaussian RBF j Sigma T Bound Inf & insensitivity 05

No. of Support Yectars: & (B8.7%)

Figure 22 Radial Basis Function Regression

[l support Vector Regression [_[CTx]

Linear Spline. = Bound Inf einsensitiviy | 05

No. of Support Yectars: 7 (77.8%)

Figure 23 Infinite Spline Regression

[l support Vector Regression [_[CTx]

Linear Bspline j Degres. 2 Bound Inf & insensitivity 05

No. of Support Yectars: & (B8.7%)

Figure 24 Infinite B-spline regression
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Exponential REF j Sigma 2 Bound Inf & insensitivity 05

ik Lk

Clear Data

No. of Support Yectars: 7 (77.8%)

Figure 25 Exponential RBF
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6 Regression Example: Titanium Data

[12] has achieved excellent results applying svms to time series from santa fe set ?.
[11] has applied SVMs to time series modelling

The example given here considers the titanium data [6] as aimatius example for
one dimensional non-linear regression. There two parameters to cdheol
regressionC which controls the
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[l support Vector Regression [_[CTx]

Linear Spline. = Bound Inf & insensitivity 005

+
Lt
N ,.Jr,,+,+,¥3r....+,¥r+r+,+rea+++ﬂ’

TN e

Mo, of Suppart Yectars: 15 (30.6%)

Figure 26 Linear Spline Regression (¢=0.09

[l support Vector Regression [_[CTx]

Linear Bspline j Degres Z Bound Inf & insensitivity 0.05

Mo, of Support Yectors: 19 (38.8%)

Figure 27 B-Spline Regression (¢=0.09

[l support Vector Regression [_[CTx]

Giaussian REF j Sigma T Bound Inf & insensitivity 0.05

Mo, of Support Yectars: 42 (85.7%)

Figure 28 Gaussian RBF Regression (¢=0.05,0=1.0)
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[l support Vector Regression [_[CTx]

Exponential REF j Sigma T Bound Inf & insensitivity 0.05

Mo, of Suppart Yectors: 18 (38.7%)

Figure 29 Exponential RBF Regression (¢€=0.05,0=1.0)

[l support Vector Regression [_[CTx]

Trigonometic Polpromial | Demes [3 Bound ] e insensifivity 0.05

Mo, of Suppart Yectars: 38 (77.6%)

Figure 30 Fourier Regression (€=0.05, degree)3

EJSupport Vector Rearession [

Giaussian REF j Sigma 3 Bound Inf & insensitivity 0.05

Mo, of Suppart Yectors: 24 (43.0%)

Figure 31 Gaussian RBF Regression (€=0.05,0=0.3
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[l support Vector Regression [_[CTx]

Linear Spline = Bound 10 & insensitivity 0.05

Mo, of Suppart Yectars: 22 (44.9%)

Figure 32 Linear Spline Regression (¢=0.05, C=10

[l support Vector Regression [_[CTx]

Linear Bspline j Degres Z Bound 10 & insensitivity 0.05

Mo, of Suppart Yectars: 22 (44.9%)

Figure 33 B-Spline Regression (€=0.05, C=10
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7 Conclusions

Strong theoretical foundation

global minimum

guadratic programming

margin in feature space -> input space

choice of C, e

choice of kernel function, model mismatch

invariances

curse of dimensionality shift problem to training data size.
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Appendix - Implementation Issues

[16] considers chunking.

[14] considers decomposition algorithm with guaranteed convergence tyotbed
minimum.

Numerical Considerations
Hessian badly conditioned
zero order regularisation

sensitivity of solution to zero order regularisation.
The support vector algorithms were implemented in MATLAB.

Support Vector Classification
The optimisation problem can be expressed in matrix notation as,

1
minEO(THO( +cla (60)
where
H=2zz", ¢ =(-1...,-1) (61)
with constraints
a'Y=0, a,=0i=1..,. (62)
where
x. [ U]
%/1 'O %llm
0 0O 0 0
0. o0 0. O
Z=0: Q0 Y= O (63)
0 0O 0 0
0 0O 0 0
B’|X|H B’IH

The MATLAB implementation is given below:

function [nsv, alpha, b0] = svc(XY,ker,Q
%SVC Support Vector Cl assification

%

% Usage: [nsv al pha bias] = svc(XY,ker,C
%

% Paraneters: X - Training inputs

% Y - Training targets

% ker - kernel function

% C - upper bound (non-separabl e case)
% nsv - nunber of support vectors

% al pha - Lagrange Multipliers

% b0 - bias term

%
% Author: Steve Gunn (srg@cs. soton. ac. uk)
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if (nargin <2 | nargin>4) % check correct nunber of argunents
hel p svc
el se

n = size(X1);

if (nargin<4) C=Inf;, end

if (nargin<3) ker=linear’;, end
epsilon = 1le-10;

% Construct the Hmtrix and ¢ vector

H = zeros(n,n);
for i=1l:n
for j=1:n
H(i,j) = Y(i)*Y(j)*svkernel (ker, X(i,:),X(j,:));
end
end
¢ = -ones(n,1);

% Add smal | anount of zero order regularisation to
% avoi d probl ens when Hessian is badly conditioned.

if (abs(cond(H) > 1le+10)

fprintf(’ Hessian badly conditioned, regularising ....\n");
fprintf(’ A d condition nunber: %.2g\n’, cond(H));
H = H+0. 00000001*eye(size(H));
fprintf(’ New condi ti on nunber: 9%i.2g\n’, cond(H));
end

% Set up the paranmeters for the Optinisation problem

vlb = zeros(n, 1); % Set the bounds: al phas >= 0
vub = Crones(n, 1); % al phas <= C
x0 =1 1; % The starting point is [0 0 O 0]
neqcstr = nobi as(ker); % Set the nunber of equality constraints (1 or 0)
if neqcstr
A=Y,;, b =0 % Set the constraint Ax = b
el se
A=11l;, b=1I
end

% Sol ve the Optim sation Problem
st = cputime;

if ( vib == zeros(size(vlb)) & mn(vub) == Inf & neqcstr == 0 )
% Separabl e problemwith Inplicit Bias term
% Use Non Negative Least Squares
al pha = fnnls(H, -c);
el se
% Ot herw se
% Use Quadratic Programm ng
al pha = qp(H, c, A b, vlb, vub, x0, neqcstr, -1);
end

fprintf(’ Execution time: %.1f seconds\n’,cputine - st);

fprintf(’|wo|"2 : % \n’',al pha’ *H*al pha);
fprintf(’ Sumal pha : %\n’, sun(al pha));

% Conput e the nunber of Support Vectors

svi = find( abs(al pha) > epsilon);
nsv = length(svi);
if neqgcstr ==
% Inplicit bias, b0
b0 = 0;
el se

% Explicit bias, bO;
% find bO frompair of support vectors, one from each cl ass
classAsvi = find( abs(al pha) > epsilon & Y == 1);

classBsvi = find( abs(alpha) > epsilon &Y == -1);
nAsv = length( classAsvi );
nBsv = |l ength( classBsvi );

if ( nAsv >0 &nBsv >0)

svpair = [classAsvi (1) classBsvi(1)];

b0 = -(1/2)*sum(Y(svpair)' *H(svpair, svi)*al pha(svi));
el se

b0 = O;
end
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end

end

Image Speech and Intelligent Systems Group



Support Vector Regression
The optimisation problem can be expressed in matrix notation as,

1
minEXTHx+ch (64)
where
OXX" = XX'O E-YO (& O
I OO S O ~-0...0 0.0
H 0 : o c 5 X=5"0 (65)
o XX X' g #+YH o0

with constraints

xffL...1-1...-0=0 o a 20 =1.]. (66)

where

[
=

oOoOooOooono

(67)

<

1
DO00O00L
MmooooOooo

_<

1
ooQooog

The MATLAB implementation is given below:

function [nsv, beta, b0] = svr(XY,ker,e, O
%SVR Support Vector Regression

%

% Usage: al pha = svr(X,Y,ker, e, O

%

% Paraneters: X - Training inputs

% Y - Training targets

% ker - kernel function

% e - insensitivity

% C - upper bound (non-separabl e case)
% nsv - nunber of support vectors

% bet a - Difference of Lagrange Miultipliers
% b0 - bias term

%
% Author: Steve Gunn (srg@cs. soton. ac. uk)

if (nargin <3 | nargin>5) % check correct nunber of argunents
hel p svr
el se

n = size(X1);

if (nargin<5) C=Inf;, end

if (nargin<4) e=0.05;, end

if (nargin<3) ker=linear’;, end

epsilon = 1e-10; %tolerance for Support Vector Detection

% Construct the Hmtrix and ¢ vector

H = zeros(n,n);
for i=1l:n
for j=1:n
H(i,j) = svkernel (ker, X(i,:),X(j,:));
end
end
Ho = [H-H -HH;
c = [(e*ones(n,1) - Y); (e*ones(n,1) + Y)];

% Add smal | anmount of zero order regularisation to
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% avoi d probl ens when Hessian is badly conditioned.
% Rank is always |ess than or equal to n.

% Note that adding to nmuch reg will peturb solution
if (abs(cond(Hb)) > le+10)
fprintf(’ Hessian badly conditioned, regularising ....\n")
fprintf(’ A d condition nunber: %l.2g\n’, cond(Hb));
Hb = Hb+0. 000000000001*eye(si ze(Hb));
fprintf(’ New condi tion nunber: %i.2g\n’, cond(Hb));
end

% Set up the paraneters for the Optinisation problem

vlb = zeros(2*n, 1); % Set the bounds: al phas >= 0
vub = C*ones(2*n,1); % al phas <= C
x0 =1 1; % The starting point is [0 0O 0]
neqcstr = nobi as(ker); % Set the nunber of equality constraints (1 or 0)
if neqcstr
A = [ones(1,n) -ones(1,n)];, b = 0; % Set the constraint Ax = b
el se
A=1[I;, b=1I;
end

% Sol ve the Optim sation Problem
st = cputing;

if ( vlb == zeros(size(vlb)) & mn(vub) == Inf & neqcstr == 0 )
% Separabl e problemwith Inplicit Bias term
% Use Non Negative Least Squares
al pha = fnnls(Hb, -c);
el se
% Ot herw se
% Use Quadratic Progranm ng
al pha = gp(Hb, ¢, A b, vlb, vub, x0, neqcstr, -1);
end

fprintf(’ Execution tine: %.1f seconds\n',cputine - st);
fprintf(’|wo|"2 : % \n',al pha’ *Hb*al pha);
fprintf(’ Sumalpha : %\n’', sun({al pha));

% Conput e the nunber of Support Vectors
beta = al pha(n+1:2*n) - al pha(1:n);

svi find( abs(beta) > epsilon );

nsv length( svi );

if neqcstr ==
% Inplicit bias, b0
b0 = 0;
el se
% Explicit bias, bO;
% conput e usi ng robust nethod of Snola
% find bO from average of support vectors with interpolation error e
svbi = find( abs(beta) > epsilon & abs(beta) < C);
nsvb = |l ength(svbi);
if nsvb >0
b0 = (1/nsvb)*sum(Y(svbi) + e*sign(beta(svbi)) + H(svbi, svi)*beta(svi));
el se
b0 = (max(Y)+min(Y))/2;
end
end

end

Toolbox

The toolbox can be downloaded from http://www.isis.ecs.soton.ac.uk/research/svm/svm.html
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