CSE 237A

Introduction to Embedded Systems

Tajana Simunic Rosing

Department of Computer Science and Engineering

UCSD

м

Welcome to CSE 237A!

- Instructor:
 - □ Tajana Simunic Rosing
 - Email: tajana-at-ucsd.edu; put CSE237a in subject line
 - Office Hours:
 - TTh 11:30-12:30pm, CSE 2118
- Admin:
 - Sheila Manalo
 - Email: <u>shmanalo@ucsd.edu</u>
 - Phone: (858) 534-8873
 - Office: CSE 2272
- TAs: Baris Aksanli, Kunal Korgaonkar
 - Email: <u>baksanli@ucsd.edu</u>, <u>korgaon@ucsd.edu</u>
 - Office hrs: TBD
- Class Website:
 - □ http://www.cse.ucsd.edu/classes/wi13/cse237A-a/
- Grades: http://ted.ucsd.edu
- Discussion board: piazza.com/#winter2013/cse237a

м

About This Course

- Part of a three course group
 - □ CSE 237A: Introduction to Embedded Systems
 - □ CSE 237B: Software for Embedded Systems
 - □ CSE 237C: Validation and Prototyping of ES
- Depth sequence:
 - □ Embedded Systems and Software

Course Objectives

- Develop an understanding of the technologies behind the embedded computing systems
 - technology capabilities and limitations of the hardware, software components
 - □ methods to evaluate design tradeoffs between different technology choices.
 - □ design methodologies
- Overview of a few hot research topics in ES
- For more details, see the schedule on the webpage

×

Course Requirements

- No official graduate course as prerequisite, but, many assumptions!
- Knowledge
 - Digital hardware, basic electrical stuff, computer architecture (ISA, organization), programming & systems programming, algorithms
- Skills
 - ☐ Advanced ability to program
 - □ Ability to look up references and track down pubs (Xplore etc)
 - ☐ Ability to communicate your ideas (demos, reports)
- Initiative
 - Open-ended problems with no single answer requiring thinking and research
- Interest
 - Have strong interest in research in this or related fields

M

Course Grading

- Homework (3-4): 15%
- Embedded systems project 40%
 - □ Install OS onto an embedded platform, cross-compile, run and analyize performance and energy consumption of apps, make kernel more energy efficient
- Final exam: 40%
- Class participation, attendance, engagement: 5%
 - □ Come prepared to discuss the assigned paper(s)

Project Overview

- Compile and flash Android onto a bare mobile phone
 - □ Cyanogen Android 2.3
 - □ Snapdragon MDP MSM8660
- Implement your own intelligent DVFS policy as a kernel module
 - □ Utilize performance counters on the CPU
 - Minimize power consumption for a variety of workloads
- One phone provided for each group of two students

 MSM8660 with asynchronous dual-core central processing unit (CPU) cores at 1.5GHz each

- Adreno™ 220 graphics processing unit (GPU)
- Display
 - · 3.61" WVGA capacitive multi touch screen
- Video
 - 1080 high-definition video recording and playback up to 30 frames per second
 - Stereoscopic 3D playback via HDMI output

□ Camera/Camcorder

- 13 megapixel main camera w/ LED Flash
- 1 megapixel front camera

Audio

Dolby 5.1 audio

Memory

- 1GB LPDDR2 RAM
- 16GB on-board flash
- · External SD slot with 8GB SDHC card included

Connectivity

802.11 a/b/g/n Wi-Fi, Bluetooth, GPS, FM

Keys

- Dual stage camera shutter with half press
- Volume/zoom +/- switches (context dependent)
- Power on/off key
- HW reset (recessed)
- OS-specific soft keys

⇔ Connectors

- USB OTG micro connector with USB charging
- HDMI type D connector
- 3.5mm audio jack
- Micro SD external slot

Project Components

- 1. Set up the development environment
- 2. Install required tools and get source code
- 3. Compile and flash Android onto the device
- 4. Implement a simple DVFS policy based on CPU utilization
- Implement an advanced DVFS policy that makes use of additional information (cache misses, stalls, etc...) provided by the processor's PMU (performance measurement unit)

Deliverables

- In class demonstration of the DVFS policy running on a variety of workloads.
- A 5-page report that includes the details of the implemented DVFS policy and a table of results for the provided test cases.

Textbook & Assigned Reading

- Required text:
 - By Peter Marwedel
 - □ 2nd edition, Springer 2011

- A set of papers will be required reading
 - will relate to the core topic of that class
 - □ you are expected to read it BEFORE the class
- In addition I will give pointers to papers and web resources

Reference books

- Peter Marwedel, "Embedded Systems Design," Kluwer, 2004.
- "Embedded, Everywhere: A Research Agenda for Networked Systems of Embedded Computers," National Research Council. http://www.nap.edu/books/0309075688/html/
- John A. Stankovic and Kirthi Ramamritham, "Hard Real-Time Systems," IEEE Computer Society Press.
- G.D. Micheli, W. Wolf, R. Ernst, "Readings in Hardware/Software Co-Design," Morgan Kaufman.
- S.A. Edwards, "Languages for Digital Embedded Systems," Kluwer, 2000.
- R. Melhem and R. Graybill, "Power Aware Computing," Plenum, 2002.
- M. Pedram and J. Rabaey, "Power Aware Design Methodologies," Kluwer, 2002.
- Bruce Douglass, "Real-Time UML Developing Efficient Objects for Embedded Systems," Addison-Wesley, 1998.
- Hermann Kopetz, "Real-Time Systems: Design Principles for Distributed Embedded Applications," Kluwer, 1997.
- Hassan Gomaa, "Software Design Methods for Concurrent and Real-Time Systems," Addison-Wesley, 1993.
- P. Lapsley, J. Bier, A. Shoham, and E.A. Lee, "DSP Processor Fundamentals: Architectures and Features," Berkeley Design technology Inc,, 2001.
- R. Gupta, "Co-synthesis of Hardware & Software for Embedded Systems," Kluwer, 1995.
- Felice Balarin, Massimiliano Chiodo, and Paolo Giusto, "Hardware-Software Co-Design of Embedded Systems: The Polis Approach," Kluwer, 1997.
- Jean J. Labrosse, "Embedded Systems Building Blocks: Complete And Ready To Use Modules In C," R&D Publishing, 1995.
- Jean J. Labrosse, "uC / OS: The Real Time Kernel," R&D Publishing, 1992.

.

Embedded Systems on the Web

- Berkeley Design technology, Inc.: http://www.bdti.com
- EE Times Magazine: http://www.eet.com/
- Linux Devices: http://www.linuxdevices.com
- Embedded Linux Journal: http://embedded.linuxjournal.com
- Embedded.com: http://www.embedded.com/
 - Embedded Systems Programming magazine
- Circuit Cellar: http://www.circuitcellar.com/
- Electronic Design Magazine: http://www.planetee.com/ed/
- Electronic Engineering Magazine: http://www2.computeroemonline.com/magazine.html
- Integrated System Design Magazine: http://www.isdmag.com/
- Sensors Magazine: http://www.sensorsmag.com
- Embedded Systems Tutorial: http://www.learn-c.com/
- Collections of embedded systems resources
 - http://www.ece.utexas.edu/~bevans/courses/ee382c/resources/
 - □ http://www.ece.utexas.edu/~bevans/courses/realtime/resources.html
- Newsgroups
 - comp.arch.embedded, comp.cad.cadence, comp.cad.synthesis, comp.dsp, comp.realtime, comp.software-eng, comp.speech, and sci.electronics.cad

7

Embedded Systems Courses

- Alberto Sangiovanni-Vincentelli @ Berkeley
 - □ EE 249: Design of Embedded Systems: Models, Validation, and Synthesis
 - http://www-cad.eecs.berkeley.edu/~polis/class/index.html
- Brian Evans @ U.T. Austin
 - □ EE382C-9 Embedded Software Systems
 - http://www.ece.utexas.edu/~bevans/courses/ee382c/index.html
- Edward Lee @ Berkeley
 - □ EE290N: Specification and Modeling of Reactive Real-Time Systems
 - http://ptolemy.eecs.berkeley.edu/~eal/ee290n/index.html
- Mani Srivastava @ UCLA
 - □ EE202A: Embedded and Real Time Systems
 - http://nesl.ee.ucla.edu/courses/ee202a/2003f/
- Bruce R. Land @ CMU
 - □ EE476: Designing with Microcontrollers
 - http://instruct1.cit.cornell.edu/courses/ee476

Conferences and Journals

- Conferences & Workshops
 - □ ACM/IFF DAC
 - □ IEEE ICCAD
 - IEEE RTSS
 - □ ACM ISLPED
 - □ IEEE CODES+ISSS
 - CASES
 - ☐ Many others...
- Journals & Magazines
 - ACM Transactions on Design Automation of Electronic Systems
 - ACM Transactions on Embedded Computing Systems
 - IEEE Transactions on Computer-Aided Design
 - IEEE Transactions on VLSI Design
 - IEEE Design and Test of Computers
 - □ IEEE Transactions on Computers
 - Journal of Computer and Software Engineering
 - □ Journal on Embedded Systems

What are embedded systems and why should we care?

- embedded within a larger device and environment
- Heterogeneous & reactive to environment

Main reason for buying is not information processing

Embedded processor market

- Processors strongly affect SW development keeps their prices high
- Only 2% of processors drive PCs!
- ARM sells 3x more CPUs then Intel sells Pentiums
- 79% of all high-end processors are used in embedded systems

Tied to advances in semiconductors

- A typical chip
 - □ 1-10 GHz, 100-1000 MOP/sq mm, 10-100 MIPS/mW
- Cost is almost independent of functionality
 - □ 10,000 units/wafer, 20K wafers/month
 - □ \$5 per part
 - □ Processor, MEMS, Networking, Wireless, Memory
 - But it takes \$20M to build one today, going to \$50+M
- So there is a strong incentive to port your application, system, box to the "chip"

Trends in Embedded Systems

- Increasing code size
 - □ average code size: 16-64KB in 1992, 64K-512KB in 1996
 - migration from hand (assembly) coding to high-level languages
- Reuse of hardware and software components
 - processors (micro-controllers, DSPs)
 - □ software components (drivers)
- Increasing integration and system complexity
 - □ integration of RF, DSP, network interfaces
 - □ 32-bit processors, IO processors (I2O)

Structured design and composition methods are essential.

Characteristics of Embedded Systems

- Application specific
- Efficient
 - □ energy, code size, run-time, weight, cost
- Dependable
 - □ Reliability, maintainability, availability, safety, security
- Real-time constraints
 - □ Soft vs. hard
- Reactive connected to physical environment
 - sensors & actuators
- Hybrid
 - Analog and digital
- Distributed
 - Composability, scalability, dependability
- Dedicated user interfaces

Applications

 Medical systems e.g. "artificial eye"

e.g. "micro-needles"

www dobelle cor

Source: ASV UCB

On-chip Chemistry

Time from sample to "CORRECT" answer

Abraham P. Lee, Ph.D.

Pedometer

- Obvious computer work:
 - □ Count steps
 - □ Keep time
 - Averages
 - □ etc.
- Hard computer work:
 - Actually identify when a step is taken
 - Sensor feels motion of device, not of user feet

If you want to play

- Lego mindstorms robotics kit
 - ☐ Standard controller
 - 8-bit processor
 - 64 kB of memory
 - Electronics to interface to motors and sensors
- Good way to learn embedded systems

Mobile phones

- Multiprocessor
 - □ 8-bit/32-bit for UI
 - □ DSP for signals
 - □ 32-bit in IR port
 - □ 32-bit in Bluetooth
- 16 GB Flash
- Custom chips
- Power consumption & battery life depends on software

Inside the PC

- Custom processors
 - ☐ Graphics, sound
- 32-bit processors
 - □ IR, Bluetooth
 - □ Network, WLAN
 - ☐ Hard disk
 - □ RAID controllers
- 8-bit processors
 - □ USB
 - □ Keyboard, mouse

Mobile base station

- Massive signal processing
 - Several processing tasks per connected mobile phone
- Based on DSPs
 - ☐ Standard or custom
 - □ 100s of processors

Telecom Switch

- Rack-based
 - □ Control cards
 - □ IO cards
 - □ DSP cards
 - □ ...
- Optical & copper connections
- Digital & analog signals

Smart Welding Machine

- Electronics control voltage & speed of wire feed
- Adjusts to operator
 - □ kHz sample rate
 - □ 1000s of decisions/second
- Perfect weld even for quite clumsy operators
- Easier-to-use product, but no obvious computer

Cars

- Multiple processors networked together (~100), wide variety of CPUs:
 - □ 8-bit door locks, lights, etc; 16-bit most functions; 32-bit engine control, airbags
- Multiple networks
 - Body, engine, telematics, media, safety
- 90% of all innovations based on electronic systems

More than 30% of cost is in electronics

FUNCTION OF CONTROLS

Typical minivan application

Configure

Sense

Actuate

Regulate

Display

Trend

Diagnose

Predict

Archive

Amtrak Acela High Speed Train

- High speed tilting train service between Boston, New York, and Washington, D.C.
- Built by Bombardier, uses FT-10 free topology twisted pair channel to monitor and control propulsion, power inverters, braking, fire protection systems, ride stability, safety, and comfort.

Building Automation

Coeur Défense, Paris

- Location and access
 - □ The biggest office property complex in Europe located at the heart of the central esplanade of the Paris-La Défense business district
- The building
 - □ Property complex with a total floor area of 182,000 m² in two towers 180 metres high (39 floors) and 3 small (8-floors) buildings linked to each other by a "glass cathedral".
- Building Automation System
 - □ 15000 embedded control devices
 - One (1) i.LON™ 100 per floor (150 floors) for routing data

Process Control

Bellagio Hotel, Las Vegas NV

- □ Water fountain show
- Fountain and sprinkler systems controls
- □ Pump controls
- □ Valve controls
- Choreographed lights and music
- □ Leak detection

Embedded system metrics

- Some metrics:
 - □ *performance*: MIPS, reads/sec etc.
 - □ power: Watts
 - □ cost: Dollars
 - Nonrecurring engineering cost, manufacturing cost
 - □ size: bytes, # components, physical space occupied
 - ☐ Flexibility, Time-to-prototype, time-to-market
 - □ Maintainability, correctness, safety
- MIPS, Watts and cost are related
 - □ technology driven
 - □ to get more MIPS for fewer Watts
 - look at the sources of power consumption
 - use power management and voltage scaling

Example: PDA design

Why did they design it this way?

A 'Dragonball*' processor? We all wanted StrongARMs

MIPS vs. Watts

MIPS/W/\$

Bandwidth vs. Watt and \$

