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Abstract. In this work we introduce an enhanced methodology to detect dy-
namic invariants from a power-benchmark simulation trace database. The method
is scalable for the application of clock-gating extraction on industrial designs. Our
approach focuses upon dynamic simulation data as the main source for detection
of opportunities for power reduction. Experimental results demonstrate our abil-
ity to learn accurate clock-gating functions from simulation traces and achieve
significant power reduction (in the range of 30%-70% of a clock net’s power) on
industrial micro-processor designs.

1 Introduction

Power consumption has become a major concern for modern microprocessor designs;
it affects battery life in the mobile segment, and limits chip frequency in desktops and
servers. In this context, a significant design effort is spent on reducing power dissi-
pation, aiming at delivering maximum performance per watt. Power dissipation has a
dynamic component, due to the switching of active devices, and a static component, due
to the leakage of inactive devices. Since our work targets dynamic power only, further
references to “power” in this paper imply the dynamic component.

The clock network is known to be one of the major power consumers, accounting for
30%-40% of the total power of a chip [1]. This can be explained by the large capacitance
of the clock net elements, together with their high switching activity. Clock gating is
one of the most effective and widely used techniques for saving clock power. If a logic
block does not perform any useful computation, one can stop the clock of the block,
thus saving switching activity and dynamic power [2].

We can classify the existing approaches based on the type of gating conditions.
Unobservability conditions, or ODCs (“Observable Don’t Cares”), were used in [3] to
gate state elements that are not observed by their environment. Stability conditions, or
STCs [4], were proposed in [5] to gate state elements that are stable at the same value.
ODCs constitute a natural candidate for clock gating, since they can be computed and
expressed as combinational conditions. A scalable ODC-based approach is used in [3]
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for gating large-scale designs. In contrast, STCs are expressed as sequential conditions
(since stability means equality in two successive cycles). For clock gating, one needs to
extract combinational STCs, which has proven to be a challenging task [5].

In this paper, we introduce a general framework, called Intelligate, with the primary
goal of extracting ”interesting” dynamic invariants from power-benchmark simulation
traces. We demonstrate the usefulness of this framework for STC extraction. We achieve
scalability by using a data-mining technique to approximate clock gating from below
in a controlled way, enabling the user to navigate the trade-off between acccuracy and
computational cost. Our experimental results show that the method scales all the way
up to unit-level designs consisting of throusands of sequential elements and finds highly
interesing and useful clock-gating conditions, including cross-unit conditions.

1.1 Related Work

Most previous works on automated synthesis of clock-gating conditions are static and
extract the conditions from the RTL description of the design. For example, the meth-
ods described in [3, 5] identify ODCs or STCs and transform them into clock-gating
conditions. Static methods face a trade-off between scalability and accuracy. The FSM-
analysis technique of [5] requires extensive logic analysis and does not scale well,
which limits its applicability to fairly small design blocks. In contrast, the method of
[3] achieves scalability by limiting its analysis to unobservability conditions of a certain
kind (those that can be obtained from analysis of steering modules), thereby missing
many potentially useful clock-gating opportunities.

Dynamic methods, in contrast to static methods, extract clock-gating conditions
from traces describing run-time behavior. Two recent papers describe dynamic ap-
proaches to clock-gating synthesis. The method described in [6] analyzes simulation
traces for design signals that can be used as clock-gating conditions. This method
achieves high scalability, but is limited to very simple clock-gating conditions (sums of
literals). A general dynamic framework is proposed in [7], in which clock-gating con-
ditions are to be extracted from simulation traces using machine-learning techniques.
The specific learning technique proposed there is precise, which entails that it is not
scalable to designs of realistic size.

The idea of extracting conditions from traces was first proposed in the context of
software invariant synthesis in [8], and then extended to hardware traces in [9]. To get
around the computational cost of machine learning, these works do not attempt to syn-
thesize general conditions, but focus on a restricted class of candidate conditions. The
difficulty with attempting to learn general conditions stems from the general difficulty
of learning Boolean functions [10]. Data mining is an approach to machine learning that
trades accuracy for scalability [11]. The Apriori algorithm, which is a basic algorithmic
building block for Intelligate, is a scalable algorithm for mining data associations in
large databases [12].

2 Overview of Intelligate

Intelligate is a framework that aims at dynamic-power reduction through clock gating.
It follows the Learning-from-Examples approach [7] to identify stability conditions that



are likely to occur and extracts simple Boolean conditions that can be used for the gating
of stable registers. Intelligate learns correlations between signals in the design, while
using simulation trace database as the main input source. The output consists of gating
pairs, where a gating pair is a clock-gating function in the form of a DNF expression
and a set of registers that can be gated using this expression.

2.1 Data Preparation

Simulation traces are the source of data for inference of clock-gating functions. We
can view a trace as two dimensional matrix, where its columns represent the design’s
signals and its rows represent the simulation cycles. A cell positioned at the i-th row
and the j-th column contains the Boolean value of signal j at cycle i. Since our goal
is to extract clock-gating conditions to save dynamic power, it is important to choose
execution traces of common design scenarios. Extracting gating conditions from traces
of rare execution paths is not effective in power reduction of common design execu-
tions. Trace data source for Intelligate comes from real-life power-consuming applica-
tions (e.g., Powerpoint). These benchmarks represent typical power-consuming scenar-
ios that bring the design to its thermal design power (TDP) [13]. By extracting gating
functions for these applications, we ensure the detection of dynamic power reduction
opportunities that are relevant for typical execution scenarios.

The basic problem that Intelligate addresses is the extraction of STCs for a given
TDP benchmark. These conditions determine if the clock will be gated or not. The
value of the registers in each simulation cycle is given in the trace matrix M . We say
that register j is stable in cycle i if M [i, j] = M [i + 1, j]. Thus, we can define the
STC matrix S, where S[i, j] = 1 when M [i, j] = M [i + 1, j], and S[i, j] = 0 when
M [i, j] 6= M [i + 1, j]. When we focus on a specific register j, the STC matrix Sj can
be viewed as a Boolean vector. Intelligate’s goal is to find a combinational function f
that appproximates Sj . Specifically, we need to have (1) Sj [i] = 0 ⇒ f [i] = 0 at all
cycles i, and (2) Sj [i] = 1 ⇒ f [i] = 1 for a large fraction of cycles i. Thus, we can split
M into two matrices, M+ and M− consisting of positive and negative examples. The
positive-example matrix M+ consists of all rows i where Sj [i] = 1 and the negative-
example matrix M− consists of all rows i where Sj [i] = 0. We then look for a gating
function f that never gates a register that needs to toggle, and does gate often when the
register is stable. Note that registers with constant values in a trace yield an empty M−.
For such registers we cannot learn meaningful gating functions, so they are ignored by
Intelligate.

The support of a function f is defined as the fraction of cycles it satisfies in a given
table. Hence the positive support of f is the fraction of rows in M+ where f is high, and
the negative support of f is the fraction of rows in M− where f is low. Thus, the goal
of the learning algorithm is to find a gating function f that has zero negative support
and high positive support. Note that it is easy to extract from M+ and M− a function
with negative support 0 and positive support 1. Such a function, however, is likely to
be a highly complex function and would consume more power than it would save. By
asking for high positive support, rather than maximal postive support, we are relaxing
the accuracy requirement, which makes it possible for us to look for a low-power gating



function. We cannot relax, however, the requirement of zero negative support without
compromising the functional correctness of the design.

2.2 Learning

Rather than try to learn general Boolean functions, we aim at learning function in dis-
junctive normal form (DNF). It suffices, therefore, to focus on learning minterms (which
are conjunctions of literals), since if c1 and c2 are gating functions, then so is c1∨c2. The
learning algorithm works iteratively in a bottom-up approach trying to find minterms
approximating the STC vector. Its inputs are the complementary positive and negative
matrices M+ and M− described earlier. The algorithm is based on the Apriori data-
mining algorithm [12]. It relies on a few observations regarding support:
Observations: Let f, g be Boolean functions.

1. support(f) ≤ support(f ∧ g)
2. support(f ∨ g) ≥ support(f)
3. If support(f) = support(g) = 0, then support(f ∨ g) = 0.
4. If support(f) = 1, then support(f ∧ g) = support(g).

The learning algorithm maintains zero negative support, which guarantees logic cor-
rectness. At the same time, the algorithm tries to maximize positive support. Positive
support allows measurement of gating-function quality from a dynamic-power perspec-
tive. High positive support means that a high percentage of the gating opportunities
were utilized, whereas low positive support means that most of the gating opportuni-
ties were missed by the function. A threshold for positive support is determined by the
user according to the desired power scheme. Minterms with positive support below the
specified positive support threshold are redundant, because they are not power bene-
ficial from the user’s point of view. The observations above tell us that we can stop
“growing” a minterm once the positive support is below threshold. The algorithm is
described in detail in Section 3.

2.3 Verification

The output of the learning algorithm consists of a group of gating pairs. A gating pair
(m, r) consists of a minterm m and a group of registers r that m can gate. Before a
clock-gating functionality can be integrated to the circuit, it is vital to verify the correct-
ness of all gating pairs. The temporal assertion always(m ⇒ (r = next(r))), must be
verified as correct, as the learning algorithm guarantees that this implication holds only
with respect to the input trace.In order to increase our confidance in the assertions, we
check that the implication holds with respect to all traces in the trace database, but that
does not guarantee correctness. A more extensive verification process is accomplished
in two steps. First, dynamic verification (e.g., randomized constrained simulation) is
used to filter out the erroneous minterms. Following initial filtering, formal verification
is applied on the remaining minterms. Since Intelligate may extract global relations in
the design and uses them to halt portions of the clock network, the formal-verification
task required to verify the correctness of the gating-conditions would in most cases



surpass the capacity of the the state-of-the-art formal verification tools. In these cases,
human experts (e.g., designers of the design at hand) are consulted in order to certify
the gating functions, based upon their design knowledge.

2.4 DNF Composition

After the verification stage, minterms and their corresponding groups of registers can
be combined to form a DNF expression. Each minterm can be implemented as a clock-
gating function by itself, since it has enough positive support and it gates sufficient
number of registers to be power efficient. According to the observation above, disjunc-
tions between minterms can increase the overall support, therefore a DNF expression
can be composed by building a disjunction between the gating minterms.

3 Intelligate Learning and Grouping Algorithms

The pseudo-code describing the learning process is shown in Algorithm 1.

Algorithm 1 Minterms learning algorithm
Input: A register to gate, M+, M−, positive support threshold PST , and Minterms’ maximal

size k.
Output: A group of gating pairs.
1: G = ∅, C = ∅, R = ∅
2: C1 = All non-constant signals in the design and their negations.
3: G = {c | c ∈ C1 ∧ NegSup(c) = 0 ∧ PosSup(c) ≥ PST}
4: C1 = {c | c ∈ C1 ∧ c /∈ G ∧ PosSup(c) ≥ PST ∧ NegSup(c) < 1}
5: for i = 2 → k do
6: Ci = Generate candidates of size i (see Algorithm 2).
7: G = G ∪ {c | c ∈ Ci ∧ NegSup(c) = 0 ∧ PosSup(c) ≥ PST}
8: Ci = {c | c ∈ Ci ∧ c /∈ G ∧ PosSup(c) ≥ PST}
9: if Ci = ∅ then

10: Exit loop
11: end if
12: end for
13: for all gi ∈ G do
14: Ri = Group registers gated by gi (see grouping section).
15: end for
16: Return all gating pairs (gi, Ri)

3.1 Generating and Pruning Literals

First, all non-constant signals in the design and their negations are considered as po-
tential clock-gating candidates. As a second step, the pruning of unsuitable signals
is accomplished; only signals with zero negative support and positive support above



threshold can be used as clock-gating signals (Step 3). Signals with positive support
above threshold and non-zero negative support can participate in larger minterms only
if their negative support is less than 1 (Step 4). This filtering process is repeated in the
second part of the algorithm for larger minterms. Minterms with zero negative support
and positive support above threshold are ponential clock-gating functions (Step 7), and
minterms with positive support above threshold can participate in larger minterms (Step
8). (Note that Step 4 and Observation 1 guarantees that all minterms in Ci have negative
support below 1.) By Observation 4 in Section 2, minterms with negative support 1 are
redundant when they are subsets of larger minterms, so they can be discarded. At the
end of the second loop, all minterms in G are potential clock-gating functions. For each
such gating function we find the group of registers that be gated by that function.

Note that the learning algorithm is applicable only to non-constant registers and
signals. In our experiment, this straightforward filtering played a major role in reducing
run time. At the same time, this leaves open the question of finding gating conditions
for the large number of constant registers.

3.2 Candidates Generation

Candidate generation for minterms of size two and larger is described in Algorithm 2.
The procedure is based on the candidates generated in the previous iteration and the
positive and negative matrices M+ and M−.

Algorithm 2 K-candidates generation
Input: Candidates of size i− 1 (Ci−1), M+, M−.
Output: Candidates of size i (Ci).

{Increase minterm size}
1: Ci = ∅
2: L = all literals l ∈ some minterm ci−1 ∈ Ci).
3: for all minterms ci−1 ∈ Ci−1 do
4: for all literal l ∈ L do
5: if l /∈ ci−1 ∧ l̄ /∈ ci−1 then
6: Ci = Ci ∪ (ci−1 ∧ l)
7: end if
8: end for
9: end for
{Filter infrequent candidates}

10: for all cj ∈ Ci do
11: for all c′j subset of cj of size i− 1 do
12: if c′j /∈ Ci−1 then
13: Delete cj from Ci

14: else if NegSup(cj) ≥ NegSup(c′j) then
15: Delete cj from Ci

16: end if
17: end for
18: end for
19: Return Ci



In Steps 3-9, candidate minterms are generated by conjunctions of un-pruned lit-
erals to every candidate minterm from the previous iteration. In Step 4, L denotes all
the literals from the previous iteration, and every literal is conjoined with each minterm
from the previous iteration, thereby increasing its size by one. The second part of the al-
gorithm filters away many of these candidate minterms. We delete a candidate minterm
cj if it has a subminterm c′j that is not a candidate minterm of size i − 1 or whose
negative support is not smaller than that of cj .

The rationale for the deletion is as follows. Let cj be a candidate minterm in Line
10, and let c′j be a subminterm of ci. If c′j /∈ Ci, then either c′j has a positive support
below threshold, in which case the same holds for cj , or c′j has negative support 1, in
which case we might as well delete it from cj and consider the small candidate minterm
cj − c′j , but this smaller minterm must have been considered at an earlier iteration.
If NegSup(cj) ≥ NegSup(c′j), then enlarging c′j to cj did not decrease c′is negative
support but may have decreased its positive support, which means that we have gained
nothing by this enlargement.

3.3 Grouping

The grouping stage is carried out after the candidates generation and pruning iterations
are finished. The output of this stage is the group G of clock-gating minterms. All
the minterms in the G have above-theshold positive support and zero negative support.
This was all done with respect to one register. Using the minterms to gate only this one
register would probably increase the design’s dynamic power consumption, since the
implementation of the gating function will consume more power than the power saved
by gating the clock. Thus, minterms that gate only small number of registers are not
power beneficial. In order to overcome this inefficiency, a group of registers is matched
with each gating minterm; for each g ∈ G we find all registers where the traces satisfy
the condition always g⇒(r = next(r)).

4 Experimental Results

We conducted our experiments on an industrial design from a high-performance micro-
processor design. The design had already been partially clock-gated as an outcome of
design reuse from previous generations. The design we studied covers different design
styles (control and data path). The source for the power trace data came from sample
power applications’ (benchmarks) simulations carried out during the design’s power
evaluation. These power tests are known as TDP (Thermal Design Power) benchmarks.
We had seven TDP benchmarks at hand to work with. Each benchmark test represented
a simulation trace of a real application execution such as zipping of files or/and reading
data through the computer’s infrared port. The learning procedure was applied to one
benchmark, and then the rest of the benchmark suite was used to verify the logic cor-
rectness of the inferred clock-gating conditions through dynamic verification and to test
average power reduction over all TDP benchmarks. The extracted conditions were not
formally verified; instead a human expert assisted in the ratification of these conditions.
As success criterion for the power efficiency of an extracted gating pair, we computed



the percentage of reduction in switching activity (SA) of the clock network elements
driving the gated registers group, as dynamic power consumption scales linearly with
switching activity.

4.1 Results

We applied Intelligate on a unit-level design, which consists of a set of functional logic
blocks. First, Intelligate was applied to a single functional logic block (block A) (see
Figure 1) with 6998 signals and 466 registers. The analysis was completed in 1 second.
The extracted conditiond yielded clock power reduction in between 26% and 41%. (We
report the four largest register groups.) An analysis of the inferred minterms revealed
that some of the gating signals are among the block’s input signals, meaning that the
gating logic is implemented outside block A.

Unit (C)

Block (B)

Block (A)

Gating
Signal

Fig. 1. Cross Block Gating

In order to reveal the cross-block gating, we applied Intelligate to a a group of four
functional logic blocks, which we refer to as block B, with 28,000 signals and 3,810
registers. We started with the same register as in the first experiment. Running time
now was 26 seconds, and clock power reduction was around 40%. (Here we found
three signals gating the same group of 114 registers.) Again, the gating signals found
were input signals of this set of blocks as well. This suggests that the gating condition
is an architectural signal and therefore, probably, applicable to an even larger group of
registers.

We then applied Intelligate to an entire functional unit, containing more than 30
functional logic blocks (unit C). This unit contains 2,664,269 signals and 55,841 reg-
isters. The analysis now took 245 seconds, but we found a single signal that can gate
1,603 registers, yield a clock power reduction up to 72% to some of the clock signals in
the group (registers that are already partly gated have lower power reduction).

The results, summarized in Table 1, indicate that Intelligate is highly scalable and
applicable to designs of large size. The experiments prove Intelligate’s ability to detect
cross-block and cross-unit clock-gating conditions. Such conditions typically cannot be



detected using static methods, since these require logic analysis, which become infea-
sible for large designs.

Table 1. Inferred minterms analysis

Minterms Gated Power reduction
size group size TDP 1 TDP 2 TDP 3 TDP 4 TDP 5 TDP 6 TDP 7 Average

Block A - 6998 signals, 466 registers, threshold: 60%, run time: 1 sec
1 38 36% 56% 18% 56% 40% 72% 15% 41%
2 20 28% 48% 10% 22% 28% 48% 7% 27%
2 18 25% 35% 11% 30% 27% 48% 7% 26%
2 10 24% 43% 21% 29% 30% 48% 16% 30%

Block B - 28,000 signals, 3810 registers, threshold: 60% run time: 26 sec
1 114 36% 56% 18% 56% 40% 72% 15% 41%
1 114 32% 36% 18% 56% 38% 72% 14% 38%
1 114 34% 50% 18% 56% 38% 72% 14% 40%

Unit C - 2,664,269 signals, 55841 registers, threshold: 60% run time: 245 sec
1 1603 36% 56% 18% 56% 40% 72% 15% 41%

The minterms column lists the inferred minterms size, and the number of registers each minterm gates is listed
in the second column. Minterms power reduction from the clock nets is listed in the power reduction columns

Intelligate is highly scalable due to three major reasons. First, since its data source
is a suite of TDP traces, parts of the design that are not active are ignored. As mentioned
earlier, only toggling signals are considered. Our experiments showed that on average
only about 5% of the design’s signals toggle in the power benchmarks. For example,
out of the 6998 signals of block A, only 159 toggle. In block B, only 1601 signals out
of 28,000 toggled. In unit C, 178,778 signals out of 2,664,269 signals toggle. Second,
the use of the bottom-up Apriori approach contributes to the scalability of Intelligate
by smartly increasing minterm size without exploring redundant minterms. Finally, the
Apriori approach allows the user to control the threshold, trading off accurary for scal-
ability, which enables Intelligate to analyze very large designs.

5 Conclusions

In this paper we introduce a novel methodology and framework, called Intelligate, with
the primary goal of extraction of “interesting” invariants for power optimization. Us-
ing a simulation trace data, we applied machine-learning techniques, based on learning
from examples, to extract clock-gating conditions. Intelligate, in comparison to previ-
ous methods for dynamic invariant extraction, has specialized pruning capabilities that
enables it to zero-in to relevant design areas and execution scenarios, while ignoring the
rest (e.g., filtering out non-toggling signals). We demonstrated the robustness and scala-
bility of Intelligate for the detection of power-saving opportunities on real-life unit-level
(cross-block) micro-processor design, which is orders-of-magnitude larger than what is
feasible by previous techniques.
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