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1. Introduction 
The Poisson distribution is a discrete probability 

distribution that expresses the probability of a given 
number of events occurring in a fixed interval of time 
and/or space, distance, area and volume, if these events 
occur with a known average rate and independently of the 
time since the last event. 

Because the processes that generate the Poisson 
distribution are Countless, this distribution is one of the 
famous widely used distributions in practical applications 
[8,12]. 

In various applied research papers, many authors 
extensively use what they call a continuous Poisson 
distribution, providing this term with very different, not 
always correct meanings. 

For example, by the "continuous Poisson distribution 
(CPD)", Some authors use to this end the Gamma 
distribution, Alissandrakis, Dialetis and Tsiropoula, (1987) 
[2] and Herzog et al. (2010) [9] or even simply the 
exponential distribution, Webb (2000) [24] as exact 
functions of CPD.  

From the strictly formal point of view, the above 
distributions can not be regarded as genuine continuous 
analogues of the classical Poisson law, since these 
distributions have probabilistically little in common with 
this law. 

Some other authors, Ilienko, and Podkalyuk, (2010) [10] 
and Turowski (2010) [21] defined an absolutely 
continuous distribution with the density of the form, 
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where cλ  is a normalizing constant. Actually, there is no 
one determined cλ  exactly. This task will be considered 
as an essential aim of this paper. The CPD properties will 
surely follow this step. 

In this paper we will refer to continuous Poisson 
distribution by 𝑋𝑋~𝐶𝐶𝐶𝐶(𝜆𝜆), which is mean that the random 
variable 𝑋𝑋  follow continuous Poisson distribution with 
parameter 𝜆𝜆. 

2. Continuous Poisson Distribution 
By continuous Poisson distribution with parameter 

𝜆𝜆 > 0 , Ilienko in 2013 [10] defined the probability 
measure 𝜋𝜋𝜆𝜆  supported by [0,∞) with distribution function 
of the form, 
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Where 𝛤𝛤(𝑥𝑥, 𝜆𝜆) = ∫ 𝑒𝑒−𝑡𝑡∞
𝜆𝜆  𝑡𝑡𝑥𝑥−1 𝑑𝑑𝑡𝑡 , is an upper incomplete 

gamma function and 𝛤𝛤(𝑥𝑥, 0) =  𝛤𝛤(𝑥𝑥) is the ordinary 
gamma function. 

Now, by using the following facts, 
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G-function. 
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 is the digamma function. 

One can derived the probability density function of 
𝑋𝑋~𝐶𝐶𝐶𝐶(𝜆𝜆) as follows, 
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For a fixed 𝑘𝑘 ∈ 𝑁𝑁, Ilienko in 2013 [10] defined the k-
order moment function of the continuous Poisson 
distribution as follows, 
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Since 𝛾𝛾(𝑥𝑥, 𝜆𝜆) = 𝛤𝛤(𝑥𝑥) − 𝛤𝛤(𝑥𝑥, 𝜆𝜆) = ∫ 𝑒𝑒−𝑡𝑡𝜆𝜆
0  𝑡𝑡𝑥𝑥−1 𝑑𝑑𝑡𝑡  is a 

lower incomplete gamma function, then one can develop 
the above formula in term of the cumulative distribution 
function 𝐶𝐶(𝑥𝑥, 𝜆𝜆) = 𝛾𝛾(𝑥𝑥, 𝜆𝜆) 𝛤𝛤(𝑥𝑥) ⁄ of Gamma random 
variable at 𝜆𝜆 with shape parameter 𝑥𝑥 and scale parameter 1, 

 

1
1

0 0

1

0

( )
( )

( , ) .
( )

k
k t x

k

xE x k e t dt dx
x

xk x dx
x

λ

γ λ

∞ −
− −

∞ −

 
 =
 Γ  

=
Γ

∫ ∫

∫
 (5) 

Now, since, 
( )

0
( , )

!( )

r
x

r
x

r x r

∞ λ
γ λ λ

=

−
=

+∑ , it is Possible to 

simplify (5) to be, 
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It is appropriate to state that for calculation purposes of 
𝐸𝐸(𝑥𝑥𝑘𝑘), we used one of the most powerful Monte Carlo 
variance reduction techniques to solve the above integral 
empirically. This technique is the Correlated Sampling. 

The reliability function of the continuous Poisson 
random variable 𝑋𝑋 is, 
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And the hazard function is, 
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3. Parameter Estimation of CPD 
The main aim of this section is to study some of 

different estimators of the unknown parameter 𝜆𝜆 of CPD. 
(1) Maximum Likelihood estimators(MLE). 

If 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛  is a random sample from 𝐶𝐶𝐶𝐶(𝜆𝜆), then 
the likelihood function is, 
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And then the log-likelihood function is, 
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So, the normal equation become, 
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After equating the above equation with zero, we using 
the numerical solution to obtain ˆ

MLEλ  as ML estimator of 
𝜆𝜆. 
(2)The exact moments estimators (EME). 

The method of moments is a technique for constructing 
estimators of the parameters that is based on matching the 
sample moments with the corresponding distribution 
moments. 

Here we provide the method of moments estimator of 𝜆𝜆 
parameter of a 

CPD when it is unknown. If 𝑋𝑋 follows 𝐶𝐶𝐶𝐶(𝜆𝜆), then By 
equation E(x), in equation (6) which represent the 

population mean with the sample mean 
n

ii 1x

n
=∑  and 

using the numerical solution for the resulting equation, 
one can get ˆ

MLEλ  which is the moments estimator of λ . 
(3) Estimators based on percentiles (PE). 

Kao in (1959) [11] originally explored this method by 
using the graphical approximation to the best linear 
unbiased estimators. The estimators can be obtained by 
fitting a straight line to the theoretical points obtained 
from the distribution function and the sample percentile 
points. In the case of a CPD, it is possible to use the same 
concept to obtain the estimator of λ based on percentiles 
because of the structure of its distribution function. Since 
𝐹𝐹(𝑥𝑥) defined in (2), Firstly, we find numerically the value 
of 𝑥𝑥 where 𝑥𝑥 =F-1(𝑥𝑥, λ), since pi is the estimate of F(𝑥𝑥(i), 𝜆𝜆). 
𝜆𝜆𝐶𝐶𝐸𝐸^  can be obtained by minimizing 
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For some other choices of 𝑝𝑝𝑖𝑖′s, see Mann, Schafer and 
Singpurwalla (1974)[13]. 
(4) Least squares (LSE) and Weighted least squares 
(WLSE) estimators 

This method was originally suggested by Swain, 
Venkatraman and Wilson (1988) [20] to estimate the 
parameters of Beta distribution. Suppose 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛  is a 
random sample of size 𝑛𝑛 from a distribution function 𝐺𝐺(. ) 
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and suppose 𝑥𝑥(𝑖𝑖) (𝑖𝑖 = 1,2, … ,𝑛𝑛)  denotes the ordered 
sample. This method uses the distribution of 𝐺𝐺(𝑥𝑥(𝑖𝑖)). For a 
sample of size 𝑛𝑛, we have [13], 
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So, in the case of CPD, one can obtain the LS estimator 
of λ , say λ�𝐿𝐿𝐿𝐿𝐸𝐸by minimizing, ∑ �𝐹𝐹(𝑥𝑥(𝑖𝑖) − 𝑗𝑗 (𝑛𝑛 + 1)⁄ �2𝑛𝑛

𝑗𝑗=1  
with respect to the unknown parameter λ . 

The weighted least squares estimator of λ,  say λ�𝑊𝑊𝐿𝐿𝐿𝐿𝐸𝐸  
can be obtained by minimizing, ∑ 𝑤𝑤𝑗𝑗  �𝐹𝐹(𝑥𝑥(𝑖𝑖) −𝑛𝑛

𝑗𝑗=1
𝑗𝑗 (𝑛𝑛 + 1)⁄ )2 with respect to λ,  where 
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( )1/ ( ) 1 ( 2) / ( 1) .j iw Var F y n n j n j= = + + − +  

3.1. Generating Continuous Poisson-Distributed 
Random Variables 

It is well known that if the time intervals between like 
events are exponentially distributed, the number of events 
occurring in a unit interval of time has the Discrete 
Poisson distribution. We can use this relationship between 
the exponential and Discrete Poisson distributions to 
generate deviates from the Discrete Poisson distribution. 
A Discrete Poisson deviate 𝑥𝑥  can be defined in the 
following manner, 
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Where 𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑥𝑥+1  are random deviates from the 
exponential distribution having mean 1/𝜆𝜆  and are 
generated by inverse transform technique 𝑦𝑦𝑖𝑖 =
−𝐿𝐿𝑛𝑛(𝑈𝑈𝑖𝑖)/𝜆𝜆 , where 𝑈𝑈𝑖𝑖  is from the standard continuous 
uniform distribution. In summary, the cumulative sums 
are generated until the inequality holds. When this occurs, 
𝑥𝑥 is the Discrete Poisson random deviate desired. 
By using the above argument, one can generate deviates 
from the continuous Poisson distribution 𝑥𝑥∗ as, 
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3.2. The Empirical Study and Discussions 
We conduct extensive simulations to compare the 

performances of the different methods, stated in section 5, 
for estimating unknown parameter λ  of CPD, mainly 
with respect to their mean square errors (MSE) for 
different sample sizes and different parameter values. The 
experiments are conducted according to run size 𝐾𝐾 =
1000. 

The results are reported in table (1). From the table, we 
observe that, 

1) The MSE's decrease as sample size increases in 
all methods of estimation. It verifies the 
asymptotic unbiasedness and consistency of all 
the estimators. 

2) The performances of ELSE, LSE and EME are 
according to their order. 

3) For small (n=10) sample size and moderate 
(n=20) sample size, it is observed that PE 
method works the best whereas the second best 
method is MLE. 

4) For large (n=50, 100) sample size, it is observed 
that MLE works the best from all other methods 
to estimate λ  whereas the second best method is 
PE. 

Table 1. Empirical MSE to estimate the CP distribution parameter λ 
λ parameter 

1.2 1 0.9 0.6 0.3 The method sample size 
7.189884 7.600554 7.701642 7.8975 9.805536 MLE 

10 
9.110556 9.552816 9.66654 9.875034 11.770434 EME 
5.446116 5.913648 6.027372 6.204276 8.131266 PE 
8.870472 9.300096 9.426456 9.63495 11.53035 LSE 
8.200764 8.598798 8.737794 8.933652 10.854324 WLSE 
5.40189 5.825196 5.97051 6.185322 8.074404 MLE 

20 
8.921016 9.356958 9.489636 9.704448 11.599848 EME 
5.351346 5.6862 5.850468 6.046326 7.979634 PE 
8.819928 9.25587 9.344322 9.552816 11.448216 LSE 
8.18181 8.611434 8.712522 8.927334 10.829052 WLSE 

4.984902 5.382936 5.52825 5.743062 7.594236 MLE 

50 
8.857836 9.325368 9.439092 9.628632 11.53035 EME 
5.187078 5.641974 5.755698 5.964192 7.859592 PE 
8.301852 8.706204 8.819928 9.015786 10.942776 LSE 
8.143902 8.541936 8.674614 8.870472 10.765872 WLSE 
4.744818 5.206032 5.300802 5.515614 7.411014 MLE 

100 
8.838882 9.262188 9.344322 9.559134 11.454534 EME 
5.098626 5.547204 5.679882 5.850468 7.733232 PE 
8.099676 8.56089 8.668296 8.87679 10.797462 LSE 
8.061768 8.504028 8.586162 8.788338 10.734282 WLSE 
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4. Empirically Selection of Bandwidth for 
CP Kernel Density Estimation 

Let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛  denote a random sample of size 𝑛𝑛 
from a random variable with density 𝑓𝑓(. ) . The kernel 
density estimate of 𝑓𝑓 at the point 𝑥𝑥 is given by[18], 
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where the smoothing parameter h is known as the 
bandwidth and the kernel K is generally chosen to be a 
unimodal probability density symmetric about zero. In this 
case, K satisfies the following conditions [16,17], 
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Actually there are a lot of popular choices of kernel 
function K; uniform, triangular, biweight, triweight, 
Epanechnikov, normal, and others [18]. The 
Epanechnikov kernel is optimal in a mean square error 
sense [6]. 

The bandwidth controls the smoothness of the density 
estimate and highly influence its appearance. Selecting a 
suitable h is a pivotal step in estimating f(x). There has 
been great advancement in recent years in data-based 
bandwidth selection for kernel density estimation. Some 
"second generation" methods, including plug-in [16,22,23] 
and smoothed bootstrap techniques [5,7,19], have been 
developed that are far superior to well-known "first 
generation" methods, such as rules of thumb [17,23], least 
squares cross-validation [3,15], and biased cross-
validation [4,15]. A lot of authors recommend a "solve-
the-equation" plug-in bandwidth selector as being most 
trustworthy in terms of comprehensive rendering 
[17,18,19,21]. First generation methods for bandwidth 
selection were mostly proposed before 1990. 

4.1. The Empirical Study and Discussions 

A simulation Experiment was conducted to find a 
suitable model to represent bandwidth series for Poisson 
density estimation, by using Matlab software according to 
the following assumptions, 

a. Generate observations from continuous Poisson 
distribution with 𝜆𝜆 = 1.  In simulation 
experiments, it is commonly that the investigator 
take the parameter (s) values (real) around (up 
and down) some critical values to get a wide 
range of conclusions. Here we considered 𝜆𝜆 = 1 
as critical point, so it's estimates surely will be 
near to 1, a little higher (smaller) than 1. This is 
without loss of generality, our aim. 

b. The sample sizes 4 ≤ 𝑛𝑛 ≤ 150. 
c. The Run size value was 𝑘𝑘 = 500. 
d. The bandwidth value h  was calculated according 

to the closing window algorithm. 
e. For reasons of computational efficiency, we use 

the Epanechnikov kernel, 𝐾𝐾(𝑥𝑥) = (3/4) (1 − 𝑥𝑥2), 
|𝑥𝑥| < 1 

f. To determine h , one can use the window closing 
method. This method permits to detect 
progressively about the shape of the density. The 
idea beyond the mechanism of "window closing" 
is to begin with an arbitrary but big h  and 
compute the resulting density estimate. We then 
calculate a further series of density estimates by 
closing the window, i.e. by gradually decreasing 
h . The incipient estimate based on a large h  
will be a very smooth function, but as we 
decrease h , the estimates will gradually display 
more detaile and become more "eccentric" in 
form. By examining the manner in which the 
estimates change as we decrease h , we may be 
able to detect the point at which the smoothing 
has been relaxed "too far", and this will then 
enable us to select a suitable value for bandwidth. 

g. we will compute an empirical values of 
smoothing parameter (bandwidth) h , mean 𝜇𝜇 , 
standard deviation 𝜎𝜎 , interquartile range 𝑄𝑄 , 
skewness 𝑠𝑠𝑘𝑘  and kurtosis 𝑘𝑘𝑟𝑟 . 

The results of simulaion experiment are recorded in 
Table 2. 

Table (2). empirical values of smoothing parameter (bandwidth) ℎ� , mean �̌�𝜇, standard deviation 𝜎𝜎�, interquartile range 𝑄𝑄� , skewness �̌�𝑠𝑘𝑘  and 
kurtosis 𝑘𝑘�𝑟𝑟  
𝑛𝑛 ℎ� �̌�𝜇 𝜎𝜎� 𝑄𝑄�  �̌�𝑠𝑘𝑘  𝑘𝑘�𝑟𝑟  

4 0.235985 0.8772 0.5497 0.7031 0.8664 1.647 
5 0.1344 0.7978 0.5081 0.7292 1.177 2.374 
6 0.25666 0.8571 0.4772 0.6545 0.8445 1.99 
7 0.216244 0.7827 0.4781 0.6643 0.9554 2.33 
8 0.175217 0.7423 0.4571 0.495 1.152 2.786 
9 0.291795 1.099 1.152 0.9381 1.803 4.771 
10 0.257345 1.08 1.088 0.6742 1.956 5.47 
11 0.38594 1.251 1.178 0.9381 1.356 3.317 
12 0.325977 1.244 1.124 0.9325 1.441 3.683 
13 0.475411 1.311 1.103 1.1921 1.254 3.34 
14 0.560527 1.361 1.076 1.5096 1.129 3.196 
15 0.515786 1.311 1.055 1.346 1.23 3.453 
16 0.472587 1.3 1.02 1.3199 1.302 3.741 
17 0.430748 1.266 0.9975 1.1562 1.395 4.024 
18 0.405257 1.281 0.9697 1.1302 1.385 4.156 
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19 0.380526 1.267 0.9443 1.0538 1.459 4.449 
20 0.428974 1.339 0.9745 1.2611 1.207 3.581 
21 0.388909 1.307 0.9609 1.0974 1.278 3.773 
22 0.366488 1.308 0.9378 1.0645 1.307 3.956 
23 0.36626 1.275 0.9304 1.0538 1.36 4.109 
24 0.389239 1.294 0.9148 1.124 1.311 4.095 
25 0.375581 1.294 0.8956 1.0911 1.339 4.273 
26 0.381801 1.318 0.8862 1.1178 1.259 4.146 
27 0.411955 1.387 0.94 1.2813 1.093 3.389 
28 0.431641 1.415 0.9339 1.3228 1.006 3.243 
29 0.426072 1.388 0.9284 1.3295 1.053 3.336 
30 0.418114 1.371 0.9172 1.288 1.105 3.466 
31 0.397222 1.379 0.903 1.2709 1.092 3.525 
32 0.407839 1.411 0.9063 1.3124 0.9853 3.268 
33 0.400562 1.397 0.8956 1.2952 1.032 3.384 
34 0.39331 1.409 0.8847 1.2537 1 3.394 
35 0.385441 1.404 0.872 1.2319 1.03 3.512 
36 0.369776 1.399 0.8599 1.1694 1.059 3.63 
37 0.354016 1.388 0.8505 1.1477 1.1 3.746 
38 0.377685 1.44 0.898 1.2102 1.023 3.307 
39 0.385481 1.456 0.8912 1.2517 0.9758 3.257 
40 0.383991 1.432 0.8923 1.2734 0.9964 3.292 
41 0.392102 1.471 0.9156 1.3149 0.9038 2.96 
42 0.385497 1.474 0.9045 1.2932 0.9058 3.022 
43 0.386045 1.5 0.9101 1.3051 0.827 2.834 
44 0.381994 1.485 0.9047 1.2752 0.8625 2.895 
45 0.376581 1.477 0.8959 1.2633 0.8928 2.974 
46 0.372976 1.492 0.8912 1.2573 0.8474 2.919 
47 0.369719 1.477 0.8873 1.2454 0.8797 2.972 
48 0.364993 1.469 0.8796 1.2335 0.9097 3.046 
49 0.360574 1.46 0.8726 1.2217 0.9402 3.118 
50 0.36185 1.437 0.8792 1.2335 0.9323 3.121 
51 0.3568 1.437 0.8704 1.2216 0.944 3.185 
52 0.357167 1.416 0.8746 1.2218 0.9445 3.193 
53 0.358195 1.394 0.8805 1.2517 0.939 3.195 
54 0.366844 1.427 0.9051 1.2932 0.8821 2.952 
55 0.367869 1.449 0.911 1.2871 0.8193 2.796 
56 0.369822 1.426 0.9192 1.3268 0.8078 2.799 
57 0.367346 1.413 0.9162 1.3405 0.8341 2.838 
58 0.37344 1.442 0.9347 1.3524 0.7813 2.657 
59 0.3723 1.458 0.935 1.4227 0.7335 2.574 
60 0.373231 1.437 0.9405 1.4005 0.736 2.582 
61 0.368912 1.439 0.9327 1.3964 0.7375 2.62 
62 0.364895 1.435 0.9256 1.3524 0.7549 2.671 
63 0.36192 1.426 0.921 1.3347 0.7798 2.714 
64 0.358409 1.42 0.9149 1.3228 0.8014 2.763 
65 0.345426 1.418 0.9078 1.3051 0.8123 2.812 
66 0.351998 1.409 0.9041 1.2932 0.8361 2.852 
67 0.350851 1.395 0.9038 1.3109 0.8537 2.875 
68 0.347493 1.4 0.8979 1.2694 0.8434 2.892 
69 0.3461 1.388 0.8969 1.2871 0.8623 2.918 
70 0.345056 1.375 0.8967 1.2537 0.8785 2.941 
71 0.339948 1.372 0.8907 1.2497 0.8936 2.991 
72 0.333689 1.358 0.8925 1.2084 0.9022 3.004 
73 0.33121 1.346 0.8923 1.2255 0.9175 3.027 
74 0.354472 1.382 0.9391 1.288 0.9769 3.174 
75 0.361197 1.404 0.9517 1.3539 0.9259 2.999 
76 0.357859 1.405 0.9454 1.3124 0.9277 3.033 
77 0.353212 1.404 0.9393 1.2952 0.9385 3.079 
78 0.352394 1.412 0.9358 1.3367 0.9148 3.055 
79 0.350788 1.402 0.934 1.3539 0.9328 3.085 
80 0.347828 1.399 0.9284 1.3124 0.947 3.132 



12 International Journal of Data Envelopment Analysis and *Operations Research*  

 

81 0.3459 1.39 0.9256 1.2952 0.9658 3.168 
82 0.339545 1.392 0.92 1.2537 0.9652 3.197 
83 0.329495 1.388 0.9152 1.2497 0.9819 3.243 
84 0.341927 1.404 0.9216 1.2912 0.9358 3.105 
85 0.340301 1.396 0.9194 1.2871 0.9532 3.137 
86 0.334191 1.395 0.914 1.2456 0.9608 3.176 
87 0.326408 1.385 0.9132 1.2497 0.9748 3.2 
88 0.316542 1.39 0.9088 1.1872 0.9644 3.207 
89 0.306728 1.389 0.9037 1.1831 0.9726 3.247 
90 0.329546 1.395 0.9006 1.2456 0.9534 3.23 
91 0.334203 1.415 0.9153 1.2725 0.9181 3.078 
92 0.332926 1.423 0.9138 1.2989 0.8916 3.037 
93 0.331672 1.415 0.9124 1.3022 0.9069 3.061 
94 0.329783 1.409 0.9091 1.2758 0.9234 3.096 
95 0.32746 1.412 0.9046 1.2725 0.9188 3.114 
96 0.327287 1.423 0.906 1.2989 0.8849 3.037 
97 0.325327 1.418 0.9025 1.2955 0.9003 3.072 
98 0.323319 1.422 0.8987 1.2691 0.8892 3.075 
99 0.321065 1.42 0.8943 1.2547 0.8987 3.111 
100 0.318857 1.419 0.8899 1.2396 0.9085 3.148 
101 0.316712 1.417 0.8857 1.2245 0.9191 3.184 
102 0.316615 1.427 0.8872 1.2404 0.8868 3.109 
103 0.315189 1.433 0.8849 1.2668 0.8679 3.089 
104 0.314643 1.424 0.8851 1.2811 0.8781 3.101 
105 0.317492 1.439 0.8948 1.3075 0.8466 2.982 
106 0.315426 1.441 0.8907 1.2932 0.8452 3.003 
107 0.316015 1.452 0.894 1.3024 0.813 2.919 
108 0.314568 1.447 0.8916 1.2947 0.8276 2.945 
109 0.312686 1.444 0.8879 1.2855 0.8389 2.977 
110 0.310976 1.44 0.8846 1.2778 0.852 3.008 
111 0.31015 1.433 0.8839 1.2668 0.8641 3.024 
112 0.308872 1.428 0.8818 1.2591 0.878 3.049 
113 0.307142 1.425 0.8784 1.2514 0.8899 3.081 
114 0.305486 1.422 0.8752 1.225 0.9022 3.112 
115 0.305741 1.412 0.8775 1.2327 0.9027 3.114 
116 0.303885 1.412 0.8737 1.2176 0.9056 3.14 
117 0.303886 1.403 0.8752 1.2253 0.9092 3.145 
118 0.304168 1.394 0.8775 1.2389 0.909 3.147 
119 0.307747 1.409 0.8893 1.2547 0.8856 3.039 
120 0.309012 1.421 0.8945 1.2811 0.8553 2.947 
121 0.309543 1.411 0.8975 1.2955 0.8527 2.948 
122 0.30856 1.405 0.8961 1.2691 0.865 2.968 
123 0.311276 1.4185 0.9055 1.3178 0.8399 2.872 
124 0.31099 1.4264 0.9061 1.327 0.8154 2.823 
125 0.311404 1.4168 0.9088 1.3311 0.815 2.826 
126 0.30968 1.4177 0.9052 1.3219 0.8153 2.845 
127 0.308036 1.4159 0.9018 1.3229 0.8237 2.871 
128 0.306804 1.4115 0.8996 1.2914 0.8359 2.894 
129 0.305333 1.4086 0.8967 1.2873 0.8466 2.92 
130 0.303609 1.408 0.8933 1.2609 0.8519 2.945 
131 0.302607 1.4033 0.8914 1.2507 0.8639 2.966 
132 0.302135 1.3965 0.8914 1.2499 0.8725 2.977 
133 0.30067 1.399 0.8884 1.2458 0.8671 2.986 
134 0.300076 1.3926 0.888 1.2389 0.8767 2.999 
135 0.29965 1.386 0.8881 1.2423 0.8847 3.01 
136 0.29266 1.384 0.885 1.1912 0.8928 3.036 
137 0.287077 1.377 0.8861 1.1945 0.8967 3.042 
138 0.28676 1.3703 0.8862 1.1515 0.9042 3.053 
139 0.300051 1.3893 0.9111 1.2497 0.9413 3.149 
140 0.3076 1.401 0.9183 1.2648 0.9153 3.054 
141 0.306073 1.4017 0.915 1.2725 0.916 3.073 
142 0.303714 1.401 0.9118 1.2574 0.9218 3.097 
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143 0.303576 1.405 0.9101 1.2725 0.9083 3.083 
144 0.302854 1.4 0.9092 1.2758 0.918 3.098 
145 0.301453 1.3983 0.9063 1.2725 0.9259 3.124 
146 0.30056 1.3937 0.9048 1.2456 0.9363 3.143 
147 0.29488 1.3947 0.9018 1.254 0.9358 3.159 
148 0.28775 1.3923 0.8992 1.1912 0.9452 3.184 
149 0.29873 1.401 0.902968 1.257364 0.9196 3.107 
150 0.298 1.3966 0.90182 1.24814 0.9295 3.124 
Now, we will analyze and discuss the valuable contents 

of table (2), 
1. It is easily to show that the model that represents 

bandwidth ℎ as a function of mean 𝜇𝜇 , standard 
deviation 𝜎𝜎, interquartile range 𝑄𝑄 and sample size 
𝑛𝑛 is, 

 
0.67 1.557 670 1557

1000
0.728 0.264 728 264

Q Qh
n n

σ σ
µ µ

= =  

for practical applications 𝜇𝜇 , 𝜎𝜎  and 𝑄𝑄  can be 
replaced respectively by sample mean 𝑋𝑋�, sample 
standard deviation 𝑠𝑠, sample interquartile range 𝑞𝑞. 

Following some notices and indicators related with the 
above model, 

a. 𝑋𝑋� can be calculated from equation (9) as follows, 

 ( )1 1
1 1

1 1 1

1 ( ) 

x jn n

DP ix xj j
l j i

X X y y Ln Un λ
− −
+ +

= = =
= + +∑ ∑∑  

Then the model will be in terms of parameter 𝜆𝜆 also. 
b. The model perfectly fits the data by the 

coefficient of determination, 𝑅𝑅2 = 0.989. 
c. The ANOVA table is, 
 

Source Sum of Squares DF Mean Square F-Ratio 
Model 176.409 4 44.1022 3119.88 
Error 2.02143 143 0.0141359  
Total 178.430 147   

 
It is clear that the model is significant since F calculated 

is equal to 3119.88 which is more than F tabulated under 
all common significant levels 0.01, 0.05 and 0.10, where 
𝐹𝐹4,143,0.01 = 3.46, 𝐹𝐹4,143,0.05 = 2.44 and 𝐹𝐹4,143,0.10 = 1.99. 

The mean sruare error is 𝑠𝑠𝑒𝑒2 = 𝑀𝑀𝐿𝐿𝐸𝐸 = 0.014136 which 
is mean that the model is quite suitable. 

d. The above model is developed one for 
Silverman’s rule of thumb [17,18] which is 
ℎ𝐿𝐿𝑅𝑅𝑆𝑆𝑆𝑆 = 0.9 𝐴𝐴 𝑛𝑛−1/5  where 𝐴𝐴 = 𝑀𝑀𝑖𝑖𝑛𝑛{𝑠𝑠, 𝑞𝑞/1.34}. 
Actually, a lot of computer packages used this 
rule to determine h, so it is very popular and 
reliable rule. 

2. Among many of time series models, an AR(1) 
model is the best one to represent the bandwidth 
h , as follows, 

 ( ) ( ) 0.99375
1 10. 3 5 .99 7t t t tLn h Ln h h h− −= → =  

Following some notices and indicators related with the 
above model, 

a. We chose the above model as the best one 
according to Akaike criterion and the behaviour 
of autocorrelation function and partial 
autocorrelation function (see Figure 2). 

b. Estimated white noise variance = 0.0249264 with 
146 degrees of freedom. 

c. For diagnostic checking of residuals, 
portmanteau chi-square test statistic on first 20 
residual autocorrelations = 20.9827 with 
probability of a larger value given white noise = 
0.337758. Since 0.337758 > 0.1, 0.05 and 0.01 
( the common significant levels) then the series 
of residuals over time are random and 
independent, so it has no model (see Figure 3). 

d. Table 3 contains the Pessimistic, optimistic and 
usual forecasts for bandwidth series. Figure 1 
represents these forecasts and the original series 
of bandwidth. 

 
Figure 1. bandwidth series and it's Pessimistic, optimistic and usual forecasts 



14 International Journal of Data Envelopment Analysis and *Operations Research*  

 

 
Figure 2. autocorrelation function (ACF) and partial autocorrelation function (PACF) for bandwidth series 

 
Figure 3. autocorrelation function (ACF) and partial autocorrelation function (PACF) for residuals series 

Table 3. Pessimistic, optimistic and usual forecasts 
Optimistic forecasts usual forecasts Pessimistic forecasts 

0.410247 0.300265 0.219766 
0.46974 0.302531 0.194843 
0.52158 0.304803 0.178121 

0.569905 0.307076 0.165458 
0.616277 0.30935 0.155284 
0.66148 0.311626 0.146811 

0.705965 0.31391 0.13958 
0.750019 0.316191 0.133299 
0.793835 0.318475 0.127768 
0.837549 0.320761 0.122844 
0.88126 0.323049 0.118423 
0.92504 0.325341 0.114425 

0.968948 0.327633 0.110784 
1.013024 0.329928 0.107453 
1.057304 0.332223 0.10439 
1.101812 0.33452 0.101564 
1.146569 0.336819 0.098945 
1.191591 0.339117 0.096511 
1.236891 0.341421 0.094242 
1.282478 0.343723 0.092122 
1.328357 0.346023 0.090136 
1.374537 0.348328 0.088271 
1.421019 0.350631 0.086517 
1.467805 0.352939 0.084864 

5. Summary and Conclusions 
In view of the great importance of the Poisson 

distribution in statistical analysis, the continuous Poisson 
distribution (CPD) is considered here. For CPD, Different 
methods to estimate continuous Poisson distribution 
parameter λ  are studied, Maximum Likelihood estimator, 
Moments estimator, Percentile estimator, least square 
estimator and weighted least square estimator. An 
empirical study was conducted to compare among these 
methods. It seemed to us that the Percentile estimator is 

the best one for small moderate whereas the maximum 
likelihood estimator is the best to estimate the parameter 
for moderate and large samples. Other empirical 
experiments are conducted to build a model for bandwidth 
parameter which is used for Poisson density estimation. 
Two models we obtained to represent bandwidth with 
high quality properties. 
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