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Abstract—Recent work has shown that network protocols
which rely on precisely-timed concurrent transmissions can
achieve reliable, energy-efficient, and conceptually simple net-
work flooding. While these multi-transmitter schemes work well,
they require all nodes in the network to forward every data
packet, which has inherent inefficiencies for non-flooding traffic
patterns (where not all nodes need to receive the data). In this
work, we formalize the concept of the “useful” forwarder set
for point-to-point transmissions in low power multi-transmitter
networks, those nodes which help forward data to the destination.
We present a mechanism for approximating membership in this
set based on simple heuristics. Incorporating forwarder selection
on our 66-node testbed reduced radio duty cycle by 30% and
increased throughput by 49% relative to concurrent flooding
while preserving a 99.4% end-to-end packet reception ratio under
the collection traffic pattern. We envision forwarder selection as
a fundamental task in an efficient multi-transmitter networking
stack. This work demonstrates that adding forwarder selection
can improve energy efficiency and throughput while providing
similar end-to-end packet delivery rates to flooding.

I. INTRODUCTION

Glossy [9], Low-power Wireless Bus (LWB) [8], Flash
Flooding [13], and Insteon [15] represent examples in an
emerging family of multihop wireless sensor network (WSN)
communication protocols. These systems leverage a combi-
nation of non-destructive concurrent transmissions and radio
capture effect [11], [22] to perform fast network floods that
reach all nodes with high probability: every node receiving
a packet rebroadcasts it at precisely the same time, reducing
destructive interference. This approach, which we refer to as
multi-transmitter networking, carries several key benefits. In
addition to the high yield, good throughput, and low energy
consumption demonstrated in LWB, these methods require
little routing state to work. This makes them suitable for
networks with high degrees of node mobility, and may help
in challenging environments where existing routing methods
struggle to find high quality links.

Despite these benefits, it is obvious that not every node
needs to be involved in every non-flood data transfer (collec-
tion, point to point communication, etc). In collection, a node
that is adjacent to the data sink should not need assistance
from the whole network to deliver its packets, and a node
which always receives packets after the sink cannot help other
nodes, to cite two simple examples. If we can reduce the set
of nodes involved in a transfer, then non-forwarders can turn
their radios off to save energy. Furthermore, if the diameter
of the forwarder set is smaller than that of the network, this
information can be used to set inter-packet spacing and thereby

increase throughput without introducing collisions. The goal of
this work is to solve the problem of forwarder selection in this
context and demonstrate its benefits. By introducing a better
network primitive than flooding, we advance the state of the
art in multi-transmitter systems.

To this end, this paper makes four contributions: (1)
We formally define forwarder selection in multi-transmitter
networks. (2) We propose a forwarder-selection protocol, the
first of its kind of which we are aware. (3) We describe the first
TinyOS implementation of a network stack based on precisely-
timed non-destructive concurrent transmissions, which we call
CX (Concurrent Transmissions), and (4) we evaluate how our
forwarder selection mechanism, CXFS, improves performance
over simple flooding in this system.

Under CX, all communication takes place in the form of
multi-transmitter floods. Through the use of a hop counter in
each packet, nodes learn their relative distances to each other.
The hop count information allows nodes to estimate whether
they are between a source and destination for a given transfer.
We address the inherent unreliability of hop-count and use this
as the basis for our forwarder-selection method, which keeps
nodes which are between the source and destination active
while allowing the rest of the network to sleep.

Results from our 66-node indoor testbed show that
forwarder-selection reduces duty cycle by 30% on average
over simple concurrent flooding while maintaining an average
packet reception ratio (PRR) of 99.4%. In the same setting,
nodes increase their throughput by 49% on average.

The paper has six more sections. We present related work
in Section II and define the task of forwarder selection in
Section III. Section IV describes the CX forwarder selection
protocol, and section V describes the CX network stack and
some key implementation details. Section VI presents results
from our testbed. We conclude in Section VII with a summary.

II. RELATED WORK

Concurrent transmissions have been studied extensively in
the context of wireless sensor networks [13], [16]. However,
the bulk of this work relates to the capture effect, an artifact
of wireless receiver design that allows radios to lock onto and
successfully decode packets in the presence of considerable
interference from other packets as long as the signal-to-noise
ratio is high enough. While capture effect may benefit CX, we
do not rely on it for successful packet receptions.

The research community has focused less on concurrent
transmissions in the form of radio signals interfering non-



destructively, mainly because the timing required to perform
non-destructive interference is considered difficult to achieve
on resource-constrained devices. Note that non-destructive
concurrent transmissions are different from beamforming and
Multiple-Input Multiple-Output (MIMO) where antenna arrays
at the transmitter and/or receiver are used to generate signals
that interfere constructively at some desired angles.

Early work using the principle of non-destructive interfer-
ence has primarily relied on the “free” transmission synchro-
nization provided by hardware-generated acknowledgments
from IEEE 802.15.4-compliant radios. Dutta et al. [7] first used
these acknowledgments to efficiently wake up a large network
of nodes. The same principle has been applied to medium
contention and arbitration in receiver-initiated MAC protocols
such as A-MAC [6] and Flip-MAC [3]. Strawman [14] demon-
strates that even destructive radio interference can be a valuable
primitive in low-power networks, and works without requiring
precise transmission timing.

By taking full control of the MCU on the TelosB during
packet reception, Ferrari et al. succeeded in generating non-
destructive concurrent transmissions using a software-based
approach, and used this to build a highly efficient network
flooding protocol (Glossy) with microsecond time synchro-
nization [9] on the Contiki embedded operating system [5].
While implementation details are not widely available, In-
steon [15] is a commercial product which appears to use a
network protocol which is very similar to Glossy. Our CX
stack enables Glossy-type flooding in TinyOS [12], though it
achieves this by using our hardware platform’s high-precision
timer/capture module rather than deterministic execution times.

Ferrari et al. later added a scheduler on top of the Glossy
flooding protocol to construct the Low-power Wireless Bus
(LWB) [8], a virtual one-hop network. In LWB, a master node
in the network assembles and disseminates a TDMA schedule
based on bandwidth requests by the nodes in the network. Our
work is focused on the performance of the network protocol
(not the scheduler), though LWB demonstrates that multi-
transmitter networking protocols are practical and effective
building blocks for real systems.

More recently, Wang et al. studied the scalability of Glossy-
like flooding protocols and found that time synchronization
errors (for scheduling concurrent transmissions) could accu-
mulate over each hop and lead to destructive interference as
the network scales [21]. In response, they proposed a flooding
protocol which limits the number of forwarders to reduce the
timing errors. Nevertheless, this study was purely based on
analytical models of baseband wireless communications, and
did not consider the effects of carrier wave frequency/phase
offset or model the radio hardware behaviors such as symbol
clock and phase recovery. The proposed flooding protocol
further assumes that the geographical locations of all nodes are
known, and uses the simple unit-disk communication model.
Under these assumptions, the simulation results indicate that
this protocol can be more scalable than Glossy.

III. FORWARDER SELECTION

Our overall goal in this work is to reduce the nodes
involved in forwarding data to those that do useful work, while
still preserving good connectivity. In this section, we introduce
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Fig. 1. Examples of minimum (Fmin), maximum (Fmax), and Reduced-
Routeless (FRR) forwarder sets for a 3×3 grid. All edges have cost 1.

the forwarder set concept and describe multi-transmitter flood,
standard single-path, and our Reduced Routeless forwarder sets
in formal terms. Section IV describes how we approximate the
reduced-routeless forwarder set in real-world settings.

A. Forwarder sets: Current Approaches

For the purposes of this section, we treat a wireless network
as a directed graph G with vertices for each communication
node and edges for each wireless link (having an associated
packet reception ratio). We further assume that loss events
are independent (e.g., no external interference). Under the
concurrent communications paradigm [9], data transmissions
take place in discrete communication rounds: transmissions
of the same data in the same communication round are non-
interfering. If a set of nodes S sends the same data packet at
the same time, any node in the union of the adjacency sets
of every node s ∈ S successfully receives the packet with a
probability determined by the union of packet reception ratios
on the adjacent edges. In reality, synchronization errors and
other effects may violate this model, though it remains useful
for the purpose of explanation.

In this framework, a “valid” forwarder set from source s to
destination d is any set of nodes F for which the subgraph of G
consisting of nodes in F connects s to d with high probability
(i.e. good end-to-end PRR).

1) Single-Path Routing: Single-path routing protocols ef-
fectively approximate some minimal forwarder set, Fmin(s, d),
for each (source, destination) pair which consists only of the
nodes on a single minimum cost path between source s and
destination d. Path cost in this context is defined as the sum
of link costs using metrics such as ETX [4]. In Figure 1, {e},
{c}, and {g} would all fit the definition of Fmin.

Even under perfect network conditions, single-path routing
methods require coordination between nodes to estimate link
metrics and calculate end-to-end paths. Nevertheless, when
properly executed, such protocols have been shown to be very
efficient, both in terms of energy and channel utilization [10].

On the other hand, single-path routing protocols can have
difficulty adapting to variable link conditions, requiring either
agile link quality estimation, reliance on conservative links, or
a combination of the two. Such routing protocols can also
experience periods of packet loss when previously-reliable
routes break (e.g., due to node failures).

2) Multi-Transmitter Flooding: Multi-transmitter flooding
selects the maximum forwarder set Fmax: every node in the
network. The validity condition is trivially satisfied for this set



(as long as some reliable end-to-end path exists between s and
d anywhere in the original network). Figure 1 illustrates the
difference between Fmin and Fmax.

In multi-transmitter floods, many more nodes are used for
forwarding than is strictly necessary. Under idealized network
conditions (e.g. no external interference), any node in Fmax

which does not lie on a minimum cost path between s and
d is not useful: if they were removed from Fmax, d would
still receive a packet in the same number of communication
rounds and the inclusion of these extra nodes is a source of
unnecessary energy expenditure. For the example in Figure 1,
{c, e, g} all lie on a minimum cost path while {a, b, f, h} are
the extra nodes.

Furthermore, in order to prevent interference, a source node
cannot start a new flood until the previous one has completed.
When the entire network participates in flooding, this means
that a node has to wait until a number of communication
rounds (at least) equal to the diameter of the network have
elapsed before it transmits without fear of collision.

In contrast to single-path routing, protocols that use multi-
transmitter flooding have been shown to work well even in the
face of link asymmetry and dynamism. Since this approach
does not need to adapt routing state to link conditions, and
since no bidirectional communication is required, as long as
there is some reliable path from s to d at the point in time
when the flood begins, d will successfully receive the packet.

B. Reduced-Routeless Forwarder Sets

Between these extremes, we define a Reduced-Routeless
forwarder set FRR(s, d), which consists of all nodes f on any
minimum cost path between s and d.

By the triangle inequality, a node f is a member of
FRR(s, d) if and only if

dsf + dfd = dsd (1)

where dij denotes the minimum distance, as defined by a
cumulative metric (e.g., ETX, hop count), between i and j.

In contrast to single-path routing, each node f can test
whether f ∈ FRR(s, d) without exchanging routing informa-
tion with non-endpoint nodes: it only needs to have the end-
to-end cost and its cost relative to each end. In other words,
FRR is similar to Fmax in protocol design (thus the word
“routeless”) but is closer to Fmin in its goals.

Although FRR(s, d) still includes more nodes than
Fmin(s, d) for any network with more than one minimum cost
path between s and d, it is also smaller than Fmax as long as
not all paths between s and d are minimum cost paths. Using
FRR instead of Fmax should therefore reduce duty cycle (by
decreasing the number of participating nodes) and increase
throughput (by decreasing the diameter of the forwarder set
and reducing inter-packet spacing) while retaining much of
the path redundancy afforded by flooding.

However, if propagation patterns are not relatively stable
(e.g. due to interference between concurrent senders or varying
link conditions), then a node may remove itself from the for-
warder set when it would be useful, or add itself to a forwarder
set when it may be redundant. In the next section, we discuss
several practical approaches to handling such variability.

(a) CX forwarder selection for point-to-point traffic. In Burst Setup, s
floods a message to inform potential forwarders w and the destination d
of their distance from the source (dsw and dsd, respectively). In Setup
Acknowledgment, d floods a message which informs the network of
dsd and dwd (assumed from ddw). In Data Forwarding, w forwards
messages only if dsw + dwd ≤ dsd.

(b) CX forwarder selection for collection traffic. The Setup Acknowl-
edgment phase of the general point-to-point process is replaced by the
periodic schedule announcements from the data sink, d.

Fig. 2. CX forwarder selection process. Dotted lines indicate multi-hop paths,
boldface distances are directly observed, non-boldface distances are reported
in packet bodies.

IV. CX FORWARDER SELECTION PROTOCOL

The CX (Concurrent Transmissions) multi-transmitter net-
work stack allows nodes to approximate their membership in
FRR, using these results to duty cycle their radios and set inter-
packet spacing. Next, we provide details on the protocol used
to select forwarders, CXFS (CX Forwarder Selection). Each
exchange in the setup process uses a basic multi-transmitter
flood, whose implementation is described in section V and
which is evaluated separately in VI-A.

A. CXFS Operation

In order for a node w to decide whether it should forward or
not, it must learn its distance from the source, its distance from
the destination, and the distance from source to destination
(dsw, dwd, and dsd, respectively).

For point-to-point transmissions, Figure 2(a) shows the
steps in CXFS. The source s sends a Burst Setup packet, which
allows each potential forwarder w to measure dsw and the
destination d to measure dsd. In the Setup Acknowledgment
phase, d responds with a packet containing dsd in its body,
which allows w to obtain dsd and to measure dwd (under the
simplifying assumption that dwd = ddw). w now has enough
information to make forwarding decisions.

In the case of data collection in CX, the network root
both sends out periodic TDMA schedule packets and is the
destination for all data traffic. Figure 2(b) shows how this



can be leveraged. The schedule packets provide ddw to each
potential forwarder and dds to each potential source. The Burst
Setup packet now contains dsd and allows nodes to measure
dsw (again, under the assumption of symmetric distances). w
can now make forwarding decisions for (s, d) packets while
only requiring a single end-to-end communication in s’s time
slot.

This decreases the setup overhead at the cost of increasing
the staleness of distance information. Our evaluation did not
indicate problems resulting from this. In the rest of this work,
we will restrict the rest of our discussion to the collection case.

In either setting, node w can compute its membership
in FRR(s, d). In the Packet Forwarding phase, nodes not in
FRR(s, d) turn off their radios, and s sends packets with inter-
packet spacing determined by dsd.

B. Hop-count as Multi-transmitter distance metric

The previous discussion has used the concept of “distance”
in multi-transmitter networks without defining it. In this sub-
section, we describe the motivation behind our use of hop-
count as the basis for our distance metric and how we make
the most of it.

1) “You can’t seriously be using hop count, can you?”:
While hop-count is a notoriously unreliable metric in the
single-transmitter networking domain, it possesses several key
characteristics which make it the best choice for CXFS.

First, hop-count obeys the triangle inequality: a node which
is 4 hops from the source is on no shortest path to a node which
is 3 hops from the source. Any distance metric which cannot
be applied to the definition of FRR in equation 1 will not work
in CXFS.

Second, in order for concurrent transmissions to be reliable,
simultaneously transmitted content must be identical. In a
sense, intermediate nodes cannot embed information in packets
that is unique to them, and forwarding decisions must be made
based on information that is common to all predecessors of
a forwarder. Nodes cannot tell, for instance, which sender(s)
participated in transmitting a packet that they received. Hop-
count can convey meaningful distance information without
requiring intermediate nodes to send conflicting data.

Finally, the distance metric must make sense in the multi-
transmitter networking context. Putting aside the first two char-
acteristics, traditional physical-layer metrics (such as RSSI and
LQI) are subject to a range of effects in the multi-transmitter
domain which may limit their usefulness. For instance, phase
differences between two transmitters lead to wide variability
in RSSI measurements at receivers, depending on whether the
transmissions interfere constructively or destructively. We view
the behavior and usefulness of physical layer metrics in the
multi-transmitter setting as a topic for future research.

Rather than spurn hop-count for its faults, we choose to
embrace it for its virtues.

2) Hop-count variability in multi-transmitter flooding:
Previous work in single-path routing protocols has repeatedly
shown that link quality can vary rapidly over time [17].
Furthermore, links can be asymmetric [2]. Thus, we can
expect that the distance measurements in the multi-transmitter
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Fig. 3. Hop-count distance measurements at node d when node s sends
concurrent floods back-to-back. Tests were spaced several hours apart, but
concatenated to show long-term variation. Gaps separate each test run above.

environment are similarly ephemeral and have to be updated
over time, in order to provide accurate distance estimation.

Indeed, the results obtained using multi-transmitter floods
on our testbed (described in Section VI) may show con-
siderable long-term and short-term fluctuations in distance
measurements for some nodes, as Figure 3 illustrates. Since
FRR is based on these hop-count measurements, the more
accurately that we estimate distance and the better we handle
its variability, the better our estimate of FRR will be.

Estimating distance is analogous to link estimation and
route discovery in single-path routing protocols, and faces
the same challenges with regard to efficient neighborhood
and routing table maintenance. We seek a distance estimation
strategy that is lightweight, yet accurate enough to provide a
reliable and compact forwarder set. We propose three strategies
to do this: we either use the last-observed hop-count (termed
“Last”), the average of observed hop-counts, or the maximum
of observed hop-counts.

“Last” is easy to implement and requires basically no rout-
ing state, but may behave poorly as distances vary. “Average”
may prevent nodes from responding to rapid changes, but will
handle some degree of variability. “Max” will give the most
inclusive forwarder sets, making it more reliable but also less
power efficient. Additionally, by conservatively estimating dis-
tances between nodes, this strategy has the potential to increase
inter-packet spacing by overreacting to rare bad transmissions.
While “Last” is usable on networks of all sizes and for all
traffic patterns, under the collection traffic pattern it is certainly
feasible to maintain an average or maximum hop-count relative
to the root, and in many real-world networks it is feasible to
maintain this for each node in the network.

3) Distance Fluctuation Boundary: Orthogonal to the dif-
ferent distance estimation strategies, we add a boundary zone
to the shortest-path distance in Equation (1) to account for
estimation errors, short-term variability, and the assumption of
distance symmetry.

By adding the boundary zone width b and using d̂ to denote
the estimated distance and assumption of distance symmetry,



FRR(s, d)’s definition from Equation (1) becomes:

FRR(s, d) = {f : d̂sf + d̂fd ≤ d̂sd + b} (2)

By increasing b, we include more nodes in the forwarder
set FRR(s, d), up to and including using the entire network.
Increasing the size of the boundary zone aids end-to-end packet
reception by both increasing the diversity of paths that a packet
can travel (mitigating the possibility of selecting a forwarder
set that lacks reliable links) and adding an error margin to the
distance estimations.

As the evaluation in Section VI shows, even with these
simple approximations and strategies CX offers significant
improvements to the state of the art.

V. CX SOFTWARE DESIGN AND IMPLEMENTATION

A. Software Design

We implemented our CX network stack in TinyOS 2.1 with
CXFS based on the distance metrics, estimation strategies, and
boundary zone described above. Figure 4 shows a high-level
view of the software architecture.

The CX link layer maintains transmission scheduling in-
formation. Time is divided into fixed-length frames (on the
order of a packet-length in duration), and these are grouped
into fixed-size slots (on the order of 10’s of frames). Each
node in the network is assigned a slot, and this schedule is
distributed by a single root node. Nodes turn their radios on
slightly ahead of each frame start, and keep their radios on until
either a packet is received or a fixed 1 ms timeout elapses.

When a node rebroadcasts a packet, it does so at the
next frame start after incrementing its hop-count field and
decrementing its time-to-live (TTL) counter. Packets with TTL
of 0 are dropped.

The CX network layer provides two primitives, Simple
Flood and RR Flood. Under a Simple Flood, packets have
their TTL initially set to the network diameter, and a node
always rebroadcasts a packet with a non-zero TTL. In an RR
flood, packets have their TTL initially set to d̂sd + b. The RR
Flood component is responsible for the forwarding decisions in
CXFS: nodes only rebroadcast packets for which the inequality
in Equation (2) holds.

CX provides two transport layer protocols on top of these,
Flood Burst and RR Burst. These control packet queuing
and spacing (starting the next transmission after the current
packet’s TTL has expired). Nodes queue packets until some
threshold is exceeded, and then they transfer as many as
they can in their next slot. Broadcast packets are handled by
the Flood Burst transport protocol, while unicast packets are
handled by the RR Burst protocol.

RR Burst implements the CXFS protocol outlined in Fig-
ure 2(b) and described in Section IV-A. The setup phase uses
Simple Floods, and the packet forwarding phase uses RR
Floods. In a Flood Burst, packets are simply sent one after
the other via Simple Flood, and there is no Burst Setup phase.

Nodes turn their radios off if they determine that they are
not a forwarder for the current slot. If a node receives no
packets in the first N frames (where N is an estimate of the

network diameter), it assumes that the slot owner did not have
any packets to send and turns its radio off until the next slot
starts. Likewise, nodes turn their radios off until the next slot
if they determine they are not in FRR(s, d) during the Burst
Setup.

The scheduler sits above the transport protocols. We use a
simple static TDMA schedule (with equal-length slots) in this
work, as our focus is on the performance of the forwarder
selection and network layers. The network root (also the
destination for collection traffic) sends out the TDMA schedule
once per cycle, dictating how long each frame is, how many
frames are in each node’s slot, and how many slots are in the
entire cycle. The schedule layer is where much of the work
reported in LWB [8] would reside in this design.

Applications use the standard AMSend and AMReceive
interfaces, allowing existing systems to easily switch over to
CX.

We note that if applications require mobility, multiple
sink support, minimal state-maintenance, or high interference-
resistance, they can set a compiler flag to use Simple Flood
Burst for both unicast and broadcast data.

B. Platform-Specific Implementation details

A detailed discussion of the network stack implementation
is beyond the scope of this paper, but there are a few items
that may be of interest to readers.

Our platform, the “Bacon” mote, is based on TI’s
CC430 [19] SoC, combining a 900MHz radio core (almost
equivalent to a CC1101 [20] ) and an MSP430MCU.

Glossy achieved good transmission synchronization
through deterministic execution and forwarding times across
motes, while our system can leverage a fast and reliable 26
MHz radio crystal for capturing and scheduling events. We
clock one of the timer modules from the radio crystal, and
capture the preamble RX/TX interrupt from the radio core
with it. If the packet is to be forwarded, the mote sets a timer
compare interrupt for one frame-length from the capture,
loads the packet into the radio’s TX buffer, and puts the radio
into the FSTXON state (frequency synthesizer running and
ready to transmit). When the compare interrupt is raised, we
issue the command to begin transmission. The CC430 can
be run with a 16MHz main clock, which keeps the potential
interrupt-handling jitter within the tolerances dictated by
the radio symbol rate. By using a relatively long frame
length (∼40 ms), the radio stack has considerable flexibility
in making forwarding decisions, interleaving non-radio
operations, and logging performance data to the testbed.

We found significant differences in PRR between the
various stock radio settings provided by Texas Instruments,
and ultimately chose a 125Kb/s setting which provided the
best balance of reliability and speed. Since the CC430 lacks
the hardware support for forward error correction (FEC) found
on other radios (e.g., CC2420 [18]) we implemented FEC
in software to make transmissions more robust at low-to-
moderate bit error rates. Combining our implementation of a
Hamming(7,4) [1] encoding and a 125Kbit/s symbol rate (2-
frequency-shift-keying modulation), this gives us an effective
data rate of 62.5Kbit/s, one quarter that of the CC2420. In the



Fig. 4. CX network stack design, with rough equivalents in LWB [8]. This work focuses on the bolded duties.

Fig. 5. Single-transmitter connectivity graph: links shown have PRR > 95%
at -6 dBm output power, with one node transmitting at a time. Labels indicate
distance from root node (marked with a star). Darker colors represent farther
distances, with black being 5 hops and white being 1 hop. The area shown is
roughly 50 m x 50 m.

future, we would like to find 250K (or higher) settings which
work well, and we would like to use a more efficient coding
scheme.

VI. EVALUATION

We evaluate CXFS on our wireless testbed consisting of 66
Bacon motes connected to a testbed server via TMote Connect
NSLUs. Figure 5 shows a map of this testbed. The network is
physically spread over a roughly 50 m x 50 m office area,
though the large open space at the top of the map forces
the network to be roughly 6 hops in diameter at an output

power of -6 dBm (in the single-transmitter connectivity graph,
based on offline measurements of PRR when nodes take turns
transmitting non-concurrently).

Unless otherwise noted, all data presented is derived from
aggregating over at least 3 test runs, and each test was run
for one hour. Nodes generate one packet per minute and use
a slot length of 40 frames for all tests. Each frame is roughly
40 ms in length, and nodes switch from RX to Idle if no
packet is received within the first 1 ms of a frame start. Radio
duty-cycles were obtained by recording the time of each radio
state-change interrupt with a 6.5MHz timer driven by the radio
crystal. The radio was considered to be active when it was in
any of the RX, TX, or FSTXON states. Nodes used -6 dBm
output power for all tests unless otherwise noted, though we
do validate performance at several TX powers to confirm some
degree of topology independence.

A. Baseline Performance

In this work, our goal is to evaluate the benefits that
forwarder selection provides over simple flooding. Rather than
port the state-of-the-art to our platform and operating system,
we will compare against the CX implementation of simple
flooding. In this section, we justify our implementation as a
fair baseline by showing that it achieves reasonable timing
precision, reliability, and duty cycle, not by showing that it is
categorically better than Glossy.

1) TX Timing Microbenchmark: Figure 6(a) shows the
degree of timing precision we are able to achieve between two
forwarders (as measured by recording the difference between
the forwarders’ start-frame-delimiter indicator pins on a 24
MHz logic analyer). The 91st percentile of the difference
between the two transmitters’ SFD signals is 0.5416 µs,
somewhat worse than the 0.5µs reported in Glossy [9] with 30
transmitters. We note that the driver of multi-transmitter timing
requirements is the radio’s chip rate: our radio’s 125 KB/s sym-
bol rate should be compared against the CC2420’s 2 MChip/s
chip rate due to the CC430’s lack of DSSS. In a separate
experiment, we measured a bit error rate of 1.18% when
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(c) Distribution of duty cycles when using Flood
Burst transport on our testbed.

Fig. 6. Baseline measurements of CX Flooding performance.

two nodes transmit 1 µs apart with no capture effect.1 Even
the worst synchronization errors we measured are within the
FEC’s operating limits, and we expect to see lower bit error
rates when capture effect is present. This level of precision is
adequate to support multi-transmitter flooding.

2) Simple Flood Performance: To demonstrate that the
above results lead to reliable flooding, we perform a series of
tests to evaluate Flood Burst on its own. In these tests, nodes
generate a packet once every 60 seconds, and initiate a Flood
Burst when they have queued 10 packets. Figure 6(b) shows
the distribution of packet reception ratios between pairs of
nodes in the network: the mean PRR was 99.5%. While Glossy
used parameter “N,” for the number of rebroadcasts that each
node performed upon receiving a packet, we found that our
implementation provided high PRR with a single broadcast.

Figure 6(c) shows the distribution of duty cycles across the
network, with mean/median of roughly 2.8%. To put this in
perspective, the closest comparison we can make is against the
FlockLab results reported in LWB [8]: their test used 54 nodes,
a 120 second inter-packet interval, and a 15 byte payload vs.
our 66 nodes, 60 second IPI, and 12 byte payload. They report
a 0.43% duty cycle for the resulting 6.75 B/s aggregate load,
while our 2.8% figure corresponds to a 12.1 B/s aggregate
load. When one considers that our slower radio and software
encoding cuts our effective transmission speed to 1/4 of the
CC2420’s, this indicates that our implementation is roughly on
par with the state of the art in terms of energy-efficiency.

We acknowledge that this comparison elides some of the
complicating factors, but remind the readers that our goal is
not to show that our implementation of flooding is better than
Glossy, but to show that it works correctly on our platform
and is a fair baseline for demonstrating forwarder selection.

B. RR Burst vs. Flood Burst

The goals of this work are to reduce network duty cycle
for data transmissions which need only travel through part of
the network, and to use distance estimates to improve inter-
packet spacing. This section focuses on this impact and keeps
a simple fixed TDMA schedule as described above.

As a quick sanity-check, Figure 7 shows how often nodes
join FRR(s, d) for an example pair of s and d nodes and we

1Two transmitters were connected to the receiver via a wired connection.
Variable attenuators equalized their RSSI at the receiver, and their transmis-
sions are triggered with GPIO edge interrupts of controlled delay for this
experiment.
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Fig. 8. Mean of observed distances from the sink for each node at several
TX power settings: each column shows results for the same node.

indeed observe that nodes physically between the source and
destination are the most likely to participate. However, one can
also clearly see that some nodes outside of the geometrically
shortest path participate with high probability, and others
clearly on the shortest path participate with low probability
(due to non-heterogeneity of links, variability, etc.).

To quantify this result, we use the RR Burst protocol (with
the “Average” metric, boundary width 2) to transfer data from
all nodes to the sink and adjust the radio transmission power
to vary the network depth and topology. Figure 8 shows how
node distances change under different TX powers to give a
sense of our testbed’s size.

In order to find the relation between where traffic originates
and what impact this has on the duty cycle across the network,
we first calculate the average duty cycle in each slot. Since
each slot belongs to a unique node, this duty cycle is an
indicator for a single node’s impact on the rest of the network.
In figure 9 we show the average network duty cycle for each
node’s slot as a function of the slot owner’s distance to the
root at three different transmission powers.

The same trend is visible at all tested transmission powers:
slots belonging to nodes close to the sink (having low depth)
contribute less to network duty cycle than nodes far from the
sink. Additionally, the sparser the network is, the less impact
a node at a given depth has on the rest of the network. This
makes sense: all other things being equal, a node at depth n
will have fewer nodes between itself and the root in a sparse



(a) Participation frequency for a node at moderate distance. (b) Participation frequency for a more distant node.

Fig. 7. Heatmaps showing frequency of joining FRR(s, d) for source nodes at different distances from root. Dark colors represent higher frequencies, with
black being 100% and white being 0%. Nodes used average distance with b = 0 to determine membership in FRR.
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Fig. 9. Duty cycle as a function of source-node distance. Each point corresponds to a single node’s allocated slot. The X-value indicates the distance of the
source node from the sink, the Y-value indicates the average duty cycle across the network during that node’s slot.

network than in a comparable network of higher density.

We note that the duty cycles in Figure 9 are for each
individual slot and do not include inactive slots where the
whole network is asleep. Since the duty cycles in Figure 6(c)
also include inactive slots, a direct comparison between the
two figures is not possible. However, when we calculate the
overall duty cycles in these tests, we find that at -6dBm, we
see a 30% improvement in the average network duty cycle
(25% at 0 dBm, 20% at -12 dBm).

Figure 10 shows each node’s normalized throughput as a
function of distance to the root at the three different trans-
mission powers. This flood throughput is computed offline by
assuming the maximum observed hop-count is used for flood
packet spacing: in practice, most network designers will not
know this ahead of time and will conservatively set the flood
TTL to some estimate of the network diameter (further hurting
flood throughput). Under CX, only the setup packets of RR
Burst transmissions are affected by a conservative diameter
estimate. The figure shows that nodes close to the sink can
indeed use their estimate of dsd to increase their throughput.
On our testbed, this results in an average throughput increase
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Fig. 10. Per-node throughput as a function of source node distance. These
results are normalized to flood throughput (1.0 = same as flood, > 1.0 =
higher throughput than flood).
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Fig. 11. Impact of distance estimation strategy on PRR and duty cycle. All
tests conducted using boundary width of 0.

of 49% when nodes transmit at -6 dBm (31% at 0 dBm, and
28% at -12 dBm).

Nodes at the edge of the network will always see worse
throughput under RR Burst than Flood Burst: they have to pay
the cost of the setup phase for each burst (whereas if they used
Flood Burst, they could use that time to send data). In these
tests, slots were 40 frames in length (roughly five Flood Burst
rounds), so the setup phase has a relatively high cost (roughly
20% of available throughput). Increasing the length of a slot in
the schedule would help to further amortize this at the cost of
increased latency. Such scheduling optimizations and trade-offs
are an important candidate for run-time tuning in future work.
That being said, when averaged across the network, throughput
increases over Flood Burst for all of these tests.

1) Distance Estimation: Next, we evaluate the effects of
several distance estimation strategies from Section IV-B.

Figure 11(a) shows the impact of each strategy on end-
to-end packet reception ratio, while figure 11(b) shows their
impact on duty cycle. These were conducted with boundary
width b = 0 to isolate the effect of the metric.

As expected, “Last” achieves the best duty cycle improve-
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Fig. 12. Distribution of path length asymmetry from a 1-hour test. The
average root-to-leaf distance was less than 2 hops different from the average
leaf-to-root distance for all nodes. The worst asymmetry was 2 hops when
considering maximum root-to-leaf and leaf-to-root distances.

ment over flooding (with per-node savings of nearly 60%),
while it also shows the worst PRR. For some applications,
this may be an acceptable tradeoff.

“Max” and “Average” show relatively similar performance
in PRR, but the latter achieves lower duty cycles. This suggests
that “Max” can be overly conservative while “Average” can
strike a balance between efficiency and reliability. On our
testbed, it is reasonable to set aside the 70 bytes of RAM
necessary to track the average or maximum distance of each
node, though in much larger networks “Last” would be the
only viable option.

2) Boundary Width: Recall that we added boundary zone
b to the shortest-path distance to account for the distance
asymmetry shown in figure 12 and the variability shown in
figure 3. As we are currently restricted to a single testbed, we
don’t yet know how dependent this asymmetry is on physical
topology, but we can see that distances are generally not too
asymmetric.

The boundary width essentially reflects a trade-off between
efficiency (duty cycle) and reliability (PRR) as shown in
Figure 13. Specifically, Figure 13(a) shows how PRR increases
with boundary width, while Figure 13(b) shows how the duty
cycle becomes less efficient. When the boundary width is
set to 0, we see many nodes with poor PRR due to routing
failures: distance variations can easily generate cases where
some nodes that are on the shortest path decide not to join
FRR and participate in forwarding packets. On the other hand,
as boundary width increases, more and more nodes that are not
on the shortest path decide to participate and waste energy.

A boundary width of 2 achieves a good balance with an
average PRR of 99.4% and the average node’s duty cycle is
only 70% of what it experiences when using Flood Burst.

VII. CONCLUSION

Recent work from industry and academia has shown the
feasibility and benefits of using multi-hop concurrent transmis-
sions for point-to-point and convergecast traffic in low-power
wireless networks. Approaches such as Low-Power Wireless
Bus and Insteon offer high yield and throughput, low duty
cycles, and simple operations. Despite these benefits, flood-
based approaches are intuitively wasteful since they involve
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Fig. 13. Impact of boundary width (BW) on PRR and duty cycle. All tests
conducted using “Average” distance metric with large enough routing table to
track all nodes.

every node in the network for every data transfer. This work
proposes adding forwarder selection to the emerging concept
of a multi-transmitter network stack.

We formally defined the forwarder selection process for
multi-transmitter protocols and provide simple mechanisms
that nodes in a network can use to determine whether they
should participate in a transmission or turn off their radio to
conserve power. Further, we present the CXFS protocol that
shows how the forwarder selection process can be adapted for
real networks with asymmetric and time varying links.

Results from our 66-node testbed show that CX reduces
average duty cycle by 30% and increase average throughput
by 49% over simple flooding while preserving a 99.4% average
end-to-end packet reception ratio.
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