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Abstract  This work proposed a method for the estimation of missing values in a stable bivariate autoregressive 
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1. Introduction 
The problem of missing observations in time series data 

cannot be overemphasised. It is a common problem 
usually encountered during data collection. An observation 
may not be available at the time of need due to faulty 
equipment used in measurement, lot records of events or 
mistakes, uncooperative response during data collection 
etc. In practice, statistical analysis is usually carried on a 
data set with complete observations. In any situation 
where an observation is missing, it has to be estimated and 
replaced in the missing position before a conclusion and 
inference is drawn from the data set. 

Estimation of missing values has gained much grounds 
in other areas of Statistics such as experiment design, 
multivariate analysis etc. However, less achievement is 
recorded in the area of time series; perhaps due to its 
complicated structure. 

Time series is an ordered sequence of observations. The 
ordering is usually through time. In some cases, it might 
involve other dimensions such as space. A discrete 
univariate time series variable is denoted by 𝑋𝑡  where 𝑡 
belongs to an index set 𝑇. A particular time series 𝑋𝑡  is 
believed to have been generated by an underlying 
mechanism called a stochastic process. Thus, a stochastic 
process is a family of time indexed random variables 
𝑋(𝜔, 𝑡); where 𝜔 belong to a sample space. 

Just like in other areas of Statistics, an extension of the 
univariate case is the multivariate time series models. The 
simplest of its kind is the bivariate case. A bivariate 
process consists of two component univariate time series. 
However, the methods of handling such vector are rather 
complicated and quite different from the bivariate cases of 
other areas of Statistics. This is because the indexed set 𝑇, 
the correlation and cross correlation structures at different 
lags are always taken into consideration. Unfortunately, 
most of these methods were design merely for predictive 

purposes and depended on the completeness of the sample 
in space or time. However, the fact that missing 
observations are inevitable demands the need to 
incorporate in these techniques, a method that can 
accommodate such problems. 

2. Review of Literature  
In statistical analysis, the model estimation problem in 

the presence of missing data is usually solved by 
maximum likelihood approach or imputation methods [1]. 
[1] considered the case of multidimensional time series 
with a part of observations that are completely or partially 
missing. He proposed a model estimation procedure based 
on composite likelihood combined with a model based 
imputation method. The proposed method was validated 
by simulation studies and the results enlightened the effect 
of imputation strategies on model estimation. The method 
gave better results at least for the variance covariance 
parameters. 

[9] worked on the estimation of parameters on the 
dynamic factor analysis using the EM algorithm. The 
result showed that the dynamic factor analysis can analyse 
short, non stationary time series containing missing value. 

[3] considered the problems of predicting missing 
observations and forecasting future values in incomplete 
time series data. In their work, three forecasting models (a 
dynamic multivariate autoregressive model, a multivariate 
local trend model and a Gaussian process model) were 
studied. Each of these models was analysed using air 
temperature data collected by a network of weather 
sensors. Comparisons of these models were made and it 
was discovered that the dynamic linear model coped easily 
with incomplete or missing observations. 

[2] presented a unified approach to the analysis of 
messy data. The paper examined irregularities such as 
missing values, outliers, structural breaks and irregular 
spacing. Here, a missing observation was handled by 
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introducing a dummy variable into the measurement. By 
introducing a state space frame work to explanatory 
variables, [2] discovered that the method of dummy 
variable has exactly the same effect as skipping a filter 
update introduced by Kalman filters. 

[8] proposed a method for modelling and fitting 
multivariate spartial time series data based on current 
spartial methodology coupled with the parameterization of 
the ARIMAX model. Because of the physical constraints 
imposed on multivariate data collection in both space and 
time, the estimation and identification procedures 
tolerated general patterns of missing or incomplete data. 

[5] considered the problem of estimating parametric 
multivariate density models when unequal amount of data 
are available on each variable. It was discovered that there 
exist a significant evidence of time variation in the 
conditional copula of the exchange rates (Yen-US dollars 
and Euro-US dollars), and evidence of greater dependence 
during extreme events than under the normal distribution. 

[7] proposed an imputation method to be used with 
singular spectrum techniques which is based on a 
weighted combination of the forecasts and hind casts yield 
by the recurrent forecast method. Despite its ease of 
implementation, the obtained result suggested an overall 
good fit of their method. This is because it yielded similar 
adjustment ability in comparison with the alternative 
method according to some measures of predictive 
performance. 

According to [6], the commonest way of dealing with 
missing observations is to replace them with the mean of 
the data. This is because every observation is expected to 
be distributed around the mean under normal situation. 
According to them, any observation that deviate much 
from the mean has to be tortured to reflect it membership 
before being used for analysis. 

Actually, there is no much direct literature on missing 
values of a stable vector autoregressive (VAR) process. 
Some of the literatures cited above are either indirectly or 
lightly linked with the subject matter. Hence, our 
comparative study shall base on few related existing 
methods that are computationally less cumbersome.  

3. Methodology 
Let 𝑦1𝑡  and 𝑦2𝑡  be two univariate time series under 

consideration. Then, 𝑦𝑡 = (𝑦1𝑡 ,𝑦2𝑡)′  is said to be a 
bivariate time series. According to [4], the general vector 
autoregressive model of order 𝑝 [ 𝑉𝐴𝑅(𝑝) ] for 𝑦𝑡  can be 
expressed as:  

 1 1 2 2Π Π  Π ε

0,
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where 
𝑦𝑡 = (𝑦1𝑡 ,𝑦2𝑡)′ is a (2 × 1) vector of time series variables, 
𝛱𝑖  are fixed (2 × 2) coefficient matrices 
𝑐 = (𝑐1, 𝑐2)′ is a fixed (2 × 1) vector of intercept terms 
allowing for the possibility of non zero mean 𝐸(𝑦𝑡). 
𝜀𝑡 = (𝜀1𝑡 , 𝜀2𝑡)′  is a (2 × 1)  white noise process or 
innovation process. That is,  
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Σ𝜀 = covariance matrix which is assume to be non 
singular if not otherwise stated. 

The model can be written in the matrix form as 
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3.1. VAR Order Selection 
For any n-dimensional time series vector  𝑦𝑡 =

(𝑦1𝑡 , … ,𝑦𝑛𝑡)′  assumed to be generated by a 𝑉𝐴𝑅(𝑝) 
process (where 𝑝 is the order of the model), three model 
order selection criteria are usually considered: 
(i) Akaike Information Criteria (AIC) 

This is given by 
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The estimate (𝐴𝐼𝐶)�  for p is chosen so that this criterion 
is minimized. Here the constant in the VAR model may be 
ignored as freely estimated parameter because counting 
them would just add a constant to the criterion which does 
not change the minimizing order. 

(ii) Hannan-Quin Criterion (HQC) 
This is given as  
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The estimate (𝐻𝑄)�  is the order that minimizes 𝐻𝑄 (𝑝) 
for 𝑝 = 0,1, … ,𝑃 

(iii) Schwarz Criterion (BIC) 
This is given by 
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The estimate (𝑆𝐶)�  is chosen so as to minimize the value 
of the criterion. 

Where 𝑝 is the VAR order 
Σ�𝜀 is the estimate of white noise covariance matrix Σ𝜀 
𝑛 is the number of time series components of the vector 
time series 
𝑁 is the sample size. 
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3.2. Stable VAR (𝒑) Processes 
Any VAR (𝑝) processes with 𝑝 > 1 can be written in 

VAR (1) form [4]. More precisely, if 𝑦𝑡  is VAR (𝑝), a 
corresponding 𝑛𝑝-dimensional VAR (1) is given by 
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The process {𝑌𝑡} is said to be stable if 

 ( )det 0 1.np zI for z≠ ≤−Π  

Specifically, the process (1) is stable if its reverse 
characteristic polynomial of the VAR (𝑝) has no roots in 
and on the complex unit circle. That is, 𝑦𝑡  is stable if 

 ( )1det 0 1.p
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This condition is called the stability condition. A stable 
VAR (𝑝) process 𝑦𝑡 , 𝑡 = 0, ±1, ±2, …, is also stationary. 

4. The Missing Value Approach 
Now, suppose we have 𝑁 observations for both series; 

and the missing observations occur at the 𝑖 th and 𝑗 th 
position of 𝑦1𝑡  and 𝑦2𝑡  respectively. We estimate these 
missing observations by the following approach: 

Let 𝑦1𝑖  and 𝑦2𝑗  be the two missing observations. If 
𝑖 ≥ 𝑗, the first step involves obtaining VAR lag order of 
the two series �𝑦1,𝑖+1,𝑦1,𝑖+2, … ,𝑦1,𝑁�  and 
�𝑦2,𝑖+1,𝑦2,𝑖+2, … ,𝑦2,𝑁�. However, if 𝑗 ≥ 𝑖, we obtain the 
VAR lag order of the series �𝑦1,𝑗+1,𝑦1,𝑗+2, … ,𝑦1,𝑁�  and 
�𝑦2,𝑗+1,𝑦2,𝑗+2, … ,𝑦2,𝑁�. Of course this particular step also 
involves fitting the 𝑉𝐴𝑅(𝑝) model to the above series and 
obtaining the estimate of the parameters as shown: 
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The above fitted model is then used to obtain the first 
estimate of the missing observations 𝑦1𝑡

(1)�  and 𝑦2𝑡
(1)� .  

The second step involves substituting these estimates 
𝑦1𝑡

(1)�  and 𝑦2𝑡
(1)�  in their missing positions in the data and the 

bivariate analysis is repeated on the complete data to 
obtain the final model as shown: 
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This model is then used to obtain the final estimates of 
the missing observations 𝑦1𝑡

(2)�  and 𝑦2𝑡
(2)�  . 

The superscripts in braces in the above expressions only 
indicate that we are obtaining the first (1) or second (2) 
estimate of the missing observations. 

5. Illustration and Result 
We illustrate the above proposed approach of 

estimation using 50 monthly cases of hypertension (𝑦1𝑡) 
and diabetes (𝑦2𝑡)  data (see appendix 5). First, we 
removed the 𝑦1,3 = 34 and 𝑦2,4 = 22 from the data. Next, 
we conducted VAR analysis on the series 
�𝑦1,5,𝑦1,6, … ,𝑦1,50�  and �𝑦2,5,𝑦2,6, … ,𝑦2,50�  using gretl 
software. The selected VAR order (in this case 𝑝 = 1 as 
indicated by minimum values of the three criteria at lag 1) 
and the result of the analysis at this first step are displayed 
on appendix 1 and 2. Thus, the resulting model is: 
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The above model (2) is then used for the estimation of 
the first estimates of the missing values which gives: 
𝑦1,3

(1)� = 30.4779 and 𝑦2,4
(1)� = 25.9438. 

In step two, these estimate ( 𝑦1,3
(1)� = 30.4779  and 

𝑦2,4
(1)� = 25.9438 ) are replaced in their missing positions 

and the analysis is repeated for the entire series. That is, 
for the series �𝑦1,1,𝑦1,2,𝑦1,3

(1)� , … ,𝑦1,50�  and 

�𝑦2,1,𝑦2,2,𝑦2,3,𝑦2,4
(1)� , … ,𝑦2,50�. The results of the analysis 

are displayed in appendix 3 and 4 below; and we have the 
final model: 
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The above model (3) is then used to compute the final 
estimates of the missing observations. Thus we have as 
our final estimates: 

 ( ) ( )2 2
1,3 2,433.1932 22.8745.y and y= =  

The absolute deviations (denoted AD) of these 
estimates from their respective actual values in the data 
can be computed as errors of the estimates. Thus, we have 
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We see here that the errors conceived by these estimate 
are negligible. We all know that the primary practice of 
dealing with missing observations is to replace them with 
the mean. Comparatively, however, the error created by 
our method of estimation is far less than that created by 
using the means ( 𝑦1𝑡���� = 41.760 and 𝑦1𝑡���� = 24.840 ). 

5.1. Stability of the VAR (1) Process 

For this process, the reverse characteristic polynomial is 
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which gives the roots: 𝑧1 = 3.302541336  and 𝑧2 =
2.063643218. These roots are outside the unit circle; and 
the process is therefore stable. 

The table (Table 1) below shows the estimates obtained 
by creating additional four missing observations at various 
( 𝑖 th and 𝑗 th) positions in the 𝑦1𝑡  and 𝑦2𝑡  series. 
Comparisons of these estimates are made between our 
proposed new method (PNM) and other methods: the 
mean (M) and the Stoffer method (SM); based on the 
absolute deviations (AD). The absolute deviations from 
the actual values are placed in bracket under their 
respective estimates. 

Table 1. Estimates and Errors of the Different Methods 
Position 
( 𝑖 ;  𝑗 ) 

Actual Values 
( 𝑦1,𝑖  ; 𝑦2,𝑗 ) 

Mean 
( 𝑦1𝑡����,𝑦2𝑡���� ) 

SM 
( 𝑦1,𝚤� ,𝑦2,𝚥�  ) 

PNM 
( 𝑦1,𝚤� ,𝑦2,𝚥�  ) 

(3 ; 4) (34 ; 22) (41.76 ; 24.84) 
(7.76 ; 2.84) 

(43.31 ; 26.22) 
(9.31 ; 4.22) 

(33.19 ; 22.87) 
(0.806 ; 0.875) 

(5 ; 5) (36 ; 18) (41.76 ; 24.84) 
(5.76 ; 6.84) 

(38.12 ; 23.45) 
(2.12 ; 5.45) 

(36.34 ; 19.02) 
(0.340 ; 1.020) 

(2 ; 7) (31 ; 23) (41.76 ; 24.84) 
(10.76 ; 1.84) 

(36.41 ; 20.18) 
(5.41 ; 2.82) 

(30.16 ; 23.91) 
(0.840 ; 0.910 

(6 ; 6) (38 ; 20) (41.76 ; 24.84) 
(3.76 ; 4.84) 

(36.31 ; 23.45) 
(1.69 ; 3.45) 

(37.92 ; 20.77) 
(0.080 ; 0.770) 

(4 ; 9) (29 ; 24) (41.76 ; 24.84) 
(12.76 ; 0.84) 

(31.52 ; 26.23) 
(2.52 ; 2.23) 

(28.73 ; 24.86) 
(0.270 ; 0.860) 

As seen in the above table, comparison based on AD 
(errors) shows that the proposed new method provides 
better estimates than the mean and the Stoffer method. 

6. Summary and Conclusion 
This work has provided a method of estimating missing 

values in a stable VAR bivariate process. The approach 
was illustrated using real life data. The method was found 
to outperform other methods of estimation with minimum 
error. In this light, this proposed method has offered a 
practical framework of dealing with missing observations 
in a stable VAR process. 
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Appendix 1. VAR Order Selection with Missing Observations 
VAR system, maximum lag order 12 
The asterisks below indicate the best (that is, minimized) values of the respective information criteria, AIC = Akaike 
criterion, BIC = Schwarz Bayesian criterion and HQC = Hannan-Quinn criterion. 
Lags loglik p(LR)  AIC BIC HQC 
1 -195.84598  10.714321* 10.912728* 10.808134* 
2 -193.17314 0.21243 10.788452 11.215428 10.848623 
3 -191.38435 0.03712 10.768254 11.313462 10.963421 
4 -182.27234 0.71023 10.871368 11.642357 11.194232 
5 -187.71407 0.51241 11.024157 11.972213 11.365237 
6 -185.22362 0.05921 11.016237 12.125132 11.503314 
7 -180.43623 0.32145 11.121322 12.334152 11.565781 
8 -177.93611 0.65342 11.224136 12.701238 11.752562 
9 -171.33414 0.00923 11.114321 12.685643 11.701146 
10 -170.20215 0.41242 11.223252 13.014356 11.853217 
11 -163.08641 0.02231 11.106753 13.089534 11.883245 
12 -161.43124 0.41205 11.202435 13.324512 11.973847 

Appendix 2. Analysis Result with Missing Observations 
VAR system, lag order 1 

OLS estimates, observations 2009:07-2013:02 (T = 43) 
Log-likelihood = -234.13517 

Determinant of covariance matrix = 117.85316 
AIC = 10.7143 
BIC = 10.9127 
HQC = 10.8081 

Portmanteau test: LB(12) = 56.9308, df = 42 [0.0914] 
 

Equation 1: y1t 
 

 Coefficient Std. Error t-ratio p-value  
const 4.1374 3.16324 1.3080 0.04016 ** 
y1t_1 0.85232 0.0533421 15.9784 <0.00001 *** 
y2t_1 -0.0035431 0.212332 -0.01669 0.03222 ** 

 
Mean dependent var  42.00000  S.D. dependent var  8.044149 
Sum squared resid  567.4326  S.E. of regression  4.306623 
R-squared  0.725267  Adjusted R-squared  0.720145 
F(2, 44)  4326.355  P-value(F)  5.20e-54 
rho -0.352549  Durbin-Watson  2.703658 

F-tests of zero restrictions: 
All lags of y1t F(1, 44) = 298.74 [0.0000] 

All lags of y2t F(1, 44) = 0.50299 [0.4817] 
 

Equation 2: y2t 
 

  Coefficient Std. Error t-ratio p-value  
const 12.0521 4.37116 2.7572 0.00332 *** 
y1t_1 0.14153 0.0626574 2.2588 0.03112 ** 
y2t_1 0.41323 0.2245 1.8407 0.03522 ** 

 
Mean dependent var  27.08192  S.D. dependent var  4.237256 
Sum squared resid  707.2115  S.E. of regression  3.925227 
R-squared  0.264962  Adjusted R-squared  0.233004 
F(2, 44)  978.4958  P-value(F)  5.01e-39 
rho -0.050675  Durbin-Watson  2.071617 

F-tests of zero restrictions: 
All lags of y1t F(1, 44) = 15.008 [0.0003] 
All lags of y2t F(1, 44) = 22.252 [0.0000] 
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Appendix 3. VAR Order Selection with Replaced Estimates 
VAR system, maximum lag order 12 
The asterisks below indicate the best (that is, minimized) values of the respective information criteria, AIC = Akaike 

criterion, BIC = Schwarz Bayesian criterion and HQC = Hannan-Quinn criterion. 
lags loglik p(LR) AIC BIC HQC 
1 -197.95396  10.734419* 10.992985* 10.826415* 
2 -195.17419 0.23454 10.798642 11.229585 10.951968 
3 -190.39440 0.04854 10.757600 11.360921 10.972257 
4 -189.39088 0.73446 10.915309 11.691008 11.191297 
5 -187.71407 0.50048 11.037582 11.985659 11.374901 
6 -183.32577 0.06693 11.017146 12.137599 11.415795 
7 -180.96331 0.31670 11.103332 12.396163 11.563312 
8 -179.82941 0.68664 11.254179 12.719388 11.775489 
9 -173.14203 0.00958 11.112738 12.750325 11.695379 
10 -171.14399 0.40654 11.218105 13.028068 11.862076 
11 -165.04677 0.01596 11.107725 13.090066 11.813027 
12 -163.09897 0.42032 11.215735 13.370454 11.982368 

Appendix 4. Analysis Result with Replaced Estimates  
VAR system, lag order 1 

OLS estimates, observations 2009:02-2013:02 (T = 49) 
Log-likelihood = -256.28509 

Determinant of covariance matrix = 119.68483 
AIC = 10.7344 
BIC = 10.9930 
HQC = 10.8264 

Portmanteau test: LB(12) = 55.5103, df = 44 [0.1144] 
 

Equation 1: y1t  
 

  Coefficient Std. Error t-ratio p-value  
const 4.0884 4.07308 1.0038 0.03326 ** 
y1t_1 0.940812 0.0643001 14.6316 <0.00001 *** 
y2t_1 -0.0026241 0.117124 -0.0224 0.02232 ** 

 
Mean dependent var  42.00000  S.D. dependent var  8.044149 
Sum squared resid  473.3555  S.E. of regression  3.207855 
R-squared  0.847600  Adjusted R-squared  0.840974 
F(2, 46)  127.9183  P-value(F)  1.62e-19 
rho -0.328626  Durbin-Watson  2.656506 

F-tests of zero restrictions: 
All lags of y1t       F(1, 46) =  214.08 [0.0000] 

All lags of y2t       F(1, 46) = 0.00050196 [0.9822] 
 

Equation 2: y2t 
 

  Coefficient Std. Error t-ratio p-value  
const 11.0435 3.48019 3.1732 0.00269 *** 
y1t_1 0.15747 0.0728185 2.1625 0.03581 ** 
y2t_1 0.30215 0.13264 2.2780 0.02742 ** 

 
Mean dependent var  25.04082  S.D. dependent var  4.148088 
Sum squared resid  607.0815  S.E. of regression  3.632826 
R-squared  0.976547  Adjusted R-squared  0.976048 
F(2, 46)  8.290891  P-value(F)  0.000842 
rho  0.020217  Durbin-Watson  1.950617 

F-tests of zero restrictions: 
All lags of y1t       F(1, 46) =  4.6764 [0.0358] 
All lags of y2t       F(1, 46) =  5.1892 [0.0274] 
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Appendix 5. [Monthly Cases of Hypertension and Diabetes (2009 – 2013)] 
S/N 𝑦1𝑡  𝑦2𝑡 S/N 𝑦1𝑡 𝑦2𝑡  S/N 𝑦1𝑡 𝑦2𝑡 S/N 𝑦1𝑡  𝑦2𝑡  S/N 𝑦1𝑡  𝑦2𝑡  

1. 30 15 11. 35 29 21. 38 19 31. 46 23 41. 49 25 

2. 31 21 12. 36 25 22. 39 25 32. 47 27 42. 50 29 

3. 34 23 13. 28 24 23. 41 26 33. 43 29 43. 52 30 

4. 29 22 14. 31 27 24. 43 27 34. 42 13 44. 53 31 

5. 36 18 15. 33 28 25. 46 28 35. 45 30 45. 51 32 

6. 38 20 16. 34 22 26. 39 30 36. 44 28 46. 53 29 

7. 35 23 17. 35 19 27. 48 32 37. 46 21 47. 55 23 

8. 39 21 18. 32 20 28. 46 21 38. 47 22 48. 56 24 

9. 37 24 19. 33 21 29. 43 28 39. 46 23 49. 58 25 

10. 31 28 20. 35 23 30. 44 25 40. 48 24 50. 58 30 
Source: Liby Hospital, Nigeria. 
 
 


