
An evolutionary approach to (logistic-like)
language change

Ted Briscoe
Computer Laboratory

University of Cambridge
ejb@cl.cam.ac.uk

Draft – Comments Welcome

Abstract

Niyogi and Berwick have developed a deterministic dynamical model
of language change from which they analytically derive logistic, S-
shaped spread of a linguistic variant through a speech community
given certain assumptions about the language learning procedure, the
linguistic environment, and so forth. I will demonstrate that the same
assumptions embedded in a stochastic model of language change lead
to different and sometimes counterintuitive predictions. I will go on
to argue that stochastic models are more appropriate and can support
greater demographic and (psycho)linguistic realism, leading to more
insightful accounts of the (putative) growth rates of attested changes.

1 Introduction

It has been observed that language changes (often?) spread through a speech
community following an S-shaped pattern, beginning slowly, spreading faster,
then slowing off before finally extinguishing a competing variant (e.g. Weinreich
et al. , 1968; Chen, 1972; Bailey, 1973:77; Lass, 1997; Shen, 1997). (This obser-
vation even makes it into Crystal’s Cambridge Encyclopedia of Language along
with other statistical chestnuts such as Zipf’s law(s).)

Kroch (1990) discusses a number of attested grammatical changes and ar-
gues that in each case they can be analysed as cases of competing grammatical
subsystems where the rate(s) of change, measured by diverse surface cues in his-
torical texts exemplifying the successful grammatical subsystem, can be fitted
to one member of the family of logistic functions which generate such S-shaped
curves. Kroch uses the logistic as a tool to demonstrate a single underlying rate of
change and thus a single causative factor of competition between (parametrically-
defined) grammatical subsystems. Though this work puts the observation on a
firmer mathematical foundation and relates it broadly to competition between
grammatical subsystems (or perhaps, even more generally, between alternative
means of conveying the same meaning) it does not explain why logistic-like growth
occurs. (Slide 0 illustrates a logistic curve and the logistic map which generated
it and shows Kroch’s (1990) presentation of Ellegard’s original data, suggesting
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S-shaped growth of a number of surface reflexes of a putative single parametric
change in the grammar of English.)

It is, of course, not entirely clear that language change always or even ever
follows the logistic pattern. (Ogura (1993) has questioned the fit between the
logistic curve and Kroch’s case study, arguing that the fit is statistically as good
for the period up to 1700 even though, the data looks ‘less S-curve like’ over
this window.) There are attested cases, such as the rapid adoption of Hawai-
ian creole described by Bickerton (e.g. 1984) which are often characterised as
an ‘instantaneous’ or ‘rapid’ spread of the creole via the first generation of first
language learners exposed to the pidgin. There are clearly other logical possi-
bilities: random drift or monotonic change but linear, polynomial, exponential
rate of growth; ‘variation’ rather than change, which doesn’t spread thru’ the
whole/most of the population, etc. (draw some incl. the case of logistic spread
converging to stable variation??). I’ll assume that S-curves are the norm, but
return to the issue of language genesis / creolisation briefly at the end.

Two separate issues are whether competition between variants is taking place
at the level of I-language – the (idio)lect) – or E-language – the aggregate output
of a speech community, and whether S-shaped spread is the result of lexical
diffusion or parametric grammatical competition. The earliest discussions of S-
shaped change focus on lexical diffusion or growth through the lexicon (without
being explicit about whether this is the E- or I-lexicon). Ogura and Wang (1996)
seem to believe that all (S-shaped?) change can be characterised in terms of either
E- or I- lexical diffusion and that these can be distinguished in the historical data.
Kroch (1990) appears to believe that S-shaped change is caused by syntactic
diglossia or competition between parametrically-defined grammatical subsystems
within the individual – his evidence comes from the relative frequency of the
diverse surface cues in a historical sequence of singly and differently authored
texts.

2 The NB Model

Niyogi and Berwick (1997) and Niyogi (2000) (hereafter NB) have developed a
model of grammatical change based on a macro-evolutionary deterministic model
in which E-languages are treated as dynamical systems, the aggregate output of
a population of (adult, stable but possibly different) generative grammars, and
evolution of the system corresponds to changes in the distribution of grammars
in the population. This distribution changes as each new generation of language
learners each acquire a grammar from the data provided by their speech com-
munity (i.e. the previous generation of learners who have now acquired an adult
grammar). (Slide 1 gives some of the background assumptions.)

The NB model has three main components: a finite set of grammars, UG, from
which a learner selects on the basis of triggering data (unembedded / degree-0
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sentences); a learning algorithm, LA, used by the learner to choose a grammar,
g ∈ UG; and a probability distribution, P , with which triggers are presented to
the learner. P is defined in terms of the distribution on triggers within each g ∈
UG and the proportions of each g ∈ UG in the current population. A dynamical
system can now be defined in which each state of the system is represented by
a P for state, s, and the new P ′ for state s + 1 can be calculated by an update
rule which depends only on P , LA and UG, Ppop,s −→LA Ppop,s+1. Crucially, this
deterministic update rule relies on the assumption of non-overlapping generations
of learners and speakers, and the abstraction to infinite populations. The former
assumption makes the analytic calculation of P for each state of the system
tractable and the latter abstraction amounts to the assumption that random
sampling effects are irrelevant in the calculation of the proportions of learners
who converge to specific grammars given P . (see Slide 2)

NB provide a detailed discussion of the derivation of P . The essential point
for the following discussion is that the relative frequency of unambiguous triggers
which exemplify a unique g ∈ G is critical for determining which grammar a
learner will choose. Intuitively, if two grammars generate languages with largely
overlapping triggers (see Slide 3), then given that the learning data is a proper
finite subset of the languages, it is more likely that a learner will not sample data
distinguishing them, so change (if present) will be slower. NB, in fact, demon-
strate that if there is an equal chance of a learner seeing an unambiguous trigger
from each variant source grammar exemplified in the linguistic environment, the
population will converge to equal proportions of each grammar. On the other
hand, if unambiguous triggers generated by gi are more frequently encountered
in the learning data than other unambiguous triggers, we expect learners to con-
verge more often to gi.

One result which NB demonstrate follows from one instantiation of their
model is that the spread of a grammatical variant will be logistic. NB argue
that it is a strength of their model that logistic behaviour can be derived analyti-
cally from the properties of the update rule, given certain assumptions about UG,
LA and P , but is not ‘built in’ in the first place. To derive the logistic map, NB
assume a two grammar / language system in which LA selects between g1 and g2

on the basis of 2 triggers drawn from P . If the last trigger is unambiguously from
one grammar, then this grammar is selected. If the first trigger is unambiguously
from one grammar and the last is ambiguous, then the learner selects a gram-
mar on the basis of the first trigger. Otherwise, a random (unbiased) selection
is made. (This LA is equivalent to the Trigger Learning Algorithm (TLA) of
Gibson and Wexler (1994) applied to a one parameter system with the critical
period for learning set to 2 triggers (hereafter TLA2 – see Slide 7.)

The deterministic update rule is defined in terms of the consequent probabili-
ties of LA selecting g1 or g2 given P . If these probabilities are not equal then the
population will converge logistically to the grammar better represented in trig-
gering data over time. If they are equal then the population will stabilise with
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equal proportions of g1 and g2 grammars, and not change thereafter. The critical
assumption for the analytic derivation of logistic behaviour lies not in the specific
assumptions about UG, LA or P , but rather in D, the model of a dynamical sys-
tem that NB adopt. (This is not to say that UG, P and LA are not important
– Robert Clark (1996) demonstrates via simulation that logistic change is the
exception rather than norm in the NB model, and NB only derive this behaviour
analytically for the specific case of selecting between two grammars using TLA2.
NB also show graphs displaying logistic and sometimes exponential spread of a
variant grammar mostly through whole population, based on simulation of this
dynamical model with a wider range of LAs and more complex multi-parameter
UG fragments.)

NB characterise the states of the system in terms of the proportion of average
or arbitrary learners exposed to P who converge to g1 (equivalenty g2). This is
a macro-evolutionary deterministic model in which what is modelled is the gross
statistical behaviour of learners (and thus of linguistic systems), rather than the
behaviour of individual learners within the population (e.g. Renshaw, 1991). The
macro model effectively builds in the assumption that variation in input samples
across individual learners is irrelevant or, equivalently, that the population is
infinite. However, for TLA2 and other models of LA based on very small samples
this looks like a big and unrealistic assumption which together with D makes the
whole model questionable.

Yang (2000) in related work proposes a different model of LA in which the
learner converges to a stable weighting of one or more g ∈ G in an attempt
to model sociolinguistic variation and take account of Kroch’s observation that
singly-authored historical texts show evidence of logistic-like spread of a variant
within individual speakers. Yang sketches how logistic spread might follow from
his LA by showing that the weighting of a preferred g ∈ G will increase over
time logistically with respect to a dispreferred one. This result is derived from
a more plausible LA than that of NB, and does not rest on TLA2 but it does
require the same assumptions about UG (that the set g ∈ UG is finite) and D
(non-overlapping generations and an infinite population).

3 The Stochastic NB Model

If we replace D with a stochastic micro-evolutionary model, D′ in which there is a
finite population of non-overlapping generations, and we model the behaviour of
each individual learner while keeping assumptions about P , LA and UG identical,
we find different behaviour – at least until population sizes (or better networks
of linguistic interaction over which change is measured) become large. The dif-
ferences are most obvious when we consider the case where each learner has an
equal chance of being exposed to an unambiguous trigger from g1 or g2. In the
NB deterministic model this results in stasis, but in a stochastic version of their
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model stasis is highly improbable.
For simplicity assume a starting point in which there are equal numbers of

g1 and g2 grammars in the population, 1
2

of triggers from g1 and from g2 can
distinguish the two grammars (i.e. are unambiguous with respect to the source
grammar which generated them), and P is a uniform distribution (so triggers
are equiprobable). The probability that a learner selecting a grammar based on
2 triggers will select randomly, because the two triggers are ambiguous, is 1

4
,

because for each independently drawn observation from P the chance of seeing
an ambiguous trigger is 1

2
. Therefore, the learner will select g1 (equiv. g1) on the

basis of data with probability 3
8

(P = 0.375).
For stasis we require exactly half of the learners to acquire g1. Suppose there

are 100 learners; what is the probability that exactly half will select g1 in the first
generation? The data provided to each learner is stochastically independent so
this is equivalent to asking how probable is it that in 100 tosses of an unbiased coin
exactly 50 will come up heads, and is given by the binomial theorem: P = 0.0795
(e.g. McColl, 1995). Therefore, it is very improbable that the distribution P will
remain unaltered, and unbiased between g1 and g2, for the next generation of
learners. This result is in marked contrast from that of NB and follows directly
from modelling the fact that each individual learner will be exposed to a different
(random) sample of triggers.

To see how likely it is that, given a biased distribution of unambiguous trig-
gers, P , on g1 and g2q, the dominant grammar will spread logistically through
the population given D′, we need to consider the shape of the skewed binomial
distribution arising from the bias. For example, if we minimally modify the ex-
ample above by assuming that 3

4
of the adult population speak g1, the probability

that a learner will acquire g1 given 2 triggers is now 11
16

(P = 0.687). (Note that it
is not 12

16
(P = 0.75) because of the possibility of selection according to the initial

unbiased setting when the triggering data seen is ambiguous.) Consequently, the
probability that more than 75 learners will acquire g1 is only P = 0.070, though
the probability that more than 50 will acquire g1 is P > 0.999. In fact, the distri-
bution peaks at 69 learners predicting not logistic growth but rather a probable
slight decline in the number of g1 speakers in the next generation. In the limit,
if the whole population speak g1, the probability that a learner will select g1 is 7

8

(P = 0.875) because there remains a 1
8

chance that a learner will see 2 ambiguous
triggers and select g2 randomly.

It might be objected that these results follows primarily from choosing UG
and P with a high proportion of ambiguous triggers or small trigger samples (as
in TLA2), so that learners frequently select grammars randomly (though UG and
P here are in this respect similar to several of the more realistic examples NB
consider, derived from Gibson and Wexler, 1994). If we assume, that g1 and g2

are as highly differentiated as possible and share no triggers, then a learner will
select between them with probability directly correlated with the proportions of
g1 and g2 speakers in the adult population. In the case of equal proportions, the
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probability that exactly half the population of learners will acquire g1 (equiva-
lently g2) is still given by the binomial distribution, and thus remains low. The
binomial distributions for each generation of learners will now peak at exactly
the point predicted by the proportions of adult grammars in the current gen-
eration, but this still only allows us to predict that +/–13 learners around this
peak will acquire g1 with P > 0.99 for a population of 100 learners. (See Slide
4 for a summary of the stochastic NB model, D′, examples of relevant binomial
distributions etc.)

In fact, the appropriate mathematical model for describing D′ is very simi-
lar to that for genetic drift in finite populations (e.g. Maynard Smith, 1998:15f;
Renshaw, 1991). General results derived for such models suggest that we should
expect to see (random) oscillations in the proportion of g1 speakers in the pop-
ulation with (temporary) fixation on 0% or 100% within (every) 2N generations
for a population of size N (with s.d.N). However, it is not possible to predict
the individual or overall direction of these oscillations because they are caused by
variation in a sequence of a series of sampling events (learning). Simulating D′

allows us to tighten up these general predictions and explore the consequences of
varying the number, n, of triggers to the LA (e.g. TLAn, see Slide 7), the pro-
portions of unambiguous triggers for each source grammar, and the initial ratio
of g1 and g2 speakers.

Slides 5–6 illustrate the behaviour of the TLA in D′ given these varying con-
ditions. In each case, the Y-axis shows the percentage of g1 speakers and the
X-axis time measured in generations. The red lines show the behaviour of the
TLA with 2 triggers, green dashes 4 triggers, blue short dashes 6 triggers, and
pink dots 20 triggers, respectively.

For Slide 5 all runs begin with initially equal proportions of g1 and g2 speakers
with an equal chance of seeing an unambiguous g1 or g2 trigger drawn from either
source grammar. This is the ‘stasis’ case discussed above. In the stochastic model,
rather than observing stasis at equal proportions of g1 and g2 speakers, we either
get oscillation around this ‘attractor’ (n = 2) or a tendency to (temporarily)
fixate on one or other grammar as a result of the positive feedback inherent in the
calculation of P for successive states of the model (n >2). Decreasing the ‘overlap’
between g1 and g2 (i.e. increasing the overall proportion of unambiguous triggers)
makes the system less stable because it decreases the influence of unbiased random
guessing and increases the positive feedback dynamics.

(Increasing the size of the population tenfold dampens the positive feedback
dynamics and consequent degree of oscillation, so there is a greater tendency for
fixation on one or other grammar, but oscillation still occurs with low number of
triggers, as unbiased guessing during learning dominates the overall behaviour of
the system.

While populations of 1000 or more are quite plausible in the context of attested
language change, they are not always so – there were 13 indigeneous members
of the population of Pitcairn when the 8 Bounty mutineers arrived, and the
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consequences linguistic and otherwise were dramatic (Romaine, 1988)! More
importantly, though populations might typically run to the thousands, networks
of strong and regular linguistic interaction are probably limited to group sizes of
around 100-150 (Dunbar, 1993; Milroy, 1992; Nettle, 1999).)

Slide 6 shows runs where initially there is a single g1 speaker in a population
of 100 but there is a greater proportion of unambiguous triggers for g1 than g2.
In the top graph a g1 unambiguous trigger is twice as likely as a g2 one. In the
bottom graph, a g1 unambiguous trigger has only a 1/20 greater likelihood. In
the top case, g1 grows exponentially in the population but only reliably stays at
fixation for n = 6 triggers. For higher numbers of triggers, the population stays
robustly fixated on g = 2. In the bottom case, g = 1 only grows (exponentially)
when n = 2 and doesn’t reach fixation.

None of this behaviour fits a logistic curve well. The quasi-random drift
observed in most cases isn’t attested in (major) language change to my knowledge.
Furthermore, it is clear that we only get spread of a minority variant under
conditions where unbiased guessing dominates the system (i.e. low numbers of
triggers, lower probability of unambiguous triggers). Under these conditions,
the TLA is a very poor model of language learning, because unbiased guessing
amounts to mislearning half the time, on average. The NB model with LA set to
TLAn for finite n, ‘explains’ change in terms of mislearning.

4 Desiderata for the Language Learning Algo-

rithm

The TLA (Gibson and Wexler, 1994) (see Slide 7) is an implausible model of
language learning because it predicts that the child will take a memoryless walk
through grammar space starting from a random complete grammar and may not
converge to gt ∈ UG even when exposed to a fair sample of triggering data from
gt (e.g. Brent, 1996; Briscoe, 1999, 2000a; Niyogi and Berwick, 1996). Here
I outline a framework for thinking about grammatical learning in the context
of language change and some desiderata for the LA drawing on and extending
Briscoe (2000b). Then I briefly present one model of the LA which instanti-
ates the framework and satisfies these desiderata, simplifying Briscoe (1999) and
Villavicencio (2000).

4.1 The Framework

The framework modifies fairly standard learnability conditions to take account of
the insight that E-language is a dynamical system, that speech communities may
contain mixed populations of variant grammars which may even change during
the learning period, and that learners take time to learn and are not ‘input
matchers’ (e.g. Lightfoot, 1999; Briscoe, 2000b) but typically select between
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competing alternatives often with a bias in favour of one, and that in situations
of genuine diglossia learners will acquire multiple grammars (Kroch, 1989, Yang,
2000). (See Slide 8.)

In common with many accounts of language learning we assume that gram-
matical acquisition is based on exposure to a finite number of triggers during the
(critical) learning period. We also define a trigger relatively uncontroversially as
a pairing of a surface form (SF) and logical form (LF) so that the task of the
learner is to parametrically select g ∈ UG so that the SF-LF mapping exemplified
in triggers can be expressed correctly. However, these triggers are drawn from
an unknown (and possibly non-stationary) mix of source grammars defined by
Ppop,St−St+n over the course of the learning period as discussed in sections 1 and
2 above.

The most important desideratum of LA is learnability or accuracy, which leads
to stasis or language maintenance in conditions of linguistic homogeneity. When
a (fair) trigger sample is drawn from a single source grammar, then LA should
acquire that grammar, or one representing the same SF-LF mapping, with very
high probability. In this special case, the framework is very close to the standard
learnability framework (e.g. Niyogi, 1999).

In the case where the sample is from mixed sources, if triggers represent para-
metrically different ways of realising the same LF then the parameters expressed
by the more frequent trigger will be acquired provided the alternative is K times
less probable. Data selectivity incorporates Lightfoot’s (1999) insight that in-
put is not matched and internalized grammars typically don’t allow (parametric)
variation, but is in fact a more fundamental requirement of any successful model
of LA. Without it, LA will not be able to cope with noise in the input caused
by trigger miscategorizations due, for example, to the indeterminacy of parame-
ter expression (Clark, 1992, Briscoe, 2000c) nor with the scenario envisaged by
Bickerton (e.g. 1984) and carefully documented by Newport (1999) in which
conflicting and inconsistent input is ‘regularised’ and fashioned into a single con-
sistent generative grammar.

Inductive bias over and above the hard constraints in UG yields soft con-
straints or preferences on grammars within the hypothesis space. Such prefer-
ences can arise from general principles of learning such as Occam’s Razor in the
form of a simplicity metric over the representational framework employed (e.g.
Mitchell, 1997), from ‘functional’ considerations such as the relative parsability
of different triggers (e.g. Kirby, 1998), or from prehistorical contingent proper-
ties of grammars genetically assimilated during the period of adaptation for the
language faculty (Briscoe, 2000a). For example, in a parametric LA the learner
might select between alternative grammars compatible with the triggering data
(so far) by selecting the one involving the least number of parameters or the one
requiring the fewest non-default settings of parameters (Briscoe, 2000b). Such
biases can be formalised in a Bayesian / Minimum Description Length framework
in terms of a prior probability distribution on grammars (Briscoe, 1999, 2000c).
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Inductive bias predicts that language learning will result from the interplay of
such biases with triggering data (e.g. Kiparsky, 1996), but the Bayesian formu-
lation ensures that the data will win out if a parameter is robustly specified.
(Cosmides and Tooby (1996) and others have argued that a Bayesian perspec-
tive on learning provides a good account of many aspects of human learning /
reasoning.)

Data sensitivity models, rather crudely, Kroch’s (1990) insight that gram-
matical variants compete in I-language/idiolect. We approximate this in terms
of a frequency based threshold K, and a (Labovian) conditioning context for
sociolinguistically-motivated variation. (The difference between noise or incon-
sistency and such variation is that the former lacks consistent conditioning con-
texts, and not necessarily that it is rarer.) When parametric variation is ‘robustly’
exemplified in triggering data, LA should acquire multiple grammars.

4.2 Bayesian Incremental Parameter Setting

I now present a simplified version of Bayesian incremental parameter setting
(BIPS) described in Briscoe (1999, 2000c), which I argue meets the desiderata
above (though data sensitivity needs more work). (See Slide 9.) The presentation
is deliberately made as similar to that of the TLA as possible. The critical
difference is that BIPS sets parameters incrementally according to an incremental
version of Bayes law (in which, roughly, the prior for the next trigger is defined by
the posterior from the previous). Therefore, the learner never makes (random)
guesses (though in the absence of enough triggering data a parameter can take
on a default (unmarked) value). Furthermore, BIPS is sensitive to the frequency
with which triggers expressing alternate parameter values are exemplified in the
data, implementing selectivity (and potentially sensitivity).

4.3 BIPS integrated with the GCG/TDFS model

Briscoe (1999) demonstrates that the BIPS model integrated with Generalized
Categorial Grammar (GCG) embedded in the Typed Default Feature Structure
(TDFS) default inheritance framework can reliably learn a target grammar from
finite preclassified but noisy triggers from a hypothesis space of around 300 dis-
tinct grammars exemplifying typological constituent order differences. Villav-
icencio (2000) demonstrates that the same model, combined with a variant of
Siskind’s algorithm for preclassifying triggers (Waldron, 2000), can acquire En-
glish clause and verbal argument structure from a sample of about 1000 caretaker
utterances to a single child (drawn from the Sachs/CHILDES corpus).

The integration of BIPS with a concrete model of UG introduces a further
source of inductive bias in that not all parametric variation is independent. Thus,
the setting of parameteri to one specific value may then require the setting of
dependent parameterj, while the opposite setting for i does not. This, in effect,
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orders the hypotheses g ∈ UG considered by the learner. Other attempts to
define concrete parametric models have the same property (Clark, 1992; Dresher,
1999).

4.4 BIPS in the NB Stochastic Model

BIPS with a P = 0.8 prior bias in favour of the parameter setting yielding g1

displays logistic-like spread of g1 through the population under a wide variety of
conditions. Slide 10 shows the case where initially there is one g1 speaker out
of a population of 100 speakers and there is a 1/20 higher chance of seeing an
unambiguous trigger for g1 over g2. Depending on the number, n, of triggers
sampled g1 either spreads exponentially (n = 2), logistically (n = 4 − 6) or
doesn’t spread at all (e.g. n = 20), reflecting the interplay of the prior bias and
the ‘robustness’ of the triggering data defined, as before, by Ppop,s.

The behaviour of BIPS compared to TLA is considerably less ‘random’ be-
cause it derives as accurate an estimate of the probability of each parameter
setting (equiv. g1 / g2 here) as is possible from the trigger sample and it incor-
porates inductive bias. When the ‘balance’ of data and inductive bias is near
perfect, logistic-like monotonic change is highly likely. When the balance is per-
fect, the model will behave randomly but this is now so finely specified that
we are very unlikely to observe the quasi-random oscillations across generations.
(Furthermore, given inductive bias, attractors will now always be 0/1??.)

In essence, logistic-like spread occurs with the BIPS model because data selec-
tivity yields an increase in the probability of triggers generated by the favoured
grammar (variant). If data-sensitivity lead to the acquisition of a both grammars
and their use by a speaker in proportions that precisely mirrored the acquisi-
tion data, then this effect would be nullified. Therefore, in the case where the
threshold K is not reached (diglossia), we need to posit an alternative source of
the change in the distribution, Ppop,s – for example, Nettle (1999) demonstrates
with stochastic models that sociolinguistic factors can act as amplifiers of vari-
ation, predicting e.g. that a variant will spread via more frequent usage, post
acquisition.

5 The OG Stochastic Model

In a stochastic model, it is possible to incorporate more demographic realism in
the form of, for example, overlapping generations, though it makes mathematical
analysis of the model harder because there are now potentially learner-learner
as well as adult-learner interactions making P harder to calculate for each state
of the system (see Briscoe, 2000b). Nevertheless, overlapping generations may
be important to understanding language changes which involve dramatic demo-
graphic change and is a likely (alternative) source of logistic-like spread of a
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variant through a speech community.
In a model like that described in Briscoe (2000b) with approximately 100

speakers in which speakers are removed after 10 ‘generations’ and six new learners
are added every ‘generation’ (and learn in one generation), repeating the exact
same run described in the previous section, and shown in Slide 10, results in the
same qualitative behaviour but now the growth of g1 is ‘bumpier’ and slower
taking about 3 times as long to spread through the population – see Slide 11.

6 Language Genesis and the Subset Principle

The results for BIPS illustrated above do scale up to more complex simulations
of multiparametric systems undergoing change in which the learning period is
spread out over several time steps of the system. However, rather than show
more graphs of logistic-like curves, I’ll finish by illustrating the application of the
BIPS+GCG/TDFS model to language genesis. (For more details see Briscoe,
2000c.)

Language genesis appears to pose a problem for an essentially selectionist
(parametric) model of language learning of the type presented here. Bickerton
(e.g. 1984) has argued that the abrupt pidgin-creole transition is a consequence
of the first and subsequent (overlapping) generations of children exposed to in-
consistent pidgin input each without exception acquiring a superset creole gram-
mar. This implies a rate of change correlated with the (typically high and rising)
birthrate and proportion of child language learners in the plantation community.
Roberts (1998), using a large database of Hawaiian pidgin and creole utterances,
has revised Bickerton’s original claim slightly, by arguing that some aspects of
the transition in Hawaii took two full generations to emerge. Nevertheless, this
careful empirical work by-and-large confirms Bickerton’s original claims that the
creole emerges very abruptly and embodies a much richer grammatical system
than the pidgin. One whose properties are not directly exemplified in the super-
or sub-stratum languages to which learners might be exposed, and are very similar
to the properties of other creoles which emerged at geographically and histori-
cally unrelated points. (My simulations, nevertheless, show logistic-like spread
through the whole population of children and adults with convergence on the
creole only when the original generation of adults have all died.)

If there is an element of ‘invention’ in creolisation how could this arise? The
account that I will pursue here is that in some respects the primary linguistic
data that creole learners are exposed to is so uninformative that they retain their
prior default-valued parameter settings. However, this is not enough to ensure
that a superset grammatical system will emerge if the data never exemplifies,
however indirectly, a particular grammatical phenomenon. When exposed ex-
clusively to a subset language, the BIPS+GCG/TDFS model reliably acquires
subset languages and does not go ‘beyond the evidence’ (mislearn) to predict a
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superset language of the subset language learners have been exposed to (as is
required by the desideratum of learnability).

Inductive bias is enough to predict the rapid development of, for example,
SVO constituent order from essentially randomly ordered pidgin triggering data
– see Slide 12. (Four interaction cycles correspond to a single generation in this
model. Both learners exhibit inductive bias in terms of dependencies between the
setting of parameters but only the ‘default’ learner has inductive bias in favour
of (SVO) parameter settings.) However, to predict acquisition of a superset
language in the BIPS+GCG/TDFS model it is necessary to appeal to (limited
and indirect) super- or sub-stratum influence to trigger acquisition of complex
categories allowing for clausal postmodification, unbounded extraction, and so
forth. If such categories are reliably expressed somewhere in the triggering data
for each learner, even with inconsistent ordering, then the BIPS+GCG/TDFS
model will ‘switch on’ a generic unordered form of these categories, and predict
their ordering behaviour via inductive bias. In the case of Hawaii, this is possible,
but Bickerton (1984) claims creolisation has occurred in ‘marooned’ communities
in which learners would have had no access to non-pidgin input and Kegl et
al (1999) argue that the first learners of Nicaraguan Sign Language were such
a community. Quite probably, the interplay of pidgin data with inductive bias
is more complex than my simulations allow, and/or language learning is more
inventive than a strict interpretation of the Subset Principle (Berwick, 1985)
suggests?

7 Conclusions

See Slide 14 for main focussed conclusions – below some meanderings:
For some types of language change the idealisation of the dynamical model,

D, to infinite populations may not be harmful; for example, (E-lexical) diffusion
through American English within the last 50 years might be such a case. However,
even then we would need to be clear that there is an analytic and thus predictive
advantage to deterministic modelling for realistic versions of UG, LA and P , and
this has not been demonstrated as yet.

In all cases where evolution of a linguistic system is likely to have taken
place in small relatively isolated speech communities – for example, modelling
of prehistoric development or of a process like creolisation, where the relevant
populations are likely to have been at most in the low hundreds – abstracting
away from sampling issues is dangerous.

Furthermore, the specific behaviour which we want to derive, such as logistic
change in the system, may simply follow directly from more realistic demographic
assumptions than are possible with deterministic models. For example, popula-
tion movement, birthrate, the proportion of language learners in the population
and the resultant linguistic mix of the population are critical factors in under-
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standing creolisation (very fast language change) / language genesis. In larger
populations, spatial distribution and resultant networks of interaction are also
likely to be very important (see Nettle, 1999 and Niyogi, 2000 for examples of
stochastic and deterministic models which take account of such factors).

The model must satisfy certain constraints of realism which I have argued de-
rive primarily from properties of the language learning algorithm assumed – most
notably language maintenance or stasis in a homogeneous linguistic environment.
Given language maintenance via the accuracy or learnability of the learning al-
gorithm, one likely first language acquisition mechanism for spread of a minority
variant is via (some form of) inductive bias. However, it is also likely that there
are sociolinguistic and other amplifiers of variation too (e.g. Nettle, 1999:18) less
closely connected to LA and also likely that these competing pressures interact
to create a complex and many peaked fitness landscape for language change. Un-
der these conditions, languages are best characterised and modelled not just as
dynamical systems but as complex adaptive systems (Briscoe, 2000b).

In order to really sort out which of these possible causes of spread of a variant
were relevant to an attested change would require more data about the change
than is likely to be forthcoming from historical texts. However, thorough studies
of contemporary changes, like the emergence and subsequent development of
Nicaraguan Sign Language (Kegl et al. , 1999), might yet yield the requisite
detail.
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Grammatical Change

Grammatical acquisition is parametric

– v2-on/off; head-initial/final;...

Grammatical change is the result of parameter ‘resetting /

reanalysis’ across generations during grammatical acquisi-

tion

– v2-on → v2-off

I-language, idiolect change is ‘immediate’ (Lightfoot, etc)

E-language, spread of change across community is S-shaped

(Kroch, etc)

An idiolect/I-language is a well-formed stringset with map-

pings to LFs defined by a generative grammar

The language of a speech community/E-language is a dy-

namical system – the aggregate output of a changing popu-

lation of speakers (generative grammars)

Derive ‘logistic’ spread from a dynamical model (Niyogi and

Berwick)

[logistic curve + Ellegard’s data]
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The Niyogi/Berwick Model

1) A class of grammars, UG

2) A learning algorithm, LA to select g ∈ UG from data, tn
3) A probability distribution, P , on triggers

A dynamical system consists of a sequence of states through

time: s, s + 1, . . .

States are defined by the proportions of speakers (genera-

tive grammars) in the population: a distribution Ppop,s on

g ∈ UG at s

The distribution P on triggers can be calculated from Ppop,s:

P (ti) =
∑

gj∈UG
P j(ti)Ppop,s(g

j)

An update rule defines Ppop,s+1: Ppop,s −→LA Ppop,s+1

Non-overlapping generations – Ppop,s defines triggering data

for Spop,s+1 of learners

Infinite population – deterministic update rule models

behaviour of an average learner

One parameter, LP = TLA, 2 triggers, update rule =

logistic map provided that P 1(Tu(L(g1))) 6= P 2(Tu(L(g2)))

If P 1(Tu(L(g1))) = P 2(Tu(L(g2))), stasis
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Triggering Data for (Related)
Languages

g1u

g2u

g2u

g1u Ta

g1: -V2; Head-first; Spec-first

L1 = { S V, S V O, S V O1 O2, S Aux V, S Aux V O, S Aux V O1

O2, Adv S V, Adv S V O, Adv S V O1 O2, Adv S Auz V, Adv S

Aux V O, Adv S Aux V O1 O2 }

g2: +V2; Head-first; Spec-first

L2 = { S V, S V O, O V S, S V O1 O2, O1 V S O2, O2 V S O1, S

Aux V, S Aux V O, O Aux S V, S Aux V O1 O2, O1 Aux S V O2,

O2 Aux S V O1, Adv S V, Adv V S O, Adv V S O1 O2, Adv Aux

S V, Adv Aux S V O, Adv Aux S V O1 O2}

L1 ∩ L2 = { S V, S V O, S V O1 O2, S Aux V, S Aux V O, S Aux

V O1 O2}
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The Stochastic NB Model

Finite population of 100 speakers (generative grammars)

Non-overlapping generations

One parameter – g1/g2 ∈ UG
LA = TLA

P (ti) =
∑
gj∈UG P

j(ti)Ppop,s(g
j)

Each learner randomly samples triggers from P n times

Probability of any given learner selecting g1 given n triggers

from P is a Bernoulli trial: P (TLA(tniid.Ppop,s)→ g1)

Assume P (TLA(tniid.Ppop,s)→ g1) = 0.5 (0.75)

Probability that exactly half (50) learners will acquire g1 is

given by the binomial theorem: P = 0.0795 (0.0000001):
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Stochastic NB Model – g1u=g2u
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Stochastic NB Model – g1u>g2u
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The trigger learning algorithm

TLA (Gibson and Wexler)

1) Randomly select g ∈ UG (i.e. randomly set parameters

of UG);

2) Randomly sample a trigger (degree-0/1, SF-LF pair), ti
from P (T (L(gt));

3) If the current grammar parses/generates ti goto-2, else:

4) Select one random parameter, flip its setting, retain the

new setting iff that change allows ti to be parsed/generated,

goto-2.

5) Stop if for trigger, ti, i = n (i.e. at end of critical period).

Local, incremental, greedy and memoryless search through

grammar space from random starting point

Do children start from ‘random’ complete grammars?

Do children (re)(re)visit previous complete grammars?

Do children make a randomly guess the values of unexpressed

parameters?
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The Language Learning Algorithm

• Finite Triggering Data – finite number n of triggers,

t, during the (critical) learning period: t= SF:LF degree

0/1 sentence pair sampled from T = Ppop,St−St+n (i.e.

non-stationary mixed sources, L(g1), L(g2) . . .)

• Learnability – P (LA(UG, tn)→ gt) > 1− ε where

tn is the nth random sample drawn from T = P (L(gt
′
))

and L(gt
′
) = L(gt) (i.e. a single source learnt accu-

rately)

• Selectivity – P (LA(UG, tn) → gt) > 1 − ε where

P (ti ∈ L(gt)) > K.P (tj¬ ∈ L(gt)) and ti ∧ tj → LFk
(i.e. better represented alternative learnt if above some

threshold K)

• Inductive Bias – g = argmaxg∈UGP (g)P (tn | g)

(i.e. there is an ordering on g ∈ G, deriving from Oc-

cam’s Razor / Simplicity (MDL), Parsability, Genetic

assimilation)

• Sensitivity – P (LA(UG, tn)→ gt∧gt′) > 1−ε where

¬P (ti ∈ L(gt)) > K.P (tj ∈ L(gt
′
)) and ti∧ tj → LFk

and P (tj | C) > P (ti | C) (i.e. both alternatives learnt

if threshold, K not reached and there is a conditioning

context for the rarer alternate)
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Bayesian Incremental Parameter Setting

BIPS (simplified from Briscoe, 2000c,d)

1) Start with all parameters of UG unset (P = 0.5) or default

(P = 0.8);

2) Randomly sample a trigger (degree-0/1, SF-LF pair), ti
from P (T (L(gt));

3) If the current grammar parses/generates ti, increment the

probabilities of the parameter settings expressed by ti, goto-

2, else:

4) Select one random parameter, flip its setting, increment

the probability of this new setting and of the other param-

eter settings expressed by ti if that change allows ti to be

parsed/generated, select the most probable g ∈ UG, goto-2.

5) Stop if for trigger, ti, i = n (i.e. at end of critical period).

Local, incremental, conservative, memory-limited but frequency-

sensitive search for most probable grammar from ‘agnostic’

/ ‘biased’ starting point(s)
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Stochastic NB Model – BIPS
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Stochastic OG Model – BIPS
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SVO (Subset) Language Speakers –
BIPS+GCG/TDFS
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Conclusions

1. Macro / deterministic model derives logistic spread from

unrealistic assumptions of infinite non-overlapping pop-

ulations and TLA n = 2

2. Micro / stochastic non-overlapping finite population model

with TLA doesn’t predict logistic spread, but does with

BIPS

3. Micro / stochastic overlapping finite population model

also predicts slower logistic spread with BIPS

4. Micro stochastic models are harder to analyse but not

impossible – statistical sampling and population genet-

ics

5. More analytically tractable macro deterministic mod-

els will emerge when we have good stochastic models

and want to approximate them to prove qualitative be-

haviour is not accidental ‘sampling’ of such models and

derive laws for behaviour of linguistic dynamical systems

(E-languages)

6. Better modelling and better understanding of I-language

acquisition is (still) the critical key to understanding

(major) linguistic change

Draft paper and other related papers at:

http://www.cl.cam.ac.uk/users/ejb/papers.html
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