
ar
X

iv
:g

r-
qc

/0
30

80
89

v1
  2

8 
A

ug
 2

00
3

Scale Free Small World Networks
and the Structure of
Quantum Space-Time

Manfred Requardt
email: requardt@theorie.physik.uni-goettingen.de

Institut für Theoretische Physik
Universität Göttingen

Tammannstr. 1
37077 Göttingen Germany

Abstract

We report on parallel observations in two seemingly unrelated areas
of dynamical network research. The one is the so-called small world phe-
nomenon and/or the observation of scale freeness in certain types of large
(empirical) networks and their theoretical analysis. The other is a discrete
cellular network approach to quantum space-time physics on the Planck
scale we developed in the recent past. In this context we formulated a kind
of geometric renormalisation group or coarse graining process in order to
construct some fixed point which can be associated to our macroscopic
space-time (physics). Such a fixed point can however only emerge if the
network on the Planck scale has very peculiar critical geometric properties
which strongly resemble the phenomena observed in the above mentioned
networks. A particularly noteworthy phenomenon is the appearance of
translocal bridges or short cuts connecting widely separated regions of or-
dinary space-time and which we expect to become relevant in various of
the notorious quantum riddles.

http://arXiv.org/abs/gr-qc/0308089v1


1 Introduction

In this paper we want to report on parallel observations in two, at first glance,
quite unrelated fields of current research. The one is a discrete network approach
to quantum space-time physics, the other is the analysis of large complicated in-
formation networks of interacting agents, displaying the small world phenomenon
and/or the synchronisation or phase locking among, for example, coupled non-
linear oscillators as they occur in biological and related model systems. As the
literature concerning the latter phenomenon is huge and as we are planning to dis-
cuss the relevance of this particular phenomenon of synchronisation for our own
approach to quantum gravity elsewhere, we mention only very few but typical
papers ([5], [6], [7]) and the book [8].

In the following we will rather concentrate on the parallels between, on the one
hand, the small world phenomenon and/or the emergence of scale free networks
([1], [2], [9] [10], [3], [4]) and, on the other hand, our dynamical network approach
to quantum space-time physics ([21], [16], [17], [18], [19], [20], [22]).

The small world phenomenon was, for the first time, observed in empirical
networks while in the past, most of the network modelling exploited the random
graph concept. In this latter framework links are drawn (practically) indepen-
dently of each other according to a certain edge probability. As a consequence, in
general no particular near- or far-order does exist. Therefore it came as quite a
surprise that in the real world networks do occur, which seem to encode a certain
(hidden) principle which combines a sparse wiring (usually implying a large typ-
ical node distance and a low local clustering) with both a surprisingly high local
clustering and a relatively small average node distance.

On the other hand, (sparse) random graphs, more precisely, random graphs
with a comparable edge probability, have typically both a low local clustering
and, at least in general, a small diameter or average node distance (see section
3). This observation suggests that a particular principle is at work, amalgamating
these two seemingly antagonistic properties.

Analysing the underlying laws which may lead to such an interesting structure,
Barabasi et al contributed the concept of scale free networks, having, for example,
a power law vertex degree distribution (in contrast to random graphs in which
the vertex degree is binomially or Poisson distributed). This notion calls to mind
concepts like critical behavior or self-similarity. While the small world effect is
attributed to the existence of short cuts or hubs, scale freeness is a much stronger
property and points to the existence of a certain hierarchical organisation of the
network.

This latter observation establishes the link to our own research in the field
of quantum space-time physics. In the recent past, being unaware of the possi-
ble connections to the small world phenomenon, we were led to the conclusion
that the geometric renormalisation group or coarse graining process we devel-
oped within our discrete network approach, leads only to an interesting large
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scale fixed point, we finally want to associate with our macroscopic or meso-
scopic space-time (compared to the primordial Planck scale regime), if the initial
network of relations is in a very particular critical state.

Geometrically this implies that the wiring of the primordial network is in
a certain sense organised in a hierarchical, scale free manner, which strongly
resembles the features described above. It is perhaps particular noteworthy that
in our case this scale freeness is accomplished by a certain translocal character of
the wiring which emerges in the renormalisation process (existence of a hierarchy
of short cuts). This provides also strong clues as to certain mysteries of the
quantum world.

We conclude this introduction with some interdisciplinary speculation. For
biological and many other networks the central objective is that they function.
That is, their organisation should make them robust and resistent to (at least)
local and/or stochastic failures. If one observes the particular kind of (intricate)
organisation in quite a few real networks we mentioned above, one is led to surmise
that properties like scale freeness or small world behavior will in fact make them
more robust (cf. also [4]).

If the parallels we invoked regarding a possible similar organisation of micro-
scopic space-time do not turn out to be unfounded, the same conclusion can be
drawn here. That is, given that microscopic space-time is a highly complicated
dynamical network, wildly fluctuating on small scales, the organisation principles
we are going to describe in the following may be crucial in preventing such a struc-
ture from becoming chaotic or simply disintegrating into incoherent pieces. An
important role in this context is expected to be played by the alluded translocal
bridges on microscopic scales between macroscopically widely separated lumps of
space-time.

2 Notions from Graph Theory

In this section we introduce some terminology and concepts employed in graph
theory and fix the notation. As to the general context see for example [12]

Definition 2.1 A simple, countable, labelled, undirected graph, G, consists of a
countable set of nodes or vertices, V , and a set of edges, E, each connecting two
of the nodes. There exist no multiple edges (i.e. edges, connecting the same pair
of nodes) or elementary loops (an edge, starting and ending at the same node).
In this situation the edges can be described by giving the corresponding set of
unordered pairs of nodes. The members of V are denoted by xi, the edges by eij,
connecting the nodes xi and xj.

Remarks: We could also admit a non-countable vertex set. The above restriction
is only made for technical convenience. From a physical point of view one may
argue that the continuum or uncountable sets are idealisations, anyhow. The
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notions vertex, node or edge, link or bond are used synonymously. Furthermore,
the labeling of the nodes is only made for technical convenience (to make some
discussions easier) and does not carry a physical meaning. As in general relativity,
all models being invariant under graph isomorphisms (i.e. relabelling of the nodes
and corresponding bonds) are considered to be physically equivalent.

In the above definition the edges are not directed (but oriented; see below).
In certain cases it is also useful to deal with directed graphs.

Definition 2.2 A directed graph is a graph as above, with E consisting now of
directed bonds or ordered pairs of nodes. In this case we denote the edge, pointing
from xi to xj by dij. There may now also exist the opposite edge, denoted by dji.

Observation 2.3 An undirected graph, as in definition 2.1, can be considered
as a particular directed graph with eij corresponding to the pair of directed edges,
dij, dji.

In the following we deal, for reasons of simplicity, with connected graphs. We
denote the number of vertices and edges by n, m, respectively. The maximal
possible number of edges over n vertices is N = n(n − 1)/2. n, m, are called
order and size of the graph, G. The number of edges, being incident with a
node, xi, is called its vertex degree, ki. An edge sequence or walk is a sequence of
consecutive edges or nodes,

(ei1,i2, ei2,i3, . . . , eik−1,ik) or (xi1 , . . . , xik) (1)

where the edges or nodes need not be distinct. A path is an edge sequence where
no xil occurs twice with the possible exception of xi1 , xik . In the latter case the
path is called a cycle.

Between each pair of nodes, xi, xk, there exists a path, γ, of minimal length,
l, with l(γ) = #(edges), connecting xi and xk. This path is called a geodesic path
and defines a distance function or metric, d(x, y) on the graph. We have

d(xi, xk) = d(xk, xi) > 0 for i 6= k (2)

d(xi, xk) ≤ d(xi, xl) + d(xl, xk) (3)

This metric is called the canonical graph metric. There exist of course other
interesting distance concepts on graphs, cf. for example [16], where we compared,
among other things, the canonical with the Connes-metric on graphs.

The above metric allows us to introduce a neighborhood concept. We denote
by Γl(x0) the set of nodes having exactly distance l from the reference node x0

and by Ul(x0) the set of nodes with distance d(x0, xi) ≤ l. The cardinality of
Γ1(x0) is just the vertex degree of x0. In [17] we studied systematically the scaling
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behavior of |Γl(x)| and |Ul(x)| with l (that is, the number of nodes in Γl(x), Ul(x))
and related it to dimensional concepts of, typically, fractal type. We argued that
it encodes the kind of dimension which turns out to be relevant in many physical
systems.

In [15] the sequence of dl(x0) := |Γl(x0)| l = 1, 2, . . . is called the distance
degree sequence relative to node x0, and is denoted by dds(x0). Tabulating this
for the whole graph, G, we get the distance distribution

dd(G) = (D1, D2, . . .) (4)

with Dl the number of pairs, (xi, xj), having distance equal to l. We have of
course

2Dl =
∑

V

dl(xi) (5)

Whereas dd(G) derives from the ensemble of dds(xi), it is frequently easier to
handle and gives a more compact characteristic of the global wiring structure of
the graph under discussion.

From the above a particularly important graph characteristic can be derived
which is heavily employed in the small world context.

Definition 2.4 The mean distance, L(G), of a connected graph is given by the
average of the distances between the pairs of nodes of G.

L(G) := N−1 ·
∑

l · Dl , N = n(n − 1)/2 (6)

If graphs become very large it is frequently very difficult to envisage the
essentials of the geometric structure of a given graph. So it is useful to develop
more concepts which allow us to encode typical characteristics of the graph under
discussion. A more subtle concept is the clique structure or clique distribution.

Definition 2.5 (Subsimplices and Cliques) With G a given fixed graph and
Vi a subset of its vertex set V , the corresponding induced subgraph over Vi (that is,
its edges being the corresponding edges, occurring in G) is called a subsimplex or a
complete subgraph, if all its pairs of nodes are connected by a bond. In this class,
which is in fact partially ordered, the order being given by graph inclusion, there
exist certain maximal subsimplices, that is, subsimplices so that every addition of
another node of the underlying graph(together with the respective bonds existing
in G and pointing to other nodes of the selected subset destroys this property.
These maximal simplices are usually called cliques in combinatorics (we like to
call them also lumps as they are the candidates for our construction of physical
points).

It has been described in detail in e.g. section 4 of [19] how these cliques can
be constructed in an algorithmic way, starting from an arbitrary node. Note in
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(1)

(2)

(3)

(4)

Figure 1:

particular that a given node will, in general belong to many different (overlap-
ping) cliques or lumps. The situation is illustrated by the following picture: In
this picture we have drawn a subgraph of a larger graph. (1) denotes a clique, i.e.
a maximal subsimplex. Subsets of nodes of such a clique support subsimplices
(called faces in algebraic topology), the clique being the maximal element in this
partial ordered set. (2) and (3) are other, smaller cliques overlapping with (1) in
a common bond or node. (4) is an example of a subgraph which is not a clique or
subsimplex. Evidently, each node or bond lies in at least one clique. The small-
est possible cliques which can occur in a connected graph consist of two nodes
and the corresponding edge. The detailed investigation of the clique structure of
graphs was one of the main topics of [18] and earlier in [19] and [20].

Remark: Note that our definition of a clique (which conforms with Bollobas’)
deviates slightly from the one employed by other authors. Our cliques are the
maximal! members in the ascending chains of complete subgraphs while some-
times the complete subgraphs themselves are called cliques. The typical order of
cliques turns out to be a very interesting random variable in random graphs (see
below).

Another interesting notion is the cluster coefficient, Ci = C(xi). It is defined
by

Ci := |E(Γ1(xi))|/

(

ki

2

)

(7)

Here
(

ki

2

)

is the maximal possible number of edges in Γ1(xi) and |E(Γ1(xi))| the
actual number. Henceforth, C denotes the average over the Ci’s. Further useful
concepts are the average vertex degree and the vertex degree distribution

k :=< k >= n−1 ·
∑

ki = 2m/n (8)
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P (k) := prob(ki = k) (9)

where either the probability is taken over a certain ensemble of graphs or is
calculated in a given fixed graph (cf. the end of the next section).

In this way one can construct a whole bunch of interesting graph characteris-
tics which are more or less related to each other and their combination supplying
a relatively complete picture of the local and global structure of a graph. These
concepts become particularly powerful if we combine them with true probabilistic
or statistical concepts. This leads to the definition of a random graph.

3 The Concept of a Random Graph

One kind of probability space is constructed as follows. Take all possible labeled
graphs over n nodes as probability space G (i.e. each graph represents an el-
ementary event). The maximal possible number of bonds is N :=

(

n

2

)

, which
corresponds to the unique simplex graph (denoted usually by Kn). Give each
bond the independent probability 0 ≤ p ≤ 1, (more precisely, p is the probability
that there is a bond between the two nodes under discussion). Let Gm be a graph
over the above vertex set, V , having m bonds. Its probability is then

pr(Gm) = pm · qN−m (10)

where q := 1 − p. There exist
(

N

m

)

different labeled graphs Gm, having m bonds,
and the above probability is correctly normalized, i.e.

prob(G) =

N
∑

m=0

(

N

m

)

pmqN−m = (p + q)N = 1 (11)

This probability space is sometimes called the space of binomially random graphs
and denoted by G(n, p). Note that the number of edges is binomially distributed,
i.e.

prob(m) =

(

N

m

)

pmqN−m (12)

and
〈m〉 =

∑

m · prob(m) = N · p (13)

The really fundamental observation made already by Erdös and Rényi (a
rigorous proof of this deep result can e.g. be found in [12]) is that there are what
physicists would call phase transitions in these random graphs. To go a little bit
more into the details we have to introduce some more graph concepts.

Definition 3.1 (Graph Properties) Graph properties are certain particular
random variables (indicator functions of so-called events) on the above probability
space G. I.e., a graph property, Q, is represented by the subset of graphs of the
sample space having the property under discussion.
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To give some examples: i) connectedness of the graph, ii) existence and number
of certain particular subgraphs (such as subsimplices etc.), iii) other geometric
or topological graph properties etc.

In this context Erdös and Rényi made the following important observation.

Observation 3.2 (Threshold Function) A large class of graph properties (e.g.
the monotone increasing ones, cf. [11] or [13]) have a so-called threshold func-
tion, m∗(n), with m∗(n) := N · p∗(n), so that for n → ∞ the graphs under
discussion have property Q almost shurely for m(n) > m∗(n) and almost shurely
not for m(n) < m∗(n) or vice versa (more precisely: for m(n)/m∗(n) → ∞ or 0;
for the details see the above cited literature). That is, by turning on the proba-
bility p, one can drive the graph one is interested in beyond the phase transition
threshold belonging to the graph property under study. Note that, by definition,
threshold functions are only unique up to “factorization”, i.e. m∗

2(n) = O(m∗

1(n))
is also a threshold function.

We briefly illustrate the effects of randomisation on some of the concepts
introduced above. We take for example the vertex degree as a random variable.
The probability of a vertex, xi, having vertex degree k is

prob(ki = k) =

(

n − 1

k

)

· pk(1 − p)n−1−k (14)

(the mean value being p · (n − 1)). In the asymptotic regime of large n, small
k, n · p = O(1), the vertex degree is Poisson-distributed (see, for example, [3]).
For a clean discussion of the assymptotic case of the Poisson distribution see [14].
Barabasi et al contrasted this kind of distribution with so-called scale free degree
distributions which are sometimes found in empirical networks ([3],[4]).

For the clustering coefficient, defined above, we have in the context of random
graphs the following simple result. As all the edges are independently distributed
with probabiliy p over the random graph, the distribution is the same for each
subclass of nodes, that is, we have

Crand = p = k/(n − 1) =< m > /N (15)

In contrast to that typical small world networks may be globally sparse, i.e.
m/N ≪ 1, but, nevertheless, C ≫ m/N . That is, in contrast to randomly wired
networks they may display a certain local order which differs from the order
viewed on a more global level.

Very interesting is the behavior of the average length, L(G), in a random
graph. This random variable, together with the clustering coefficient, is the
pair of graph properties which is primarily employed to contrast the behavior of
random graphs with the wiring diagrams of so-called small world networks (see
[1] and the other literature cited above).
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It is a remarkable (perhaps a little bit counter-intuitive) property of random
graphs that for a large portion of values in the parameter space, given by the pair
(n, p), that is, p not too small, a typical random graph has diameter less than
or equal to two! (for the details see e.g. [11], some estimates are also given in
[19],p.2053f). To have at all some (weak) scaling with n, p(n) has to vanish for
n → ∞ sufficiently strongly without destroying the connectedness of the graph.

To underpin this qualitative statement, we take over the central result of
chapt. X.2 of [11] and calculate its asymptotic behavior for the regime; n large
and p · n → const.. We have for the diameter the approximative result

diam ≈ const · log n/ log pn (16)

where p(n − 1) = k in a random graph, hence

diam ≈ const · log n/ log k (17)

A similar result holds for the average distance, which is, however, not so easily
accessible in general. Strogatz and Watts ([1],[2]) contrast this weak scaling
with the scaling of, for example, lattice graphs, which are occupying exactly the
opposite end with respect to order or randomness.

The average distance in a d-dimensional lattice graph (with, for simplicity,
periodic boundary conditions) can easily be calculated as follows (cf. also [17]
for more general scenarios). The |Γl(x0)| of the dds(x0) of some arbitrary node
scale as ∼ ld−1. For the average distance relative to x0 we hence have

Lx0
(G) ∼ (n − 1)−1 ·

jn
∑

1

l · ld−1 (18)

with n ∼ jd
n. This behaves in leading order as j−d

n · jd+1
n /(d + 1) ∼ jn. That is,

L(G) scales linearly with the diameter jn.
It is perhaps interesting to compare the two notions, clustering coefficient

and clique order, introduced above, in a small network and a random graph.
As cliques are subgraphs of the graphs generated by vertices, x, and their one-
neigborhoods, Γ1(x), it is reasonable to calculate the edge probability only with
respect to the induced subgraphs formed by Γ1(x) and x. From the clustering
coefficient, C, and the average vertex degree, V , we get a corresponding local
edge probability:

ploc = (C ·

(

v

2

)

+ v)/

(

v + 1

2

)

= C − ((2C − 2)/(v + 1)) ≈ C (19)

for v sufficiently large.
With this ploc we can now calculate the typical clique order, rloc, if we treat

the above subgraphs as random graphs. We get

rloc ≈ 2 log(v + 1)/ log(p−1
loc) (20)
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(cf. section 5.1). That is, the clique order scales with C roughly as rloc ∼
(log C−1)−1.

We conclude that, as in a small world network C is larger than Crand, where
Crand is the clustering coefficient in a random graph with the same global edge
probability, we have correspondingly ploc > prand and hence rloc > rrand. There-
fore both the clustering coefficient and the clique order are larger in a small world
network than in a true random graph with the same global edge probability.

We close this section with a brief remark about the statistical framework, as
certain points in this connection are sometimes glossed over in the literature. We
actually are dealing with two kinds of statistics in this enterprise. For one, if we
have very large networks or graphs, we can apply (practical) statistics within the
concretely given individual system, that is, perform certain averages over nodes,
edges and the like. On the other hand, we may prefer to study a full ensemble of
such graphs, formed according to certain statistical or probabilistical principles,
an example being the above probability space of (binomially distributed) random
graphs.

In principle these are different statistical frameworks, but in practice they are
frequently intermixed. We note in passing that a similar philosophy underlies
the foundations of statistical mechanics. If a system is both sufficiently large and
sufficiently typical or generic, the differences are expected to be negligible. But in
any case, it may be wise to remember these (frequently only implicit) statistical
preassumptions. We made some more detailed (physical) remarks about the
statistical hypothesis in sect. 3.1 of [18].

4 Protogeometry and Protodynamics

We briefly want to motivate why we are modelling the underlying fabrique of
space-time or the quantum vacuum as a relational network of nodes and links,
the geometrical aspects of which can be dealt with in the context of graphs.

On the one side we have a working philosophy which is similar to the one,
expounded by ’t Hooft in e.g. [24] to [26]. That is, we entertain the idea that
for example quantum theory may well emerge as an effective (continuum) theory
on the mesoscopic scale of an underlying discrete more microscopic theory. As
we want our underlying (pre)geometry to coevolve with the patterns living in
this substratum, we developed the above mentioned generalisation of the more
regular cellular automata.

Another essential property of such discrete dynamical systems is, while the
basic ingredients and elementary building blocks are reasonably simple, their
potential for the emergence of very complex behavior on the more macroscopic
scales, thus supporting the speculation that such systems may be capable of
generating viable continuum theories.

It is now suggestive to regard the edges between pairs of points as describing
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their (direct) interaction. This becomes more apparent if we impose dynamical
network laws on these graph structures so that they become a particular class
of discrete dynamical systems. Henceforth we denote such a dynamical network,
which is supposed to underly our continuous space-time manifold, by QX (“quan-
tum space”). We want to make the general remark that the cellular networks,
introduced in the following, can either be regarded as mere models of a perhaps
more hypothetical character, encoding, or rather simulating, some of the expected
features of a surmised quantum space-time or, on the other hand, as a faithful
realisation of the primordial substratum, underlying our macroscopic space-time
picture. So far this is a matter of taste.

For the time being we choose, to keep matters reasonably simple, a discrete
overall clock-time (not to be confused with the physical time which is rather sup-
posed to be an emergent and intrinsic characteristic, related to the evolution of
quasi-macroscopic patterns in such large and intricately wired networks). In prin-
ciple the clock-time can also be made into a local dynamical variable. Cf. also
the complex of investigations grouped around the phenomenon of synchroniza-
tion in large populations of coupled oscillators (a small selection of the existing
literature being for example [1], [5], [6]). Furthermore, we assume the node set of
our initial network to be fixed and being independent of clock-time (in contrast
to the links). This property may however change if we apply the renormalisation
process which we described in [18]. That is, on the highler levels, the class of
lumps or meta-nodes may become dependent on time.

On this network we now define a dynamical law or a (clock-) time evolution.
We assume that each node, xi, or bond, eik, carries an internal (for simplicity)
discrete state space, the internal states being denoted by si or Jik. In simple
examples we chose for instance:

si ∈ q · Z , Jik ∈ {−1, 0, +1} (21)

with q an elementary quantum of information and

eki = −eik ⇒ Jki = −Jik (22)

In most of the studied cellular automata systems even simpler internal state
spaces are chosen like e.g. si ∈ {0, 1}. This is at the moment not considered to
be a crucial point. The above choice is only an example.

In our approach the bond states are dynamical degrees of freedom which, a
fortiori, can be switched off or on (see below). Therefore the wiring, that is, the
pure geometry (of relations) of the network is a clock-time dependent, dynamical
property and is not given in advance. Consequently, the nodes and bonds are
typically not arranged in a more or less regular array, a regular lattice say, with
a fixed near-/far-order. This implies that geometry will become to some degree
a relational (Machian) concept and is no longer a static background.
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As in cellular automata, the node and bond states are updated (for conve-
nience) in discrete clock-time steps, t = z · τ , z ∈ Z and τ being an elementary
clock-time interval. This updating is given by some local dynamical law (exam-
ples are given below). In this context local means that the node/bond states
change at each clock time step according to a prescription with input the over-
all state of a certain neighborhood (in some topology) of the node/bond under
discussion.

A simple example of such a local dynamical law we are having in mind is
given in the following definition (first introduced in [21]).

Definition 4.1 (Example of a Local Law) At each clock time step a certain
quantum q is exchanged between, say, the nodes xi, xk, connected by the bond eik

such that
si(t + τ) − si(t) = q ·

∑

k

Jki(t) (23)

(i.e. if Jki = +1 a quantum q flows from xk to xi etc.)
The second part of the law describes the back reaction on the bonds (and is,
typically, more subtle). We assume the existence of two critical parameters 0 ≤
λ1 ≤ λ2 with:

Jik(t + τ) = 0 if |si(t) − sk(t)| =: |sik(t)| > λ2 (24)

Jik(t + τ) = ±1 if 0 < ±sik(t) < λ1 (25)

with the special proviso that

Jik(t + τ) = Jik(t) if sik(t) = 0 (26)

On the other side

Jik(t + τ) =

{

±1 Jik(t) 6= 0
0 Jik(t) = 0

if λ1 ≤ ±sik(t) ≤ λ2 (27)

In other words, bonds are switched off if local spatial charge fluctuations are too
large or switched on again if they are too small, their orientation following the
sign of local charge differences, or remain inactive.

Another interesting law arises if one exchanges the role of λ1 and λ2 in the
above law, that is, bonds are switched off if the local node fluctuations are too
small and are switched on again if they exceed λ2.

We make the following observation:

Observation 4.2 (Gauge Invariance) The above dynamical law depends nowhere
on the absolute values of the node “charges” but only on their relative differences.
By the same token, charge is nowhere created or destroyed. We have

∆(
∑

QX

s(x)) = 0 (28)
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(∆ denoting the change in total charge of the network between two consecutive
clocktime steps). To avoid artificial ambiguities we can e.g. choose a fixed refer-
ence level, taking as initial condition at t = 0 the following constraint

∑

QX

s(x) = 0 (29)

We resume what we consider to be the crucial ingredients of network laws, we
are interested in

1. As in gauge theory or general relativity, our evolution law should imple-
ment the mutual interaction of two fundamental substructures, put a little
bit vaguely : “geometry” acting on “matter” and vice versa, where in our
context “geometry” is assumed to correspond in a loose sense to the local
and/or global array of bond states and “matter” to the structure of the
node states.

2. By the same token the alluded selfreferential dynamical circuitry of mutual
interactions is expected to favor a kind of undulating behavior or selfexcita-
tion above a return to some uninteresting equilibrium state (being devoid of
stable structural details), as is frequently the case in systems consisting of a
single component which directly acts back on itself. This propensity for the
autonomous generation of undulation patterns is in our view an essential
prerequisite for some form of “protoquantum behavior” we hope to recover
on some coarse grained and less primordial level of the network dynamics.

3. In the same sense we expect the large scale pattern of switching-on and -off
of bonds to generate a kind of “protogravity”.

Remark: The above dynamical law shows that bonds with Jik = 0 at clock time t
do not participate in the dynamics in the next time step. We hence may consider
them as being temporally inactive. The shape of the network, neglecting all the
internal states of the nodes and bonds together with the inactive bonds we call
the wiring diagram.

If one concentrates solely on this wiring diagram, figure 2 (below) describes
one clocktime step in the life of a dynamic graph. In the picture only a small
subgraph is shown and the deletion and creation of edges (that is, elementary
interactions among nodes or possible information channels). The new bonds are
represented as bold lines. It should be emphasized that the graph is not assumed
to be a triangulation of some preexisting smooth manifold. This is emphasized
by the existence of edges, connecting nodes which are not necessarily close with
respect to e.g. the euclidean distance. We recently observed that similar ideas
have been entertained within the framework of cellular automata (see e.g. [27] and
[28]), the models being called structurally dynamic cellular automata or SDCA.
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Figure 2:

As far as we can see at the moment, the adopted technical framework is not
exactly the same but we think, a comparison of both approaches should turn out
to be profitable.

Remark 4.3 We conjecture that such discrete dynamical laws as introduced above
may be discrete protoforms of the dynamical laws governing the arrays of cou-
pled nonlinear oscillators in the papers cited previously. This is corroborated by
computer simulations on arrays of several thousand nodes, performed by us in
the past (cf. [23]) which clearly exhibited an amalgamation or superposition of
statistical behavior and a collective undulation pattern. The second law, described
above, has in particular extremely short transients, reaching a periodic attractor
in a very short time, having the further remarkable property that, given the huge
accessible phase space and the complexity of the network states, it has a period of
only six.

5 The Translocal Depth-Structure of (Quantum)

Space-Time

In this section we want to prepare the stage which will allow us to relate our
own approach to quantum space-time structure with the small-world network
view, being expounded in, on the surface, quite distinct areas of research. But in
order to keep the exposition of the partly quite intricate technical details within
reasonable length, we will mainly refer, as to the technical details, to the two
papers, [18], [22], and try to give here only the general ideas.

The central picture is that, what we experience as a practically continuous
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space-time manifold, will turn out, under sufficient magnification, as a network of
overlapping local clusters or lumps, being superposed by a, in a measure theoretic
sense meager or sparse second network connecting these local clusters or lumps
in a basically translocal manner. That means, this second network connects
local clusters which may be quite a distance apart with respect to the metrical
structure of the network of underlying lumps. We tried to make more explicit in
[18], [19], [22] how this double structure is expected to go over, on the macroscopic
scale of ordinary space-time physics, into, on the one hand, a smooth local causal
space-time plus, on the other hand, a classically almost hidden nonlocal network
structure which is, due to the weaker and fluctuating connections, of a more
stochastic nature and which we expect to make an effect in many of the notorious
quantum phenomena (note again the parallels to observations in certain social
networks mentioned below).

This overall picture can be made more precise as follows. To construct this
underlying network of lumps, our main tool will be a kind of geometric renormal-
isation group or systematic coarse graining procedure which we developed in [18].
To put it briefly, we regard the ordinary space or space-time as a medium having
a rich internal nested fine structure, which is however largely hidden on the ordi-
nary macroscopic scales due to the usually low level of resolution of space-time
processes as compared to e.g. the Planck scale. In the process of coarse graining,
described in the following, the resolution of the details of space-time is steadily
scaled down from the Planck level to the level of ordinary continuum physics.

On the deepest level, that is, the Planck scale, proto space-time is supposed
to be a wildly fluctuating network of dynamic relations or exchange of pieces
of information among a given set of nodes. At each fixed clock-time step there
exist certain subclusters of nodes in this initial network which are particularly
densely entangled and the whole graph can be covered by this uniquely given
set of subclusters of nodes and the respective induced subgraphs (edges given by
overlap of clusters). We dealt with these distinguished clusters of nodes (called
cliques or lumps) in quite some detail in e.g. [19] or [20] and define them in the
introductory section on graph concepts. We emphasize the interesting relations
to earlier ideas of Menger, Rosen et al, which have been discussed in [20].

It is fascinating that a similar picture was developed quite some time ago
in mathematical sociology (cf. [1] p.14 f and [31]). These people developed
networks consisting of two kinds of ties, they called (as we did in, for example,
[22]) weak and strong ties. The strong ties define closely knitted clusters of
friends they call clumps (similar to our cliques or lumps) while the weak ties
form (nonlocal) bridges to aquaintances who are usually not friends of each other
but are lying in local clumps of their own, with these clumps non-overlapping
with each other. In this work the role of the weak ties is particularly emphasized,
playing a role very similar to the translocal web in our framework. As to the
geometric correspondences compare this picture with a very similar picture we
developed in section 5.2 (cf. in particular fiure 3), being completely unaware of
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the above work.
Technically we need a general principle which allows us to lump together

subsets of nodes, living on a certain level of resolution of space-time, to construct
the building blocks of the next level of coarse graining (see below). After a series
of such coarse graining steps we will wind up with a nested structure of lumps,
containing smaller lumps and so forth, which, after appropriate rescaling, may
yield in the end some quasi-continuous but nested structure. This principle is
provided by the following mathematical prescription.

5.1 The Geometric Renormalization Process

It is an important observation that in a generic random graph of order n and
edge probability p the order of cliques is concentrated with very high probability
in a relatively small interval I = (r0/2, r0);

r0 ≈ 2 log(n)/ log(p−1) + O(log log(n)) (30)

see [11],[18],[19]. That is, each renormalization or coarse graining step consists
of the following pieces.

• Starting from a given fixed graph G = G0, defining the level zero, pick the
(generic) cliques, Si, in G, their order lying in the above mentioned interval,
(r0/2, r0).

• These cliques form the new nodes of the clique-graph, Gcl = G1 of G = G0.
The corresponding new edges are drawn between cliques, having a (sufficient
degree of) overlap. Size, overlap and distribution of cliques in a generic
(random) graph have been analyzed in [18],[19].

• That is, both marginal (i.e. very small) cliques (if they do exist at all)
and, more importantly (as they are more numerous), marginal overlaps
are deleted. In this respect a coarse-graining step includes also a certain
purification of the graph structure.

What is considered to be a “sufficient overlap” depends of course on the
physical context and the general working philosophy. A particular node will in
general belong to several, and in the case of densely entangled graphs to many,
cliques. The minimal possible overlap is given by a single common node. If, on
the other hand, the cliques on a certain level of coarse graining are comparatively
large, comprising, say, typically several hundred nodes, it may be reasonable to
neglect marginal, i.e. to small, overlaps as physically irrelevant and define a
sufficient degree of overlap to consist of an appreciable fraction of the typical
clique order. The numerical effect of such choices have been studied in sect.5 of
[18].
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Definition 5.1 We call the graph, defined above, the (purified) clique graph, Gcl,
constructed from the initial graph, G.

We note in passing that the robustness of, say, the graph property connected-
ness under these coarse graining steps has been dealt with in sect. 5 of [18]. We
emphasize that our coarse graining procedure is universal in the sense that the
same principles are applied on every level of the renormalization procedure, as
the transition from a graph to its clique graph is always a well defined prescrip-
tion. In the end, after some rescaling of the length unit, we hope to arrive at
a (quasi-)continuous manifold, displaying, under appropriate magnification, an
intricate internal fine structure. This should (or rather, can only expected to)
happen if the original network has been in a critical state as will be described in
the following.

On each level of coarse-graining, that is, after each renormalisation step, la-
belled by l ∈ Z, we get, as in the block spin approach to critical phenomena, a
new level set of cliques or lumps, Sl

i, (i labelling the cliques on renormalisation
level l), consisting on their sides of (l − 1)-cliques which are the l-nodes of level
l, starting from the level l = 0 with G =: G0. That is, we have

Sl
j =

⋃

i∈j

S
(l−1)
i , S

(l−1)
i =

⋃

k∈i

S
(l−2)
k etc. (31)

(i ∈ j denoting the (l− 1)-cliques, belonging, as meta nodes, to the l-clique, Sj).
These cliques form the meta nodes in the next step.

Definition 5.2 The cliques, S0
i , of G =: G0 are called zero-cliques. They become

the one-nodes, x1
i , of level one, i.e. of G1. The one-cliques, S1

i , are the cliques
in G1. They become the 2-nodes, x2

i , of G2 etc. Correspondingly, we label the
other structural elements, for example, 1-edges, 2-edges or the distance functions,
dl(x

l
i, x

l
j). These higher-level nodes and edges are also called meta-nodes, -edges,

respectively.

Remark 5.3 The above construction may lead to the wrong impression that the
network becomes sparser after each step. Quite to the contrary, the number of
cliques in Gcl may be much larger than the number of nodes in the original graph,
G (cf. the table in section 3 of [18]). This happens if there is an appreciable
overlap among the occurring cliques, that is, a given node may belong to many
different cliques. On the other hand, after several renormalisation steps, the
picture usually seems to become stable in the generic case (see subsect. 5.2 of
[18]).

We illustrate the preceding remarks with a couple of numerical results. Start-
ing, as in [18], from an initial network with the parameters, n = 10100, p = 0.7,
which implies r0 = 1291 and taking as sufficient overlap of cliques a value of, say,
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fifty, we get after the first coarse graining step the new parameters on level one:

l = 1: n1 ≈ 10104

, p1 ≈ 10−7·103

, r1 = 3, average vertex degree k ≈ 100.3·104

We see that after only one step the typical cliques are already very small. There-
fore, in the next step, an overlap greater or equal to one is appropriate, that is
we can use the ordinary clique graph instead of the purified clique graph and get
on the second level:

l = 2: n2 ≈ 10104

(number of cliques on level one), p2 ≈ p1 ≈ 10−7·103

, r2 = 3

We convinced ourselves that the qualitative picture will no longer change under
further renormalisation steps.

Remark: We note that the above choice of parameters is not really crucial. The
qualitative picture will essentially remain the same for other choices (cf. section
5 of [18]).

We briefly resume the picture we tried to convey in this subsection. We
argued that, what we regard as the building blocks of our physical space-time
continuum and what we dubbed physical points in previous work, have actually
a nested internal structure which is built up, starting from the Planck scale, via
the renormalisation steps, described above.

On the other hand, we want to emphasize that such a continuum as a fixed
point or limit state is far from being a quasi automatic consequence of our pro-
cedure. Quite to the contrary, the initial network has to be in a very peculiar
critical state, see sect.8 of [18], embodying a kind of seemingly scale free translocal
order as being described, for example, in a different context by Barabasi et al
([3]).

5.2 The Translocal Network

This subsection mainly refers to [22], but we deal primarily with the (random)
graph aspects which can be found in sect.6 of [22]. We assume that on a certain
scale, l, of our renormalisation process, the network of lumps, Gl, is sufficiently
close to the continuous limit manifold, M . We take its meta-nodes, i.e. the
cliques, S

(l−1)
i , of level (l − 1) as an approximation of the physical points of M .

This clique graph of level l (i.e. after l coarse graining steps have been per-
formed) carries a natural graph metric, dl(Si, Sj), which is given by the natural
distance between the meta nodes (or cliques), Si, Sj (with edges given by suffi-
cient overlap). If one wants to, one can relate this integer-valued (grainy) distance
functional to a continuous distance function between the corresponding (fuzzy)
physical points, Pi, Pj of the associated continuous manifold (which, in this ap-
proach, may be viewed rather as a mental construct) with

dl(si, sj) ∼ dman(Pi, Pj) (32)
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For more details as to these aspects see [20].We want to focus our attention
in the following on another somewhat hidden but very important aspect of the
construction.

By assumption we draw an edge between a pair of cliques, Si, Sj , if they have
a certain degree of overlap of common nodes. This has the effect that all edges
which may exist between nodes lying in Si, Sj, respectively, are deleted in the
next step if these cliques have empty or too marginal overlap. That is, these
cliques, occurring as meta nodes of the following level are now unrelated in the
next step whereas there may still exist a certain (limited) amount of information
exchange on the preceding, more fine grained levels. In this sense information
will also be coarse grained with only sufficiently robust information surviving the
process.

In subsection 5.2 of [18] we made a detailed (numerical) analysis of these
effects of renormalisation. Among other things we calculated, depending on the
edge probability p, the typical cardinality of the local group of a given clique, S0,
i.e. the number of cliques having an overlap with S0 bigger than some prescribed
number, the typical cardinality of the cliques on the consecutive levels, the level-
dependent edge probability and vertex degree and so on. We made the important
observation that already after a few steps the whole picture becomes relatively
stationary, implying that the idea of a stationary limit phase is perhaps not so
far-fetched.

What we have discussed so far is the local structure or near order aspect of
the network which becomes more and more apparent as a consequence of the
consecutive coarse graining steps. We showed also in [18] that this process leads
to an unfolding of the initially densely entangled network towards a network
having a large average distance or diameter similar to a local network in contrast
to a typical random graph.

We infer that in contrast to the initial graph, G = G0, in which a large portion
of the vertices is directly connected, most of the cliques of G0, i.e. nodes of the
first level G1, are no longer directly connected. On the other hand, many of the
nodes lying in, say, the non-overlapping cliques, Si, Sj are connected by edges of
the initial graph G0.

Another important consequence of our analysis is that practically all occurring
cliques are lying in the above interval (r0/2, r0) with r0 = 1291 in our example.
This implies that essentially every edge in G0 belongs to at least one such large
clique. Put differently, with Si, Sj two cliques, having a large distance in G1, and
eij some edge connecting two nodes in Si, Sj respectively, eij almost certainly
belongs to another large clique of roughly the same order. This conclusion makes
the global picture both intricate and interesting.

We try to express this situation in the following picture The circles denote
some generic cliques which are assumed to have sufficient overlap with (some of)
their neighbors. A part of another clique (denoted by (1)), assumed to be of
more or less the same order, but having only weak bonds (i.e., weak overlap)
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(1)

(1)

Figure 3:

with these possibly widely separated local neighborhood clusters, is represented
by thin lines.

On the other hand, we learned from our numerical estimates (see also below)
that, typically, also clique (1) will have its own local group, that is, cliques with
strong overlap. In other words, this particular clique (1) is almost shurely the
member of another local group of roughly the same shape, but lying in another
region of the manifold, M . This situation is described in the picture on the right,
with the weak bonds between the three local groups, represented on the left and
the clique (1) depicted by dashed lines. The clique (1) is now represented as a
member of another local group of generic cliques.

Summing up our observations we can conclude that, even if we start from
a densely entangled random graph, we typically arrive after only a few renor-
malisation steps at a coarse grained network displaying both a markedly local
behavior in form of strongly coupled local clusters and a superposed sparser net-
work of a different, translocal character, with links spreading like a spider web
over the whole underlying local network. We note that these findings exhibit a
strong resemblance to the small world scale free networks discussed previously.
We underpin this speculation with a variety of analytic results in the following
section.

6 Scale-Free Critical Network States

As we remarked above, random graphs have a vertex degree distribution which is
of a binomial, and, in a certain limit, of Poisson type. In contrast to such graphs,
Barabasi et al observed that certain classes of concrete networks are not of this
type but instead are of scale-free type ([3],[4]). This means, the vertex degrees
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are (asymptotically) distributed according to a power law

P (k) ∼ k−γ (33)

Geometrically such a distribution is related to the existence of a certain por-
tion of hubs in the networks, that is, nodes having an unusually large number of
links. However, this is not sufficient in general. The network has to be hierarchi-
cally organised so that these short cuts do exist on consecutive levels of coarse
graining as described by us in the preceding section. One therefore may suppose
that scale-free networks represent a subclass of small world networks with clus-
ters in clusters in clusters and so on. In the following we will corroborate this
hypothesis with a number of analytic results.

An important conceptual tool in the analysis of the large scale behavior of
graphs of order, n, near or at infinity, is the distance degree sequence, dds(x),
relative to an arbitrary but fixed node, x ([17],[18]). In [17] we gave arguments
that its scaling behavior is closely related to a geometric characteristic of spaces
or, rather, systems (in physics) which may be identified with the concept of
intrinsic dimension.

Remark 6.1 We use the adjective ‘intrinsic’ to distinguish the concept from
the more common concept of ‘embedding dimension’. In contrast to the latter it
encodes the intrinsic geometrical or relational organisation of the system itself
and not the lesser important structure of the ambient space.

Definition 6.2 (Internal Scaling Dimension) Let x be an arbitrary node of
G. Let #(Ul(x)) denote the number of nodes in Ul(x).We consider the sequence

of real numbers Dl(x) := ln(#(Ul(x))
ln(l)

. We say DS(x) := lim inf l→∞ Dl(x) is the

lower and DS(x) := lim supl→∞
Dl(x) the upper internal scaling dimension of

G starting from x. If DS(x) = DS(x) =: DS(x) we say G has internal scaling
dimension DS(x) starting from x. Finally, if DS(x) = DS ∀x, we simply say G
has internal scaling dimension DS.

Definition 6.3 (Connectivity Dimension) Let x again be an arbitrary node
of G. Let #(∂Ul(x)) denot the number of nodes in the boundary of Ul(x) (in our

previous notation Γl(x) = ∂Ul(x)). We set D̃l(x) := ln(#(∂Ul(x))
ln(l)

+ 1 and define

DC(x) := lim inf l→∞ D̃l(x) as the lower and DC(x) := lim supl→∞
D̃l(x) as the

upper connectivity dimension. If lower and upper dimension coincide, we say
G has connectivity dimension DC(x) := DC(x) = DC(x) starting from x. If
DC(x) = DC for all x we call DC simply the connectivity dimension of G.

The two definitions are not strictly equivalent but coincide in the more regular
situations. In the following, for the sake of brevity, we only use the first notion.
Like fractal dimension the above definitions coincide with the usual (embedding)
dimension for the more regular situations like e.g. lattice graphs.
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It is remarkable that our concept of graph or network dimension is stable
under a variety of graph transformations or deformations, in particular local
ones ([17],[18]). In the following we want to concentrate on one particular aspect,
namely the relevance of a dimensional analysis in connection with critical network
states. These we will associate later with small world scale-free networks.

In a first step we compare the dimension of a graph, G, with its (unpurified)
clique graph, Gcl, in order to exhibit the importance of coarse graining.

Theorem 6.4 Assuming that G has dimension D and globally bounded node
degree, vi ≤ v < ∞, we have that Dcl also exists and it holds

Dcl = D (34)

Note that this result does hold for the ordinary clique graph, viz. arbitrary overlap,
viz., no purification. In other words, under these assumptions, the renormalisa-
tion steps do not change the graph dimension.

The (longer) proof can be found in [18].
This result is reminiscent of a similar observation in statistical mechanics

where the non-coarse-grained Gibbsian entropy happens to be a constant of mo-
tion. The same happens here. In the ordinary clique graph each original bond
occurs in at least one clique, i.e. there is no real (or, more precisely, not enough)
coarse graining.

Note that there are two important assumptions underlying the above result.
First, the node degree is assumed to be globally bounded. Second, there has been
no coarse graining. If we allow for purification, we have the following weaker
result.

Corollary 6.5 For the purified clique graph, with overlaps exceeding a certain
fixed number, l0, we can only prove

Dcl ≤ D (35)

Having for example the picture in mind, frequently invoked by Wheeler and
others, of a space-time foam, with a concept of dimension depending on the
scale of resolution (see e.g. Box 44.4 on p.1205 in [29]), we infer from our above
observations that this may turn out to be both an interesting and not entirely
trivial topic. We have to analyze under what specific conditions the dimension
can actually shrink under coarse-graining, so that we may start from a very erratic
network on, say, the Planck scale, and arrive in the end at a smooth macroscopic
space-time having perhaps an integer dimension of, preferably, value 4 or so.

While the above corollary seems to allow in principle that space- or network
dimension may become smaller under coarse graining, the following remarkable
result shows that this is not so easily acchieved. On the other hand, it gives
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strong clues as to the kind of (critical) network states which actually do admit a
decrease of dimension under purification.

In [17] we investigated the effect of additional edge insertions in a graph on
its dimension.

Proposition 6.6 Additional insertions of bonds between arbitrarily many nodes,
y, z, having original graph distance, d(y, z) ≤ k , k ∈ N arbitrary but fixed, do
not change D(x) or D(x).

From this we learn the following. Phase transitions in graphs, changing the
dimension, have to be intrinsically non-local. That is, they necessarily involve
nodes, having an arbitrarily large distance in the original graph. We think, this
is a crucial observation from the physical point of view. It shows that systems
have to be critical in a peculiar way, that is, having a lot of distant correlations
or, rather, correlations on all scales (cf. also Smolins’s discussion in e.g. [30] and
elsewhere).

In the preceding proposition we made the transition from a graph, G, to a
graph G′ living on the same node set but having more edges with the special
proviso that edge insertions take only place between pairs of nodes, (x, y), having

dG(x, y) ≤ k (36)

In the purification process we are rather interested in edge deletions! These two
processes are however not! strictly symmetric.

Under edge insertions the distance between nodes does not increase, i.e.

G → G′ ⇒ dG′(x, y) ≤ dG(x, y) (37)

On the other hand, edge deletions may lead to

G′ → G ⇒ dG(x, y) ≥ dG′(x, y) (38)

If we want to employ the above proposition also in the case of edge deletions, we
have to guarantee that edges in G′ between nodes, x, y, may be deleted under
the proviso that dG(x, y) ≤ k. The condition dG′(x, y) ≤ k would not suffice.

If we apply these findings to our renormalisation steps, that is, passing from
a graph to its associated (purified) clique graph, this implies the following. We
saw that assuming a network or graph, G, having a dimension, D, the unpurified
clique graph still has

Dcl = D (39)

On the other hand, denoting for the moment the purified clique graph by Ĝcl, we
have the estimate

D̂cl ≤ Dcl = D (40)
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The transition from Gcl to Ĝcl consists of the deletion of marginal over-
laps among cliques (with the necessary criteria provided by the physical con-
text). That is, Ĝcl lives on the same node set (the set of cliques) but has fewer
(meta)bonds. The above proposition shows that this does not automatically
guarantee that we really have

D̂cl < Dcl (41)

Quite to the contrary, we learned that this can only be achieved if the bond
deletions happen in a very specific way.

On Gcl we have, as on any graph, a natural distance or neighborhood struc-
ture, given by the canonical graph metric, dcl(Si, Sj). We thus infer that edge
deletions in Gcl between cliques which are not very far apart in the final purified
graph Ĝcl cannot alter the final dimension of Ĝcl. More precisely, only edge dele-
tions between cliques having distances in Ĝcl which approach infinity in a specific
way, can have an effect.

The preceding observation fits into the picture one invokes in the context of
critical behavior and scale freeness in, for example, statistical mechanics. Fur-
thermore it seems to be closely related to the kind of scale freeness of networks as
observed by Barabasi et al. In the last section of [18] we gave a simple but, as we
think, instructive example in which the effects of edge deletions on all scales as
the origin of dimensional change can explicitly be studied. The example consists
of the one-dimensional (discrete) line, Z1, being embedded in Z2 in a particular
way, so that the corresponding edge deletions lead to a dimensional change from
Z2 to Z1.
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