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INTRODUCTION

Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful
mathematical subject which has many applications, ranging from number theory and combinatorics
to geometry, probability theory, quantum mechanics and quantum field theory.

Representation theory was born in 1896 in the work of the German mathematician F. G.
Frobenius. This work was triggered by a letter to Frobenius by R. Dedekind. In this letter Dedekind
made the following observation: take the multiplication table of a finite group G and turn it into a
matrix XG by replacing every entry g of this table by a variable xg. Then the determinant of XG

factors into a product of irreducible polynomials in {xg}, each of which occurs with multiplicity
equal to its degree. Dedekind checked this surprising fact in a few special cases, but could not prove
it in general. So he gave this problem to Frobenius. In order to find a solution of this problem
(which we will explain below), Frobenius created representation theory of finite groups. 1

The present lecture notes arose from a representation theory course given by the first author to
the remaining six authors in March 2004 within the framework of the Clay Mathematics Institute
Research Academy for high school students, and its extended version given by the first author to
MIT undergraduate math students in the Fall of 2008. The lectures are supplemented by many
problems and exercises, which contain a lot of additional material; the more difficult exercises are
provided with hints.

The notes cover a number of standard topics in representation theory of groups, Lie algebras, and
quivers. We mostly follow [FH], with the exception of the sections discussing quivers, which follow
[BGP]. We also recommend the comprehensive textbook [CR]. The notes should be accessible to
students with a strong background in linear algebra and a basic knowledge of abstract algebra.

Acknowledgements. The authors are grateful to the Clay Mathematics Institute for hosting
the first version of this course. The first author is very indebted to Victor Ostrik for helping him
prepare this course, and thanks Josh Nichols-Barrer and Thomas Lam for helping run the course
in 2004 and for useful comments. He is also very grateful to Darij Grinberg for very careful reading
of the text, for many useful comments and corrections, and for suggesting the Exercises in Sections
1.10, 2.3, 3.5, 4.9, 4.26, and 6.8.

1For more on the history of representation theory, see [Cu].
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1 Basic notions of representation theory

1.1 What is representation theory?

In technical terms, representation theory studies representations of associative algebras. Its general
content can be very briefly summarized as follows.

An associative algebra over a field k is a vector space A over k equipped with an associative
bilinear multiplication a, b 7→ ab, a, b ∈ A. We will always consider associative algebras with unit,
i.e., with an element 1 such that 1 · a = a · 1 = a for all a ∈ A. A basic example of an associative
algebra is the algebra EndV of linear operators from a vector space V to itself. Other important
examples include algebras defined by generators and relations, such as group algebras and universal
enveloping algebras of Lie algebras.

A representation of an associative algebra A (also called a left A-module) is a vector space
V equipped with a homomorphism ρ : A→ EndV , i.e., a linear map preserving the multiplication
and unit.

A subrepresentation of a representation V is a subspace U ⊂ V which is invariant under all
operators ρ(a), a ∈ A. Also, if V1, V2 are two representations of A then the direct sum V1 ⊕ V2

has an obvious structure of a representation of A.

A nonzero representation V of A is said to be irreducible if its only subrepresentations are
0 and V itself, and indecomposable if it cannot be written as a direct sum of two nonzero
subrepresentations. Obviously, irreducible implies indecomposable, but not vice versa.

Typical problems of representation theory are as follows:

1. Classify irreducible representations of a given algebra A.

2. Classify indecomposable representations of A.

3. Do 1 and 2 restricting to finite dimensional representations.

As mentioned above, the algebra A is often given to us by generators and relations. For
example, the universal enveloping algebra U of the Lie algebra sl(2) is generated by h, e, f with
defining relations

he− eh = 2e, hf − fh = −2f, ef − fe = h. (1)

This means that the problem of finding, say, N -dimensional representations of A reduces to solving
a bunch of nonlinear algebraic equations with respect to a bunch of unknown N by N matrices,
for example system (1) with respect to unknown matrices h, e, f .

It is really striking that such, at first glance hopelessly complicated, systems of equations can
in fact be solved completely by methods of representation theory! For example, we will prove the
following theorem.

Theorem 1.1. Let k = C be the field of complex numbers. Then:

(i) The algebra U has exactly one irreducible representation Vd of each dimension, up to equiv-
alence; this representation is realized in the space of homogeneous polynomials of two variables x, y
of degree d− 1, and defined by the formulas

ρ(h) = x
∂

∂x
− y

∂

∂y
, ρ(e) = x

∂

∂y
, ρ(f) = y

∂

∂x
.

(ii) Any indecomposable finite dimensional representation of U is irreducible. That is, any finite
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dimensional representation of U is a direct sum of irreducible representations.

As another example consider the representation theory of quivers.

A quiver is a finite oriented graph Q. A representation of Q over a field k is an assignment
of a k-vector space Vi to every vertex i of Q, and of a linear operator Ah : Vi → Vj to every directed
edge h going from i to j (loops and multiple edges are allowed). We will show that a representation
of a quiver Q is the same thing as a representation of a certain algebra PQ called the path algebra
of Q. Thus one may ask: what are the indecomposable finite dimensional representations of Q?

More specifically, let us say that Q is of finite type if it has finitely many indecomposable
representations.

We will prove the following striking theorem, proved by P. Gabriel about 35 years ago:

Theorem 1.2. The finite type property of Q does not depend on the orientation of edges. The
connected graphs that yield quivers of finite type are given by the following list:

• An : ◦−−◦ · · · ◦−−◦

• Dn:
◦−−◦ · · · ◦−−◦|◦

• E6 : ◦−−◦−−◦−−◦−−◦|◦

• E7 : ◦−−◦−−◦−−◦−−◦−−◦|◦

• E8 :

◦−−◦−−◦−−◦−−◦−−◦−−◦|◦

The graphs listed in the theorem are called (simply laced) Dynkin diagrams. These graphs
arise in a multitude of classification problems in mathematics, such as classification of simple Lie
algebras, singularities, platonic solids, reflection groups, etc. In fact, if we needed to make contact
with an alien civilization and show them how sophisticated our civilization is, perhaps showing
them Dynkin diagrams would be the best choice!

As a final example consider the representation theory of finite groups, which is one of the most
fascinating chapters of representation theory. In this theory, one considers representations of the
group algebra A = C[G] of a finite group G – the algebra with basis ag, g ∈ G and multiplication
law agah = agh. We will show that any finite dimensional representation of A is a direct sum of
irreducible representations, i.e., the notions of an irreducible and indecomposable representation
are the same for A (Maschke’s theorem). Another striking result discussed below is the Frobenius
divisibility theorem: the dimension of any irreducible representation of A divides the order of G.
Finally, we will show how to use representation theory of finite groups to prove Burnside’s theorem:
any finite group of order paqb, where p, q are primes, is solvable. Note that this theorem does not
mention representations, which are used only in its proof; a purely group-theoretical proof of this
theorem (not using representations) exists but is much more difficult!

6



1.2 Algebras

Let us now begin a systematic discussion of representation theory.

Let k be a field. Unless stated otherwise, we will always assume that k is algebraically closed,
i.e., any nonconstant polynomial with coefficients in k has a root in k. The main example is the
field of complex numbers C, but we will also consider fields of characteristic p, such as the algebraic
closure Fp of the finite field Fp of p elements.

Definition 1.3. An associative algebra over k is a vector space A over k together with a bilinear
map A×A→ A, (a, b) 7→ ab, such that (ab)c = a(bc).

Definition 1.4. A unit in an associative algebra A is an element 1 ∈ A such that 1a = a1 = a.

Proposition 1.5. If a unit exists, it is unique.

Proof. Let 1, 1′ be two units. Then 1 = 11′ = 1′.

From now on, by an algebra A we will mean an associative algebra with a unit. We will also
assume that A 6= 0.

Example 1.6. Here are some examples of algebras over k:

1. A = k.

2. A = k[x1, ..., xn] – the algebra of polynomials in variables x1, ..., xn.

3. A = EndV – the algebra of endomorphisms of a vector space V over k (i.e., linear maps, or
operators, from V to itself). The multiplication is given by composition of operators.

4. The free algebra A = k〈x1, ..., xn〉. A basis of this algebra consists of words in letters
x1, ..., xn, and multiplication in this basis is simply concatenation of words.

5. The group algebra A = k[G] of a group G. Its basis is {ag, g ∈ G}, with multiplication law
agah = agh.

Definition 1.7. An algebra A is commutative if ab = ba for all a, b ∈ A.

For instance, in the above examples, A is commutative in cases 1 and 2, but not commutative in
cases 3 (if dimV > 1), and 4 (if n > 1). In case 5, A is commutative if and only if G is commutative.

Definition 1.8. A homomorphism of algebras f : A → B is a linear map such that f(xy) =
f(x)f(y) for all x, y ∈ A, and f(1) = 1.

1.3 Representations

Definition 1.9. A representation of an algebra A (also called a left A-module) is a vector space
V together with a homomorphism of algebras ρ : A→ EndV .

Similarly, a right A-module is a space V equipped with an antihomomorphism ρ : A→ EndV ;
i.e., ρ satisfies ρ(ab) = ρ(b)ρ(a) and ρ(1) = 1.

The usual abbreviated notation for ρ(a)v is av for a left module and va for the right module.
Then the property that ρ is an (anti)homomorphism can be written as a kind of associativity law:
(ab)v = a(bv) for left modules, and (va)b = v(ab) for right modules.

Here are some examples of representations.

7



Example 1.10. 1. V = 0.

2. V = A, and ρ : A→ EndA is defined as follows: ρ(a) is the operator of left multiplication by
a, so that ρ(a)b = ab (the usual product). This representation is called the regular representation
of A. Similarly, one can equip A with a structure of a right A-module by setting ρ(a)b := ba.

3. A = k. Then a representation of A is simply a vector space over k.

4. A = k〈x1, ..., xn〉. Then a representation of A is just a vector space V over k with a collection
of arbitrary linear operators ρ(x1), ..., ρ(xn) : V → V (explain why!).

Definition 1.11. A subrepresentation of a representation V of an algebra A is a subspace W ⊂ V
which is invariant under all the operators ρ(a) : V → V , a ∈ A.

For instance, 0 and V are always subrepresentations.

Definition 1.12. A representation V 6= 0 of A is irreducible (or simple) if the only subrepresenta-
tions of V are 0 and V .

Definition 1.13. Let V1, V2 be two representations of an algebra A. A homomorphism (or in-
tertwining operator) φ : V1 → V2 is a linear operator which commutes with the action of A, i.e.,
φ(av) = aφ(v) for any v ∈ V1. A homomorphism φ is said to be an isomorphism of representations
if it is an isomorphism of vector spaces. The set (space) of all homomorphisms of representations
V1 → V2 is denoted by HomA(V1, V2).

Note that if a linear operator φ : V1 → V2 is an isomorphism of representations then so is the
linear operator φ−1 : V2 → V1 (check it!).

Two representations between which there exists an isomorphism are said to be isomorphic. For
practical purposes, two isomorphic representations may be regarded as “the same”, although there
could be subtleties related to the fact that an isomorphism between two representations, when it
exists, is not unique.

Definition 1.14. Let V1, V2 be representations of an algebra A. Then the space V1 ⊕ V2 has an
obvious structure of a representation of A, given by a(v1 ⊕ v2) = av1 ⊕ av2.

Definition 1.15. A nonzero representation V of an algebra A is said to be indecomposable if it is
not isomorphic to a direct sum of two nonzero representations.

It is obvious that an irreducible representation is indecomposable. On the other hand, we will
see below that the converse statement is false in general.

One of the main problems of representation theory is to classify irreducible and indecomposable
representations of a given algebra up to isomorphism. This problem is usually hard and often can
be solved only partially (say, for finite dimensional representations). Below we will see a number
of examples in which this problem is partially or fully solved for specific algebras.

We will now prove our first result – Schur’s lemma. Although it is very easy to prove, it is
fundamental in the whole subject of representation theory.

Proposition 1.16. (Schur’s lemma) Let V1, V2 be representations of an algebra A over any field
F (which need not be algebraically closed). Let φ : V1 → V2 be a nonzero homomorphism of
representations. Then:

(i) If V1 is irreducible, φ is injective;

8



(ii) If V2 is irreducible, φ is surjective.

Thus, if both V1 and V2 are irreducible, φ is an isomorphism.

Proof. (i) The kernel K of φ is a subrepresentation of V1. Since φ 6= 0, this subrepresentation
cannot be V1. So by irreducibility of V1 we have K = 0.

(ii) The image I of φ is a subrepresentation of V2. Since φ 6= 0, this subrepresentation cannot
be 0. So by irreducibility of V2 we have I = V2.

Corollary 1.17. (Schur’s lemma for algebraically closed fields) Let V be a finite dimensional
irreducible representation of an algebra A over an algebraically closed field k, and φ : V → V is an
intertwining operator. Then φ = λ · Id for some λ ∈ k (a scalar operator).

Remark. Note that this Corollary is false over the field of real numbers: it suffices to take
A = C (regarded as an R-algebra), and V = A.

Proof. Let λ be an eigenvalue of φ (a root of the characteristic polynomial of φ). It exists since k is
an algebraically closed field. Then the operator φ− λId is an intertwining operator V → V , which
is not an isomorphism (since its determinant is zero). Thus by Proposition 1.16 this operator is
zero, hence the result.

Corollary 1.18. Let A be a commutative algebra. Then every irreducible finite dimensional rep-
resentation V of A is 1-dimensional.

Remark. Note that a 1-dimensional representation of any algebra is automatically irreducible.

Proof. Let V be irreducible. For any element a ∈ A, the operator ρ(a) : V → V is an intertwining
operator. Indeed,

ρ(a)ρ(b)v = ρ(ab)v = ρ(ba)v = ρ(b)ρ(a)v

(the second equality is true since the algebra is commutative). Thus, by Schur’s lemma, ρ(a) is
a scalar operator for any a ∈ A. Hence every subspace of V is a subrepresentation. But V is
irreducible, so 0 and V are the only subspaces of V . This means that dimV = 1 (since V 6= 0).

Example 1.19. 1. A = k. Since representations of A are simply vector spaces, V = A is the only
irreducible and the only indecomposable representation.

2. A = k[x]. Since this algebra is commutative, the irreducible representations of A are its
1-dimensional representations. As we discussed above, they are defined by a single operator ρ(x).
In the 1-dimensional case, this is just a number from k. So all the irreducible representations of A
are Vλ = k, λ ∈ k, in which the action of A defined by ρ(x) = λ. Clearly, these representations are
pairwise non-isomorphic.

The classification of indecomposable representations of k[x] is more interesting. To obtain it,
recall that any linear operator on a finite dimensional vector space V can be brought to Jordan
normal form. More specifically, recall that the Jordan block Jλ,n is the operator on kn which in
the standard basis is given by the formulas Jλ,nei = λei + ei−1 for i > 1, and Jλ,ne1 = λe1. Then
for any linear operator B : V → V there exists a basis of V such that the matrix of B in this basis
is a direct sum of Jordan blocks. This implies that all the indecomposable representations of A are
Vλ,n = kn, λ ∈ k, with ρ(x) = Jλ,n. The fact that these representations are indecomposable and
pairwise non-isomorphic follows from the Jordan normal form theorem (which in particular says
that the Jordan normal form of an operator is unique up to permutation of blocks).
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This example shows that an indecomposable representation of an algebra need not be irreducible.

3. The group algebra A = k[G], where G is a group. A representation of A is the same thing as
a representation of G, i.e., a vector space V together with a group homomorphism ρ : G→ Aut(V ),
whre Aut(V ) = GL(V ) denotes the group of invertible linear maps from the space V to itself.

Problem 1.20. Let V be a nonzero finite dimensional representation of an algebra A. Show that
it has an irreducible subrepresentation. Then show by example that this does not always hold for
infinite dimensional representations.

Problem 1.21. Let A be an algebra over a field k. The center Z(A) of A is the set of all elements
z ∈ A which commute with all elements of A. For example, if A is commutative then Z(A) = A.

(a) Show that if V is an irreducible finite dimensional representation of A then any element
z ∈ Z(A) acts in V by multiplication by some scalar χV (z). Show that χV : Z(A) → k is a
homomorphism. It is called the central character of V .

(b) Show that if V is an indecomposable finite dimensional representation of A then for any
z ∈ Z(A), the operator ρ(z) by which z acts in V has only one eigenvalue χV (z), equal to the
scalar by which z acts on some irreducible subrepresentation of V . Thus χV : Z(A) → k is a
homomorphism, which is again called the central character of V .

(c) Does ρ(z) in (b) have to be a scalar operator?

Problem 1.22. Let A be an associative algebra, and V a representation of A. By EndA(V ) one
denotes the algebra of all homomorphisms of representations V → V . Show that EndA(A) = Aop,
the algebra A with opposite multiplication.

Problem 1.23. Prove the following “Infinite dimensional Schur’s lemma” (due to Dixmier): Let
A be an algebra over C and V be an irreducible representation of A with at most countable basis.
Then any homomorphism of representations φ : V → V is a scalar operator.

Hint. By the usual Schur’s lemma, the algebra D := EndA(V ) is an algebra with division.
Show that D is at most countably dimensional. Suppose φ is not a scalar, and consider the subfield
C(φ) ⊂ D. Show that C(φ) is a transcendental extension of C. Derive from this that C(φ) is
uncountably dimensional and obtain a contradiction.

1.4 Ideals

A left ideal of an algebra A is a subspace I ⊆ A such that aI ⊆ I for all a ∈ A. Similarly, a right
ideal of an algebra A is a subspace I ⊆ A such that Ia ⊆ I for all a ∈ A. A two-sided ideal is a
subspace that is both a left and a right ideal.

Left ideals are the same as subrepresentations of the regular representation A. Right ideals are
the same as subrepresentations of the regular representation of the opposite algebra Aop.

Below are some examples of ideals:

• If A is any algebra, 0 and A are two-sided ideals. An algebra A is called simple if 0 and A
are its only two-sided ideals.

• If φ : A→ B is a homomorphism of algebras, then kerφ is a two-sided ideal of A.

• If S is any subset of an algebra A, then the two-sided ideal generated by S is denoted 〈S〉 and
is the span of elements of the form asb, where a, b ∈ A and s ∈ S. Similarly we can define
〈S〉ℓ = span{as} and 〈S〉r = span{sb}, the left, respectively right, ideal generated by S.
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1.5 Quotients

Let A be an algebra and I a two-sided ideal in A. Then A/I is the set of (additive) cosets of I.
Let π : A→ A/I be the quotient map. We can define multiplication in A/I by π(a) ·π(b) := π(ab).
This is well defined because if π(a) = π(a′) then

π(a′b) = π(ab+ (a′ − a)b) = π(ab) + π((a′ − a)b) = π(ab)

because (a′ − a)b ∈ Ib ⊆ I = ker π, as I is a right ideal; similarly, if π(b) = π(b′) then

π(ab′) = π(ab+ a(b′ − b)) = π(ab) + π(a(b′ − b)) = π(ab)

because a(b′ − b) ∈ aI ⊆ I = ker π, as I is also a left ideal. Thus, A/I is an algebra.

Similarly, if V is a representation of A, and W ⊂ V is a subrepresentation, then V/W is also a
representation. Indeed, let π : V → V/W be the quotient map, and set ρV/W (a)π(x) := π(ρV (a)x).

Above we noted that left ideals of A are subrepresentations of the regular representation of A,
and vice versa. Thus, if I is a left ideal in A, then A/I is a representation of A.

Problem 1.24. Let A = k[x1, ..., xn] and I 6= A be any ideal in A containing all homogeneous
polynomials of degree ≥ N . Show that A/I is an indecomposable representation of A.

Problem 1.25. Let V 6= 0 be a representation of A. We say that a vector v ∈ V is cyclic if it
generates V , i.e., Av = V . A representation admitting a cyclic vector is said to be cyclic. Show
that

(a) V is irreducible if and only if all nonzero vectors of V are cyclic.

(b) V is cyclic if and only if it is isomorphic to A/I, where I is a left ideal in A.

(c) Give an example of an indecomposable representation which is not cyclic.

Hint. Let A = C[x, y]/I2, where I2 is the ideal spanned by homogeneous polynomials of degree
≥ 2 (so A has a basis 1, x, y). Let V = A∗ be the space of linear functionals on A, with the action
of A given by (ρ(a)f)(b) = f(ba). Show that V provides such an example.

1.6 Algebras defined by generators and relations

If f1, . . . , fm are elements of the free algebra k〈x1, . . . , xn〉, we say that the algebra
A := k〈x1, . . . , xn〉/〈{f1, . . . , fm}〉 is generated by x1, . . . , xn with defining relations f1 = 0, . . . , fm =
0.

1.7 Examples of algebras

1. The Weyl algebra, k〈x, y〉/〈yx − xy − 1〉.

2. The q-Weyl algebra, generated by x, x−1, y, y−1 with defining relations yx = qxy and xx−1 =
x−1x = yy−1 = y−1y = 1.

Proposition. (i) A basis for the Weyl algebra A is {xiyj , i, j ≥ 0}.

(ii) A basis for the q-Weyl algebra Aq is {xiyj , i, j ∈ Z}.
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Proof. (i) First let us show that the elements xiyj are a spanning set for A. To do this, note that
any word in x, y can be ordered to have all the x on the left of the y, at the cost of interchanging
some x and y. Since yx − xy = 1, this will lead to error terms, but these terms will be sums of
monomials that have a smaller number of letters x, y than the original word. Therefore, continuing
this process, we can order everything and represent any word as a linear combination of xiyj.

The proof that xiyj are linearly independent is based on representation theory. Namely, let a be
a variable, and E = tak[a][t, t−1] (here ta is just a formal symbol, so really E = k[a][t, t−1]). Then E

is a representation of A with action given by xf = tf and yf = df
dt (where d(ta+n)

dt := (a+n)ta+n−1).
Suppose now that we have a nontrivial linear relation

∑
cijx

iyj = 0. Then the operator

L =
∑

cijt
i

(
d

dt

)j

acts by zero in E. Let us write L as

L =
r∑

j=0

Qj(t)

(
d

dt

)j

,

where Qr 6= 0. Then we have

Lta =
r∑

j=0

Qj(t)a(a− 1)...(a − j + 1)ta−j .

This must be zero, so we have
∑r

j=0Qj(t)a(a − 1)...(a − j + 1)t−j = 0 in k[a][t, t−1]. Taking the
leading term in a, we get Qr(t) = 0, a contradiction.

(ii) Any word in x, y, x−1, y−1 can be ordered at the cost of multiplying it by a power of q. This
easily implies both the spanning property and the linear independence.

Remark. The proof of (i) shows that the Weyl algebra A can be viewed as the algebra of
polynomial differential operators in one variable t.

The proof of (i) also brings up the notion of a faithful representation.

Definition. A representation ρ : A→ End V is faithful if ρ is injective.

For example, k[t] is a faithful representation of the Weyl algebra, if k has characteristic zero
(check it!), but not in characteristic p, where (d/dt)pQ = 0 for any polynomial Q. However, the
representation E = tak[a][t, t−1], as we’ve seen, is faithful in any characteristic.

Problem 1.26. Let A be the Weyl algebra, generated by two elements x, y with the relation

yx− xy − 1 = 0.

(a) If chark = 0, what are the finite dimensional representations of A? What are the two-sided
ideals in A?

Hint. For the first question, use the fact that for two square matrices B,C, Tr(BC) = Tr(CB).
For the second question, show that any nonzero two-sided ideal in A contains a nonzero polynomial
in x, and use this to characterize this ideal.

Suppose for the rest of the problem that chark = p.

(b) What is the center of A?
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Hint. Show that xp and yp are central elements.

(c) Find all irreducible finite dimensional representations of A.

Hint. Let V be an irreducible finite dimensional representation of A, and v be an eigenvector
of y in V . Show that {v, xv, x2v, ..., xp−1v} is a basis of V .

Problem 1.27. Let q be a nonzero complex number, and A be the q-Weyl algebra over C generated
by x±1 and y±1 with defining relations xx−1 = x−1x = 1, yy−1 = y−1y = 1, and xy = qyx.

(a) What is the center of A for different q? If q is not a root of unity, what are the two-sided
ideals in A?

(b) For which q does this algebra have finite dimensional representations?

Hint. Use determinants.

(c) Find all finite dimensional irreducible representations of A for such q.

Hint. This is similar to part (c) of the previous problem.

1.8 Quivers

Definition 1.28. A quiver Q is a directed graph, possibly with self-loops and/or multiple edges
between two vertices.

Example 1.29.
• // • •oo

•

OO

We denote the set of vertices of the quiver Q as I, and the set of edges as E. For an edge h ∈ E,
let h′, h′′ denote the source and target of h, respectively:

•
h′ h

// •
h′′

Definition 1.30. A representation of a quiver Q is an assignment to each vertex i ∈ I of a vector
space Vi and to each edge h ∈ E of a linear map xh : Vh′ −→ Vh′′ .

It turns out that the theory of representations of quivers is a part of the theory of representations
of algebras in the sense that for each quiver Q, there exists a certain algebra PQ, called the path
algebra of Q, such that a representation of the quiver Q is “the same” as a representation of the
algebra PQ. We shall first define the path algebra of a quiver and then justify our claim that
representations of these two objects are “the same”.

Definition 1.31. The path algebra PQ of a quiver Q is the algebra whose basis is formed by
oriented paths in Q, including the trivial paths pi, i ∈ I, corresponding to the vertices of Q, and
multiplication is concatenation of paths: ab is the path obtained by first tracing b and then a. If
two paths cannot be concatenated, the product is defined to be zero.

Remark 1.32. It is easy to see that for a finite quiver
∑
i∈I

pi = 1, so PQ is an algebra with unit.

Problem 1.33. Show that the algebra PQ is generated by pi for i ∈ I and ah for h ∈ E with the
defining relations:
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1. p2
i = pi, pipj = 0 for i 6= j

2. ahph′ = ah, ahpj = 0 for j 6= h′

3. ph′′ah = ah, piah = 0 for i 6= h′′

We now justify our statement that a representation of a quiver is the same thing as a represen-
tation of the path algebra of a quiver.

Let V be a representation of the path algebra PQ. From this representation, we can construct a
representation of Q as follows: let Vi = piV, and for any edge h, let xh = ah|ph′V : ph′V −→ ph′′V
be the operator corresponding to the one-edge path h.

Similarly, let (Vi, xh) be a representation of a quiver Q. From this representation, we can
construct a representation of the path algebra PQ: let V =

⊕
i Vi, let pi : V → Vi → V be the

projection onto Vi, and for any path p = h1...hm let ap = xh1...xhm
: Vh′

m
→ Vh′′

1
be the composition

of the operators corresponding to the edges occurring in p (and the action of this operator on the
other Vi is zero).

It is clear that the above assignments V 7→ (piV) and (Vi) 7→
⊕

i Vi are inverses of each other.
Thus, we have a bijection between isomorphism classes of representations of the algebra PQ and of
the quiver Q.

Remark 1.34. In practice, it is generally easier to consider a representation of a quiver as in
Definition 1.30.

We lastly define several previous concepts in the context of quivers representations.

Definition 1.35. A subrepresentation of a representation (Vi, xh) of a quiver Q is a representation
(Wi, x

′
h) where Wi ⊆ Vi for all i ∈ I and where xh(Wh′) ⊆Wh′′ and x′h = xh|Wh′ : Wh′ −→Wh′′ for

all h ∈ E.

Definition 1.36. The direct sum of two representations (Vi, xh) and (Wi, yh) is the representation
(Vi ⊕Wi, xh ⊕ yh).

As with representations of algebras, a nonzero representation (Vi) of a quiver Q is said to be
irreducible if its only subrepresentations are (0) and (Vi) itself, and indecomposable if it is not
isomorphic to a direct sum of two nonzero representations.

Definition 1.37. Let (Vi, xh) and (Wi, yh) be representations of the quiver Q. A homomorphism
ϕ : (Vi) −→ (Wi) of quiver representations is a collection of maps ϕi : Vi −→ Wi such that
yh ◦ ϕh′ = ϕh′′ ◦ xh for all h ∈ E.

Problem 1.38. Let A be a Z+-graded algebra, i.e., A = ⊕n≥0A[n], and A[n] · A[m] ⊂ A[n +m].
If A[n] is finite dimensional, it is useful to consider the Hilbert series hA(t) =

∑
dimA[n]tn (the

generating function of dimensions of A[n]). Often this series converges to a rational function, and
the answer is written in the form of such function. For example, if A = k[x] and deg(xn) = n then

hA(t) = 1 + t+ t2 + ...+ tn + ... =
1

1 − t

Find the Hilbert series of:

(a) A = k[x1, ..., xm] (where the grading is by degree of polynomials);
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(b) A = k < x1, ..., xm > (the grading is by length of words);

(c) A is the exterior (=Grassmann) algebra ∧k[x1, ..., xm], generated over some field k by
x1, ..., xm with the defining relations xixj + xjxi = 0 and x2

i = 0 for all i, j (the grading is by
degree).

(d) A is the path algebra PQ of a quiver Q (the grading is defined by deg(pi) = 0, deg(ah) = 1).

Hint. The closed answer is written in terms of the adjacency matrix MQ of Q.

1.9 Lie algebras

Let g be a vector space over a field k, and let [ , ] : g × g −→ g be a skew-symmetric bilinear map.
(That is, [a, a] = 0, and hence [a, b] = −[b, a]).

Definition 1.39. (g, [ , ]) is a Lie algebra if [ , ] satisfies the Jacobi identity

[
[a, b] , c

]
+

[
[b, c] , a

]
+

[
[c, a] , b

]
= 0. (2)

Example 1.40. Some examples of Lie algebras are:

1. Any space g with [ , ] = 0 (abelian Lie algebra).

2. Any associative algebra A with [a, b] = ab− ba .

3. Any subspace U of an associative algebra A such that [a, b] ∈ U for all a, b ∈ U .

4. The space Der(A) of derivations of an algebra A, i.e. linear maps D : A → A which satisfy
the Leibniz rule:

D(ab) = D(a)b+ aD(b).

Remark 1.41. Derivations are important because they are the “infinitesimal version” of automor-
phisms (i.e., isomorphisms onto itself). For example, assume that g(t) is a differentiable family of
automorphisms of a finite dimensional algebra A over R or C parametrized by t ∈ (−ǫ, ǫ) such that
g(0) = Id. Then D := g′(0) : A → A is a derivation (check it!). Conversely, if D : A → A is a
derivation, then etD is a 1-parameter family of automorphisms (give a proof!).

This provides a motivation for the notion of a Lie algebra. Namely, we see that Lie algebras
arise as spaces of infinitesimal automorphisms (=derivations) of associative algebras. In fact, they
similarly arise as spaces of derivations of any kind of linear algebraic structures, such as Lie algebras,
Hopf algebras, etc., and for this reason play a very important role in algebra.

Here are a few more concrete examples of Lie algebras:

1. R3 with [u, v] = u× v, the cross-product of u and v.

2. sl(n), the set of n× n matrices with trace 0.
For example, sl(2) has the basis

e =

(
0 1
0 0

)
f =

(
0 0
1 0

)
h =

(
1 0
0 −1

)

with relations
[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.
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3. The Heisenberg Lie algebra H of matrices
(

0 ∗ ∗
0 0 ∗
0 0 0

)

It has the basis

x =




0 0 0
0 0 1
0 0 0


 y =




0 1 0
0 0 0
0 0 0


 c =




0 0 1
0 0 0
0 0 0




with relations [y, x] = c and [y, c] = [x, c] = 0.

4. The algebra aff(1) of matrices ( ∗ ∗
0 0 )

Its basis consists of X = ( 1 0
0 0 ) and Y = ( 0 1

0 0 ), with [X,Y ] = Y .

5. so(n), the space of skew-symmetric n× n matrices, with [a, b] = ab− ba.

Exercise. Show that Example 1 is a special case of Example 5 (for n = 3).

Definition 1.42. Let g1, g2 be Lie algebras. A homomorphism ϕ : g1 −→ g2 of Lie algebras is a
linear map such that ϕ([a, b]) = [ϕ(a), ϕ(b)].

Definition 1.43. A representation of a Lie algebra g is a vector space V with a homomorphism
of Lie algebras ρ : g −→ EndV .

Example 1.44. Some examples of representations of Lie algebras are:

1. V = 0.

2. Any vector space V with ρ = 0 (the trivial representation).

3. The adjoint representation V = g with ρ(a)(b) := [a, b]. That this is a representation follows
from Equation (2). Thus, the meaning of the Jacobi identity is that it is equivalent to the
existence of the adjoint representation.

It turns out that a representation of a Lie algebra g is the same thing as a representation of a
certain associative algebra U(g). Thus, as with quivers, we can view the theory of representations
of Lie algebras as a part of the theory of representations of associative algebras.

Definition 1.45. Let g be a Lie algebra with basis xi and [ , ] defined by [xi, xj ] =
∑

k c
k
ijxk. The

universal enveloping algebra U(g) is the associative algebra generated by the xi’s with the
defining relations xixj − xjxi =

∑
k c

k
ijxk.

Remark. This is not a very good definition since it depends on the choice of a basis. Later we
will give an equivalent definition which will be basis-independent.

Exercise. Explain why a representation of a Lie algebra is the same thing as a representation
of its universal enveloping algebra.

Example 1.46. The associative algebra U(sl(2)) is the algebra generated by e, f , h with relations

he− eh = 2e hf − fh = −2f ef − fe = h.

Example 1.47. The algebra U(H), where H is the Heisenberg Lie algebra, is the algebra generated
by x, y, c with the relations

yx− xy = c yc− cy = 0 xc− cx = 0.

Note that the Weyl algebra is the quotient of U(H) by the relation c = 1.
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1.10 Tensor products

In this subsection we recall the notion of tensor product of vector spaces, which will be extensively
used below.

Definition 1.48. The tensor product V ⊗W of vector spaces V and W over a field k is the quotient
of the space V ∗W whose basis is given by formal symbols v ⊗ w, v ∈ V , w ∈W , by the subspace
spanned by the elements

(v1 +v2)⊗w−v1 ⊗w−v2⊗w, v⊗ (w1 +w2)−v⊗w1−v⊗w2, av⊗w−a(v⊗w), v⊗aw−a(v⊗w),

where v ∈ V,w ∈W,a ∈ k.

Exercise. Show that V ⊗W can be equivalently defined as the quotient of the free abelian
group V •W generated by v ⊗ w, v ∈ V,w ∈W by the subgroup generated by

(v1 + v2) ⊗ w − v1 ⊗ w − v2 ⊗ w, v ⊗ (w1 +w2) − v ⊗ w1 − v ⊗ w2, av ⊗ w − v ⊗ aw,

where v ∈ V,w ∈W,a ∈ k.

The elements v ⊗ w ∈ V ⊗W , for v ∈ V,w ∈ W are called pure tensors. Note that in general,
there are elements of V ⊗W which are not pure tensors.

This allows one to define the tensor product of any number of vector spaces, V1 ⊗ ...⊗Vn. Note
that this tensor product is associative, in the sense that (V1 ⊗ V2) ⊗ V3 can be naturally identified
with V1 ⊗ (V2 ⊗ V3).

In particular, people often consider tensor products of the form V ⊗n = V ⊗ ...⊗V (n times) for
a given vector space V , and, more generally, E := V ⊗n ⊗ (V ∗)⊗m. This space is called the space of
tensors of type (m,n) on V . For instance, tensors of type (0, 1) are vectors, of type (1, 0) - linear
functionals (covectors), of type (1, 1) - linear operators, of type (2, 0) - bilinear forms, of type (2, 1)
- algebra structures, etc.

If V is finite dimensional with basis ei, i = 1, ..., N , and ei is the dual basis of V ∗, then a basis
of E is the set of vectors

ei1 ⊗ ...⊗ ein ⊗ ej1 ⊗ ...⊗ ejm ,

and a typical element of E is

N∑

i1,...,in,j1,...,jm=1

T i1...in
j1...jm

ei1 ⊗ ...⊗ ein ⊗ ej1 ⊗ ...⊗ ejm ,

where T is a multidimensional table of numbers.

Physicists define a tensor as a collection of such multidimensional tables TB attached to every
basis B in V , which change according to a certain rule when the basis B is changed. Here it is
important to distinguish upper and lower indices, since lower indices of T correspond to V and
upper ones to V ∗. The physicists don’t write the sum sign, but remember that one should sum
over indices that repeat twice - once as an upper index and once as lower. This convention is
called the Einstein summation, and it also stipulates that if an index appears once, then there is
no summation over it, while no index is supposed to appear more than once as an upper index or
more than once as a lower index.

One can also define the tensor product of linear maps. Namely, if A : V → V ′ and B : W →W ′

are linear maps, then one can define the linear map A⊗B : V ⊗W → V ′⊗W ′ given by the formula
(A⊗B)(v ⊗w) = Av ⊗Bw (check that this is well defined!)
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The most important properties of tensor products are summarized in the following problem.

Problem 1.49. (a) Let U be any k-vector space. Construct a natural bijection between bilinear
maps V ×W → U and linear maps V ⊗W → U .

(b) Show that if {vi} is a basis of V and {wj} is a basis of W then {vi ⊗ wj} is a basis of
V ⊗W .

(c) Construct a natural isomorphism V ∗ ⊗ W → Hom(V,W ) in the case when V is finite
dimensional (“natural” means that the isomorphism is defined without choosing bases).

(d) Let V be a vector space over a field k. Let SnV be the quotient of V ⊗n (n-fold tensor product
of V ) by the subspace spanned by the tensors T −s(T ) where T ∈ V ⊗n, and s is some transposition.
Also let ∧nV be the quotient of V ⊗n by the subspace spanned by the tensors T such that s(T ) = T
for some transposition s. These spaces are called the n-th symmetric, respectively exterior, power
of V . If {vi} is a basis of V , can you construct a basis of SnV,∧nV ? If dimV = m, what are their
dimensions?

(e) If k has characteristic zero, find a natural identification of SnV with the space of T ∈ V ⊗n

such that T = sT for all transpositions s, and of ∧nV with the space of T ∈ V ⊗n such that T = −sT
for all transpositions s.

(f) Let A : V → W be a linear operator. Then we have an operator A⊗n : V ⊗n → W⊗n, and
its symmetric and exterior powers SnA : SnV → SnW , ∧nA : ∧nV → ∧nW which are defined in
an obvious way. Suppose V = W and has dimension N , and assume that the eigenvalues of A are
λ1, ..., λN . Find Tr(SnA), T r(∧nA).

(g) Show that ∧NA = det(A)Id, and use this equality to give a one-line proof of the fact that
det(AB) = det(A) det(B).

Remark. Note that a similar definition to the above can be used to define the tensor product
V ⊗AW , where A is any ring, V is a right A-module, and W is a left A-module. Namely, V ⊗AW
is the abelian group which is the quotient of the group V •W freely generated by formal symbols
v ⊗ w, v ∈ V , w ∈W , modulo the relations

(v1 + v2) ⊗ w − v1 ⊗ w − v2 ⊗ w, v ⊗ (w1 + w2) − v ⊗ w1 − v ⊗ w2, va⊗w − v ⊗ aw, a ∈ A.

Exercise. Throughout this exercise, we let k be an arbitrary field (not necessarily of charac-
teristic zero, and not necessarily algebraically closed).

If A and B are two k-algebras, then an (A,B)-bimodule will mean a k-vector space V with
both a left A-module structure and a right B-module structure which satisfy (av) b = a (vb) for
any v ∈ V , a ∈ A and b ∈ B. Note that both the notions of ”left A-module” and ”right A-
module” are particular cases of the notion of bimodules; namely, a left A-module is the same as an
(A, k)-bimodule, and a right A-module is the same as a (k,A)-bimodule.

Let B be a k-algebra, W a left B-module and V a right B-module. We denote by V ⊗B W the
k-vector space (V ⊗k W ) / 〈vb⊗ w − v ⊗ bw | v ∈ V, w ∈W, b ∈ B〉. We denote the projection of
a pure tensor v ⊗ w (with v ∈ V and w ∈ W ) onto the space V ⊗B W by v ⊗B w. (Note that this
tensor product V ⊗B W is the one defined in the Remark after Problem1.49.)

If, additionally, A is another k-algebra, and if the right B-module structure on V is part of an
(A,B)-bimodule structure, then V ⊗B W becomes a left A-module by a (v ⊗B w) = av ⊗B w for
any a ∈ A, v ∈ V and w ∈W .
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Similarly, if C is another k-algebra, and if the left B-module structure on W is part of a (B,C)-
bimodule structure, then V ⊗B W becomes a right C-module by (v ⊗B w) c = v ⊗B wc for any
c ∈ C, v ∈ V and w ∈W .

If V is an (A,B)-bimodule and W is a (B,C)-bimodule, then these two structures on V ⊗B W
can be combined into one (A,C)-bimodule structure on V ⊗B W .

(a) Let A, B, C, D be four algebras. Let V be an (A,B)-bimodule, W be a (B,C)-bimodule,
and X a (C,D)-bimodule. Prove that (V ⊗B W ) ⊗C X ∼= V ⊗B (W ⊗C X) as (A,D)-bimodules.
The isomorphism (from left to right) is given by (v ⊗B w) ⊗C x 7→ v ⊗B (w ⊗C x) for all v ∈ V ,
w ∈W and x ∈ X.

(b) If A, B, C are three algebras, and if V is an (A,B)-bimodule and W an (A,C)-bimodule,
then the vector space HomA (V,W ) (the space of all left A-linear homomorphisms from V to W )
canonically becomes a (B,C)-bimodule by setting (bf) (v) = f (vb) for all b ∈ B, f ∈ HomA (V,W )
and v ∈ V and (fc) (v) = f (v) c for all c ∈ C, f ∈ HomA (V,W ) and v ∈ V .

Let A, B, C, D be four algebras. Let V be a (B,A)-bimodule, W be a (C,B)-bimodule, andX a
(C,D)-bimodule. Prove that HomB (V,HomC (W,X)) ∼= HomC (W ⊗B V,X) as (A,D)-bimodules.
The isomorphism (from left to right) is given by f 7→ (w ⊗B v 7→ f (v)w) for all v ∈ V , w ∈ W
and f ∈ HomB (V,HomC (W,X)).

1.11 The tensor algebra

The notion of tensor product allows us to give more conceptual (i.e., coordinate free) definitions
of the free algebra, polynomial algebra, exterior algebra, and universal enveloping algebra of a Lie
algebra.

Namely, given a vector space V , define its tensor algebra TV over a field k to be TV = ⊕n≥0V
⊗n,

with multiplication defined by a · b := a⊗ b, a ∈ V ⊗n, b ∈ V ⊗m. Observe that a choice of a basis
x1, ..., xN in V defines an isomorphism of TV with the free algebra k < x1, ..., xn >.

Also, one can make the following definition.

Definition 1.50. (i) The symmetric algebra SV of V is the quotient of TV by the ideal generated
by v ⊗ w −w ⊗ v, v,w ∈ V .

(ii) The exterior algebra ∧V of V is the quotient of TV by the ideal generated by v⊗ v, v ∈ V .

(iii) If V is a Lie algebra, the universal enveloping algebra U(V ) of V is the quotient of TV by
the ideal generated by v ⊗ w − w ⊗ v − [v,w], v,w ∈ V .

It is easy to see that a choice of a basis x1, ..., xN in V identifies SV with the polynomial algebra
k[x1, ..., xN ], ∧V with the exterior algebra ∧k(x1, ..., xN ), and the universal enveloping algebra U(V )
with one defined previously.

Also, it is easy to see that we have decompositions SV = ⊕n≥0S
nV , ∧V = ⊕n≥0 ∧n V .

1.12 Hilbert’s third problem

Problem 1.51. It is known that if A and B are two polygons of the same area then A can be cut
by finitely many straight cuts into pieces from which one can make B. David Hilbert asked in 1900
whether it is true for polyhedra in 3 dimensions. In particular, is it true for a cube and a regular
tetrahedron of the same volume?
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The answer is “no”, as was found by Dehn in 1901. The proof is very beautiful. Namely, to
any polyhedron A let us attach its “Dehn invariant” D(A) in V = R ⊗ (R/Q) (the tensor product
of Q-vector spaces). Namely,

D(A) =
∑

a

l(a) ⊗ β(a)

π
,

where a runs over edges of A, and l(a), β(a) are the length of a and the angle at a.

(a) Show that if you cut A into B and C by a straight cut, then D(A) = D(B) +D(C).

(b) Show that α = arccos(1/3)/π is not a rational number.

Hint. Assume that α = 2m/n, for integers m,n. Deduce that roots of the equation x+x−1 = 2/3
are roots of unity of degree n. Conclude that xk +x−k has denominator 3k and get a contradiction.

(c) Using (a) and (b), show that the answer to Hilbert’s question is negative. (Compute the
Dehn invariant of the regular tetrahedron and the cube).

1.13 Tensor products and duals of representations of Lie algebras

Definition 1.52. The tensor product of two representations V,W of a Lie algebra g is the space
V ⊗W with ρV ⊗W (x) = ρV (x) ⊗ Id+ Id⊗ ρW (x).

Definition 1.53. The dual representation V ∗ to a representation V of a Lie algebra g is the dual
space V ∗ to V with ρV ∗(x) = −ρV (x)∗.

It is easy to check that these are indeed representations.

Problem 1.54. Let V,W,U be finite dimensional representations of a Lie algebra g. Show that
the space Homg(V ⊗W,U) is isomorphic to Homg(V,U ⊗W ∗). (Here Homg := HomU(g)).

1.14 Representations of sl(2)

This subsection is devoted to the representation theory of sl(2), which is of central importance in
many areas of mathematics. It is useful to study this topic by solving the following sequence of
exercises, which every mathematician should do, in one form or another.

Problem 1.55. According to the above, a representation of sl(2) is just a vector space V with a
triple of operators E,F,H such that HE − EH = 2E,HF − FH = −2F,EF − FE = H (the
corresponding map ρ is given by ρ(e) = E, ρ(f) = F , ρ(h) = H).

Let V be a finite dimensional representation of sl(2) (the ground field in this problem is C).

(a) Take eigenvalues of H and pick one with the biggest real part. Call it λ. Let V̄ (λ) be the
generalized eigenspace corresponding to λ. Show that E|V̄ (λ) = 0.

(b) Let W be any representation of sl(2) and w ∈ W be a nonzero vector such that Ew = 0.
For any k > 0 find a polynomial Pk(x) of degree k such that EkF kw = Pk(H)w. (First compute
EF kw, then use induction in k).

(c) Let v ∈ V̄ (λ) be a generalized eigenvector of H with eigenvalue λ. Show that there exists
N > 0 such that FNv = 0.

(d) Show that H is diagonalizable on V̄ (λ). (Take N to be such that FN = 0 on V̄ (λ), and
compute ENFNv, v ∈ V̄ (λ), by (b). Use the fact that Pk(x) does not have multiple roots).

20



(e) Let Nv be the smallest N satisfying (c). Show that λ = Nv − 1.

(f) Show that for each N > 0, there exists a unique up to isomorphism irreducible representation
of sl(2) of dimension N . Compute the matrices E,F,H in this representation using a convenient
basis. (For V finite dimensional irreducible take λ as in (a) and v ∈ V (λ) an eigenvector of H.
Show that v, Fv, ..., F λv is a basis of V , and compute the matrices of the operators E,F,H in this
basis.)

Denote the λ + 1-dimensional irreducible representation from (f) by Vλ. Below you will show
that any finite dimensional representation is a direct sum of Vλ.

(g) Show that the operator C = EF + FE +H2/2 (the so-called Casimir operator) commutes

with E,F,H and equals λ(λ+2)
2 Id on Vλ.

Now it will be easy to prove the direct sum decomposition. Namely, assume the contrary, and
let V be a reducible representation of the smallest dimension, which is not a direct sum of smaller
representations.

(h) Show that C has only one eigenvalue on V , namely λ(λ+2)
2 for some nonnegative integer λ.

(use that the generalized eigenspace decomposition of C must be a decomposition of representations).

(i) Show that V has a subrepresentation W = Vλ such that V/W = nVλ for some n (use (h)
and the fact that V is the smallest which cannot be decomposed).

(j) Deduce from (i) that the eigenspace V (λ) of H is n + 1-dimensional. If v1, ..., vn+1 is its
basis, show that F jvi, 1 ≤ i ≤ n+ 1, 0 ≤ j ≤ λ are linearly independent and therefore form a basis
of V (establish that if Fx = 0 and Hx = µx then Cx = µ(µ−2)

2 x and hence µ = −λ).

(k) Define Wi = span(vi, Fvi, ..., F
λvi). Show that Vi are subrepresentations of V and derive a

contradiction with the fact that V cannot be decomposed.

(l) (Jacobson-Morozov Lemma) Let V be a finite dimensional complex vector space and A : V →
V a nilpotent operator. Show that there exists a unique, up to an isomorphism, representation of
sl(2) on V such that E = A. (Use the classification of the representations and the Jordan normal
form theorem)

(m) (Clebsch-Gordan decomposition) Find the decomposition into irreducibles of the represen-
tation Vλ ⊗ Vµ of sl(2).

Hint. For a finite dimensional representation V of sl(2) it is useful to introduce the character
χV (x) = Tr(exH), x ∈ C. Show that χV ⊕W (x) = χV (x) + χW (x) and χV ⊗W (x) = χV (x)χW (x).
Then compute the character of Vλ and of Vλ⊗Vµ and derive the decomposition. This decomposition
is of fundamental importance in quantum mechanics.

(n) Let V = CM ⊗ CN , and A = JM (0) ⊗ IdN + IdM ⊗ JN (0), where Jn(0) is the Jordan block
of size n with eigenvalue zero (i.e., Jn(0)ei = ei−1, i = 2, ..., n, and Jn(0)e1 = 0). Find the Jordan
normal form of A using (l),(m).

1.15 Problems on Lie algebras

Problem 1.56. (Lie’s Theorem) The commutant K(g) of a Lie algebra g is the linear span
of elements [x, y], x, y ∈ g. This is an ideal in g (i.e., it is a subrepresentation of the adjoint
representation). A finite dimensional Lie algebra g over a field k is said to be solvable if there
exists n such that Kn(g) = 0. Prove the Lie theorem: if k = C and V is a finite dimensional
irreducible representation of a solvable Lie algebra g then V is 1-dimensional.
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Hint. Prove the result by induction in dimension. By the induction assumption, K(g) has a
common eigenvector v in V , that is there is a linear function χ : K(g) → C such that av = χ(a)v
for any a ∈ K(g). Show that g preserves common eigenspaces of K(g) (for this you will need to
show that χ([x, a]) = 0 for x ∈ g and a ∈ K(g). To prove this, consider the smallest vector subspace
U containing v and invariant under x. This subspace is invariant under K(g) and any a ∈ K(g)
acts with trace dim(U)χ(a) in this subspace. In particular 0 = Tr([x, a]) = dim(U)χ([x, a]).).

Problem 1.57. Classify irreducible finite dimensional representations of the two dimensional Lie
algebra with basis X,Y and commutation relation [X,Y ] = Y . Consider the cases of zero and
positive characteristic. Is the Lie theorem true in positive characteristic?

Problem 1.58. (hard!) For any element x of a Lie algebra g let ad(x) denote the operator g →
g, y 7→ [x, y]. Consider the Lie algebra gn generated by two elements x, y with the defining relations
ad(x)2(y) = ad(y)n+1(x) = 0.

(a) Show that the Lie algebras g1, g2, g3 are finite dimensional and find their dimensions.

(b) (harder!) Show that the Lie algebra g4 has infinite dimension. Construct explicitly a basis
of this algebra.
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2 General results of representation theory

2.1 Subrepresentations in semisimple representations

Let A be an algebra.

Definition 2.1. A semisimple (or completely reducible) representation of A is a direct sum of
irreducible representations.

Example. Let V be an irreducible representation of A of dimension n. Then Y = End(V ),
with action of A by left multiplication, is a semisimple representation of A, isomorphic to nV (the
direct sum of n copies of V ). Indeed, any basis v1, ..., vn of V gives rise to an isomorphism of
representations End(V ) → nV , given by x→ (xv1, ..., xvn).

Remark. Note that by Schur’s lemma, any semisimple representation V of A is canonically
identified with ⊕XHomA(X,V )⊗X, where X runs over all irreducible representations of A. Indeed,
we have a natural map f : ⊕XHom(X,V )⊗X → V , given by g⊗x→ g(x), x ∈ X, g ∈ Hom(X,V ),
and it is easy to verify that this map is an isomorphism.

We’ll see now how Schur’s lemma allows us to classify subrepresentations in finite dimensional
semisimple representations.

Proposition 2.2. Let Vi, 1 ≤ i ≤ m be irreducible finite dimensional pairwise nonisomorphic
representations of A, and W be a subrepresentation of V = ⊕m

i=1niVi. Then W is isomorphic to
⊕m

i=1riVi, ri ≤ ni, and the inclusion φ : W → V is a direct sum of inclusions φi : riVi → niVi given
by multiplication of a row vector of elements of Vi (of length ri) by a certain ri-by-ni matrix Xi

with linearly independent rows: φ(v1, ..., vri
) = (v1, ..., vri

)Xi.

Proof. The proof is by induction in n :=
∑m

i=1 ni. The base of induction (n = 1) is clear. To perform
the induction step, let us assume that W is nonzero, and fix an irreducible subrepresentation
P ⊂W . Such P exists (Problem 1.20). 2 Now, by Schur’s lemma, P is isomorphic to Vi for some i,
and the inclusion φ|P : P → V factors through niVi, and upon identification of P with Vi is given
by the formula v 7→ (vq1, ..., vqni

), where ql ∈ k are not all zero.

Now note that the group Gi = GLni
(k) of invertible ni-by-ni matrices over k acts on niVi

by (v1, ..., vni
) → (v1, ..., vni

)gi (and by the identity on njVj , j 6= i), and therefore acts on the
set of subrepresentations of V , preserving the property we need to establish: namely, under the
action of gi, the matrix Xi goes to Xigi, while Xj , j 6= i don’t change. Take gi ∈ Gi such that
(q1, ..., qni

)gi = (1, 0, ..., 0). Then Wgi contains the first summand Vi of niVi (namely, it is Pgi),
hence Wgi = Vi⊕W ′, where W ′ ⊂ n1V1⊕ ...⊕ (ni −1)Vi ⊕ ...⊕nmVm is the kernel of the projection
of Wgi to the first summand Vi along the other summands. Thus the required statement follows
from the induction assumption.

Remark 2.3. In Proposition 2.2, it is not important that k is algebraically closed, nor it matters
that V is finite dimensional. If these assumptions are dropped, the only change needed is that the
entries of the matrix Xi are no longer in k but in Di = EndA(Vi), which is, as we know, a division
algebra. The proof of this generalized version of Proposition 2.2 is the same as before (check it!).

2Another proof of the existence of P , which does not use the finite dimensionality of V , is by induction in n.
Namely, if W itself is not irreducible, let K be the kernel of the projection of W to the first summand V1. Then
K is a subrepresentation of (n1 − 1)V1 ⊕ ... ⊕ nmVm, which is nonzero since W is not irreducible, so K contains an
irreducible subrepresentation by the induction assumption.
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2.2 The density theorem

Let A be an algebra over an algebraically closed field k.

Corollary 2.4. Let V be an irreducible finite dimensional representation of A, and v1, ..., vn ∈ V
be any linearly independent vectors. Then for any w1, ..., wn ∈ V there exists an element a ∈ A
such that avi = wi.

Proof. Assume the contrary. Then the image of the map A → nV given by a → (av1, ..., avn) is a
proper subrepresentation, so by Proposition 2.2 it corresponds to an r-by-n matrix X, r < n. Thus,
taking a = 1, we see that there exist vectors u1, ..., ur ∈ V such that (u1, ..., ur)X = (v1, ..., vn). Let
(q1, ..., qn) be a nonzero vector such that X(q1, ..., qn)T = 0 (it exists because r < n). Then

∑
qivi =

(u1, ..., ur)X(q1, ..., qn)T = 0, i.e.
∑
qivi = 0 - a contradiction with the linear independence of

vi.

Theorem 2.5. (the Density Theorem). (i) Let V be an irreducible finite dimensional representation
of A. Then the map ρ : A→ EndV is surjective.

(ii) Let V = V1 ⊕ ... ⊕ Vr, where Vi are irreducible pairwise nonisomorphic finite dimensional
representations of A. Then the map ⊕r

i=1ρi : A→ ⊕r
i=1 End(Vi) is surjective.

Proof. (i) Let B be the image of A in End(V ). We want to show that B = End(V ). Let c ∈ End(V ),
v1, ..., vn be a basis of V , and wi = cvi. By Corollary 2.4, there exists a ∈ A such that avi = wi.
Then a maps to c, so c ∈ B, and we are done.

(ii) Let Bi be the image of A in End(Vi), and B be the image of A in ⊕r
i=1 End(Vi). Recall that as

a representation of A, ⊕r
i=1 End(Vi) is semisimple: it is isomorphic to ⊕r

i=1diVi, where di = dimVi.
Then by Proposition 2.2, B = ⊕iBi. On the other hand, (i) implies that Bi = End(Vi). Thus (ii)
follows.

2.3 Representations of direct sums of matrix algebras

In this section we consider representations of algebras A =
⊕

i Matdi
(k) for any field k.

Theorem 2.6. Let A =
⊕r

i=1 Matdi
(k). Then the irreducible representations of A are V1 =

kd1 , . . . , Vr = kdr , and any finite dimensional representation of A is a direct sum of copies of
V1, . . . , Vr.

In order to prove Theorem 2.6, we shall need the notion of a dual representation.

Definition 2.7. (Dual representation) Let V be a representation of any algebra A. Then the
dual representation V ∗ is the representation of the opposite algebra Aop (or, equivalently, right
A-module) with the action

(f · a)(v) := f(av).

Proof of Theorem 2.6. First, the given representations are clearly irreducible, as for any v 6= 0, w ∈
Vi, there exists a ∈ A such that av = w. Next, let X be an n-dimensional representation of
A. Then, X∗ is an n-dimensional representation of Aop. But (Matdi

(k))op ∼= Matdi
(k) with

isomorphism ϕ(X) = XT , as (BC)T = CTBT . Thus, A ∼= Aop and X∗ may be viewed as an
n-dimensional representation of A. Define

φ : A⊕ · · · ⊕A︸ ︷︷ ︸
n copies

−→ X∗
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by
φ(a1, . . . , an) = a1y1 + · · · + anyn

where {yi} is a basis of X∗. φ is clearly surjective, as k ⊂ A. Thus, the dual map φ∗ : X −→ An∗

is injective. But An∗ ∼= An as representations of A (check it!). Hence, Imφ∗ ∼= X is a subrepresen-
tation of An. Next, Matdi

(k) = diVi, so A = ⊕r
i=1diVi, A

n = ⊕r
i=1ndiVi, as a representation of A.

Hence by Proposition 2.2, X = ⊕r
i=1miVi, as desired.

Exercise. The goal of this exercise is to give an alternative proof of Theorem 2.6, not using
any of the previous results of Chapter 2.

Let A1, A2, ..., An be n algebras with units 11, 12, ..., 1n, respectively. Let A = A1⊕A2⊕...⊕An.
Clearly, 1i1j = δij1i, and the unit of A is 1 = 11 + 12 + ...+ 1n.

For every representation V of A, it is easy to see that 1iV is a representation of Ai for every
i ∈ {1, 2, ..., n}. Conversely, if V1, V2, ..., Vn are representations of A1, A2, ..., An, respectively,
then V1 ⊕ V2 ⊕ ... ⊕ Vn canonically becomes a representation of A (with (a1, a2, ..., an) ∈ A acting
on V1 ⊕ V2 ⊕ ...⊕ Vn as (v1, v2, ..., vn) 7→ (a1v1, a2v2, ..., anvn)).

(a) Show that a representation V of A is irreducible if and only if 1iV is an irreducible repre-
sentation of Ai for exactly one i ∈ {1, 2, ..., n}, while 1iV = 0 for all the other i. Thus, classify the
irreducible representations of A in terms of those of A1, A2, ..., An.

(b) Let d ∈ N. Show that the only irreducible representation of Matd(k) is kd, and every finite
dimensional representation of Matd(k) is a direct sum of copies of kd.

Hint: For every (i, j) ∈ {1, 2, ..., d}2, let Eij ∈ Matd(k) be the matrix with 1 in the ith row of the
jth column and 0’s everywhere else. Let V be a finite dimensional representation of Matd(k). Show
that V = E11V ⊕E22V ⊕ ...⊕EddV , and that Φi : E11V → EiiV , v 7→ Ei1v is an isomorphism for
every i ∈ {1, 2, ..., d}. For every v ∈ E11V , denote S (v) = 〈E11v,E21v, ..., Ed1v〉. Prove that S (v)
is a subrepresentation of V isomorphic to kd (as a representation of Matd(k)), and that v ∈ S (v).
Conclude that V = S (v1) ⊕ S (v2) ⊕ ...⊕ S (vk), where {v1, v2, ..., vk} is a basis of E11V .

(c) Conclude Theorem 2.6.

2.4 Filtrations

Let A be an algebra. Let V be a representation of A. A (finite) filtration of V is a sequence of
subrepresentations 0 = V0 ⊂ V1 ⊂ ... ⊂ Vn = V .

Lemma 2.8. Any finite dimensional representation V of an algebra A admits a finite filtration
0 = V0 ⊂ V1 ⊂ ... ⊂ Vn = V such that the successive quotients Vi/Vi−1 are irreducible.

Proof. The proof is by induction in dim(V ). The base is clear, and only the induction step needs
to be justified. Pick an irreducible subrepresentation V1 ⊂ V , and consider the representation
U = V/V1. Then by the induction assumption U has a filtration 0 = U0 ⊂ U1 ⊂ ... ⊂ Un−1 = U
such that Ui/Ui−1 are irreducible. Define Vi for i ≥ 2 to be the preimages of Ui−1 under the
tautological projection V → V/V1 = U . Then 0 = V0 ⊂ V1 ⊂ V2 ⊂ ... ⊂ Vn = V is a filtration of V
with the desired property.
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2.5 Finite dimensional algebras

Definition 2.9. The radical of a finite dimensional algebra A is the set of all elements of A which
act by 0 in all irreducible representations of A. It is denoted Rad(A).

Proposition 2.10. Rad(A) is a two-sided ideal.

Proof. Easy.

Proposition 2.11. Let A be a finite dimensional algebra.

(i) Let I be a nilpotent two-sided ideal in A, i.e., In = 0 for some n. Then I ⊂ Rad(A).

(ii) Rad(A) is a nilpotent ideal. Thus, Rad(A) is the largest nilpotent two-sided ideal in A.

Proof. (i) Let V be an irreducible representation of A. Let v ∈ V . Then Iv ⊂ V is a subrepresen-
tation. If Iv 6= 0 then Iv = V so there is x ∈ I such that xv = v. Then xn 6= 0, a contradiction.
Thus Iv = 0, so I acts by 0 in V and hence I ⊂ Rad(A).

(ii) Let 0 = A0 ⊂ A1 ⊂ ... ⊂ An = A be a filtration of the regular representation of A by
subrepresentations such that Ai+1/Ai are irreducible. It exists by Lemma 2.8. Let x ∈ Rad(A).
Then x acts on Ai+1/Ai by zero, so x maps Ai+1 to Ai. This implies that Rad(A)n = 0, as
desired.

Theorem 2.12. A finite dimensional algebra A has only finitely many irreducible representations
Vi up to isomorphism, these representations are finite dimensional, and

A/Rad(A) ∼=
⊕

i

EndVi.

Proof. First, for any irreducible representation V of A, and for any nonzero v ∈ V , Av ⊆ V is a
finite dimensional subrepresentation of V . (It is finite dimensional as A is finite dimensional.) As
V is irreducible and Av 6= 0, V = Av and V is finite dimensional.

Next, suppose we have non-isomorphic irreducible representations V1, V2, . . . , Vr. By Theorem
2.5, the homomorphism ⊕

i

ρi : A −→
⊕

i

EndVi

is surjective. So r ≤ ∑
i dim EndVi ≤ dimA. Thus, A has only finitely many non-isomorphic

irreducible representations (at most dimA).

Now, let V1, V2, . . . , Vr be all non-isomorphic irreducible finite dimensional representations of
A. By Theorem 2.5, the homomorphism

⊕

i

ρi : A −→
⊕

i

EndVi

is surjective. The kernel of this map, by definition, is exactly Rad(A).

Corollary 2.13.
∑

i (dimVi)
2 ≤ dimA, where the Vi’s are the irreducible representations of A.

Proof. As dim EndVi = (dimVi)
2, Theorem 2.12 implies that dimA−dimRad(A) =

∑
i dim EndVi =∑

i (dimVi)
2. As dim Rad(A) ≥ 0,

∑
i (dimVi)

2 ≤ dimA.
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Example 2.14. 1. Let A = k[x]/(xn). This algebra has a unique irreducible representation, which
is a 1-dimensional space k, in which x acts by zero. So the radical Rad(A) is the ideal (x).

2. Let A be the algebra of upper triangular n by n matrices. It is easy to check that the
irreducible representations of A are Vi, i = 1, ..., n, which are 1-dimensional, and any matrix x acts
by xii. So the radical Rad(A) is the ideal of strictly upper triangular matrices (as it is a nilpotent
ideal and contains the radical). A similar result holds for block-triangular matrices.

Definition 2.15. A finite dimensional algebra A is said to be semisimple if Rad(A) = 0.

Proposition 2.16. For a finite dimensional algebra A, the following are equivalent:

1. A is semisimple.

2.
∑

i (dimVi)
2 = dimA, where the Vi’s are the irreducible representations of A.

3. A ∼=
⊕

i Matdi
(k) for some di.

4. Any finite dimensional representation of A is completely reducible (that is, isomorphic to a
direct sum of irreducible representations).

5. A is a completely reducible representation of A.

Proof. As dimA−dimRad(A) =
∑

i (dimVi)
2, clearly dimA =

∑
i (dimVi)

2 if and only if Rad(A) =
0. Thus, (1) ⇔ (2).

Next, by Theorem 2.12, if Rad(A) = 0, then clearly A ∼=
⊕

i Matdi
(k) for di = dimVi. Thus,

(1) ⇒ (3). Conversely, if A ∼=
⊕

i Matdi
(k), then by Theorem 2.6, Rad(A) = 0, so A is semisimple.

Thus (3) ⇒ (1).

Next, (3) ⇒ (4) by Theorem 2.6. Clearly (4) ⇒ (5). To see that (5) ⇒ (3), let A =
⊕

i niVi.
Consider EndA(A) (endomorphisms of A as a representation of A). As the Vi’s are pairwise non-
isomorphic, by Schur’s lemma, no copy of Vi in A can be mapped to a distinct Vj . Also, again by
Schur’s lemma, EndA (Vi) = k. Thus, EndA(A) ∼=

⊕
i Matni

(k). But EndA(A) ∼= Aop by Problem
1.22, so Aop ∼=

⊕
i Matni

(k). Thus, A ∼= (
⊕

i Matni
(k))op =

⊕
i Matni

(k), as desired.

2.6 Characters of representations

Let A be an algebra and V a finite-dimensional representation of A with action ρ. Then the
character of V is the linear function χV : A→ k given by

χV (a) = tr|V (ρ(a)).

If [A,A] is the span of commutators [x, y] := xy− yx over all x, y ∈ A, then [A,A] ⊆ kerχV . Thus,
we may view the character as a mapping χV : A/[A,A] → k.

Exercise. Show that if W ⊂ V are finite dimensional representations of A, then χV = χW +
χV/W .

Theorem 2.17. (i) Characters of (distinct) irreducible finite-dimensional representations of A are
linearly independent.

(ii) If A is a finite-dimensional semisimple algebra, then these characters form a basis of
(A/[A,A])∗.
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Proof. (i) If V1, . . . , Vr are nonisomorphic irreducible finite-dimensional representations of A, then
ρV1 ⊕· · ·⊕ρVr : A→ End V1⊕· · ·⊕End Vr is surjective by the density theorem, so χV1 , . . . , χVr are
linearly independent. (Indeed, if

∑
λiχVi

(a) = 0 for all a ∈ A, then
∑
λiTr(Mi) = 0 for all Mi ∈

EndkVi. But each tr(Mi) can range independently over k, so it must be that λ1 = · · · = λr = 0.)

(ii) First we prove that [Matd(k),Matd(k)] = sld(k), the set of all matrices with trace 0. It is
clear that [Matd(k),Matd(k)] ⊆ sld(k). If we denote by Eij the matrix with 1 in the ith row of the
jth column and 0’s everywhere else, we have [Eij , Ejm] = Eim for i 6= m, and [Ei,i+1, Ei+1,i] = Eii−
Ei+1,i+1. Now {Eim}∪{Eii−Ei+1,i+1} forms a basis in sld(k), so indeed [Matd(k),Matd(k)] = sld(k),
as claimed.

By semisimplicity, we can write A = Matd1(k) ⊕ · · · ⊕ Matdr
(k). Then [A,A] = sld1(k) ⊕ · · · ⊕

sldr
(k), and A/[A,A] ∼= kr. By Theorem 2.6, there are exactly r irreducible representations of A

(isomorphic to kd1 , . . . , kdr , respectively), and therefore r linearly independent characters on the
r-dimensional vector space A/[A,A]. Thus, the characters form a basis.

2.7 The Jordan-Hölder theorem

We will now state and prove two important theorems about representations of finite dimensional
algebras - the Jordan-Hölder theorem and the Krull-Schmidt theorem.

Theorem 2.18. (Jordan-Hölder theorem). Let V be a finite dimensional representation of A,
and 0 = V0 ⊂ V1 ⊂ ... ⊂ Vn = V , 0 = V ′

0 ⊂ ... ⊂ V ′
m = V be filtrations of V , such that the

representations Wi := Vi/Vi−1 and W ′
i := V ′

i /V
′
i−1 are irreducible for all i. Then n = m, and there

exists a permutation σ of 1, ..., n such that Wσ(i) is isomorphic to W ′
i .

Proof. First proof (for k of characteristic zero). The character of V obviously equals the sum
of characters of Wi, and also the sum of characters of W ′

i . But by Theorem 2.17, the charac-
ters of irreducible representations are linearly independent, so the multiplicity of every irreducible
representation W of A among Wi and among W ′

i are the same. This implies the theorem. 3

Second proof (general). The proof is by induction on dimV . The base of induction is clear,
so let us prove the induction step. If W1 = W ′

1 (as subspaces), we are done, since by the induction
assumption the theorem holds for V/W1. So assume W1 6= W ′

1. In this case W1 ∩ W ′
1 = 0 (as

W1,W
′
1 are irreducible), so we have an embedding f : W1 ⊕W ′

1 → V . Let U = V/(W1 ⊕W ′
1), and

0 = U0 ⊂ U1 ⊂ ... ⊂ Up = U be a filtration of U with simple quotients Zi = Ui/Ui−1 (it exists by
Lemma 2.8). Then we see that:

1) V/W1 has a filtration with successive quotients W ′
1, Z1, ..., Zp, and another filtration with

successive quotients W2, ....,Wn.

2) V/W ′
1 has a filtration with successive quotients W1, Z1, ..., Zp, and another filtration with

successive quotients W ′
2, ....,W

′
n.

By the induction assumption, this means that the collection of irreducible representations with
multiplicities W1,W

′
1, Z1, ..., Zp coincides on one hand with W1, ...,Wn, and on the other hand, with

W ′
1, ...,W

′
m. We are done.

The Jordan-Hölder theorem shows that the number n of terms in a filtration of V with irre-
ducible successive quotients does not depend on the choice of a filtration, and depends only on

3This proof does not work in characteristic p because it only implies that the multiplicities of Wi and W ′
i are the

same modulo p, which is not sufficient. In fact, the character of the representation pV , where V is any representation,
is zero.
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V . This number is called the length of V . It is easy to see that n is also the maximal length of a
filtration of V in which all the inclusions are strict.

The sequence of the irreducible representations W1, ...,Wn enumerated in the order they appear
from some filtration of V as successive quoteints is called a Jordan-Hölder series of V .

2.8 The Krull-Schmidt theorem

Theorem 2.19. (Krull-Schmidt theorem) Any finite dimensional representation of A can be uniquely
(up to an isomorphism and order of summands) decomposed into a direct sum of indecomposable
representations.

Proof. It is clear that a decomposition of V into a direct sum of indecomposable representations
exists, so we just need to prove uniqueness. We will prove it by induction on dimV . Let V =
V1 ⊕ ...⊕Vm = V ′

1 ⊕ ...⊕V ′
n. Let is : Vs → V , i′s : V ′

s → V , ps : V → Vs, p
′
s : V → V ′

s be the natural
maps associated to these decompositions. Let θs = p1i

′
sp

′
si1 : V1 → V1. We have

∑n
s=1 θs = 1. Now

we need the following lemma.

Lemma 2.20. Let W be a finite dimensional indecomposable representation of A. Then

(i) Any homomorphism θ : W → W is either an isomorphism or nilpotent;

(ii) If θs : W →W , s = 1, ..., n are nilpotent homomorphisms, then so is θ := θ1 + ...+ θn.

Proof. (i) Generalized eigenspaces of θ are subrepresentations of W , and W is their direct sum.
Thus, θ can have only one eigenvalue λ. If λ is zero, θ is nilpotent, otherwise it is an isomorphism.

(ii) The proof is by induction in n. The base is clear. To make the induction step (n− 1 to n),
assume that θ is not nilpotent. Then by (i) θ is an isomorphism, so

∑n
i=1 θ

−1θi = 1. The morphisms
θ−1θi are not isomorphisms, so they are nilpotent. Thus 1 − θ−1θn = θ−1θ1 + ... + θ−1θn−1 is an
isomorphism, which is a contradiction with the induction assumption.

By the lemma, we find that for some s, θs must be an isomorphism; we may assume that
s = 1. In this case, V ′

1 = Im(p′1i1) ⊕ Ker(p1i
′
1), so since V ′

1 is indecomposable, we get that
f := p′1i1 : V1 → V ′

1 and g := p1i
′
1 : V ′

1 → V1 are isomorphisms.

Let B = ⊕j>1Vj , B
′ = ⊕j>1V

′
j ; then we have V = V1 ⊕ B = V ′

1 ⊕ B′. Consider the map
h : B → B′ defined as a composition of the natural maps B → V → B′ attached to these
decompositions. We claim that h is an isomorphism. To show this, it suffices to show that Kerh = 0
(as h is a map between spaces of the same dimension). Assume that v ∈ Kerh ⊂ B. Then v ∈ V ′

1 .
On the other hand, the projection of v to V1 is zero, so gv = 0. Since g is an isomorphism, we get
v = 0, as desired.

Now by the induction assumption, m = n, and Vj
∼= V ′

σ(j) for some permutation σ of 2, ..., n.
The theorem is proved.

Exercise. Let A be the algebra of real-valued continuous functions on R which are periodic
with period 1. Let M be the A-module of continuous functions f on R which are antiperiodic with
period 1, i.e., f(x+ 1) = −f(x).

(i) Show that A and M are indecomposable A-modules.

(ii) Show that A is not isomorphic to M but A⊕A is isomorphic to M ⊕M .
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Remark. Thus, we see that in general, the Krull-Schmidt theorem fails for infinite dimensional
modules. However, it still holds for modules of finite length, i.e., modules M such that any filtration
of M has length bounded above by a certain constant l = l(M).

2.9 Problems

Problem 2.21. Extensions of representations. Let A be an algebra, and V,W be a pair of
representations of A. We would like to classify representations U of A such that V is a subrepre-
sentation of U , and U/V = W . Of course, there is an obvious example U = V ⊕W , but are there
any others?

Suppose we have a representation U as above. As a vector space, it can be (non-uniquely)
identified with V ⊕W , so that for any a ∈ A the corresponding operator ρU (a) has block triangular
form

ρU (a) =

(
ρV (a) f(a)

0 ρW (a)

)
,

where f : A→ Homk(W,V ) is a linear map.

(a) What is the necessary and sufficient condition on f(a) under which ρU (a) is a repre-
sentation? Maps f satisfying this condition are called (1-)cocycles (of A with coefficients in
Homk(W,V )). They form a vector space denoted Z1(W,V ).

(b) Let X : W → V be a linear map. The coboundary of X, dX, is defined to be the function A→
Homk(W,V ) given by dX(a) = ρV (a)X−XρW (a). Show that dX is a cocycle, which vanishes if and
only if X is a homomorphism of representations. Thus coboundaries form a subspace B1(W,V ) ⊂
Z1(W,V ), which is isomorphic to Homk(W,V )/HomA(W,V ). The quotient Z1(W,V )/B1(W,V ) is
denoted Ext1(W,V ).

(c) Show that if f, f ′ ∈ Z1(W,V ) and f − f ′ ∈ B1(W,V ) then the corresponding extensions
U,U ′ are isomorphic representations of A. Conversely, if φ : U → U ′ is an isomorphism such that

φ(a) =

(
1V ∗
0 1W

)

then f − f ′ ∈ B1(V,W ). Thus, the space Ext1(W,V ) “classifies” extensions of W by V .

(d) Assume that W,V are finite dimensional irreducible representations of A. For any f ∈
Ext1(W,V ), let Uf be the corresponding extension. Show that Uf is isomorphic to Uf ′ as repre-
sentations if and only if f and f ′ are proportional. Thus isomorphism classes (as representations)
of nontrivial extensions of W by V (i.e., those not isomorphic to W ⊕ V ) are parametrized by the
projective space PExt1(W,V ). In particular, every extension is trivial if and only if Ext1(W,V ) = 0.

Problem 2.22. (a) Let A = C[x1, ..., xn], and Va, Vb be one-dimensional representations in which
xi act by ai and bi, respectively (ai, bi ∈ C). Find Ext1(Va, Vb) and classify 2-dimensional repre-
sentations of A.

(b) Let B be the algebra over C generated by x1, ..., xn with the defining relations xixj = 0 for
all i, j. Show that for n > 1 the algebra B has infinitely many non-isomorphic indecomposable
representations.

Problem 2.23. Let Q be a quiver without oriented cycles, and PQ the path algebra of Q. Find
irreducible representations of PQ and compute Ext1 between them. Classify 2-dimensional repre-
sentations of PQ.
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Problem 2.24. Let A be an algebra, and V a representation of A. Let ρ : A → EndV . A formal
deformation of V is a formal series

ρ̃ = ρ0 + tρ1 + ...+ tnρn + ...,

where ρi : A→ End(V ) are linear maps, ρ0 = ρ, and ρ̃(ab) = ρ̃(a)ρ̃(b).

If b(t) = 1 + b1t+ b2t
2 + ..., where bi ∈ End(V ), and ρ̃ is a formal deformation of ρ, then bρ̃b−1

is also a deformation of ρ, which is said to be isomorphic to ρ̃.

(a) Show that if Ext1(V, V ) = 0, then any deformation of ρ is trivial, i.e., isomorphic to ρ.

(b) Is the converse to (a) true? (consider the algebra of dual numbers A = k[x]/x2).

Problem 2.25. The Clifford algebra. Let V be a finite dimensional complex vector space
equipped with a symmetric bilinear form (, ). The Clifford algebra Cl(V ) is the quotient of the
tensor algebra TV by the ideal generated by the elements v⊗ v − (v, v)1, v ∈ V . More explicitly, if
xi, 1 ≤ i ≤ N is a basis of V and (xi, xj) = aij then Cl(V ) is generated by xi with defining relations

xixj + xjxi = 2aij , x
2
i = aii.

Thus, if (, ) = 0, Cl(V ) = ∧V .

(i) Show that if (, ) is nondegenerate then Cl(V ) is semisimple, and has one irreducible repre-
sentation of dimension 2n if dimV = 2n (so in this case Cl(V ) is a matrix algebra), and two such
representations if dim(V ) = 2n+1 (i.e., in this case Cl(V ) is a direct sum of two matrix algebras).

Hint. In the even case, pick a basis a1, ..., an, b1, ..., bn of V in which (ai, aj) = (bi, bj) = 0,
(ai, bj) = δij/2, and construct a representation of Cl(V ) on S := ∧(a1, ..., an) in which bi acts as
“differentiation” with respect to ai. Show that S is irreducible. In the odd case the situation is
similar, except there should be an additional basis vector c such that (c, ai) = (c, bi) = 0, (c, c) =
1, and the action of c on S may be defined either by (−1)degree or by (−1)degree+1, giving two
representations S+, S− (why are they non-isomorphic?). Show that there is no other irreducible
representations by finding a spanning set of Cl(V ) with 2dimV elements.

(ii) Show that Cl(V ) is semisimple if and only if (, ) is nondegenerate. If (, ) is degenerate, what
is Cl(V )/Rad(Cl(V ))?

2.10 Representations of tensor products

Let A,B be algebras. Then A ⊗ B is also an algebra, with multiplication (a1 ⊗ b1)(a2 ⊗ b2) =
a1a2 ⊗ b1b2.

Exercise. Show that Matm(k) ⊗ Matn(k) ∼= Matmn(k).

The following theorem describes irreducible finite dimensional representations of A⊗B in terms
of irreducible finite dimensional representations of A and those of B.

Theorem 2.26. (i) Let V be an irreducible finite dimensional representation of A and W an
irreducible finite dimensional representation of B. Then V ⊗W is an irreducible representation of
A⊗B.

(ii) Any irreducible finite dimensional representation M of A ⊗ B has the form (i) for unique
V and W .

Remark 2.27. Part (ii) of the theorem typically fails for infinite dimensional representations;
e.g. it fails when A is the Weyl algebra in characteristic zero. Part (i) also may fail. E.g. let
A = B = V = W = C(x). Then (i) fails, as A⊗B is not a field.
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Proof. (i) By the density theorem, the maps A→ EndV and B → EndW are surjective. Therefore,
the map A⊗B → EndV ⊗ EndW = End(V ⊗W ) is surjective. Thus, V ⊗W is irreducible.

(ii) First we show the existence of V and W . Let A′, B′ be the images of A,B in EndM . Then
A′, B′ are finite dimensional algebras, and M is a representation of A′ ⊗ B′, so we may assume
without loss of generality that A and B are finite dimensional.

In this case, we claim that Rad(A⊗B) = Rad(A)⊗B+A⊗Rad(B). Indeed, denote the latter
by J . Then J is a nilpotent ideal in A ⊗ B, as Rad(A) and Rad(B) are nilpotent. On the other
hand, (A ⊗ B)/J = (A/Rad(A)) ⊗ (B/Rad(B)), which is a product of two semisimple algebras,
hence semisimple. This implies J ⊃ Rad(A ⊗ B). Altogether, by Proposition 2.11, we see that
J = Rad(A⊗B), proving the claim.

Thus, we see that

(A⊗B)/Rad(A⊗B) = A/Rad(A) ⊗B/Rad(B).

Now, M is an irreducible representation of (A ⊗ B)/Rad(A ⊗ B), so it is clearly of the form
M = V ⊗ W , where V is an irreducible representation of A/Rad(A) and W is an irreducible
representation of B/Rad(B), and V,W are uniquely determined by M (as all of the algebras
involved are direct sums of matrix algebras).
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3 Representations of finite groups: basic results

Recall that a representation of a group G over a field k is a k-vector space V together with a
group homomorphism ρ : G→ GL(V ). As we have explained above, a representation of a group G
over k is the same thing as a representation of its group algebra k[G].

In this section, we begin a systematic development of representation theory of finite groups.

3.1 Maschke’s Theorem

Theorem 3.1. (Maschke) Let G be a finite group and k a field whose characteristic does not divide
|G|. Then:

(i) The algebra k[G] is semisimple.

(ii) There is an isomorphism of algebras ψ : k[G] → ⊕iEndVi defined by g 7→ ⊕ig|Vi
, where Vi

are the irreducible representations of G. In particular, this is an isomorphism of representations
of G (where G acts on both sides by left multiplication). Hence, the regular representation k[G]
decomposes into irreducibles as ⊕i dim(Vi)Vi, and one has

|G| =
∑

i

dim(Vi)
2.

(the “sum of squares formula”).

Proof. By Proposition 2.16, (i) implies (ii), and to prove (i), it is sufficient to show that if V is
a finite-dimensional representation of G and W ⊂ V is any subrepresentation, then there exists a
subrepresentation W ′ ⊂ V such that V = W ⊕W ′ as representations.

Choose any complement Ŵ of W in V . (Thus V = W ⊕Ŵ as vector spaces, but not necessarily
as representations.) Let P be the projection along Ŵ onto W , i.e., the operator on V defined by
P |W = Id and P |Ŵ = 0. Let

P :=
1

|G|
∑

g∈G

ρ(g)Pρ(g−1),

where ρ(g) is the action of g on V , and let

W ′ = kerP .

Now P |W = Id and P (V ) ⊆W , so P
2

= P , so P is a projection along W ′. Thus, V = W ⊕W ′ as
vector spaces.

Moreover, for any h ∈ G and any y ∈W ′,

Pρ(h)y =
1

|G|
∑

g∈G

ρ(g)Pρ(g−1h)y =
1

|G|
∑

ℓ∈G

ρ(hℓ)Pρ(ℓ−1)y = ρ(h)Py = 0,

so ρ(h)y ∈ kerP = W ′. Thus, W ′ is invariant under the action of G and is therefore a subrepre-
sentation of V . Thus, V = W ⊕W ′ is the desired decomposition into subrepresentations.

The converse to Theorem 3.1(i) also holds.

Proposition 3.2. If k[G] is semisimple, then the characteristic of k does not divide |G|.
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Proof. Write k[G] =
⊕r

i=1 End Vi, where the Vi are irreducible representations and V1 = k is the
trivial one-dimensional representation. Then

k[G] = k ⊕
r⊕

i=2

End Vi = k ⊕
r⊕

i=2

diVi,

where di = dimVi. By Schur’s Lemma,

Homk[G](k, k[G]) = kΛ

Homk[G](k[G], k) = kǫ,

for nonzero homomorphisms of representations ǫ : k[G] → k and Λ : k → k[G] unique up to scaling.
We can take ǫ such that ǫ(g) = 1 for all g ∈ G, and Λ such that Λ(1) =

∑
g∈G g. Then

ǫ ◦ Λ(1) = ǫ

(∑

g∈G

g

)
=

∑

g∈G

1 = |G|.

If |G| = 0, then Λ has no left inverse, as (aǫ) ◦Λ(1) = 0 for any a ∈ k. This is a contradiction.

Example 3.3. If G = Z/pZ and k has characteristic p, then every irreducible representation of G
over k is trivial (so k[Z/pZ] indeed is not semisimple). Indeed, an irreducible representation of this
group is a 1-dimensional space, on which the generator acts by a p-th root of unity, and every p-th
root of unity in k equals 1, as xp − 1 = (x− 1)p over k.

Problem 3.4. Let G be a group of order pn. Show that every irreducible representation of G over
a field k of characteristic p is trivial.

3.2 Characters

If V is a finite-dimensional representation of a finite group G, then its character χV : G → k
is defined by the formula χV (g) = tr|V (ρ(g)). Obviously, χV (g) is simply the restriction of the
character χV (a) of V as a representation of the algebra A = k[G] to the basis G ⊂ A, so it carries
exactly the same information. The character is a central or class function: χV (g) depends only on
the conjugacy class of g; i.e., χV (hgh−1) = χV (g).

Theorem 3.5. If the characteristic of k does not divide |G|, characters of irreducible representa-
tions of G form a basis in the space Fc(G, k) of class functions on G.

Proof. By the Maschke theorem, k[G] is semisimple, so by Theorem 2.17, the characters are linearly
independent and are a basis of (A/[A,A])∗, where A = k[G]. It suffices to note that, as vector
spaces over k,

(A/[A,A])∗ ∼= {ϕ ∈ Homk(k[G], k) | gh − hg ∈ kerϕ ∀g, h ∈ G}
∼= {f ∈ Fun(G, k) | f(gh) = f(hg) ∀g, h ∈ G},

which is precisely Fc(G, k).

Corollary 3.6. The number of isomorphism classes of irreducible representations of G equals the
number of conjugacy classes of G (if |G| 6= 0 in k).
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Exercise. Show that if |G| = 0 in k then the number of isomorphism classes of irreducible
representations of G over k is strictly less than the number of conjugacy classes in G.

Hint. Let P =
∑

g∈G g ∈ k[G]. Then P 2 = 0. So P has zero trace in every finite dimensional
representation of G over k.

Corollary 3.7. Any representation of G is determined by its character if k has characteristic 0;
namely, χV = χW implies V ∼= W .

3.3 Examples

The following are examples of representations of finite groups over C.

1. Finite abelian groups G = Zn1 × · · · × Znk
. Let G∨ be the set of irreducible representations

of G. Every element of G forms a conjugacy class, so |G∨| = |G|. Recall that all irreducible
representations over C (and algebraically closed fields in general) of commutative algebras and
groups are one-dimensional. Thus, G∨ is an abelian group: if ρ1, ρ2 : G→ C× are irreducible
representations then so are ρ1(g)ρ2(g) and ρ1(g)

−1. G∨ is called the dual or character group
of G.

For given n ≥ 1, define ρ : Zn → C× by ρ(m) = e2πim/n. Then Z∨
n = {ρk : k = 0, . . . , n− 1},

so Z∨
n
∼= Zn. In general,

(G1 ×G2 × · · · ×Gn)∨ = G∨
1 ×G∨

2 × · · · ×G∨
n ,

so G∨ ∼= G for any finite abelian group G. This isomorphism is, however, noncanonical:
the particular decomposition of G as Zn1 × · · · × Znk

is not unique as far as which elements
of G correspond to Zn1, etc. is concerned. On the other hand, G ∼= (G∨)∨ is a canonical
isomorphism, given by ϕ : G→ (G∨)∨, where ϕ(g)(χ) = χ(g).

2. The symmetric group S3. In Sn, conjugacy classes are determined by cycle decomposition
sizes: two permutations are conjugate if and only if they have the same number of cycles
of each length. For S3, there are 3 conjugacy classes, so there are 3 different irreducible
representations over C. If their dimensions are d1, d2, d3, then d2

1+d2
2+d

2
3 = 6, so S3 must have

two 1-dimensional and one 2-dimensional representations. The 1-dimensional representations
are the trivial representation C+ given by ρ(σ) = 1 and the sign representation C− given by
ρ(σ) = (−1)σ.

The 2-dimensional representation can be visualized as representing the symmetries of the
equilateral triangle with vertices 1, 2, 3 at the points (cos 120◦, sin 120◦), (cos 240◦, sin 240◦),
(1, 0) of the coordinate plane, respectively. Thus, for example,

ρ((12)) =

(
1 0
0 −1

)
, ρ((123)) =

(
cos 120◦ − sin 120◦

sin 120◦ cos 120◦

)
.

To show that this representation is irreducible, consider any subrepresentation V . V must be
the span of a subset of the eigenvectors of ρ((12)), which are the nonzero multiples of (1, 0)
and (0, 1). V must also be the span of a subset of the eigenvectors of ρ((123)), which are
different vectors. Thus, V must be either C2 or 0.

3. The quaternion group Q8 = {±1,±i,±j,±k}, with defining relations

i = jk = −kj, j = ki = −ik, k = ij = −ji, −1 = i2 = j2 = k2.
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The 5 conjugacy classes are {1}, {−1}, {±i}, {±j}, {±k}, so there are 5 different irreducible
representations, the sum of the squares of whose dimensions is 8, so their dimensions must
be 1, 1, 1, 1, and 2.

The center Z(Q8) is {±1}, and Q8/Z(Q8) ∼= Z2 × Z2. The four 1-dimensional irreducible
representations of Z2 × Z2 can be “pulled back” to Q8. That is, if q : Q8 → Q8/Z(Q8) is the
quotient map, and ρ any representation of Q8/Z(Q8), then ρ ◦ q gives a representation of Q8.

The 2-dimensional representation is V = C2, given by ρ(−1) = −Id and

ρ(i) =

(
0 1
−1 0

)
, ρ(j) =

(√
−1 0
0 −

√
−1

)
, ρ(k) =

(
0 −

√
−1

−
√
−1 0

)
. (3)

These are the Pauli matrices, which arise in quantum mechanics.

Exercise. Show that the 2-dimensional irreducible representation of Q8 can be realized in
the space of functions f : Q8 → C such that f(gi) =

√
−1f(g) (the action of G is by right

multiplication, g ◦ f(x) = f(xg)).

4. The symmetric group S4. The order of S4 is 24, and there are 5 conjugacy classes:
e, (12), (123), (1234), (12)(34). Thus the sum of the squares of the dimensions of 5 irreducible
representations is 24. As with S3, there are two of dimension 1: the trivial and sign repre-
sentations, C+ and C−. The other three must then have dimensions 2, 3, and 3. Because
S3

∼= S4/Z2 × Z2, where Z2 × Z2 is {e, (12)(34), (13)(24), (14)(23)}, the 2-dimensional repre-
sentation of S3 can be pulled back to the 2-dimensional representation of S4, which we will
call C2.

We can consider S4 as the group of rotations of a cube acting by permuting the interior
diagonals (or, equivalently, on a regular octahedron permuting pairs of opposite faces); this
gives the 3-dimensional representation C3

+.

The last 3-dimensional representation is C3
−, the product of C3

+ with the sign representation.
C3

+ and C3
− are different, for if g is a transposition, det g|C3

+
= 1 while det g|C3

−
= (−1)3 = −1.

Note that another realization of C3
− is by action of S4 by symmetries (not necessarily rotations)

of the regular tetrahedron. Yet another realization of this representation is the space of
functions on the set of 4 elements (on which S4 acts by permutations) with zero sum of
values.

3.4 Duals and tensor products of representations

If V is a representation of a group G, then V ∗ is also a representation, via

ρV ∗(g) = (ρV (g)∗)−1 = (ρV (g)−1)∗ = ρV (g−1)∗.

The character is χV ∗(g) = χV (g−1).

We have χV (g) =
∑
λi, where the λi are the eigenvalues of g in V . These eigenvalues must be

roots of unity because ρ(g)|G| = ρ(g|G|) = ρ(e) = Id. Thus for complex representations

χV ∗(g) = χV (g−1) =
∑

λ−1
i =

∑
λi =

∑
λi = χV (g).

In particular, V ∼= V ∗ as representations (not just as vector spaces) if and only if χV (g) ∈ R for all
g ∈ G.
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If V,W are representations of G, then V ⊗W is also a representation, via

ρV ⊗W (g) = ρV (g) ⊗ ρW (g).

Therefore, χV ⊗W (g) = χV (g)χW (g).

An interesting problem discussed below is to decompose V ⊗W (for irreducible V,W ) into the
direct sum of irreducible representations.

3.5 Orthogonality of characters

We define a positive definite Hermitian inner product on Fc(G,C) (the space of central functions)
by

(f1, f2) =
1

|G|
∑

g∈G

f1(g)f2(g).

The following theorem says that characters of irreducible representations of G form an orthonormal
basis of Fc(G,C) under this inner product.

Theorem 3.8. For any representations V,W

(χV , χW ) = dimHomG(W,V ),

and

(χV , χW ) =

{
1, if V ∼= W,
0, if V ≇ W

if V,W are irreducible.

Proof. By the definition

(χV , χW ) =
1

|G|
∑

g∈G

χV (g)χW (g) =
1

|G|
∑

g∈G

χV (g)χW ∗(g)

=
1

|G|
∑

g∈G

χV ⊗W ∗(g) = Tr |V ⊗W ∗(P ),

where P = 1
|G|

∑
g∈G g ∈ Z(C[G]). (Here Z(C[G]) denotes the center of C[G]). If X is an irreducible

representation of G then

P |X =

{
Id, if X = C,
0, X 6= C.

Therefore, for any representation X the operator P |X is the G-invariant projector onto the subspace
XG of G-invariants in X. Thus,

Tr |V ⊗W ∗(P ) = dimHomG(C, V ⊗W ∗)

= dim(V ⊗W ∗)G = dimHomG(W,V ).
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Theorem 3.8 gives a powerful method of checking if a given complex representation V of a finite
group G is irreducible. Indeed, it implies that V is irreducible if and only if (χV , χV ) = 1.

Exercise. Let G be a finite group. Let Vi be the irreducible complex representations of G.

For every i, let

ψi =
dimVi

|G|
∑

g∈G

χVi
(g) · g−1 ∈ C [G] .

(i) Prove that ψi acts on Vj as the identity if j = i, and as the null map if j 6= i.

(ii) Prove that ψi are idempotents, i.e., ψ2
i = ψi for any i, and ψiψj = 0 for any i 6= j.

Hint: In (i), notice that ψi commutes with any element of k [G], and thus acts on Vj as an
intertwining operator. Corollary 1.17 thus yields that ψi acts on Vj as a scalar. Compute this
scalar by taking its trace in Vj .

Here is another “orthogonality formula” for characters, in which summation is taken over irre-
ducible representations rather than group elements.

Theorem 3.9. Let g, h ∈ G, and let Zg denote the centralizer of g in G. Then

∑

V

χV (g)χV (h) =

{
|Zg| if g is conjugate to h
0, otherwise

where the summation is taken over all irreducible representations of G.

Proof. As noted above, χV (h) = χV ∗(h), so the left hand side equals (using Maschke’s theorem):

∑

V

χV (g)χV ∗(h) = Tr|⊕V V ⊗V ∗(g ⊗ (h∗)−1) =

Tr|⊕V EndV (x 7→ gxh−1) = Tr|C[G](x 7→ gxh−1).

If g and h are not conjugate, this trace is clearly zero, since the matrix of the operator x 7→ gxh−1

in the basis of group elements has zero diagonal entries. On the other hand, if g and h are in the
same conjugacy class, the trace is equal to the number of elements x such that x = gxh−1, i.e., the
order of the centralizer Zg of g. We are done.

Remark. Another proof of this result is as follows. Consider the matrix U whose rows are
labeled by irreducible representations of G and columns by conjugacy classes, with entries UV,g =
χV (g)/

√
|Zg|. Note that the conjugacy class of g is G/Zg, thus |G|/|Zg| is the number of elements

conjugate to G. Thus, by Theorem 3.8, the rows of the matrix U are orthonormal. This means
that U is unitary and hence its columns are also orthonormal, which implies the statement.

3.6 Unitary representations. Another proof of Maschke’s theorem for complex

representations

Definition 3.10. A unitary finite dimensional representation of a group G is a representation of G
on a complex finite dimensional vector space V over C equipped with a G-invariant positive definite
Hermitian form4 (, ), i.e., such that ρV (g) are unitary operators: (ρV (g)v, ρV (g)w) = (v,w).

4We agree that Hermitian forms are linear in the first argument and antilinear in the second one.
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Theorem 3.11. If G is finite, then any finite dimensional representation of G has a unitary
structure. If the representation is irreducible, this structure is unique up to scaling by a positive
real number.

Proof. Take any positive definite form B on V and define another form B as follows:

B(v,w) =
∑

g∈G

B(ρV (g)v, ρV (g)w)

Then B is a positive definite Hermitian form on V, and ρV (g) are unitary operators. If V is
an irreducible representation and B1, B2 are two positive definite Hermitian forms on V, then
B1(v,w) = B2(Av,w) for some homomorphism A : V → V (since any positive definite Hermitian
form is nondegenerate). By Schur’s lemma, A = λId, and clearly λ > 0.

Theorem 3.11 implies that if V is a finite dimensional representation of a finite group G, then
the complex conjugate representation V (i.e., the same space V with the same addition and the same
action of G, but complex conjugate action of scalars) is isomorphic to the dual representation V ∗.
Indeed, a homomorphism of representations V → V ∗ is obviously the same thing as an invariant
sesquilinear form on V (i.e. a form additive on both arguments which is linear on the first one and
antilinear on the second one), and an isomorphism is the same thing as a nondegenerate invariant
sesquilinear form. So one can use a unitary structure on V to define an isomorphism V → V ∗.

Theorem 3.12. A finite dimensional unitary representation V of any group G is completely re-
ducible.

Proof. Let W be a subrepresentation of V . Let W⊥ be the orthogonal complement of W in V
under the Hermitian inner product. Then W⊥ is a subrepresentation of W , and V = W ⊕W⊥.
This implies that V is completely reducible.

Theorems 3.11 and 3.12 imply Maschke’s theorem for complex representations (Theorem 3.1).
Thus, we have obtained a new proof of this theorem over the field of complex numbers.

Remark 3.13. Theorem 3.12 shows that for infinite groups G, a finite dimensional representation
may fail to admit a unitary structure (as there exist finite dimensional representations, e.g. for
G = Z, which are indecomposable but not irreducible).

3.7 Orthogonality of matrix elements

Let V be an irreducible representation of a finite group G, and v1, v2, . . . , vn be an orthonormal
basis of V under the invariant Hermitian form. The matrix elements of V are tVij(x) = (ρV (x)vi, vj).

Proposition 3.14. (i) Matrix elements of nonisomorphic irreducible representations are orthog-
onal in Fun(G,C) under the form (f, g) = 1

|G|
∑

x∈G f(x)g(x).

(ii) (tVij , t
V
i′j′) = δii′δjj′ · 1

dimV

Thus, matrix elements of irreducible representations of G form an orthogonal basis of Fun(G,C).

Proof. Let V and W be two irreducible representations of G. Take {vi} to be an orthonormal basis
of V and {wi} to be an orthonormal basis of W under their positive definite invariant Hermitian
forms. Let w∗

i ∈ W ∗ be the linear function on W defined by taking the inner product with
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wi: w∗
i (u) = (u,wi). Then for x ∈ G we have (xw∗

i , w
∗
j ) = (xwi, wj). Therefore, putting P =

1
|G|

∑
x∈G x, we have

(tVij , t
W
i′j′) = |G|−1

∑

x∈G

(xvi, vj)(xwi′ , wj′) = |G|−1
∑

x∈G

(xvi, vj)(xw
∗
i′ , w

∗
j′) = (P (vi ⊗ w∗

i′), vj ⊗w∗
j′)

If V 6= W, this is zero, since P projects to the trivial representation, which does not occur in
V ⊗W ∗. If V = W, we need to consider (P (vi⊗v∗i′), vj ⊗v∗j′). We have a G-invariant decomposition

V ⊗ V ∗ = C ⊕ L

C = span(
∑

vk ⊗ v∗k)

L = spana:
P

k akk=0(
∑

k,l

aklvk ⊗ v∗l ),

and P projects to the first summand along the second one. The projection of vi ⊗ v∗i′ to C ⊂ C⊕L
is thus

δii′

dimV

∑
vk ⊗ v∗k

This shows that

(P (vi ⊗ v∗i′), vj ⊗ v∗j′) =
δii′δjj′

dimV

which finishes the proof of (i) and (ii). The last statement follows immediately from the sum of
squares formula.

3.8 Character tables, examples

The characters of all the irreducible representations of a finite group can be arranged into a char-
acter table, with conjugacy classes of elements as the columns, and characters as the rows. More
specifically, the first row in a character table lists representatives of conjugacy classes, the second
one the numbers of elements in the conjugacy classes, and the other rows list the values of the
characters on the conjugacy classes. Due to Theorems 3.8 and 3.9 the rows and columns of a
character table are orthonormal with respect to the appropriate inner products.

Note that in any character table, the row corresponding to the trivial representation consists
of ones, and the column corresponding to the neutral element consists of the dimensions of the
representations.

Here is, for example, the character table of S3 :

S3 Id (12) (123)

# 1 3 2

C+ 1 1 1

C− 1 -1 1

C2 2 0 -1

It is obtained by explicitly computing traces in the irreducible representations.

For another example consider A4, the group of even permutations of 4 items. There are three
one-dimensional representations (as A4 has a normal subgroup Z2 ⊕ Z2, and A4/Z2 ⊕ Z2 = Z3).
Since there are four conjugacy classes in total, there is one more irreducible representation of
dimension 3. Finally, the character table is
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A4 Id (123) (132) (12)(34)

# 1 4 4 3

C 1 1 1 1

Cǫ 1 ǫ ǫ2 1

Cǫ2 1 ǫ2 ǫ 1

C3 3 0 0 −1

where ǫ = exp(2πi
3 ).

The last row can be computed using the orthogonality of rows. Another way to compute the
last row is to note that C3 is the representation of A4 by rotations of the regular tetrahedron: in
this case (123), (132) are the rotations by 1200 and 2400 around a perpendicular to a face of the
tetrahedron, while (12)(34) is the rotation by 1800 around an axis perpendicular to two opposite
edges.

Example 3.15. The following three character tables are of Q8, S4, and A5 respectively.

Q8 1 -1 i j k

# 1 1 2 2 2

C++ 1 1 1 1 1

C+− 1 1 1 -1 -1

C−+ 1 1 -1 1 -1

C−− 1 1 -1 -1 1

C2 2 -2 0 0 0

S4 Id (12) (12)(34) (123) (1234)

# 1 6 3 8 6

C+ 1 1 1 1 1

C− 1 -1 1 1 -1

C2 2 0 2 -1 0

C3
+ 3 -1 -1 0 1

C3
− 3 1 -1 0 -1

A5 Id (123) (12)(34) (12345) (13245)

# 1 20 15 12 12

C 1 1 1 1 1

C3
+ 3 0 -1 1+

√
5

2
1−

√
5

2

C3
− 3 0 -1 1−

√
5

2
1+

√
5

2

C4 4 1 0 -1 -1

C5 5 -1 1 0 0

Indeed, the computation of the characters of the 1-dimensional representations is straightfor-
ward.

The character of the 2-dimensional representation of Q8 is obtained from the explicit formula
(3) for this representation, or by using the orthogonality.

For S4, the 2-dimensional irreducible representation is obtained from the 2-dimensional irre-
ducible representation of S3 via the surjective homomorphism S4 → S3, which allows to obtain its
character from the character table of S3.

The character of the 3-dimensional representation C3
+ is computed from its geometric realization

by rotations of the cube. Namely, by rotating the cube, S4 permutes the main diagonals. Thus
(12) is the rotation by 1800 around an axis that is perpendicular to two opposite edges, (12)(34)
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is the rotation by 1800 around an axis that is perpendicular to two opposite faces, (123) is the
rotation around a main diagonal by 1200, and (1234) is the rotation by 900 around an axis that is
perpendicular to two opposite faces; this allows us to compute the traces easily, using the fact that
the trace of a rotation by the angle φ in R3 is 1 + 2 cosφ. Now the character of C3

− is found by
multiplying the character of C3

+ by the character of the sign representation.

Finally, we explain how to obtain the character table of A5 (even permutations of 5 items). The
group A5 is the group of rotations of the regular icosahedron. Thus it has a 3-dimensional “rotation
representation” C3

+, in which (12)(34) is the rotation by 1800 around an axis perpendicular to two
opposite edges, (123) is the rotation by 1200 around an axis perpendicular to two opposite faces,
and (12345), (13254) are the rotations by 720, respectively 1440, around axes going through two
opposite vertices. The character of this representation is computed from this description in a
straightforward way.

Another representation of A5, which is also 3-dimensional, is C3
+ twisted by the automorphism

of A5 given by conjugation by (12) inside S5. This representation is denoted by C3
−. It has the

same character as C3
+, except that the conjugacy classes (12345) and (13245) are interchanged.

There are two remaining irreducible representations, and by the sum of squares formula their
dimensions are 4 and 5. So we call them C4 and C5.

The representation C4 is realized on the space of functions on the set {1, 2, 3, 4, 5} with zero
sum of values, where A5 acts by permutations (check that it is irreducible!). The character of
this representation is equal to the character of the 5-dimensional permutation representation minus
the character of the 1-dimensional trivial representation (constant functions). The former at an
element g equals to the number of items among 1,2,3,4,5 which are fixed by g.

The representation C5 is realized on the space of functions on pairs of opposite vertices of the
icosahedron which has zero sum of values (check that it is irreducible!). The character of this
representation is computed similarly to the character of C4, or from the orthogonality formula.

3.9 Computing tensor product multiplicities using character tables

Character tables allow us to compute the tensor product multiplicities Nk
ij using

Vi ⊗ Vj =
∑

Nk
ijVk, Nk

ij = (χiχj , χk)

Example 3.16. The following tables represent computed tensor product multiplicities of irre-

ducible representations of S3, S4, and A5 respectively.

S3 C+ C− C2

C+ C+ C− C2

C− C+ C2

C2 C+ ⊕ C− ⊕ C2

S4 C+ C− C2 C3
+ C3

−
C+ C+ C− C2 C3

+ C3
−

C− C+ C2 C3
− C3

+

C2 C+ ⊕ C− ⊕ C2 C3
+ ⊕ C3

− C3
+ ⊕ C3

−
C3

+ C+ ⊕ C2 ⊕ C3
+ ⊕ C3

− C− ⊕ C2 ⊕ C3
+ ⊕ C3

−
C3
− C+ ⊕ C2 ⊕ C3

+ ⊕ C3
−
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A5 C C3
+ C3

− C4 C5

C C C+
3 C3

− C4 C5

C3
+ C ⊕ C5 ⊕ C3

+ C4 ⊕ C5 C3
− ⊕ C4 ⊕ C5 C3

+ ⊕ C3
− ⊕ C4 ⊕ C5

C3
− C ⊕ C5 ⊕ C3

+ C3
+ ⊕ C4 ⊕ C5 C3

+ ⊕ C3
− ⊕ C4 ⊕ C5

C4 C3
+ ⊕ C3

− ⊕ C ⊕ C4 ⊕ C5 C3
+ ⊕ C3

− ⊕ 2C5 ⊕ C4

C5 C ⊕ C3
+ ⊕ C3

− ⊕ 2C4 ⊕ 2C5

3.10 Problems

Problem 3.17. Let G be the group of symmetries of a regular N-gon (it has 2N elements).

(a) Describe all irreducible complex representations of this group (consider the cases of odd and
even N)

(b) Let V be the 2-dimensional complex representation of G obtained by complexification of the
standard representation on the real plane (the plane of the polygon). Find the decomposition of
V ⊗ V in a direct sum of irreducible representations.

Problem 3.18. Let G be the group of 3 by 3 matrices over Fp which are upper triangular and have
ones on the diagonal, under multiplication (its order is p3). It is called the Heisenberg group. For
any complex number z such that zp = 1 we define a representation of G on the space V of complex
functions on Fp, by

(ρ




1 1 0
0 1 0
0 0 1


 f)(x) = f(x− 1),

(ρ




1 0 0
0 1 1
0 0 1


 f)(x) = zxf(x).

(note that zx makes sense since zp = 1).

(a) Show that such a representation exists and is unique, and compute ρ(g) for all g ∈ G.

(b) Denote this representation by Rz. Show that Rz is irreducible if and only if z 6= 1.

(c) Classify all 1-dimensional representations of G. Show that R1 decomposes into a direct sum
of 1-dimensional representations, where each of them occurs exactly once.

(d) Use (a)-(c) and the “sum of squares” formula to classify all irreducible representations of
G.

Problem 3.19. Let V be a finite dimensional complex vector space, and GL(V ) be the group of
invertible linear transformations of V . Then SnV and ΛmV (m ≤ dim(V )) are representations of
GL(V ) in a natural way. Show that they are irreducible representations.

Hint: Choose a basis {ei} in V . Find a diagonal element H of GL(V ) such that ρ(H) has
distinct eigenvalues. (where ρ is one of the above representations). This shows that if W is a
subrepresentation, then it is spanned by a subset S of a basis of eigenvectors of ρ(H). Use the
invariance of W under the operators ρ(1+Eij) (where Eij is defined by Eijek = δjkei) for all i 6= j
to show that if the subset S is nonempty, it is necessarily the entire basis.

Problem 3.20. Recall that the adjacency matrix of a graph Γ (without multiple edges) is the matrix
in which the ij-th entry is 1 if the vertices i and j are connected with an edge, and zero otherwise.
Let Γ be a finite graph whose automorphism group is nonabelian. Show that the adjacency matrix
of Γ must have repeated eigenvalues.
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Problem 3.21. Let I be the set of vertices of a regular icosahedron (|I| = 12). Let Fun(I) be the
space of complex functions on I. Recall that the group G = A5 of even permutations of 5 items
acts on the icosahedron, so we have a 12-dimensional representation of G on Fun(I).

(a) Decompose this representation in a direct sum of irreducible representations (i.e., find the
multiplicities of occurrence of all irreducible representations).

(b) Do the same for the representation of G on the space of functions on the set of faces and
the set of edges of the icosahedron.

Problem 3.22. Let Fq be a finite field with q elements, and G be the group of nonconstant inho-
mogeneous linear transformations, x → ax+ b, over Fq (i.e., a ∈ F×

q , b ∈ Fq). Find all irreducible
complex representations of G, and compute their characters. Compute the tensor products of irre-
ducible representations.

Hint. Let V be the representation of G on the space of functions on Fq with sum of all values
equal to zero. Show that V is an irreducible representation of G.

Problem 3.23. Let G = SU(2) (unitary 2 by 2 matrices with determinant 1), and V = C2 the
standard 2-dimensional representation of SU(2). We consider V as a real representation, so it is
4-dimensional.

(a) Show that V is irreducible (as a real representation).

(b) Let H be the subspace of EndR(V ) consisting of endomorphisms of V as a real representation.
Show that H is 4-dimensional and closed under multiplication. Show that every nonzero element in
H is invertible, i.e., H is an algebra with division.

(c) Find a basis 1, i, j, k of H such that 1 is the unit and i2 = j2 = k2 = −1, ij = −ji = k, jk =
−kj = i, ki = −ik = j. Thus we have that Q8 is a subgroup of the group H× of invertible elements
of H under multiplication.

The algebra H is called the quaternion algebra.

(d) For q = a+bi+cj+dk, a, b, c, d ∈ R, let q̄ = a−bi−cj−dk, and ||q||2 = qq̄ = a2+b2+c2+d2.
Show that q1q2 = q̄2q̄1, and ||q1q2|| = ||q1|| · ||q2||.

(e) Let G be the group of quaternions of norm 1. Show that this group is isomorphic to SU(2).
(Thus geometrically SU(2) is the 3-dimensional sphere).

(f) Consider the action of G on the space V ⊂ H spanned by i, j, k, by x → qxq−1, q ∈ G,
x ∈ V . Since this action preserves the norm on V , we have a homomorphism h : SU(2) → SO(3),
where SO(3) is the group of rotations of the three-dimensional Euclidean space. Show that this
homomorphism is surjective and that its kernel is {1,−1}.

Problem 3.24. It is known that the classification of finite subgroups of SO(3) is as follows:

1) the cyclic group Z/nZ, n ≥ 1, generated by a rotation by 2π/n around an axis;

2) the dihedral group Dn of order 2n, n ≥ 2 (the group of rotational symmetries in 3-space of
a plane containing a regular n-gon5;

3) the group of rotations of the regular tetrahedron (A4).

4) the group of rotations of the cube or regular octahedron (S4).

5) the group of rotations of a regular dodecahedron or icosahedron (A5).

5A regular 2-gon is just a line segment.
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(a) Derive this classification.

Hint. Let G be a finite subgroup of SO(3). Consider the action of G on the unit sphere. A
point of the sphere preserved by some nontrivial element of G is called a pole. Show that every
nontrivial element of G fixes a unique pair of opposite poles, and that the subgroup of G fixing a
particular pole P is cyclic, of some order m (called the order of P). Thus the orbit of P has n/m
elements, where n = |G|. Now let P1, ..., Pk be the poles representing all the orbits of G on the set
of poles, and m1, ...,mk be their orders. By counting nontrivial elements of G, show that

2(1 − 1

n
) =

∑

i

(1 − 1

mi
).

Then find all possible mi and n that can satisfy this equation and classify the corresponding groups.

(b) Using this classification, classify finite subgroups of SU(2) (use the homomorphism SU(2) →
SO(3)).

Problem 3.25. Find the characters and tensor products of irreducible complex representations of
the Heisenberg group from Problem 3.18.

Problem 3.26. Let G be a finite group, and V a complex representation of G which is faithful,
i.e., the corresponding map G → GL(V ) is injective. Show that any irreducible representation of
G occurs inside SnV (and hence inside V ⊗n) for some n.

Hint. Show that there exists a vector u ∈ V ∗ whose stabilizer in G is 1. Now define the map
SV → Fun(G,C) sending a polynomial f on V ∗ to the function fu on G given by fu(g) = f(gu).
Show that this map is surjective and use this to deduce the desired result.

Problem 3.27. This problem is about an application of representation theory to physics (elasticity
theory). We first describe the physical motivation and then state the mathematical problem.

Imagine a material which occupies a certain region U in the physical space V = R3 (a space
with a positive definite inner product). Suppose the material is deformed. This means, we have
applied a diffeomorphism (=change of coordinates) g : U → U ′. The question in elasticity theory
is how much stress in the material this deformation will cause.

For every point P ∈ U , let AP : V → V be defined by AP = dg(P ). AP is nondegenerate,
so it has a polar decomposition AP = DPOP , where OP is orthogonal and DP is symmetric. The
matrix OP characterizes the rotation part of AP (which clearly produces no stress), and DP is
the distortion part, which actually causes stress. If the deformation is small, DP is close to 1, so
DP = 1+dP , where dP is a small symmetric matrix, i.e., an element of S2V . This matrix is called
the deformation tensor at P .

Now we define the stress tensor, which characterizes stress. Let v be a small nonzero vector in
V , and σ a small disk perpendicular to v centered at P of area ||v||. Let Fv be the force with which
the part of the material on the v-side of σ acts on the part on the opposite side. It is easy to deduce
from Newton’s laws that Fv is linear in v, so there exists a linear operator SP : V → V such that
Fv = SP v. It is called the stress tensor.

An elasticity law is an equation SP = f(dP ), where f is a function. The simplest such law is a
linear law (Hooke’s law): f : S2V → End(V ) is a linear function. In general, such a function is
defined by 9 · 6 = 54 parameters, but we will show there are actually only two essential ones – the
compression modulus K and the shearing modulus µ. For this purpose we will use representation
theory.
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Recall that the group SO(3) of rotations acts on V , so S2V , End(V ) are representations of this
group. The laws of physics must be invariant under this group (Galileo transformations), so f must
be a homomorphism of representations.

(a) Show that End(V ) admits a decomposition R⊕V ⊕W , where R is the trivial representation,
V is the standard 3-dimensional representation, and W is a 5-dimensional representation of SO(3).
Show that S2V = R ⊕W

(b) Show that V and W are irreducible, even after complexification. Deduce using Schur’s
lemma that SP is always symmetric, and for x ∈ R, y ∈ W one has f(x+ y) = Kx+ µy for some
real numbers K,µ.

In fact, it is clear from physics that K,µ are positive. Physically, the compression modulus K
characterises resistance of the material to compression or dilation, while the shearing modulus µ
characterizes its resistance to changing the shape of the object without changing its volume. For
instance, clay (used for sculpting) has a large compression modulus but a small shearing modulus.
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4 Representations of finite groups: further results

4.1 Frobenius-Schur indicator

Suppose that G is a finite group and V is an irreducible representation of G over C. We say that
V is

- of complex type, if V ≇ V ∗,

- of real type, if V has a nondegenerate symmetric form invariant under G,

- of quaternionic type, if V has a nondegenerate skew form invariant under G.

Problem 4.1. (a) Show that EndR[G] V is C for V of complex type, Mat2(R) for V of real type,
and H for V of quaternionic type, which motivates the names above.

Hint. Show that the complexification VC of V decomposes as V ⊕ V ∗. Use this to compute the
dimension of EndR[G] V in all three cases. Using the fact that C ⊂ EndR[G] V , prove the result
in the complex case. In the remaining two cases, let B be the invariant bilinear form on V , and
(, ) the invariant positive Hermitian form (they are defined up to a nonzero complex scalar and a
positive real scalar, respectively), and define the operator j : V → V such that B(v,w) = (v, jw).
Show that j is complex antilinear (ji = −ij), and j2 = λ · Id, where λ is a real number, positive in
the real case and negative in the quaternionic case (if B is renormalized, j multiplies by a nonzero
complex number z and j2 by zz̄, as j is antilinear). Thus j can be normalized so that j2 = 1 for
the real case, and j2 = −1 in the quaternionic case. Deduce the claim from this.

(b) Show that V is of real type if and only if V is the complexification of a representation VR

over the field of real numbers.

Example 4.2. For Z/nZ all irreducible representations are of complex type, except the trivial one
and, if n is even, the “sign” representation, m → (−1)m, which are of real type. For S3 all three
irreducible representations C+,C−,C2 are of real type. For S4 there are five irreducible representa-
tions C+, C−, C2, C3

+, C3
−, which are all of real type. Similarly, all five irreducible representations

of A5 – C, C3
+, C3

−, C4, C5 are of real type. As for Q8, its one-dimensional representations are of
real type, and the two-dimensional one is of quaternionic type.

Definition 4.3. The Frobenius-Schur indicator FS(V ) of an irreducible representation V is 0 if it
is of complex type, 1 if it is of real type, and −1 if it is of quaternionic type.

Theorem 4.4. (Frobenius-Schur) The number of involutions (=elements of order ≤ 2) in G is
equal to

∑
V dim(V )FS(V ), i.e., the sum of dimensions of all representations of G of real type

minus the sum of dimensions of its representations of quaternionic type.

Proof. Let A : V → V have eigenvalues λ1, λ2, . . . , λn. We have

Tr|S2V (A⊗A) =
∑

i≤j

λiλj

Tr|Λ2V (A⊗A) =
∑

i<j

λiλj

Thus,

Tr|S2V (A⊗A) − Tr|Λ2V (A⊗A) =
∑

1≤i≤n

λ2
i = Tr(A2).
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Thus for g ∈ G we have
χV (g2) = χS2V (g) − χΛ2V (g)

Therefore,

|G|−1χV (
∑

g∈G

g2) = χS2V (P )−χ∧2V (P ) = dim(S2V )G−dim(∧2V )G =





1, if V is of real type
−1, if V is of quaternionic type

0, if V is of complex type

Finally, the number of involutions in G equals

1

|G|
∑

V

dimV χV (
∑

g∈G

g2) =
∑

real V

dimV −
∑

quat V

dimV.

Corollary 4.5. Assume that all representations of a finite group G are defined over real numbers
(i.e., all complex representations of G are obtained by complexifying real representations). Then
the sum of dimensions of irreducible representations of G equals the number of involutions in G.

Exercise. Show that any nontrivial finite group of odd order has an irreducible representation
which is not defined over R (i.e., not realizable by real matrices).

4.2 Frobenius determinant

Enumerate the elements of a finite group G as follows: g1, g2, . . . , gn. Introduce n variables indexed
with the elements of G :

xg1, xg2 , . . . , xgn .

Definition 4.6. Consider the matrix XG with entries aij = xgigj
. The determinant of XG is some

polynomial of degree n of xg1, xg2 , . . . , xgn that is called the Frobenius determinant.

The following theorem, discovered by Dedekind and proved by Frobenius, became the starting
point for creation of representation theory (see [Cu]).

Theorem 4.7.

detXG =

r∏

j=1

Pj(x)deg Pj

for some pairwise non-proportional irreducible polynomials Pj(x), where r is the number of conju-
gacy classes of G.

We will need the following simple lemma.

Lemma 4.8. Let Y be an n × n matrix with entries yij. Then detY is an irreducible polynomial
of {yij}.

Proof. Let Y = t·Id+
∑n

i=1 xiEi,i+1, where i+1 is computed modulo n, and Ei,j are the elementary
matrices. Then det(Y ) = tn − (−1)nx1...xn, which is obviously irreducible. Hence det(Y ) is
irreducible (since factors of a homogeneous polynomial are homogeneous).

Now we are ready to proceed to the proof of Theorem 4.7.
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Proof. Let V = C[G] be the regular representation of G. Consider the operator-valued polynomial

L(x) =
∑

g∈G

xgρ(g),

where ρ(g) ∈ EndV is induced by g. The action of L(x) on an element h ∈ G is

L(x)h =
∑

g∈G

xgρ(g)h =
∑

g∈G

xggh =
∑

z∈G

xzh−1z

So the matrix of the linear operator L(x) in the basis g1, g2, . . . , gn is XG with permuted columns
and hence has the same determinant up to sign.

Further, by Maschke’s theorem, we have

detV L(x) =

r∏

i=1

(detVi
L(x))dim Vi ,

where Vi are the irreducible representations of G. We set Pi = detVi
L(x). Let {eim} be bases of Vi

and Ei,jk ∈ EndVi be the matrix units in these bases. Then {Ei,jk} is a basis of C[G] and

L(x)|Vi
=

∑

j,k

yi,jkEi,jk,

where yi,jk are new coordinates on C[G] related to xg by a linear transformation. Then

Pi(x) = det |Vi
L(x) = det(yi,jk)

Hence, Pi are irreducible (by Lemma 4.8) and not proportional to each other (as they depend on
different collections of variables yi,jk). The theorem is proved.

4.3 Algebraic numbers and algebraic integers

We are now passing to deeper results in representation theory of finite groups. These results require
the theory of algebraic numbers, which we will now briefly review.

Definition 4.9. z ∈ C is an algebraic number (respectively, an algebraic integer), if z is a
root of a monic polynomial with rational (respectively, integer) coefficients.

Definition 4.10. z ∈ C is an algebraic number, (respectively, an algebraic integer), if z is an
eigenvalue of a matrix with rational (respectively, integer) entries.

Proposition 4.11. Definitions (4.9) and (4.10) are equivalent.

Proof. To show (4.10) ⇒ (4.9), notice that z is a root of the characteristic polynomial of the matrix
(a monic polynomial with rational, respectively integer, coefficients).
To show (4.9) ⇒ (4.10), suppose z is a root of

p(x) = xn + a1x
n−1 + . . .+ an−1x+ an.

Then the characteristic polynomial of the following matrix (called the companion matrix) is
p(x):
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


0 0 0 . . . 0 −an

1 0 0 . . . 0 −an−1

0 1 0 . . . 0 −an−2
...

0 0 0 . . . 1 −a1



.

Since z is a root of the characteristic polynomial of this matrix, it is an eigenvalue of this matrix.

The set of algebraic numbers is denoted by Q, and the set of algebraic integers by A.

Proposition 4.12. (i) A is a ring.

(ii) Q is a field. Namely, it is an algebraic closure of the field of rational numbers.

Proof. We will be using definition (4.10). Let α be an eigenvalue of

A ∈ Matn(C)

with eigenvector v, let β be an eigenvalue of

B ∈ Matm(C)

with eigenvector w. Then α± β is an eigenvalue of

A⊗ Idm ± Idn ⊗ B,

and αβ is an eigenvalue of
A⊗ B.

The corresponding eigenvector is in both cases v ⊗ w. This shows that both A and Q are rings.
To show that the latter is a field, it suffices to note that if α 6= 0 is a root of a polynomial p(x) of
degree d, then α−1 is a root of xdp(1/x). The last statement is easy, since a number α is algebraic
if and only if it defines a finite extension of Q.

Proposition 4.13. A ∩ Q = Z.

Proof. We will be using definition (4.9). Let z be a root of

p(x) = xn + a1x
n−1 + . . .+ an−1x+ an,

and suppose

z =
p

q
∈ Q, gcd(p, q) = 1.

Notice that the leading term of p(x) will have qn in the denominator, whereas all the other terms
will have a lower power of q there. Thus, if q 6= ±1, then p(z) /∈ Z, a contradiction. Thus,
z ∈ A ∩ Q ⇒ z ∈ Z. The reverse inclusion follows because n ∈ Z is a root of x− n.

Every algebraic number α has a minimal polynomial p(x), which is the monic polynomial
with rational coefficients of the smallest degree such that p(α) = 0. Any other polynomial q(x) with
rational coefficients such that q(α) = 0 is divisible by p(x). Roots of p(x) are called the algebraic
conjugates of α; they are roots of any polynomial q with rational coefficients such that q(α) = 0.
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Note that any algebraic conjugate of an algebraic integer is obviously also an algebraic inte-
ger. Therefore, by the Vieta theorem, the minimal polynomial of an algebraic integer has integer
coefficients.

Below we will need the following lemma:

Lemma 4.14. If α1, ..., αm are algebraic numbers, then all algebraic conjugates to α1 + ... + αm

are of the form α′
1 + ...+ α′

m, where α′
i are some algebraic conjugates of αi.

Proof. It suffices to prove this for two summands. If αi are eigenvalues of rational matrices Ai of
smallest size (i.e., their characteristic polynomials are the minimal polynomials of αi), then α1 +α2

is an eigenvalue of A := A1 ⊗ Id + Id ⊗ A2. Therefore, so is any algebraic conjugate to α1 + α2.
But all eigenvalues of A are of the form α′

1 + α′
2, so we are done.

Problem 4.15. (a) Show that for any finite group G there exists a finite Galois extension K ⊂ C
of Q such that any finite dimensional complex representation of G has a basis in which the matrices
of the group elements have entries in K.

Hint. Consider the representations of G over the field Q of algebraic numbers.

(b) Show that if V is an irreducible complex representation of a finite group G of dimension
> 1 then there exists g ∈ G such that χV (g) = 0.

Hint: Assume the contrary. Use orthonormality of characters to show that the arithmetic mean
of the numbers |χV (g)|2 for g 6= 1 is < 1. Deduce that their product β satisfies 0 < β < 1.
Show that all conjugates of β satisfy the same inequalities (consider the Galois conjugates of the
representation V , i.e. representations obtained from V by the action of the Galois group of K over
Q on the matrices of group elements in the basis from part (a)). Then derive a contradiction.

Remark. Here is a modification of this argument, which does not use (a). Let N = |G|. For
any 0 < j < N coprime to N , show that the map g 7→ gj is a bijection G → G. Deduce that∏

g 6=1 |χV (gj)|2 = β. Then show that β ∈ K := Q(ζ), ζ = e2πi/N , and does not change under the

automorphism of K given by ζ 7→ ζj. Deduce that β is an integer, and derive a contradiction.

4.4 Frobenius divisibility

Theorem 4.16. Let G be a finite group, and let V be an irreducible representation of G over C.
Then

dimV divides |G|.

Proof. Let C1, C2, . . . , Cn be the conjugacy classes of G. Set

λi = χV (gCi
)

|Ci|
dimV

,

where gCi
is a representative of Ci.

Proposition 4.17. The numbers λi are algebraic integers for all i.

Proof. Let C be a conjugacy class in G, and P =
∑

h∈C h. Then P is a central element of Z[G], so it
acts on V by some scalar λ, which is an algebraic integer (indeed, since Z[G] is a finitely generated
Z-module, any element of Z[G] is integral over Z, i.e., satisfies a monic polynomial equation with
integer coefficients). On the other hand, taking the trace of P in V , we get |C|χV (g) = λdimV ,

g ∈ C, so λ = |C|χV (g)
dimV .
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Now, consider ∑

i

λiχV (gCi
).

This is an algebraic integer, since:

(i) λi are algebraic integers by Proposition 4.17,

(ii) χV (gCi
) is a sum of roots of unity (it is the sum of eigenvalues of the matrix of ρ(gCi

), and

since g
|G|
Ci

= e in G, the eigenvalues of ρ(gCi
) are roots of unity), and

(iii) A is a ring (Proposition 4.12).

On the other hand, from the definition of λi,

∑

Ci

λiχV (gCi
) =

∑

i

|Ci|χV (gCi
)χV (gCi

)

dimV
.

Recalling that χV is a class function, this is equal to

∑

g∈G

χV (g)χV (g)

dimV
=

|G|(χV , χV )

dimV
.

Since V is an irreducible representation, (χV , χV ) = 1, so

∑

Ci

λiχV (gCi
) =

|G|
dimV

.

Since |G|
dim V ∈ Q and

∑
Ci
λiχV (gCi

) ∈ A, by Proposition 4.13 |G|
dimV ∈ Z.

4.5 Burnside’s Theorem

Definition 4.18. A group G is called solvable if there exists a series of nested normal subgroups

{e} = G1 ⊳ G2 ⊳ . . . ⊳ Gn = G

where Gi+1/Gi is abelian for all 1 ≤ i ≤ n− 1.

Remark 4.19. Such groups are called solvable because they first arose as Galois groups of poly-
nomial equations which are solvable in radicals.

Theorem 4.20 (Burnside). Any group G of order paqb, where p and q are prime and a, b ≥ 0, is
solvable.

This famous result in group theory was proved by the British mathematician William Burnside
in the early 20-th century, using representation theory (see [Cu]). Here is this proof, presented in
modern language.

Before proving Burnside’s theorem we will prove several other results which are of independent
interest.

Theorem 4.21. Let V be an irreducible representation of a finite group G and let C be a conjugacy
class of G with gcd(|C|,dim(V )) = 1. Then for any g ∈ C, either χV (g) = 0 or g acts as a scalar
on V .
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The proof will be based on the following lemma.

Lemma 4.22. If ε1, ε2 . . . εn are roots of unity such that
1

n
(ε1 + ε2 + . . . + εn) is an algebraic

integer, then either ε1 = . . . = εn or ε1 + . . . + εn = 0.

Proof. Let a = 1
n(ε1 + . . .+ εn). If not all εi are equal, then |a| < 1. Moreover, since any algebraic

conjugate of a root of unity is also a root of unity, |a′| ≤ 1 for any algebraic conjugate a′ of a. But
the product of all algebraic conjugates of a is an integer. Since it has absolute value < 1, it must
equal zero. Therefore, a = 0.

Proof of theorem 4.21.

Let dimV = n. Let ε1, ε2, . . . εn be the eigenvalues of ρV (g). They are roots of unity, so
χV (g) is an algebraic integer. Also, by Proposition 4.17, 1

n |C|χV (g) is an algebraic integer. Since
gcd(n, |C|) = 1, there exist integers a, b such that a|C| + bn = 1. This implies that

χV (g)

n
=

1

n
(ε1 + . . .+ εn).

is an algebraic integer. Thus, by Lemma 4.22, we get that either ε1 = . . . = εn or ε1 + . . . + εn =
χV (g) = 0. In the first case, since ρV (g) is diagonalizable, it must be scalar. In the second case,
χV (g) = 0. The theorem is proved.

Theorem 4.23. Let G be a finite group, and let C be a conjugacy class in G of order pk where p
is prime and k > 0. Then G has a proper nontrivial normal subgroup (i.e., G is not simple).

Proof. Choose an element g ∈ C. Since g 6= e, by orthogonality of columns of the character table,

∑

V ∈IrrG

dimV χV (g) = 0. (4)

We can divide IrrG into three parts:

1. the trivial representation,

2. D, the set of irreducible representations whose dimension is divisible by p, and

3. N , the set of non-trivial irreducible representations whose dimension is not divisible by p.

Lemma 4.24. There exists V ∈ N such that χV (g) 6= 0.

Proof. If V ∈ D, the number 1
p dim(V )χV (g) is an algebraic integer, so

a =
∑

V ∈D

1

p
dim(V )χV (g)

is an algebraic integer.

Now, by (4), we have

0 = χC(g) +
∑

V ∈D

dimV χV (g) +
∑

V ∈N

dimV χV (g) = 1 + pa+
∑

V ∈N

dimV χV (g).

This means that the last summand is nonzero.
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Now pick V ∈ N such that χV (g) 6= 0; it exists by Lemma 4.24. Theorem 4.21 implies that g
(and hence any element of C) acts by a scalar in V . Now let H be the subgroup of G generated
by elements ab−1, a, b ∈ C. It is normal and acts trivially in V , so H 6= G, as V is nontrivial. Also
H 6= 1, since |C| > 1.

Proof of Burnside’s theorem.

Assume Burnside’s theorem is false. Then there exists a nonsolvable group G of order paqb. Let
G be the smallest such group. Then G is simple, and by Theorem 4.23, it cannot have a conjugacy
class of order pk or qk, k ≥ 1. So the order of any conjugacy class in G is either 1 or is divisible
by pq. Adding the orders of conjugacy classes and equating the sum to paqb, we see that there has
to be more than one conjugacy class consisting just of one element. So G has a nontrivial center,
which gives a contradiction.

4.6 Representations of products

Theorem 4.25. Let G,H be finite groups, {Vi} be the irreducible representations of G over a
field k (of any characteristic), and {Wj} be the irreducible representations of H over k. Then the
irreducible representations of G×H over k are {Vi ⊗Wj}.

Proof. This follows from Theorem 2.26.

4.7 Virtual representations

Definition 4.26. A virtual representation of a finite group G is an integer linear combination of
irreducible representations of G, V =

∑
niVi, ni ∈ Z (i.e., ni are not assumed to be nonnegative).

The character of V is χV :=
∑
niχVi

.

The following lemma is often very useful (and will be used several times below).

Lemma 4.27. Let V be a virtual representation with character χV . If (χV , χV ) = 1 and χV (1) > 0
then χV is a character of an irreducible representation of G.

Proof. Let V1, V2, . . . , Vm be the irreducible representations of G, and V =
∑
niVi. Then by

orthonormality of characters, (χV , χV ) =
∑

i n
2
i . So

∑
i n

2
i = 1, meaning that ni = ±1 for exactly

one i, and nj = 0 for j 6= i. But χV (1) > 0, so ni = +1 and we are done.

4.8 Induced Representations

Given a representation V of a group G and a subgroup H ⊂ G, there is a natural way to construct
a representation of H. The restricted representation of V to H, ResG

HV is the representation given
by the vector space V and the action ρResG

HV = ρV |H .

There is also a natural, but more complicated way to construct a representation of a group G
given a representation V of its subgroup H.

Definition 4.28. If G is a group, H ⊂ G, and V is a representation of H, then the induced
representation IndG

HV is the representation of G with

IndG
HV = {f : G→ V |f(hx) = ρV (h)f(x)∀x ∈ G,h ∈ H}
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and the action g(f)(x) = f(xg) ∀g ∈ G.

Remark 4.29. In fact, IndG
HV is naturally isomorphic to HomH(k[G], V ).

Let us check that IndG
HV is indeed a representation:

g(f)(hx) = f(hxg) = ρV (h)f(xg) = ρV (h)g(f)(x), and g(g′(f))(x) = g′(f)(xg) = f(xgg′) =
(gg′)(f)(x) for any g, g′, x ∈ G and h ∈ H.

Remark 4.30. Notice that if we choose a representative xσ from every right H-coset σ of G, then
any f ∈ IndG

HV is uniquely determined by {f(xσ)}.

Because of this,

dim(IndG
HV ) = dimV · |G||H| .

Problem 4.31. Check that if K ⊂ H ⊂ G are groups and V a representation of K then IndG
HIndH

KV
is isomorphic to IndG

KV .

Exercise. Let K ⊂ G be finite groups, and χ : K → C∗ be a homomorphism. Let Cχ be the
corresponding 1-dimensional representation of K. Let

eχ =
1

|K|
∑

g∈K

χ(g)−1g ∈ C[K]

be the idempotent corresponding to χ. Show that the G-representation IndG
KCχ is naturally iso-

morphic to C[G]eχ (with G acting by left multiplication).

4.9 The Mackey formula

Let us now compute the character χ of IndG
HV . In each right coset σ ∈ H\G, choose a representative

xσ.

Theorem 4.32. (The Mackey formula) One has

χ(g) =
∑

σ∈H\G:xσgx−1
σ ∈H

χV (xσgx
−1
σ ).

Remark. If the characteristic of the ground field k is relatively prime to |H|, then this formula
can be written as

χ(g) =
1

|H|
∑

x∈G:xgx−1∈H

χV (xgx−1).

Proof. For a right H-coset σ of G, let us define

Vσ = {f ∈ IndG
HV |f(g) = 0 ∀g 6∈ σ}.

Then one has
IndG

HV =
⊕

σ

Vσ,

and so
χ(g) =

∑

σ

χσ(g),
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where χσ(g) is the trace of the diagonal block of ρ(g) corresponding to Vσ.

Since g(σ) = σg is a right H-coset for any right H-coset σ, χσ(g) = 0 if σ 6= σg.

Now assume that σ = σg. Then xσg = hxσ where h = xσgx
−1
σ ∈ H. Consider the vector space

homomorphism α : Vσ → V with α(f) = f(xσ). Since f ∈ Vσ is uniquely determined by f(xσ), α
is an isomorphism. We have

α(gf) = g(f)(xσ) = f(xσg) = f(hxσ) = ρV (h)f(xσ) = hα(f),

and gf = α−1hα(f). This means that χσ(g) = χV (h). Therefore

χ(g) =
∑

σ∈H\G,σg=σ

χV (xσgx
−1
σ ).

4.10 Frobenius reciprocity

A very important result about induced representations is the Frobenius Reciprocity Theorem which
connects the operations Ind and Res.

Theorem 4.33. (Frobenius Reciprocity)

Let H ⊂ G be groups, V be a representation of G and W a representation of H. Then
HomG(V, IndG

HW ) is naturally isomorphic to HomH(ResG
HV,W ).

Proof. Let E = HomG(V, IndG
HW ) and E′ = HomH(ResG

HV,W ). Define F : E → E′ and F ′ : E′ →
E as follows: F (α)v = (αv)(e) for any α ∈ E and (F ′(β)v)(x) = β(xv) for any β ∈ E′.

In order to check that F and F ′ are well defined and inverse to each other, we need to check
the following five statements.

Let α ∈ E, β ∈ E′, v ∈ V , and x, g ∈ G.

(a) F (α) is an H-homomorphism, i.e., F (α)hv = hF (α)v.

Indeed, F (α)hv = (αhv)(e) = (hαv)(e) = (αv)(he) = (αv)(eh) = h · (αv)(e) = hF (α)v.

(b) F ′(β)v ∈ IndG
HW , i.e., (F ′(β)v)(hx) = h(F ′(β)v)(x).

Indeed, (F ′(β)v)(hx) = β(hxv) = hβ(xv) = h(F ′(β)v)(x).

(c) F ′(β) is a G-homomorphism, i.e. F ′(β)gv = g(F ′(β)v).

Indeed, (F ′(β)gv)(x) = β(xgv) = (F ′(β)v)(xg) = (g(F ′(β)v))(x).

(d) F ◦ F ′ = IdE′ .

This holds since F (F ′(β))v = (F ′(β)v)(e) = β(v).

(e) F ′ ◦ F = IdE , i.e., (F ′(F (α))v)(x) = (αv)(x).

Indeed, (F ′(F (α))v)(x) = F (αxv) = (αxv)(e) = (xαv)(e) = (αv)(x), and we are done.

Exercise. The purpose of this exercise is to understand the notions of restricted and induced
representations as part of a more advanced framework. This framework is the notion of tensor
products over k-algebras (which generalizes the tensor product over k which we defined in Definition
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1.48). In particular, this understanding will lead us to a new proof of the Frobenius reciprocity
and to some analogies between induction and restriction.

Throughout this exercise, we will use the notation and results of the Exercise in Section 1.10.

Let G be a finite group and H ⊂ G a subgroup. We consider k [G] as a (k [H] , k [G])-bimodule
(both module structures are given by multiplication inside k [G]). We denote this bimodule by
k [G]1. On the other hand, we can also consider k [G] as a (k [G] , k [H])-bimodule (again, both
module structures are given by multiplication). We denote this bimodule by k [G]2.

(a) Let V be a representation of G. Then, V is a left k [G]-module, thus a (k [G] , k)-bimodule.
Thus, the tensor product k [G]1 ⊗k[G] V is a (k [H] , k)-bimodule, i. e., a left k [H]-module. Prove

that this tensor product is isomorphic to ResG
HV as a left k [H]-module. The isomorphism ResG

HV →
k [G]1 ⊗k[G] V is given by v 7→ 1 ⊗k[G] v for every v ∈ ResG

HV .

(b) Let W be a representation of H. Then, W is a left k [H]-module, thus a (k [H] , k)-
bimodule. Then, IndG

HW
∼= HomH (k [G] ,W ), according to Remark 4.30. In other words, IndG

HW
∼=

Homk[H] (k [G]1 ,W ). Now, use part (b) of the Exercise in Section 1.10 to conclude Theorem 4.33.

(c) Let V be a representation of G. Then, V is a left k [G]-module, thus a (k [G] , k)-bimodule.
Prove that not only k [G]1 ⊗k[G] V , but also Homk[G] (k [G]2 , V ) is isomorphic to ResG

HV as a left

k [H]-module. The isomorphism Homk[G] (k [G]2 , V ) → ResG
HV is given by f 7→ f (1) for every

f ∈ Homk[G] (k [G]2 , V ).

(d) Let W be a representation of H. Then, W is a left k [H]-module, thus a (k [H] , k)-
bimodule. Show that IndG

HW is not only isomorphic to Homk[H] (k [G]1 ,W ), but also isomorphic to
k [G]2⊗k[H]W . The isomorphism Homk[H] (k [G]1 ,W ) → k [G]2⊗k[H]W is given by f 7→ ∑

g∈P g
−1⊗k[H]

f (g) for every f ∈ Homk[H] (k [G]1 ,W ), where P is a set of distinct representatives for the right
H-cosets in G. (This isomorphism is independent of the choice of representatives.)

(e) Let V be a representation of G and W a representation of H. Use (b) to prove that
HomG

(
IndG

HW,V
)

is naturally isomorphic to HomH

(
W,ResG

HV
)
.

(f) Let V be a representation of H. Prove that IndG
H (V ∗) ∼=

(
IndG

HV
)∗

as representations of

G. [Hint: Write IndG
HV as k [G]2 ⊗k[H] V and write IndG

H (V ∗) as Homk[H] (k [G]1 , V
∗). Prove

that the map Homk[H] (k [G]1 , V
∗) ×

(
IndG

H (V ∗)
)
→ k given by

(
f,

(
x⊗k[H] v

))
7→ (f (Sx)) (v) is

a nondegenerate G-invariant bilinear form, where S : k [G] → k [G] is the linear map defined by
Sg = g−1 for every g ∈ G.]

4.11 Examples

Here are some examples of induced representations (we use the notation for representations from
the character tables).

1. Let G = S3, H = Z2. Using the Frobenius reciprocity, we obtain: IndG
HC+ = C2 ⊕ C+,

IndG
HC− = C2 ⊕ C−.

2. Let G = S3, H = Z3. Then we obtain IndG
HC+ = C+ ⊕ C−, IndG

HCǫ = IndG
HCǫ2 = C2.

3. Let G = S4, H = S3. Then IndG
HC+ = C+⊕C3

−, IndG
HC− = C−⊕C3

+, IndG
HC2 = C2⊕C3

−⊕C3
+.

Problem 4.34. Compute the decomposition into irreducibles of all the representations of A5 in-
duced from all the irreducible representations of
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(a) Z2

(b) Z3

(c) Z5

(d) A4

(e) Z2 × Z2

4.12 Representations of Sn

In this subsection we give a description of the representations of the symmetric group Sn for any
n.

Definition 4.35. A partition λ of n is a representation of n in the form n = λ1 + λ2 + ... + λp,
where λi are positive integers, and λi ≥ λi+1.

To such λ we will attach a Young diagram Yλ, which is the union of rectangles −i ≤ y ≤ −i+1,
0 ≤ x ≤ λi in the coordinate plane, for i = 1, ..., p. Clearly, Yλ is a collection of n unit squares. A
Young tableau corresponding to Yλ is the result of filling the numbers 1, ..., n into the squares of
Yλ in some way (without repetitions). For example, we will consider the Young tableau Tλ obtained
by filling in the numbers in the increasing order, left to right, top to bottom.

We can define two subgroups of Sn corresponding to Tλ:

1. The row subgroup Pλ: the subgroup which maps every element of {1, ..., n} into an element
standing in the same row in Tλ.

2. The column subgroup Qλ: the subgroup which maps every element of {1, ..., n} into an
element standing in the same column in Tλ.

Clearly, Pλ ∩Qλ = {1}.

Define the Young projectors:

aλ :=
1

|Pλ|
∑

g∈Pλ

g,

bλ :=
1

|Qλ|
∑

g∈Qλ

(−1)gg,

where (−1)g denotes the sign of the permutation g. Set cλ = aλbλ. Since Pλ ∩ Qλ = {1}, this
element is nonzero.

The irreducible representations of Sn are described by the following theorem.

Theorem 4.36. The subspace Vλ := C[Sn]cλ of C[Sn] is an irreducible representation of Sn under
left multiplication. Every irreducible representation of Sn is isomorphic to Vλ for a unique λ.

The modules Vλ are called the Specht modules.

The proof of this theorem is given in the next subsection.

Example 4.37.

For the partition λ = (n), Pλ = Sn, Qλ = {1}, so cλ is the symmetrizer, and hence Vλ is the trivial
representation.
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For the partition λ = (1, ..., 1), Qλ = Sn, Pλ = {1}, so cλ is the antisymmetrizer, and hence Vλ is
the sign representation.

n = 3. For λ = (2, 1), Vλ = C2.

n = 4. For λ = (2, 2), Vλ = C2; for λ = (3, 1), Vλ = C3
−; for λ = (2, 1, 1), Vλ = C3

+.

Corollary 4.38. All irreducible representations of Sn can be given by matrices with rational entries.

Problem 4.39. Find the sum of dimensions of all irreducible representations of the symmetric
group Sn.

Hint. Show that all irreducible representations of Sn are real, i.e., admit a nondegenerate
invariant symmetric form. Then use the Frobenius-Schur theorem.

4.13 Proof of Theorem 4.36

Lemma 4.40. Let x ∈ C[Sn]. Then aλxbλ = ℓλ(x)cλ, where ℓλ is a linear function.

Proof. If g ∈ PλQλ, then g has a unique representation as pq, p ∈ Pλ, q ∈ Qλ, so aλgbλ = (−1)qcλ.
Thus, to prove the required statement, we need to show that if g is a permutation which is not in
PλQλ then aλgbλ = 0.

To show this, it is sufficient to find a transposition t such that t ∈ Pλ and g−1tg ∈ Qλ; then

aλgbλ = aλtgbλ = aλg(g
−1tg)bλ = −aλgbλ,

so aλgbλ = 0. In other words, we have to find two elements i, j standing in the same row in the
tableau T = Tλ, and in the same column in the tableau T ′ = gT (where gT is the tableau of the
same shape as T obtained by permuting the entries of T by the permutation g). Thus, it suffices to
show that if such a pair does not exist, then g ∈ PλQλ, i.e., there exists p ∈ Pλ, q′ ∈ Q′

λ := gQλg
−1

such that pT = q′T ′ (so that g = pq−1, q = g−1q′g ∈ Qλ).

Any two elements in the first row of T must be in different columns of T ′, so there exists q′1 ∈ Q′
λ

which moves all these elements to the first row. So there is p1 ∈ Pλ such that p1T and q′1T
′ have

the same first row. Now do the same procedure with the second row, finding elements p2, q
′
2 such

that p2p1T and q′2q
′
1T

′ have the same first two rows. Continuing so, we will construct the desired
elements p, q′. The lemma is proved.

Let us introduce the lexicographic ordering on partitions: λ > µ if the first nonvanishing
λi − µi is positive.

Lemma 4.41. If λ > µ then aλC[Sn]bµ = 0.

Proof. Similarly to the previous lemma, it suffices to show that for any g ∈ Sn there exists a
transposition t ∈ Pλ such that g−1tg ∈ Qµ. Let T = Tλ and T ′ = gTµ. We claim that there are
two integers which are in the same row of T and the same column of T ′. Indeed, if λ1 > µ1, this is
clear by the pigeonhole principle (already for the first row). Otherwise, if λ1 = µ1, like in the proof
of the previous lemma, we can find elements p1 ∈ Pλ, q

′
1 ∈ gQµg

−1 such that p1T and q′1T
′ have the

same first row, and repeat the argument for the second row, and so on. Eventually, having done
i−1 such steps, we’ll have λi > µi, which means that some two elements of the i-th row of the first
tableau are in the same column of the second tableau, completing the proof.
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Lemma 4.42. cλ is proportional to an idempotent. Namely, c2λ = n!
dimVλ

cλ.

Proof. Lemma 4.40 implies that c2λ is proportional to cλ. Also, it is easy to see that the trace of
cλ in the regular representation is n! (as the coefficient of the identity element in cλ is 1). This
implies the statement.

Lemma 4.43. Let A be an algebra and e be an idempotent in A. Then for any left A-module M ,
one has HomA(Ae,M) ∼= eM (namely, x ∈ eM corresponds to fx : Ae → M given by fx(a) = ax,
a ∈ Ae).

Proof. Note that 1 − e is also an idempotent in A. Thus the statement immediately follows from
the fact that HomA(A,M) ∼= M and the decomposition A = Ae⊕A(1 − e).

Now we are ready to prove Theorem 4.36. Let λ ≥ µ. Then by Lemmas 4.42, 4.43

HomSn(Vλ, Vµ) = HomSn(C[Sn]cλ,C[Sn]cµ) = cλC[Sn]cµ.

The latter space is zero for λ > µ by Lemma 4.41, and 1-dimensional if λ = µ by Lemmas 4.40
and 4.42. Therefore, Vλ are irreducible, and Vλ is not isomorphic to Vµ if λ 6= µ. Since the number
of partitions equals the number of conjugacy classes in Sn, the representations Vλ exhaust all the
irreducible representations of Sn. The theorem is proved.

4.14 Induced representations for Sn

Denote by Uλ the representation IndSn

Pλ
C. It is easy to see that Uλ can be alternatively defined as

Uλ = C[Sn]aλ.

Proposition 4.44. Hom(Uλ, Vµ) = 0 for µ < λ, and dimHom(Uλ, Vλ) = 1. Thus, Uλ =
⊕µ≥λKµλVµ, where Kµλ are nonnegative integers and Kλλ = 1.

Definition 4.45. The integers Kµλ are called the Kostka numbers.

Proof. By Lemmas 4.42 and 4.43,

Hom(Uλ, Vµ) = Hom(C[Sn]aλ,C[Sn]aµbµ) = aλC[Sn]aµbµ,

and the result follows from Lemmas 4.40 and 4.41.

Now let us compute the character of Uλ. Let Ci be the conjugacy class in Sn having il cycles
of length l for all l ≥ 1 (here i is a shorthand notation for (i1, ..., il, ...)). Also let x1, ..., xN be
variables, and let

Hm(x) =
∑

i

xm
i

be the power sum polynomials.

Theorem 4.46. Let N ≥ p (where p is the number of parts of λ). Then χUλ
(Ci) is the coefficient6

of xλ :=
∏
x

λj

j in the polynomial ∏

m≥1

Hm(x)im .

6If j > p, we define λj to be zero.
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Proof. The proof is obtained easily from the Mackey formula. Namely, χUλ
(Ci) is the number of

elements x ∈ Sn such that xgx−1 ∈ Pλ (for a representative g ∈ Ci), divided by |Pλ|. The order of
Pλ is

∏
i λi!, and the number of elements x such that xgx−1 ∈ Pλ is the number of elements in Pλ

conjugate to g (i.e. |Ci ∩ Pλ|) times the order of the centralizer Zg of g (which is n!/|Ci|). Thus,

χUλ
(Ci) =

|Zg|∏
j λj!

|Ci ∩ Pλ|.

Now, it is easy to see that the centralizer Zg of g is isomorphic to
∏

m Sim ⋉ (Z/mZ)im , so

|Zg| =
∏

m

mimim!,

and we get

χUλ
(Ci) =

∏
mmimim!∏

j λj!
|Ci ∩ Pλ|.

Now, since Pλ =
∏

j Sλj
, we have

|Ci ∩ Pλ| =
∑

r

∏

j≥1

λj !∏
m≥1m

rjmrjm!
,

where r = (rjm) runs over all collections of nonnegative integers such that
∑

m

mrjm = λj ,
∑

j

rjm = im.

Indeed, an element of Ci that is in Pλ would define an ordered partition of each λj into parts
(namely, cycle lengths), with m occuring rjm times, such that the total (over all j) number of times
each part m occurs is im. Thus we get

χUλ
(Ci) =

∑

r

∏

m

im!∏
j rjm!

But this is exactly the coefficient of xλ in
∏

m≥1

(xm
1 + ...+ xm

N )im

(rjm is the number of times we take xm
j ).

4.15 The Frobenius character formula

Let ∆(x) =
∏

1≤i<j≤N(xi − xj). Let ρ = (N − 1, N − 2, ..., 0) ∈ CN . The following theorem, due
to Frobenius, gives a character formula for the Specht modules Vλ.

Theorem 4.47. Let N ≥ p. Then χVλ
(Ci) is the coefficient of xλ+ρ :=

∏
x

λj+N−j
j in the polyno-

mial
∆(x)

∏

m≥1

Hm(x)im .

Remark. Here is an equivalent formulation of Theorem 4.47: χVλ
(Ci) is the coefficient of xλ

in the (Laurent) polynomial
∏

i<j

(
1 − xj

xi

) ∏

m≥1

Hm(x)im .
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Proof. Denote χVλ
shortly by χλ. Let us denote the class function defined in the theorem by θλ. We

claim that this function has the property θλ =
∑

µ≥λ Lµλχµ, where Lµλ are integers and Lλλ = 1.
Indeed, from Theorem 4.46 we have

θλ =
∑

σ∈SN

(−1)σχUλ+ρ−σ(ρ)
,

where if the vector λ + ρ − σ(ρ) has a negative entry, the corresponding term is dropped, and if
it has nonnegative entries which fail to be nonincreasing, then the entries should be reordered in
the nonincreasing order, making a partition that we’ll denote 〈λ + ρ − σ(ρ)〉 (i.e., we agree that
Uλ+ρ−σ(ρ) := U〈λ+ρ−σ(ρ)〉). Now note that µ = 〈λ+ ρ− σ(ρ)〉 is obtained from λ by adding vectors
of the form ei − ej, i < j, which implies that µ > λ or µ = λ, and the case µ = λ arises only if
σ = 1, as desired.

Therefore, to show that θλ = χλ, by Lemma 4.27, it suffices to show that (θλ, θλ) = 1.

We have

(θλ, θλ) =
1

n!

∑

i

|Ci|θλ(Ci)
2.

Using that

|Ci| =
n!∏

mmimim!
,

we conclude that (θλ, θλ) is the coefficient of xλ+ρyλ+ρ in the series R(x, y) = ∆(x)∆(y)S(x, y),
where

S(x, y) =
∑

i

∏

m

(
∑

j x
m
j )im(

∑
k y

m
k )im

mimim!
=

∑

i

∏

m

(
∑

j,k x
m
j y

m
k /m)im

im!
.

Summing over i and m, we get

S(x, y) =
∏

m

exp(
∑

j,k

xm
j y

m
k /m) = exp(−

∑

j,k

log(1 − xjyk)) =
∏

j,k

(1 − xjyk)
−1

Thus,

R(x, y) =

∏
i<j(xi − xj)(yi − yj)∏

i,j(1 − xiyj)
.

Now we need the following lemma.

Lemma 4.48. ∏
i<j(zj − zi)(yi − yj)∏

i,j(zi − yj)
= det(

1

zi − yj
).

Proof. Multiply both sides by
∏

i,j(zi−yj). Then the right hand side must vanish on the hyperplanes
zi = zj and yi = yj (i.e., be divisible by ∆(z)∆(y)), and is a homogeneous polynomial of degree
N(N − 1). This implies that the right hand side and the left hand side are proportional. The
proportionality coefficient (which is equal to 1) is found by induction by multiplying both sides by
zN − yN and then setting zN = yN .

Now setting in the lemma zi = 1/xi, we get

Corollary 4.49. (Cauchy identity)

R(x, y) = det(
1

1 − xiyj
) =

∑

σ∈SN

1
∏N

j=1(1 − xjyσ(j))
.
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Corollary 4.49 easily implies that the coefficient of xλ+ρyλ+ρ is 1. Indeed, if σ 6= 1 is a permu-
tation in SN , the coefficient of this monomial in 1

Q

(1−xjyσ(j))
is obviously zero.

Remark. For partitions λ and µ of n, let us say that λ � µ or µ � λ if µ − λ is a sum of
vectors of the form ei − ej , i < j (called positive roots). This is a partial order, and µ � λ implies
µ ≥ λ. It follows from Theorem 4.47 and its proof that

χλ = ⊕µ�λK̃µλχUµ .

This implies that the Kostka numbers Kµλ vanish unless µ � λ.

4.16 Problems

In the following problems, we do not make a distinction between Young diagrams and partitions.

Problem 4.50. For a Young diagram µ, let A(µ) be the set of Young diagrams obtained by adding
a square to µ, and R(µ) be the set of Young diagrams obtained by removing a square from µ.

(a) Show that ResSn

Sn−1
Vµ = ⊕λ∈R(µ)Vλ.

(b) Show that IndSn

Sn−1
Vµ = ⊕λ∈A(µ)Vλ.

Problem 4.51. The content c(λ) of a Young diagram λ is the sum
∑

j

∑λj

i=1(i − j). Let C =∑
i<j(ij) ∈ C[Sn] be the sum of all transpositions. Show that C acts on the Specht module Vλ by

multiplication by c(λ).

Problem 4.52. (a) Let V be any finite dimensional representation of Sn. Show that the element
E := (12) + ...+ (1n) is diagonalizable and has integer eigenvalues on V , which are between 1 − n
and n− 1.

Represent E as Cn − Cn−1, where Cn = C is the element from Problem 4.51.

(b) Show that the element (12)+ ...+(1n) acts on Vλ by a scalar if and only if λ is a rectangular
Young diagram, and compute this scalar.

4.17 The hook length formula

Let us use the Frobenius character formula to compute the dimension of Vλ. According to the
character formula, dimVλ is the coefficient of xλ+ρ in ∆(x)(x1 + ... + xN )n. Let lj = λj +N − j.
Then, using the determinant formula for ∆(x) and expanding the determinant as a sum over
permutations, we get

dimVλ =
∑

s∈SN :lj≥N−s(j)

(−1)s
n!∏

j(lj −N + s(j))!
=

n!

l1!...lN !

∑

s∈SN

(−1)s
∏

j

lj(lj−1)...(lj−N+s(j)+1) =

n!∏
j lj!

det(lj(lj − 1)...(lj −N + i+ 1)).

Using column reduction and the Vandermonde determinant formula, we see from this expression
that

dimVλ =
n!∏
j lj !

det(lN−i
j ) =

n!∏
j lj !

∏

1≤i<j≤N

(li − lj) (5)
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(where N ≥ p).

In this formula, there are many cancelations. After making some of these cancelations, we
obtain the hook length formula. Namely, for a square (i, j) in a Young diagram λ (i, j ≥ 1, i ≤ λj),
define the hook of (i, j) to be the set of all squares (i′, j′) in λ with i′ ≥ i, j′ = j or i′ = i, j′ ≥ j.
Let h(i, j) be the length of the hook of i, j, i.e., the number of squares in it.

Theorem 4.53. (The hook length formula) One has

dimVλ =
n!∏

i≤λj
h(i, j)

.

Proof. The formula follows from formula (5). Namely, note that

l1!∏
1<j≤N (l1 − lj)

=
∏

1≤k≤l1,k 6=l1−lj

k.

It is easy to see that the factors in this product are exactly the hooklengths h(i, 1). Now delete the
first row of the diagram and proceed by induction.

4.18 Schur-Weyl duality for gl(V )

We start with a simple result which is called the Double Centralizer Theorem.

Theorem 4.54. Let A, B be two subalgebras of the algebra EndE of endomorphisms of a finite
dimensional vector space E, such that A is semisimple, and B = EndAE. Then:

(i) A = EndB E (i.e., the centralizer of the centralizer of A is A);

(ii) B is semisimple;

(iii) as a representation of A ⊗ B, E decomposes as E = ⊕i∈IVi ⊗Wi, where Vi are all the
irreducible representations of A, and Wi are all the irreducible representations of B. In particular,
we have a natural bijection between irreducible representations of A and B.

Proof. Since A is semisimple, we have a natural decomposition E = ⊕i∈IVi ⊗Wi, where Wi :=
HomA(Vi, E), and A = ⊕i EndVi. Therefore, by Schur’s lemma, B = EndA(E) is naturally identi-
fied with ⊕i End(Wi). This implies all the statements of the theorem.

We will now apply Theorem 4.54 to the following situation: E = V ⊗n, where V is a finite
dimensional vector space over a field of characteristic zero, and A is the image of C[Sn] in EndE.
Let us now characterize the algebra B. Let gl(V ) be EndV regarded as a Lie algebra with operation
ab− ba.

Theorem 4.55. The algebra B = EndA E is the image of the universal enveloping algebra U(gl(V ))
under its natural action on E. In other words, B is generated by elements of the form

∆n(b) := b⊗ 1 ⊗ ...⊗ 1 + 1 ⊗ b⊗ ...⊗ 1 + ...+ 1 ⊗ 1 ⊗ ...⊗ b,

b ∈ gl(V ).

Proof. Clearly, the image of U(gl(V )) is contained in B, so we just need to show that any element
of B is contained in the image of U(gl(V )). By definition, B = Sn EndV , so the result follows from
part (ii) of the following lemma.
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Lemma 4.56. Let k be a field of characteristic zero.

(i) For any finite dimensional vector space U over k, the space SnU is spanned by elements of
the form u⊗ ...⊗ u, u ∈ U .

(ii) For any algebra A over k, the algebra SnA is generated by elements ∆n(a), a ∈ A.

Proof. (i) The space SnU is an irreducible representation of GL(U) (Problem 3.19). The subspace
spanned by u⊗ ...⊗ u is a nonzero subrepresentation, so it must be everything.

(ii) By the fundamental theorem on symmetric functions, there exists a polynomial P with
rational coefficients such that P (H1(x), ...,Hn(x)) = x1...xn (where x = (x1, ..., xn)). Then

P (∆n(a),∆n(a2), ...,∆n(an)) = a⊗ ...⊗ a.

The rest follows from (i).

Now, the algebra A is semisimple by Maschke’s theorem, so the double centralizer theorem
applies, and we get the following result, which goes under the name “Schur-Weyl duality”.

Theorem 4.57. (i) The image A of C[Sn] and the image B of U(gl(V )) in End(V ⊗n) are central-
izers of each other.

(ii) Both A and B are semisimple. In particular, V ⊗n is a semisimple gl(V )-module.

(iii) We have a decomposition of A ⊗ B-modules V ⊗n = ⊕λVλ ⊗ Lλ, where the summation
is taken over partitions of n, Vλ are Specht modules for Sn, and Lλ are some distinct irreducible
representations of gl(V ) or zero.

4.19 Schur-Weyl duality for GL(V )

The Schur-Weyl duality for the Lie algebra gl(V ) implies a similar statement for the group GL(V ).

Proposition 4.58. The image of GL(V ) in End(V ⊗n) spans B.

Proof. Denote the span of g⊗n, g ∈ GL(V ), by B′. Let b ∈ EndV be any element.

We claim that B′ contains b⊗n. Indeed, for all values of t but finitely many, t ·Id+b is invertible,
so (t · Id + b)⊗n belongs to B′. This implies that this is true for all t, in particular for t = 0, since
(t · Id + b)⊗n is a polynomial in t.

The rest follows from Lemma 4.56.

Corollary 4.59. As a representation of Sn × GL(V ), V ⊗n decomposes as ⊕λVλ ⊗ Lλ, where
Lλ = HomSn(Vλ, V

⊗n) are distinct irreducible representations of GL(V ) or zero.

Example 4.60. If λ = (n) then Lλ = SnV , and if λ = (1n) (n copies of 1) then Lλ = ∧nV . It was
shown in Problem 3.19 that these representations are indeed irreducible (except that ∧nV is zero
if n > dimV ).
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4.20 Schur polynomials

Let λ = (λ1, ..., λp) be a partition of n, and N ≥ p. Let

Dλ(x) =
∑

s∈SN

(−1)s
N∏

j=1

x
λj+N−j

s(j) = det(x
λj+N−j
i ).

Define the polynomials

Sλ(x) :=
Dλ(x)

D0(x)

(clearly D0(x) is just ∆(x)). It is easy to see that these are indeed polynomials, as Dλ is an-
tisymmetric and therefore must be divisible by ∆. The polynomials Sλ are called the Schur
polynomials.

Proposition 4.61. ∏

m

(xm
1 + ...+ xm

N )im =
∑

λ:p≤N

χλ(Ci)Sλ(x).

Proof. The identity follows from the Frobenius character formula and the antisymmetry of

∆(x)
∏

m

(xm
1 + ...+ xm

N )im .

Certain special values of Schur polynomials are of importance. Namely, we have

Proposition 4.62.

Sλ(1, z, z2, ..., zN−1) =
∏

1≤i<j≤N

zλi−i − zλj−j

z−i − z−j

Therefore,

Sλ(1, ..., 1) =
∏

1≤i<j≤N

λi − λj + j − i

j − i

Proof. The first identity is obtained from the definition using the Vandermonde determinant. The
second identity follows from the first one by setting z = 1.

4.21 The characters of Lλ

Proposition 4.61 allows us to calculate the characters of the representations Lλ.

Namely, let dimV = N , g ∈ GL(V ), and x1, ..., xN be the eigenvalues of g on V . To compute
the character χLλ

(g), let us calculate TrV ⊗n(g⊗ns), where s ∈ Sn. If s ∈ Ci, we easily get that this
trace equals ∏

m

Tr(gm)im =
∏

m

Hm(x)im .

On the other hand, by the Schur-Weyl duality

TrV ⊗n(g⊗ns) =
∑

λ

χλ(Ci)TrLλ
(g).

Comparing this to Proposition 4.61 and using linear independence of columns of the character table
of Sn, we obtain
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Theorem 4.63. (Weyl character formula) The representation Lλ is zero if and only if N < p,
where p is the number of parts of λ. If N ≥ p, the character of Lλ is the Schur polynomial Sλ(x).
Therefore, the dimension of Lλ is given by the formula

dimLλ =
∏

1≤i<j≤N

λi − λj + j − i

j − i

This shows that irreducible representations of GL(V ) which occur in V ⊗n for some n are labeled
by Young diagrams with any number of squares but at most N = dimV rows.

Proposition 4.64. The representation Lλ+1N (where 1N = (1, 1, ..., 1) ∈ ZN) is isomorphic to
Lλ ⊗ ∧NV .

Proof. Indeed, Lλ ⊗ ∧NV ⊂ V ⊗n ⊗ ∧NV ⊂ V ⊗n+N , and the only component of V ⊗n+N that has
the same character as Lλ ⊗ ∧NV is Lλ+1N . This implies the statement.

4.22 Polynomial representations of GL(V )

Definition 4.65. We say that a finite dimensional representation Y of GL(V ) is polynomial (or
algebraic, or rational) if its matrix elements are polynomial functions of the entries of g, g−1,
g ∈ GL(V ) (i.e., belong to k[gij ][1/det(g)]).

For example, V ⊗n and hence all Lλ are polynomial. Also define Lλ−r·1N := Lλ⊗(∧NV ∗)⊗r (this
definition makes sense by Proposition 4.64). This is also a polynomial representation. Thus we
have attached a unique irreducible polynomial representation Lλ of GL(V ) = GLN to any sequence
(λ1, ..., λN ) of integers (not necessarily positive) such that λ1 ≥ ... ≥ λN . This sequence is called
the highest weight of Lλ.

Theorem 4.66. (i) Every finite dimensional polynomial representation of GL(V ) is completely
reducible, and decomposes into summands of the form Lλ (which are pairwise non-isomorphic).

(ii) (the Peter-Weyl theorem for GL(V )). Let R be the algebra of polynomial functions on
GL(V ). Then as a representation of GL(V ) × GL(V ) (with action (ρ(g, h)φ)(x) = φ(g−1xh),
g, h, x ∈ GL(V ), φ ∈ R), R decomposes as

R = ⊕λL
∗
λ ⊗ Lλ,

where the summation runs over all λ.

Proof. (i) Let Y be a polynomial representation of GL(V ). We have an embedding ξ : Y → Y ⊗R
given by (u, ξ(v))(g) := u(gv), u ∈ V ∗. It is easy to see that ξ is a homomorphism of representations
(where the action of GL(V ) on the first component of Y ⊗ R is trivial). Thus, it suffices to prove
the theorem for a subrepresentation Y ⊂ Rm. Now, every element of R is a polynomial of gij

times a nonpositive power of det(g). Thus, R is a quotient of a direct sum of representations of the
form Sr(V ⊗ V ∗) ⊗ (∧NV ∗)⊗s. So we may assume that Y is contained in a quotient of a (finite)
direct sum of such representations. As V ∗ = ∧N−1V ⊗ ∧NV ∗, Y is contained in a direct sum of
representations of the form V ⊗n ⊗ (∧NV ∗)⊗s, and we are done.

(ii) Let Y be a polynomial representation of GL(V ), and let us regard R as a representation
of GL(V ) via (ρ(h)φ)(x) = φ(xh). Then HomGL(V )(Y,R) is the space of polynomial functions
on GL(V ) with values in Y ∗, which are GL(V )-equivariant. This space is naturally identified
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with Y ∗. Taking into account the proof of (i), we deduce that R has the required decomposition,
which is compatible with the second action of GL(V ) (by left multiplications). This implies the
statement.

Note that the Peter-Weyl theorem generalizes Maschke’s theorem for finite group, one of whose
forms states that the space of complex functions Fun(G,C) on a finite group G as a representation
of G×G decomposes as ⊕V ∈Irrep(G)V

∗ ⊗ V .

Remark 4.67. Since the Lie algebra sl(V ) of traceless operators on V is a quotient of gl(V ) by
scalars, the above results extend in a straightforward manner to representations of the Lie algebra
sl(V ). Similarly, the results for GL(V ) extend to the case of the group SL(V ) of operators with
determinant 1. The only difference is that in this case the representations Lλ and Lλ+1N are
isomorphic, so the irreducible representations are parametrized by integer sequences λ1 ≥ ... ≥ λN

up to a simultaneous shift by a constant.

In particular, one can show that any finite dimensional representation of sl(V ) is completely
reducible, and any irreducible one is of the form Lλ (we will not do this here). For dimV = 2 one
then recovers the representation theory of sl(2) studied in Problem 1.55.

4.23 Problems

Problem 4.68. (a) Show that the Sn-representation V ′
λ := C[Sn]bλaλ is isomorphic to Vλ.

Hint. Define Sn-homomorphisms f : Vλ → V ′
λ and g : V ′

λ → Vλ by the formulas f(x) = xaλ and
g(y) = ybλ, and show that they are inverse to each other up to a nonzero scalar.

(b) Let φ : C[Sn] → C[Sn] be the automorphism sending s to (−1)ss for any permutation s.
Show that φ maps any representation V of Sn to V ⊗ C−. Show also that φ(C[Sn]a) = C[Sn]φ(a),
for a ∈ C[Sn]. Use (a) to deduce that Vλ ⊗ C− = Vλ∗ , where λ∗ is the conjugate partition to λ,
obtained by reflecting the Young diagram of λ.

Problem 4.69. Let Rk,N be the algebra of polynomials on the space of k-tuples of complex N by N
matrices X1, ...,Xk, invariant under simultaneous conjugation. An example of an element of Rk,N

is the function Tw := Tr(w(X1, ...,Xk)), where w is any finite word on a k-letter alphabet. Show
that Rk,N is generated by the elements Tw.

Hint. Consider invariant functions that are of degree di in each Xi, and realize this space as
a tensor product ⊗iS

di(V ⊗ V ∗). Then embed this tensor product into (V ⊗ V ∗)⊗N = End(V )⊗n,
and use the Schur-Weyl duality to get the result.

4.24 Representations of GL2(Fq)

4.24.1 Conjugacy classes in GL2(Fq)

Let Fq be a finite field of size q of characteristic other than 2, and G = GL2(Fq). Then

|G| = (q2 − 1)(q2 − q),

since the first column of an invertible 2 by 2 matrix must be non-zero and the second column may
not be a multiple of the first one. Factoring,

|GL2(Fq)| = q(q + 1)(q − 1)2.
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The goal of this section is to describe the irreducible representations of G.
To begin, let us find the conjugacy classes in GL2(Fq).

Representatives
Number of elements in a conjugacy
class

Number of classes

Scalar
(

x 0
0 x

)
1 (this is a central element)

q−1 (one for every non-
zero x)

Parabolic
(

x 1
0 x

) q2 − 1 (elements that commute with
this one are of the form

(
t u
0 t

)
, t 6=

0)

q−1 (one for every non-
zero x)

Hyperbolic
(

x 0
0 y

)
, y 6= x

q2 + q (elements that commute with
this one are of the form

(
t 0
0 u

)
, t, u 6=

0)

1
2(q− 1)(q− 2) (x, y 6= 0
and x 6= y)

Elliptic
( x εy

y x

)
, x ∈ Fq, y ∈

F×
q , ε ∈ Fq \ F2

q (characteris-
tic polynomial over Fq is irre-
ducible)

q2 − q (the reason will be described
below)

1
2q(q−1) (matrices with
y and −y are conjugate)

More on the conjugacy class of elliptic matrices: these are the matrices whose characteristic
polynomial is irreducible over Fq and which therefore don’t have eigenvalues in Fq. Let A be such
a matrix, and consider a quadratic extension of Fq,

Fq(
√
ε), ε ∈ Fq \ F2

q.

Over this field, A will have eigenvalues

α = α1 +
√
εα2

and
α = α1 −

√
εα2,

with corresponding eigenvectors

v, v (Av = αv, Av = αv).

Choose a basis
{e1 = v + v, e2 =

√
ε(v − v)}.

In this basis, the matrix A will have the form
(
α1 εα2

α2 α1

)
,

justifying the description of representative elements of this conjugacy class.
In the basis {v, v}, matrices that commute with A will have the form

(
λ 0

0 λ

)
,

for all
λ ∈ F×

q2,

so the number of such matrices is q2 − 1.
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4.24.2 1-dimensional representations

First, we describe the 1-dimensional representations of G.

Proposition 4.70. [G,G] = SL2(Fq).

Proof. Clearly,
det(xyx−1y−1) = 1,

so
[G,G] ⊆ SL2(Fq).

To show the converse, it suffices to show that the matrices

(
1 1
0 1

)
,

(
a 0
0 a−1

)
,

(
1 0
1 1

)

are commutators (as such matrices generate SL2(Fq).) Clearly, by using transposition, it suffices
to show that only the first two matrices are commutators. But it is easy to see that the matrix

(
1 1
0 1

)

is the commutator of the matrices

A =

(
1 1/2
0 1

)
, B =

(
1 0
0 −1

)
,

while the matrix (
a 0
0 a−1

)

is the commutator of the matrices

A =

(
a 0
0 1

)
, B =

(
0 1
1 0

)
,

This completes the proof.

Therefore,
G/[G,G] ∼= F×

q via g → det(g).

The one-dimensional representations of G thus have the form

ρ(g) = ξ
(
det(g)

)
,

where ξ is a homomorphism
ξ : F×

q → C×;

so there are q − 1 such representations, denoted Cξ.
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4.24.3 Principal series representations

Let

B ⊂ G, B = {
(
∗ ∗
0 ∗

)
}

(the set of upper triangular matrices); then

|B| = (q − 1)2q,

[B,B] = U = {
(

1 ∗
0 1

)
},

and
B/[B,B] ∼= F×

q × F×
q

(the isomorphism maps an element of B to its two diagonal entries).
Let

λ : B → C×

be a homomorphism defined by

λ

(
a b
0 c

)
= λ1(a)λ2(c),for some pair of homomorphisms λ1, λ2 : F×

q → C×.

Define
Vλ1,λ2 = IndG

BCλ,

where Cλ is the 1-dimensional representation of B in which B acts by λ. We have

dim(Vλ1,λ2) =
|G|
|B| = q + 1.

Theorem 4.71. 1. λ1 6= λ2 ⇒ Vλ1,λ2 is irreducible.

2. λ1 = λ2 = µ⇒ Vλ1,λ2 = Cµ ⊕Wµ, where Wµ is a q-dimensional irreducible representation of
G.

3. Wµ
∼= Wν if and only if µ = ν; Vλ1,λ2

∼= Vλ′
1,λ′

2
if and only if {λ1, λ2} = {λ′

1, λ
′

2} (in the

second case, λ1 6= λ2, λ
′

1 6= λ
′

2).

Proof. From the Mackey formula, we have

trVλ1,λ2
(g) =

1

|B|
∑

a∈G, aga−1∈B

λ(aga−1).

If

g =

(
x 0
0 x

)
,

the expression on the right evaluates to

λ(g)
|G|
|B| = λ1(x)λ2(x)

(
q + 1

)
.

If

g =

(
x 1
0 x

)
,
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the expression evaluates to
λ(g) · 1,

since here
aga−1 ∈ B ⇒ a ∈ B.

If

g =

(
x 0
0 y

)
,

the expression evaluates to (
λ1(x)λ2(y) + λ1(y)λ2(x)

)
· 1,

since here

aga−1 ∈ B ⇒ a ∈ B or a is an element of B multiplied by the transposition matrix.

If

g =

(
x εy
y x

)
, x 6= y

the expression on the right evaluates to 0 because matrices of this type don’t have eigenvalues over
Fq (and thus cannot be conjugated into B). From the definition, λi(x)(i = 1, 2) is a root of unity,
so

|G|〈χVλ1,λ2
, χVλ1,λ2

〉 = (q + 1)2(q − 1) + (q2 − 1)(q − 1)

+ 2(q2 + q)
(q − 1)(q − 2)

2
+ (q2 + q)

∑

x 6=y

λ1(x)λ2(y)λ1(y)λ2(x).

The last two summands come from the expansion

|a+ b|2 = |a|2 + |b|2 + ab+ ab.

If
λ1 = λ2 = µ,

the last term is equal to
(q2 + q)(q − 2)(q − 1),

and the total in this case is

(q + 1)(q − 1)[(q + 1) + (q − 1) + 2q(q − 2)] = (q + 1)(q − 1)2q(q − 1) = 2|G|,

so
〈χVλ1,λ2

, χVλ1,λ2
〉 = 2.

Clearly,
Cµ ⊆ IndG

BCµ,µ,

since
HomG(Cµ, IndG

BCµ,µ) = HomB(Cµ,Cµ) = C (Theorem 4.33).

Therefore, IndG
BCµ,µ = Cµ ⊕Wµ; Wµ is irreducible; and the character of Wµ is different for distinct

values of µ, proving that Wµ are distinct.
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If λ1 6= λ2, let z = xy−1, then the last term of the summation is

(q2 + q)
∑

x 6=y

λ1(z)λ2(z) = (q2 + q)
∑

x;z 6=1

λ1

λ2
(z) = (q2 + q)(q − 1)

∑

z 6=1

λ1

λ2
(z).

Since ∑

z∈F
×
q

λ1

λ2
(z) = 0,

because the sum of all roots of unity of a given order m > 1 is zero, the last term becomes

−(q2 + q)(q − 1)
∑

z 6=1

λ1

λ2
(1) = −(q2 + q)(q − 1).

The difference between this case and the case of λ1 = λ2 is equal to

−(q2 + q)[(q − 2)(q − 1) + (q − 1)] = |G|,

so this is an irreducible representation by Lemma 4.27.

To prove the third assertion of the theorem, we look at the characters on hyperbolic elements
and note that the function

λ1(x)λ2(y) + λ1(y)λ2(x)

determines λ1, λ2 up to permutation.

4.24.4 Complementary series representations

Let Fq2 ⊃ Fq be a quadratic extension Fq(
√
ε), ε ∈ Fq \F2

q. We regard this as a 2-dimensional vector
space over Fq; then G is the group of linear transformations of Fq2 over Fq. Let K ⊂ G be the cyclic
group of multiplications by elements of F×

q2,

K = {
(
x εy
y x

)
}, |K| = q2 − 1.

For ν : K → C× a homomorphism, let

Yν = IndG
KCν.

This representation, of course, is very reducible. Let us compute its character, using the Mackey
formula. We get

χ

(
x 0
0 x

)
= q(q − 1)ν(x);

χ(A) = 0 for A parabolic or hyperbolic;

χ

(
x εy
y x

)
= ν

(
x εy
y x

)
+ ν

(
x εy
y x

)q

.

The last assertion holds because if we regard the matrix as an element of Fq2, conjugation is an
automorphism of Fq2 over Fq, but the only nontrivial automorphism of Fq2 over Fq is the qth power
map.
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We thus have
IndG

KCνq ∼= IndG
KCν

because they have the same character. Therefore, for νq 6= ν we get 1
2q(q − 1) representations.

Next, we look at the following tensor product:

W1 ⊗ Vα,1,

where 1 is the trivial character and W1 is defined as in the previous section. The character of this
representation is

χ

(
x 0
0 x

)
= q(q + 1)α(x);

χ(A) = 0 for A parabolic or elliptic;

χ

(
x 0
0 y

)
= α(x) + α(y).

Thus the ”virtual representation”

W1 ⊗ Vα,1 − Vα,1 − IndG
KCν ,

where α is the restriction of ν to scalars, has character

χ

(
x 0
0 x

)
= (q − 1)α(x);

χ

(
x 1
0 x

)
= −α(x);

χ

(
x 0
0 y

)
= 0;

χ

(
x εy
y x

)
= −ν

(
x εy
y x

)
− νq

(
x εy
y x

)
.

In all that follows, we will have νq 6= ν.

The following two lemmas will establish that the inner product of this character with itself is
equal to 1, that its value at 1 is positive. As we know from Lemma 4.27, these two properties imply
that it is the character of an irreducible representation of G.

Lemma 4.72. Let χ be the character of the ”virtual representation” defined above. Then

〈χ, χ〉 = 1

and
χ(1) > 0.

Proof.
χ(1) = q(q + 1) − (q + 1) − q(q − 1) = q − 1 > 0.

We now compute the inner product 〈χ, χ〉. Since α is a root of unity, this will be equal to

1

(q − 1)2q(q + 1)

[
(q−1)·(q−1)2 ·1+(q−1)·1·(q2−1)+

q(q − 1)

2
·

∑

ζ elliptic

(ν(ζ)+νq(ζ))(ν(ζ) + νq(ζ))
]
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Because ν is also a root of unity, the last term of the expression evaluates to

∑

ζ elliptic

(2 + νq−1(ζ) + ν1−q(ζ)).

Let’s evaluate the last summand.

Since F×
q2 is cyclic and νq 6= ν,

∑

ζ∈F
×

q2

νq−1(ζ) =
∑

ζ∈F
×

q2

ν1−q(ζ) = 0.

Therefore,

∑

ζ elliptic

(νq−1(ζ) + ν1−q(ζ)) = −
∑

ζ∈F
×
q

(νq−1(ζ) + ν1−q(ζ)) = −2(q − 1) =

since F×
q is cyclic of order q − 1. Therefore,

〈χ, χ〉 =
1

(q − 1)2q(q + 1)

(
(q−1)·(q−1)2 ·1+(q−1)·1·(q2−1)+

q(q − 1)

2
·(2(q2−q)−2(q−1))

)
= 1.

We have now shown that for any ν with νq 6= ν the representation Yν with the same character
as

W1 ⊗ Vα,1 − Vα,1 − IndG
KCν

exists and is irreducible. These characters are distinct for distinct pairs (α, ν) (up to switch

ν → νq), so there are q(q−1)
2 such representations, each of dimension q − 1.

We have thus found q − 1 1-dimensional representations of G, q(q−1)
2 principal series repre-

sentations, and q(q−1)
2 complementary series representations, for a total of q2 − 1 representations,

i.e., the number of conjugacy classes in G. This implies that we have in fact found all irreducible
representations of GL2(Fq).

4.25 Artin’s theorem

Theorem 4.73. Let X be a conjugation-invariant system of subgroups of a finite group G. Then
two conditions are equivalent:

(i) Any element of G belongs to a subgroup H ∈ X.

(ii) The character of any irreducible representation of G belongs to the Q-span of characters of
induced representations IndG

HV , where H ∈ X and V is an irreducible representation of H.

Remark. Statement (ii) of Theorem 4.73 is equivalent to the the same statement with Q-span
replaced by C-span. Indeed, consider the matrix whose columns consist of the coefficients of the
decomposition of IndG

HV (for various H,V ) with respect to the irreducible representations of G.
Then both statements are equivalent to the condition that the rows of this matrix are linearly
independent.
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Proof. Proof that (ii) implies (i). Assume that g ∈ G does not belong to any of the subgroups
H ∈ X. Then, since X is conjugation invariant, it cannot be conjugated into such a subgroup.
Hence by the Mackey formula, χIndG

H(V )(g) = 0 for all H ∈ X and V . So by (ii), for any irreducible

representation W of G, χW (g) = 0. But irreducible characters span the space of class functions, so
any class function vanishes on g, which is a contradiction.

Proof that (i) implies (ii). Let U be a virtual representation of G over C (i.e., a linear combina-
tion of irreducible representations with nonzero integer coefficients) such that (χU , χIndG

HV ) = 0 for

all H,V . So by Frobenius reciprocity, (χU |H , χV ) = 0. This means that χU vanishes on H for any
H ∈ X. Hence by (i), χU is identically zero. This implies (ii) (because of the above remark).

Corollary 4.74. Any irreducible character of a finite group is a rational linear combination of
induced characters from its cyclic subgroups.

4.26 Representations of semidirect products

Let G,A be groups and φ : G → Aut(A) be a homomorphism. For a ∈ A, denote φ(g)a by g(a).
The semidirect product G⋉A is defined to be the product A×G with multiplication law

(a1, g1)(a2, g2) = (a1g1(a2), g1g2).

Clearly, G and A are subgroups of G⋉A in a natural way.

We would like to study irreducible complex representations of G⋉A. For simplicity, let us do
it when A is abelian.

In this case, irreducible representations of A are 1-dimensional and form the character group
A∨, which carries an action of G. Let O be an orbit of this action, x ∈ O a chosen element,
and Gx the stabilizer of x in G. Let U be an irreducible representation of Gx. Then we define a
representation V(O,U) of G⋉A as follows.

As a representation of G, we set

V(O,x,U) = IndG
Gx
U = {f : G→ U |f(hg) = hf(g), h ∈ Gx}.

Next, we introduce an additional action of A on this space by (af)(g) = x(g(a))f(g). Then it’s
easy to check that these two actions combine into an action of G ⋉ A. Also, it is clear that this
representation does not really depend on the choice of x, in the following sense. Let x, y ∈ O,
and g ∈ G be such that gx = y, and let g(U) be the representation of Gy obtained from the
representation U of Gx by the action of g. Then V(O,x,U) is (naturally) isomorphic to V(O,y,g(U)).
Thus we will denote V(O,x,U) by V(O,U) (remembering, however, that x has been fixed).

Theorem 4.75. (i) The representations V(O,U) are irreducible.

(ii) They are pairwise nonisomorphic.

(iii) They form a complete set of irreducible representations of G⋉A.

(iv) The character of V = V(O,U) is given by the Mackey-type formula

χV (a, g) =
1

|Gx|
∑

h∈G:hgh−1∈Gx

x(h(a))χU (hgh−1).
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Proof. (i) Let us decompose V = V(O,U) as an A-module. Then we get

V = ⊕y∈OVy,

where Vy = {v ∈ V(O,U)|av = (y, a)v, a ∈ A}. (Equivalently, Vy = {v ∈ V(O,U)|v(g) = 0 unless gy =
x}). So if W ⊂ V is a subrepresentation, then W = ⊕y∈OWy, where Wy ⊂ Vy. Now, Vy is a
representation of Gy, which goes to U under any isomorphism Gy → Gx determined by g ∈ G
mapping x to y. Hence, Vy is irreducible over Gy, so Wy = 0 or Wy = Vy for each y. Also, if hy = z
then hWy = Wz, so either Wy = 0 for all y or Wy = Vy for all y, as desired.

(ii) The orbit O is determined by the A-module structure of V , and the representation U by
the structure of Vx as a Gx-module.

(iii) We have ∑

U,O

dimV 2
(U,O) =

∑

U,O

|O|2(dimU)2 =

∑

O

|O|2|Gx| =
∑

O

|O||G/Gx||Gx| = |G|
∑

O

|O| = |G||A∨| = |G⋉A|.

(iv) The proof is essentially the same as that of the Mackey formula.

Exercise. Redo Problems 3.17(a), 3.18, 3.22 using Theorem 4.75.

Exercise. Deduce parts (i)-(iii) of Theorem 4.75 from part (iv).
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5 Quiver Representations

5.1 Problems

Problem 5.1. Field embeddings. Recall that k(y1, ..., ym) denotes the field of rational functions
of y1, ..., ym over a field k. Let f : k[x1, ..., xn] → k(y1, ..., ym) be an injective k-algebra homomor-
phism. Show that m ≥ n. (Look at the growth of dimensions of the spaces WN of polynomials of
degree N in xi and their images under f as N → ∞). Deduce that if f : k(x1, ..., xn) → k(y1, ..., ym)
is a field embedding, then m ≥ n.

Problem 5.2. Some algebraic geometry.

Let k be an algebraically closed field, and G = GLn(k). Let V be a polynomial representation
of G. Show that if G has finitely many orbits on V then dim(V ) ≤ n2. Namely:

(a) Let x1, ..., xN be linear coordinates on V . Let us say that a subset X of V is Zariski dense
if any polynomial f(x1, ..., xN ) which vanishes on X is zero (coefficientwise). Show that if G has
finitely many orbits on V then G has at least one Zariski dense orbit on V .

(b) Use (a) to construct a field embedding k(x1, ..., xN ) → k(gpq), then use Problem 5.1.

(c) generalize the result of this problem to the case when G = GLn1(k) × ...×GLnm(k).

Problem 5.3. Dynkin diagrams.

Let Γ be a graph, i.e., a finite set of points (vertices) connected with a certain number of edges
(we allow multiple edges). We assume that Γ is connected (any vertex can be connected to any
other by a path of edges) and has no self-loops (edges from a vertex to itself). Suppose the vertices
of Γ are labeled by integers 1, ..., N . Then one can assign to Γ an N ×N matrix RΓ = (rij), where
rij is the number of edges connecting vertices i and j. This matrix is obviously symmetric, and is
called the adjacency matrix. Define the matrix AΓ = 2I −RΓ, where I is the identity matrix.

Main definition: Γ is said to be a Dynkin diagram if the quadratic from on RN with matrix
AΓ is positive definite.

Dynkin diagrams appear in many areas of mathematics (singularity theory, Lie algebras, rep-
resentation theory, algebraic geometry, mathematical physics, etc.) In this problem you will get a
complete classification of Dynkin diagrams. Namely, you will prove

Theorem. Γ is a Dynkin diagram if and only if it is one on the following graphs:

• An : ◦−−◦ · · · ◦−−◦

• Dn:
◦−−◦ · · · ◦−−◦

|◦

• E6 : ◦−−◦−−◦−−◦−−◦
|◦
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• E7 : ◦−−◦−−◦−−◦−−◦−−◦|◦

• E8 :

◦−−◦−−◦−−◦−−◦−−◦−−◦|◦

(a) Compute the determinant of AΓ where Γ = AN ,DN . (Use the row decomposition rule, and
write down a recursive equation for it). Deduce by Sylvester criterion7 that AN ,DN are Dynkin
diagrams.8

(b) Compute the determinants of AΓ for E6, E7, E8 (use row decomposition and reduce to (a)).
Show they are Dynkin diagrams.

(c) Show that if Γ is a Dynkin diagram, it cannot have cycles. For this, show that det(AΓ) = 0
for a graph Γ below 9

1 1 1

1

1

(show that the sum of rows is 0). Thus Γ has to be a tree.

(d) Show that if Γ is a Dynkin diagram, it cannot have vertices with 4 or more incoming edges,
and that Γ can have no more than one vertex with 3 incoming edges. For this, show that det(AΓ) = 0
for a graph Γ below:

1

1

1

1

2 2

(e) Show that det(AΓ) = 0 for all graphs Γ below:

1 12 3 2

2

1

4 3 2 1

2

1 2 3
7Recall the Sylvester criterion: a symmetric real matrix is positive definite if and only if all its upper left corner

principal minors are positive.
8The Sylvester criterion says that a symmetric bilinear form (, ) on RN is positive definite if and only if for any

k ≤ N , det1≤i,j≤k(ei, ej) > 0.
9Please ignore the numerical labels; they will be relevant for Problem 5.5 below.
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1 2 3 4 5 6 4 2

3

(f) Deduce from (a)-(e) the classification theorem for Dynkin diagrams.

(g) A (simply laced) affine Dynkin diagram is a connected graph without self-loops such that the
quadratic form defined by AΓ is positive semidefinite. Classify affine Dynkin diagrams. (Show that
they are exactly the forbidden diagrams from (c)-(e)).

Problem 5.4. Let Q be a quiver with set of vertices D. We say that Q is of finite type if it
has finitely many indecomposable representations. Let bij be the number of edges from i to j in Q
(i, j ∈ D).

There is the following remarkable theorem, proved by P. Gabriel in early seventies.

Theorem. A connected quiver Q is of finite type if and only if the corresponding unoriented
graph (i.e., with directions of arrows forgotten) is a Dynkin diagram.

In this problem you will prove the “only if” direction of this theorem (i.e., why other quivers
are NOT of finite type).

(a) Show that if Q is of finite type then for any rational numbers xi ≥ 0 which are not simul-
taneously zero, one has q(x1, ..., xm) > 0, where

q(x1, ..., xm) :=
∑

i∈D

x2
i −

1

2

∑

i,j∈D

bijxixj .

Hint. It suffices to check the result for integers: xi = ni. First assume that ni ≥ 0, and consider
the space W of representations V of Q such that dimVi = ni. Show that the group

∏
iGLni

(k) acts
with finitely many orbits on W ⊕ k, and use Problem 5.2 to derive the inequality. Then deduce the
result in the case when ni are arbitrary integers.

(b) Deduce that q is a positive definite quadratic form.

Hint. Use the fact that Q is dense in R.

(c) Show that a quiver of finite type can have no self-loops. Then, using Problem 5.3, deduce
the theorem.

Problem 5.5. Let G 6= 1 be a finite subgroup of SU(2), and V be the 2-dimensional representation
of G coming from its embedding into SU(2). Let Vi, i ∈ I, be all the irreducible representations of
G. Let rij be the multiplicity of Vi in V ⊗ Vj.

(a) Show that rij = rji.

(b) The McKay graph of G, M(G), is the graph whose vertices are labeled by i ∈ I, and i is
connected to j by rij edges. Show that M(G) is connected. (Use Problem 3.26)

(c) Show that M(G) is an affine Dynkin graph (one of the “forbidden” graphs in Problem 5.3).
For this, show that the matrix aij = 2δij − rij is positive semidefinite but not definite, and use
Problem 5.3.

Hint. Let f =
∑
xiχVi

, where χVi
be the characters of Vi. Show directly that ((2−χV )f, f) ≥ 0.

When is it equal to 0? Next, show that M(G) has no self-loops, by using that if G is not cyclic
then G contains the central element −Id ∈ SU(2).
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(d) Which groups from Problem 3.24 correspond to which diagrams?

(e) Using the McKay graph, find the dimensions of irreducible representations of all finite
G ⊂ SU(2) (namely, show that they are the numbers labeling the vertices of the affine Dynkin
diagrams on our pictures). Compare with the results on subgroups of SO(3) we obtained in
Problem 3.24.

5.2 Indecomposable representations of the quivers A1, A2, A3

We have seen that a central question about representations of quivers is whether a certain quiver
has only finitely many indecomposable representations. In the previous subsection it is shown that
only those quivers whose underlying undirected graph is a Dynkin diagram may have this property.
To see if they actually do have this property, we first explicitly decompose representations of certain
easy quivers.

Remark 5.6. By an object of the type 1 //0 we mean a map from a one-dimensional vector

space to the zero space. Similarly, an object of the type 0 //1 is a map from the zero space into

a one-dimensional space. The object 1 //1 means an isomorphism from a one-dimensional to
another one-dimensional space. The numbers in such diagrams always mean the dimension of the
attached spaces and the maps are the canonical maps (unless specified otherwise)

Example 5.7 (A1). The quiver A1 consists of a single vertex and has no edges. Since a repre-
sentation of this quiver is just a single vector space, the only indecomposable representation is the
ground field (=a one-dimensional space).

Example 5.8 (A2). The quiver A2 consists of two vertices connected by a single edge.

• // •

A representation of this quiver consists of two vector spaces V,W and an operator A : V →W .

•
V

A // •
W

To decompose this representation, we first let V ′ be a complement to the kernel of A in V and
let W ′ be a complement to the image of A in W . Then we can decompose the representation as
follows

•
V

A // •
W

= •
kerA

0 // •
0

⊕ •
V ′

//
A
∼ •

ImA
⊕ •

0

0 // •
W ′

The first summand is a multiple of the object 1 //0 , the second a multiple of 1 //1 , the

third of 0 //1 . We see that the quiver A2 has three indecomposable representations, namely

1 //0 , 1 //1 and 0 //1 .

Example 5.9 (A3). The quiver A3 consists of three vertices and two connections between them.
So we have to choose between two possible orientations.

• //• //• or • //• •oo

1. We first look at the orientation
• //• //• .
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Then a representation of this quiver looks like

•
V

A //•
W

B //•
Y
.

Like in Example 5.8 we first split away

•
kerA

0 //•
0

0 //•
0
.

This object is a multiple of 1 //0 //0 . Next, let Y ′ be a complement of ImB in Y .
Then we can also split away

•
0

0 //•
0

0 //•
Y ′

which is a multiple of the object 0 //0 //1 . This results in a situation where the map

A is injective and the map B is surjective (we rename the spaces to simplify notation):

•
V

� � A //•
W

B // //•
Y
.

Next, let X = ker(B ◦ A) and let X ′ be a complement of X in V . Let W ′ be a complement
of A(X) in W such that A(X ′) ⊂W ′. Then we get

•
V

� � A //•
W

B // //•
Y

= •
X

A //•
A(X)

B //•
0

⊕ •
X ′

� � A //•
W ′

B // //•
Y

The first of these summands is a multiple of 1 //∼ 1 //0 . Looking at the second summand,

we now have a situation where A is injective, B is surjective and furthermore ker(B ◦A) = 0.
To simplify notation, we redefine

V = X ′, W = W ′.

Next we let X = Im(B ◦ A) and let X ′ be a complement of X in Y . Furthermore, let
W ′ = B−1(X ′). Then W ′ is a complement of A(V ) in W . This yields the decomposition

•
V

� � A //•
W

B // //•
Y

= •
V

∼A //•
A(V )

∼B //•
X

⊕ •
0

//•
W ′

B // //•
X ′

Here, the first summand is a multiple of 1 //∼ 1 //∼ 1 . By splitting away the kernel of B,

the second summand can be decomposed into multiples of 0 //1 //∼ 1 and 0 //1 //0 .
So, on the whole, this quiver has six indecomposable representations:

1 //0 //0 , 0 //0 //1 , 1 //∼ 1 //0 ,

1 //∼ 1 //∼ 1 , 0 //1 //∼ 1 , 0 //1 //0

2. Now we look at the orientation
• //• •oo .

Very similarly to the other orientation, we can split away objects of the type

1 //0 0oo , 0 //0 1oo

which results in a situation where both A and B are injective:

•
V

� � A //•
W

oo B ? _•
Y
.
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By identifying V and Y as subspaces of W , this leads to the problem of classifying pairs of
subspaces of a given space W up to isomorphism (the pair of subspaces problem). To do
so, we first choose a complement W ′ of V ∩ Y in W , and set V ′ = W ′ ∩ V , Y ′ = W ′ ∩ Y .
Then we can decompose the representation as follows:

•
V

� � //•
W

oo ? _•
Y

= •
V ′

� � //•
W ′

oo ? _•
Y ′ ⊕ •

V ∩ Y
//∼ •

V ∩ Y
•oo ∼

V ∩ Y .

The second summand is a multiple of the object 1 //∼ 1 1oo ∼ . We go on decomposing the
first summand. Again, to simplify notation, we let

V = V ′, W = W ′, Y = Y ′.

We can now assume that V ∩ Y = 0. Next, let W ′ be a complement of V ⊕ Y in W . Then
we get

•
V

� � //•
W

oo ? _•
Y

= •
V

� � //•
V ⊕ Y

oo ? _•
Y

⊕ •
0

//•
W ′ •

0
oo

The second of these summands is a multiple of the indecomposable object 0 //1 0oo .
The first summand can be further decomposed as follows:

•
V

� � //•
V ⊕ Y

oo ? _•
Y

= •
V

//∼ •
V

•
0

oo ⊕ •
0

//•
Y

•
Y

oo ∼

These summands are multiples of

1 //1 0oo , 0 //1 1oo

So - like in the other orientation - we get 6 indecomposable representations of A3:

1 //0 0oo , 0 //0 1oo , 1
∼ //1 1

∼oo ,

0 //1 0oo , 1 //1 0oo , 0 //1 1oo

5.3 Indecomposable representations of the quiver D4

As a last - slightly more complicated - example we consider the quiver D4.

Example 5.10 (D4). We restrict ourselves to the orientation

• // • •oo

•

OO .

So a representation of this quiver looks like

•
V1

A1 // •V •
V3

A3oo

•
V2

A2

OO
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The first thing we can do is - as usual - split away the kernels of the maps A1, A2, A3. More
precisely, we split away the representations

•
kerA1

0 // •0 •
0

oo

•
0

OO •
0

// •0 •
0

oo

•
kerA2

0

OO •
0

// •0 •
kerA3

0oo

•
0

OO

These representations are multiples of the indecomposable objects

•
1

0 // •0 •
0

oo

•
0

OO •
0

// •0 •
0

oo

•
1

0

OO •
0

// •0 •
1

0oo

•
0

OO

So we get to a situation where all of the maps A1, A2, A3 are injective.

•
V1

� � A1 // •V •
V3

? _
A3oo

•
V2

� ?

A2

OO

As in 2, we can then identify the spaces V1, V2, V3 with subspaces of V . So we get to the triple of
subspaces problem of classifying a triple of subspaces of a given space V .

The next step is to split away a multiple of

•
0

// •1 •
0

oo

•
0

OO

to reach a situation where
V1 + V2 + V3 = V.

By letting Y = V1 ∩ V2 ∩ V3, choosing a complement V ′ of Y in V , and setting V ′
i = V ′ ∩ Vi,

i = 1, 2, 3, we can decompose this representation into

•
V ′

1

� � // •V
′

•
V ′

3

? _oo

•
V ′

2

� ?

OO

⊕
•
Y

∼ // •Y •
Y

∼oo

•
Y

OO

O�

The last summand is a multiple of the indecomposable representation

•
1

∼ // •1 •
1

∼oo

•
1

OO

O�
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So - considering the first summand and renaming the spaces to simplify notation - we are in a
situation where

V = V1 + V2 + V3, V1 ∩ V2 ∩ V3 = 0.

As a next step, we let Y = V1 ∩ V2 and we choose a complement V ′ of Y in V such that V3 ⊂ V ′,
and set V ′

1 = V ′ ∩ V1, V
′
2 = V ′ ∩ V2. This yields the decomposition

•
V1

� � // •V •
V3

? _oo

•
V2

� ?

OO

=

•
V ′

1

� � // •V
′

•
V3

? _oo

•
V ′

2

� ?

OO

⊕
•
Y

∼ // •Y •
0

oo

•
Y

OO

O�

The second summand is a multiple of the indecomposable object

•
1

∼ // •1 •
0

oo

•
1

OO

O�

.

In the resulting situation we have V1 ∩ V2 = 0. Similarly we can split away multiples of

•
1

∼ // •1 •
1

∼oo

•
0

OO

and

•
0

// •1 •
1

∼oo

•
1

OO

O�

to reach a situation where the spaces V1, V2, V3 do not intersect pairwise

V1 ∩ V2 = V1 ∩ V3 = V2 ∩ V3 = 0.

If V1 * V2 ⊕ V3 we let Y = V1 ∩ (V2 ⊕ V3). We let V ′
1 be a complement of Y in V1. Since then

V ′
1 ∩ (V2 ⊕ V3) = 0, we can select a complement V ′ of V ′

1 in V which contains V2 ⊕ V3. This gives
us the decomposition

•
V1

� � // •V •
V3

? _oo

•
V2

� ?

OO

=

•
V ′

1

∼ // •V
′
1 •

0
oo

•
0

OO

⊕
•
Y

� � // •V
′

•
V3

? _oo

•
V2

� ?

OO

The first of these summands is a multiple of

•
1

∼ // •1 •
0

oo

•
0

OO

By splitting these away we get to a situation where V1 ⊆ V2 ⊕ V3. Similarly, we can split away
objects of the type

•
0

// •1 •
0

oo

•
1

OO

O� and

•
0

// •1 •
1

∼oo

•
0

OO

to reach a situation in which the following conditions hold
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1. V1 + V2 + V3 = V.

2. V1 ∩ V2 = 0, V1 ∩ V3 = 0, V2 ∩ V3 = 0.

3. V1 ⊆ V2 ⊕ V3, V2 ⊆ V1 ⊕ V3, V3 ⊆ V1 ⊕ V2.

But this implies that
V1 ⊕ V2 = V1 ⊕ V3 = V2 ⊕ V3 = V.

So we get
dimV1 = dimV2 = dimV3 = n

and
dimV = 2n.

Since V3 ⊆ V1 ⊕ V2 we can write every element of V3 in the form

x ∈ V3, x = (x1, x2), x1 ∈ V1, x2 ∈ V2.

We then can define the projections

B1 : V3 → V1, (x1, x2) 7→ x1,

B2 : V3 → V2, (x1, x2) 7→ x2.

Since V3 ∩V1 = 0, V3 ∩V2 = 0, these maps have to be injective and therefore are isomorphisms. We
then define the isomorphism

A = B2 ◦B−1
1 : V1 → V2.

Let e1, . . . , en be a basis for V1. Then we get

V1 = C e1 ⊕ C e2 ⊕ · · · ⊕ C en

V2 = CAe1 ⊕ CAe2 ⊕ · · · ⊕ CAen

V3 = C (e1 +Ae1) ⊕ C (e2 +Ae2) ⊕ · · · ⊕ C (en +Aen).

So we can think of V3 as the graph of an isomorphism A : V1 → V2. From this we obtain the
decomposition

•
V1

� � // •V •
V3

? _oo

•
V2

� ?

OO

=
n⊕

j=1

•
C(1, 0)

� � // •C
2

•
C(1, 1)

? _oo

•
C(0, 1)

� ?

OO

These correspond to the indecomposable object

•
1

// •2 •
1

oo

•
1

OO

Thus the quiver D4 with the selected orientation has 12 indecomposable objects. If one were to
explicitly decompose representations for the other possible orientations, one would also find 12
indecomposable objects.

It appears as if the number of indecomposable representations does not depend on the orienta-
tion of the edges, and indeed - Gabriel’s theorem will generalize this observation.
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5.4 Roots

From now on, let Γ be a fixed graph of type An,Dn, E6, E7, E8. We denote the adjacency matrix
of Γ by RΓ.

Definition 5.11 (Cartan Matrix). We define the Cartan matrix as

AΓ = 2Id −RΓ.

On the lattice Zn (or the space Rn) we then define an inner product

B(x, y) = xTAΓy

corresponding to the graph Γ.

Lemma 5.12. 1. B is positive definite.

2. B(x, x) takes only even values for x ∈ Zn.

Proof. 1. This follows by definition, since Γ is a Dynkin diagram.

2. By the definition of the Cartan matrix we get

B(x, x) = xTAΓx =
∑

i,j

xi aij xj = 2
∑

i

x2
i +

∑

i,j, i6=j

xi aij xj = 2
∑

i

x2
i + 2 ·

∑

i<j

aij xixj

which is even.

Definition 5.13. A root with respect to a certain positive inner product is a shortest (with respect
to this inner product), nonzero vector in Zn.

So for the inner product B, a root is a nonzero vector x ∈ Zn such that

B(x, x) = 2.

Remark 5.14. There can be only finitely many roots, since all of them have to lie in some ball.

Definition 5.15. We call vectors of the form

αi = (0, . . . ,

i−th︷︸︸︷
1 , . . . , 0)

simple roots.

The αi naturally form a basis of the lattice Zn.

Lemma 5.16. Let α be a root, α =
∑n

i=1 kiαi. Then either ki ≥ 0 for all i or ki ≤ 0 for all i.

Proof. Assume the contrary, i.e., ki > 0, kj < 0. Without loss of generality, we can also assume
that ks = 0 for all s between i and j. We can identify the indices i, j with vertices of the graph Γ.

• •
i

ǫ •i
′

• •
j

• •

•
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Next, let ǫ be the edge connecting i with the next vertex towards j and i′ be the vertex on the other
end of ǫ. We then let Γ1,Γ2 be the graphs obtained from Γ by removing ǫ. Since Γ is supposed
to be a Dynkin diagram - and therefore has no cycles or loops - both Γ1 and Γ2 will be connected
graphs, which are not connected to each other.

• •
i Γ1

• • •
j

• •

•
Γ2

Then we have i ∈ Γ1, j ∈ Γ2. We define

β =
∑

m∈Γ1

kmαm, γ =
∑

m∈Γ2

kmαm.

With this choice we get
α = β + γ.

Since ki > 0, kj < 0 we know that β 6= 0, γ 6= 0 and therefore

B(β, β) ≥ 2, B(γ, γ) ≥ 2.

Furthermore,
B(β, γ) = −kiki′ ,

since Γ1,Γ2 are only connected at ǫ. But this has to be a nonnegative number, since ki > 0 and
ki′ ≤ 0. This yields

B(α,α) = B(β + γ, β + γ) = B(β, β)︸ ︷︷ ︸
≥2

+2B(β, γ)︸ ︷︷ ︸
≥0

+B(γ, γ)︸ ︷︷ ︸
≥2

≥ 4.

But this is a contradiction, since α was assumed to be a root.

Definition 5.17. We call a root α =
∑

i kiαi a positive root if all ki ≥ 0. A root for which ki ≤ 0
for all i is called a negative root.

Remark 5.18. Lemma 5.16 states that every root is either positive or negative.

Example 5.19. 1. Let Γ be of the type AN−1. Then the lattice L = ZN−1 can be realized as
a subgroup of the lattice ZN by letting L ⊆ ZN be the subgroup of all vectors (x1, . . . , xN )
such that ∑

i

xi = 0.

The vectors

α1 = (1,−1, 0, . . . , 0)

α2 = (0, 1,−1, 0, . . . , 0)

...

αN−1 = (0, . . . , 0, 1,−1)

naturally form a basis of L. Furthermore, the standard inner product

(x, y) =
∑

xiyi
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on ZN restricts to the inner product B given by Γ on L, since it takes the same values on the
basis vectors:

(αi, αi) = 2

(αi, αj) =

{
−1 i, j adjacent
0 otherwise

This means that vectors of the form

(0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0) = αi + αi+1 + · · · + αj−1

and
(0, . . . , 0,−1, 0, . . . , 0, 1, 0, . . . , 0) = −(αi + αi+1 + · · · + αj−1)

are the roots of L. Therefore the number of positive roots in L equals

N(N − 1)

2
.

2. As a fact we also state the number of positive roots in the other Dynkin diagrams:

DN N(N − 1)
E6 36 roots
E7 63 roots
E8 120 roots

Definition 5.20. Let α ∈ Zn be a positive root. The reflection sα is defined by the formula

sα(v) = v −B(v, α)α.

We denote sαi
by si and call these simple reflections.

Remark 5.21. As a linear operator of Rn, sα fixes any vector orthogonal to α and

sα(α) = −α

Therefore sα is the reflection at the hyperplane orthogonal to α, and in particular fixes B. The
si generate a subgroup W ⊆ O(Rn), which is called the Weyl group of Γ. Since for every w ∈ W ,
w(αi) is a root, and since there are only finitely many roots, W has to be finite.

5.5 Gabriel’s theorem

Definition 5.22. Let Q be a quiver with any labeling 1, . . . , n of the vertices. Let V = (V1, . . . , Vn)
be a representation of Q. We then call

d(V ) = (dimV1, . . . ,dimVn)

the dimension vector of this representation.

We are now able to formulate Gabriel’s theorem using roots.

Theorem 5.23 (Gabriel’s theorem). Let Q be a quiver of type An,Dn, E6, E7, E8. Then Q has
finitely many indecomposable representations. Namely, the dimension vector of any indecomposable
representation is a positive root (with respect to BΓ) and for any positive root α there is exactly
one indecomposable representation with dimension vector α.
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5.6 Reflection Functors

Definition 5.24. Let Q be any quiver. We call a vertex i ∈ Q a sink if all edges connected to i
point towards i.

// •i oo
OO

We call a vertex i ∈ Q a source if all edges connected to i point away from i.

•ioo //

��

Definition 5.25. Let Q be any quiver and i ∈ Q be a sink (a source). Then we let Qi be the
quiver obtained from Q by reversing all arrows pointing into (pointing out of) i.

We are now able to define the reflection functors (also called Coxeter functors).

Definition 5.26. Let Q be a quiver, i ∈ Q be a sink. Let V be a representation of Q. Then we
define the reflection functor

F+
i : RepQ→ RepQi

by the rule
F+

i (V )k = Vk if k 6= i

F+
i (V )i = ker


ϕ :

⊕

j→i

Vj → Vi


 .

Also, all maps stay the same but those now pointing out of i; these are replaced by compositions
of the inclusion of kerϕ into ⊕Vj with the projections ⊕Vj → Vk.

Definition 5.27. Let Q be a quiver, i ∈ Q be a source. Let V be a representation of Q. Let ψ be
the canonical map

ψ : Vi →
⊕

i→j

Vj .

Then we define the reflection functor

F−
i : RepQ→ RepQi

by the rule
F−

i (V )k = Vk if k 6= i

F−
i (V )i = Coker (ψ) =




⊕

i→j

Vj


 /Imψ.

Again, all maps stay the same but those now pointing into i; these are replaced by the compositions
of the inclusions Vk → ⊕i→jVj with the natural map ⊕Vj → ⊕Vj/Imψ.

Proposition 5.28. Let Q be a quiver, V an indecomposable representation of Q.
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1. Let i ∈ Q be a sink. Then either dimVi = 1, dimVj = 0 for j 6= i or

ϕ :
⊕

j→i

Vj → Vi

is surjective.

2. Let i ∈ Q be a source. Then either dimVi = 1, dimVj = 0 for j 6= i or

ψ : Vi →
⊕

i→j

Vj

is injective.

Proof. 1. Choose a complement W of Imϕ. Then we get

V =
•
0

// •W •
0

oo

•
0

OO
⊕ V ′

Since V is indecomposable, one of these summands has to be zero. If the first summand is
zero, then ϕ has to be surjective. If the second summand is zero, then the first one has to be
of the desired form, because else we could write it as a direct sum of several objects of the
type

•
0

// •1 •
0

oo

•
0

OO

which is impossible, since V was supposed to be indecomposable.

2. Follows similarly by splitting away the kernel of ψ.

Proposition 5.29. Let Q be a quiver, V be a representation of Q.

1. If

ϕ :
⊕

j→i

Vj → Vi

is surjective, then
F−

i F
+
i V = V.

2. If

ψ : Vi →
⊕

i→j

Vj

is injective, then
F+

i F
−
i V = V.

Proof. In the following proof, we will always mean by i → j that i points into j in the original
quiver Q. We only establish the first statement and we also restrict ourselves to showing that the
spaces of V and F−

i F
+
i V are the same. It is enough to do so for the i-th space. Let

ϕ :
⊕

j→i

Vj → Vi
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be surjective and let
K = kerϕ.

When applying F+
i , the space Vi gets replaced by K. Furthermore, let

ψ : K →
⊕

j→i

Vj .

After applying F−
i , K gets replaced by

K ′ =




⊕

j→i

Vj


 /(Imψ).

But
Imψ = K

and therefore

K ′ =




⊕

j→i

Vj


 /


ker(ϕ :

⊕

j→i

Vj → Vi)


 = Im(ϕ :

⊕

j→i

Vj → Vi)

by the homomorphism theorem. Since ϕ was assumed to be surjective, we get

K ′ = Vi.

Proposition 5.30. Let Q be a quiver, and V be an indecomposable representation of Q. Then
F+

i V and F−
i V (whenever defined) are either indecomposable or 0.

Proof. We prove the proposition for F+
i V - the case F−

i V follows similarly. By Proposition 5.28 it
follows that either

ϕ :
⊕

j→i

Vj → Vi

is surjective or dimVi = 1,dim Vj = 0, j 6= i. In the last case

F+
i V = 0.

So we can assume that ϕ is surjective. In this case, assume that F+
i V is decomposable as

F+
i V = X ⊕ Y

with X,Y 6= 0. But F+
i V is injective at i, since the maps are canonical projections, whose direct

sum is the tautological embedding. Therefore X and Y also have to be injective at i and hence (by
5.29)

F+
i F

−
i X = X, F+

i F
−
i Y = Y

In particular
F−

i X 6= 0, F−
i Y 6= 0.

Therefore
V = F−

i F
+
i V = F−

i X ⊕ F−
i Y

which is a contradiction, since V was assumed to be indecomposable. So we can infer that

F+
i V

is indecomposable.
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Proposition 5.31. Let Q be a quiver and V a representation of Q.

1. Let i ∈ Q be a sink and let V be surjective at i. Then

d(F+
i V ) = si(d(V )).

2. Let i ∈ Q be a source and let V be injective at i. Then

d(F−
i V ) = si(d(V )).

Proof. We only prove the first statement, the second one follows similarly. Let i ∈ Q be a sink and
let

ϕ :
⊕

j→i

Vj → Vi

be surjective. Let K = kerϕ. Then

dimK =
∑

j→i

dimVj − dimVi.

Therefore we get

(
d(F+

i V ) − d(V )
)
i
=

∑

j→i

dimVj − 2 dimVi = −B (d(V ), αi)

and (
d(F+

i V ) − d(V )
)
j

= 0, j 6= i.

This implies
d(F+

i V ) − d(V ) = −B (d(V ), αi)αi

⇔ d(F+
i V ) = d(V ) −B (d(V ), αi)αi = si (d(V )) .

5.7 Coxeter elements

Definition 5.32. Let Q be a quiver and let Γ be the underlying graph. Fix any labeling 1, . . . , n
of the vertices of Γ. Then the Coxeter element c of Q corresponding to this labeling is defined as

c = s1s2 . . . sn.

Lemma 5.33. Let
β =

∑

i

kiαi

with ki ≥ 0 for all i but not all ki = 0. Then there is N ∈ N, such that

cNβ

has at least one strictly negative coefficient.
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Proof. c belongs to a finite group W . So there is M ∈ N, such that

cM = 1.

We claim that
1 + c+ c2 + · · · + cM−1 = 0

as operators on Rn. This implies what we need, since β has at least one strictly positive coefficient,
so one of the elements

cβ, c2β, . . . , cM−1β

must have at least one strictly negative one. Furthermore, it is enough to show that 1 is not an
eigenvalue for c, since

(1 + c+ c2 + · · · + cM−1)v = w 6= 0

⇒ cw = c
(
1 + c+ c2 + · · · + cM−1

)
v = (c+ c2 + c3 + · · · + cM−1 + 1)v = w.

Assume the contrary, i.e., 1 is a eigenvalue of c and let v be a corresponding eigenvector.

cv = v ⇒ s1 . . . snv = v

⇔ s2 . . . snv = s1v.

But since si only changes the i-th coordinate of v, we get

s1v = v and s2 . . . snv = v.

Repeating the same procedure, we get
siv = v

for all i. But this means
B(v, αi) = 0.

for all i, and since B is nondegenerate, we get v = 0. But this is a contradiction, since v is an
eigenvector.

5.8 Proof of Gabriel’s theorem

Let V be an indecomposable representation of Q. We introduce a fixed labeling 1, . . . n on Q, such
that i < j if one can reach j from i. This is possible, since we can assign the highest label to any
sink, remove this sink from the quiver, assign the next highest label to a sink of the remaining
quiver and so on. This way we create a labeling of the desired kind.

We now consider the sequence

V (0) = V, V (1) = F+
n V, V

(2) = F+
n−1F

+
n V, . . .

This sequence is well defined because of the selected labeling: n has to be a sink of Q, n − 1 has
to be a sink of Qn (where Qn is obtained from Q by reversing all the arrows at the vertex r) and
so on. Furthermore, we note that V (n) is a representation of Q again, since every arrow has been
reversed twice (since we applied a reflection functor to every vertex). This implies that we can
define

V (n+1) = F+
n V

(n), . . .

and continue the sequence to infinity.

94



Theorem 5.34. There is m ∈ N, such that

d
(
V (m)

)
= αp

for some p.

Proof. If V (i) is surjective at the appropriate vertex k, then

d
(
V (i+1)

)
= d

(
F+

k V
(i)

)
= skd

(
V (i)

)
.

This implies, that if V (0), . . . , V (i−1) are surjective at the appropriate vertices, then

d
(
V (i)

)
= . . . sn−1snd(V ).

By Lemma 5.33 this cannot continue indefinitely - since d
(
V (i)

)
may not have any negative entries.

Let i be smallest number such that V (i) is not surjective at the appropriate vertex. By Proposition
5.30 it is indecomposable. So, by Proposition 5.28, we get

d(V (i)) = αp

for some p.

We are now able to prove Gabriel’s theorem. Namely, we get the following corollaries.

Corollary 5.35. Let Q be a quiver, V be any indecomposable representation. Then d(V ) is a
positive root.

Proof. By Theorem 5.34
si1 . . . sim (d(V )) = αp.

Since the si preserve B, we get

B(d(V ), d(V )) = B(αp, αp) = 2.

Corollary 5.36. Let V, V ′ be indecomposable representations of Q such that d(V ) = d(V ′). Then
V and V ′ are isomorphic.

Proof. Let i be such that

d
(
V (i)

)
= αp.

Then we also get d
(
V ′(i)) = αp. So

V ′(i) = V (i) =: V i.

Furthermore we have
V (i) = F+

k . . . F+
n−1F

+
n V

(0)

V ′(i) = F+
k . . . F+

n−1F
+
n V

′(0).

But both V (i−1), . . . , V (0) and V ′(i−1), . . . , V ′(0) have to be surjective at the appropriate vertices.
This implies

F−
n F

−
n−1 . . . F

−
k V

i =

{
F−

n F
−
n−1 . . . F

−
k F

+
k . . . F+

n−1F
+
n V

(0) = V (0) = V

F−
n F

−
n−1 . . . F

−
k F

+
k . . . F+

n−1F
+
n V

′(0) = V ′(0) = V ′
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These two corollaries show that there are only finitely many indecomposable representations
(since there are only finitely many roots) and that the dimension vector of each of them is a positive
root. The last statement of Gabriel’s theorem follows from

Corollary 5.37. For every positive root α, there is an indecomposable representation V with

d(V ) = α.

Proof. Consider the sequence
snα, sn−1snα, . . .

Consider the first element of this sequence which is a negative root (this has to happen by Lemma
5.33) and look at one step before that, calling this element β. So β is a positive root and siβ is a
negative root for some i. But since the si only change one coordinate, we get

β = αi

and
(sq . . . sn−1sn)α = αi.

We let C(i) be the representation having dimension vector αi. Then we define

V = F−
n F

−
n−1 . . . F

−
q C(i).

This is an indecomposable representation and

d(V ) = α.

Example 5.38. Let us demonstrate by example how reflection functors work. Consider the quiver
D4 with the orientation of all arrows towards the node (which is labeled by 4). Start with the
1-dimensional representation Vα4 sitting at the 4-th vertex. Apply to Vα4 the functor F−

3 F
−
2 F

−
1 .

This yields
F−

1 F
−
2 F

−
3 Vα4 = Vα1+α2+α3+α4 .

Now applying F−
4 we get

F−
4 F

−
1 F

−
2 F

−
3 Vα4 = Vα1+α2+α3+2α4 .

Note that this is exactly the inclusion of 3 lines into the plane, which is the most complicated
indecomposable representation of the D4 quiver.

5.9 Problems

Problem 5.39. Let Qn be the cyclic quiver of length n, i.e., n vertices connected by n oriented edges
forming a cycle. Obviously, the classification of indecomposable representations of Q1 is given by
the Jordan normal form theorem. Obtain a similar classification of indecomposable representations
of Q2. In other words, classify pairs of linear operators A : V → W and B : W → V up to
isomorphism. Namely:

(a) Consider the following pairs (for n ≥ 1):

1) En,λ: V = W = Cn, A is the Jordan block of size n with eigenvalue λ, B = 1 (λ ∈ C).

2) En,∞: is obtained from En,0 by exchanging V with W and A with B.
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3) Hn: V = Cn with basis vi, W = Cn−1 with basis wi, Avi = wi, Bwi = vi+1 for i < n, and
Avn = 0.

4) Kn is obtained from Hn by exchanging V with W and A with B.

Show that these are indecomposable and pairwise nonisomorphic.

(b) Show that if E is a representation of Q2 such that AB is not nilpotent, then E = E′ ⊕ E′′,
where E′′ = En,λ for some λ 6= 0.

(c) Consider the case when AB is nilpotent, and consider the operator X on V ⊕ W given
by X(v,w) = (Bw,Av). Show that X is nilpotent, and admits a basis consisting of chains (i.e.,
sequences u,Xu,X2u, ...X l−1u where X lu = 0) which are compatible with the direct sum decompo-
sition (i.e., for every chain u ∈ V or u ∈ W ). Deduce that (1)-(4) are the only indecomposable
representations of Q2.

(d)(harder!) generalize this classification to the Kronecker quiver, which has two vertices 1 and
2 and two edges both going from 1 to 2.

(e)(still harder!) can you generalize this classification to Qn, n > 2, with any orientation?

Problem 5.40. Let L ⊂ 1
2Z8 be the lattice of vectors where the coordinates are either all integers

or all half-integers (but not integers), and the sum of all coordinates is an even integer.

(a) Let αi = ei − ei+1, i = 1, ..., 6, α7 = e6 + e7, α8 = −1/2
∑8

i=1 ei. Show that αi are a basis
of L (over Z).

(b) Show that roots in L (under the usual inner product) form a root system of type E8 (compute
the inner products of αi).

(c) Show that the E7 and E6 lattices can be obtained as the sets of vectors in the E8 lattice L
where the first two, respectively three, coordinates (in the basis ei) are equal.

(d) Show that E6, E7, E8 have 72,126,240 roots, respectively (enumerate types of roots in terms
of the presentations in the basis ei, and count the roots of each type).

Problem 5.41. Let Vα be the indecomposable representation of a Dynkin quiver Q which corre-
sponds to a positive root α. For instance, if αi is a simple root, then Vαi

has a 1-dimensional space
at i and 0 everywhere else.

(a) Show that if i is a source then Ext1(V, Vαi
) = 0 for any representation V of Q, and if i is

a sink, then Ext1(Vαi
, V ) = 0.

(b) Given an orientation of the quiver, find a Jordan-Holder series of Vα for that orientation.
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6 Introduction to categories

6.1 The definition of a category

We have now seen many examples of representation theories and of operations with representations
(direct sum, tensor product, induction, restriction, reflection functors, etc.) A context in which one
can systematically talk about this is provided by Category Theory.

Category theory was founded by Saunders MacLane and Samuel Eilenberg around 1940. It is a
fairly abstract theory which seemingly has no content, for which reason it was christened “abstract
nonsense”. Nevertheless, it is a very flexible and powerful language, which has become totally
indispensable in many areas of mathematics, such as algebraic geometry, topology, representation
theory, and many others.

We will now give a very short introduction to Category theory, highlighting its relevance to the
topics in representation theory we have discussed. For a serious acquaintance with category theory,
the reader should use the classical book [McL].

Definition 6.1. A category C is the following data:

(i) a class of objects Ob(C);

(ii) for every objects X,Y ∈ Ob(C), the class HomC(X,Y ) = Hom(X,Y ) of morphisms (or
arrows) from X,Y (for f ∈ Hom(X,Y ), one may write f : X → Y );

(iii) For any objectsX,Y,Z ∈ Ob(C), a composition map Hom(Y,Z)×Hom(X,Y ) → Hom(X,Z),
(f, g) 7→ f ◦ g,

which satisfy the following axioms:

1. The composition is associative, i.e., (f ◦ g) ◦ h = f ◦ (g ◦ h);

2. For each X ∈ Ob(C), there is a morphism 1X ∈ Hom(X,X), called the unit morphism, such
that 1X ◦ f = f and g ◦ 1X = g for any f, g for which compositions make sense.

Remark. We will write X ∈ C instead of X ∈ Ob(C).

Example 6.2. 1. The category Sets of sets (morphisms are arbitrary maps).

2. The categories Groups, Rings (morphisms are homomorphisms).

3. The category Vectk of vector spaces over a field k (morphisms are linear maps).

4. The category Rep(A) of representations of an algebra A (morphisms are homomorphisms of
representations).

5. The category of topological spaces (morphisms are continuous maps).

6. The homotopy category of topological spaces (morphisms are homotopy classes of continuous
maps).

Important remark. Unfortunately, one cannot simplify this definition by replacing the word
“class” by the much more familiar word “set”. Indeed, this would rule out the important Example 1,
as it is well known that there is no set of all sets, and working with such a set leads to contradictions.
The precise definition of a class and the precise distinction between a class and a set is the subject
of set theory, and cannot be discussed here. Luckily, for most practical purposes (in particular, in
these notes), this distinction is not essential.

98



We also mention that in many examples, including examples 1-6, the word “class” in (ii) can
be replaced by “set”. Categories with this property (that Hom(X,Y ) is a set for any X,Y ) are
called locally small; many categories that we encounter are of this kind.

Sometimes the collection Hom(X,Y ) of morphisms fromX to Y in a given locally small category
C is not just a set but has some additional structure (say, the structure of an abelian group, or
a vector space over some field). In this case one says that C is enriched over another category
D (which is a monoidal category, i.e., has a product operation and a neutral object under this
product, e.g. the category of abelian groups or vector spaces). This means that for each X,Y ∈ C,
Hom(X,Y ) is an object of D, and the composition Hom(Y,Z) × Hom(X,Y ) → Hom(X,Z) is a
morphism in D. For a more detailed discussion of this, we refer the reader to [McL].

Example. The category Rep(A) of representations of a k-algebra A is enriched over the
category of k-vector spaces.

Definition 6.3. A full subcategory of a category C is a category C′ whose objects are a subclass
of objects of C, and HomC′(X,Y ) = HomC(X,Y ).

Example. The category AbelianGroups is a full subcategory of the category Groups.

6.2 Functors

We would like to define arrows between categories. Such arrows are called functors.

Definition 6.4. A functor F : C → D between categories C and D is

(i) a map F : Ob(C) → Ob(D);

(ii) for each X,Y ∈ C, a map F = FX,Y : Hom(X,Y ) → Hom(F (X), F (Y )) which preserves
compositions and identity morphisms.

Note that functors can be composed in an obvious way. Also, any category has the identity
functor.

Example 6.5. 1. A (locally small) category C with one object X is the same thing as a monoid.
A functor between such categories is a homomorphism of monoids.

2. Forgetful functors Groups → Sets, Rings → AbelianGroups.

3. The opposite category of a given category is the same category with the order of arrows and
compositions reversed. Then V 7→ V ∗ is a functor Vectk 7→ Vectop

k .

4. The Hom functors: If C is a locally small category then we have the functor C → Sets given
by Y 7→ Hom(X,Y ) and Cop → Sets given by Y 7→ Hom(Y,X).

5. The assignment X 7→ Fun(X,Z) is a functor Sets → Ringsop.

6. Let Q be a quiver. Consider the category C(Q) whose objects are the vertices and morphisms
are oriented paths between them. Then functors from C(Q) to Vectk are representations of Q over
k.

7. Let K ⊂ G be groups. Then we have the induction functor IndG
K : Rep(K) → Rep(G), and

ResG
K : Rep(G) → Rep(K).

8. We have an obvious notion of the Cartesian product of categories (obtained by taking the
Cartesian products of the classes of objects and morphisms of the factors). The functors of direct
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sum and tensor product are then functors Vectk×Vectk → Vectk. Also the operations V 7→ V ⊗n,
V 7→ SnV , V 7→ ∧nV are functors on Vectk. More generally, if π is a representation of Sn, we
have functors V 7→ HomSn(π, V ⊗n). Such functors (for irreducible π) are called the Schur functors.
They are labeled by Young diagrams.

9. The reflection functors F±
i : Rep(Q) → Rep(Q̄i) are functors between representation cate-

gories of quivers.

6.3 Morphisms of functors

One of the important features of functors between categories which distinguishes them from usual
maps or functions is that the functors between two given categories themselves form a category,
i.e., one can define a nontrivial notion of a morphism between two functors.

Definition 6.6. Let C,D be categories and F,G : C → D be functors between them. A morphism
a : F → G (also called a natural transformation or a functorial morphism) is a collection of
morphisms aX : F (X) → G(X) labeled by the objects X of C, which is functorial in X, i.e., for
any morphism f : X → Y (for X,Y ∈ C) one has aY ◦ F (f) = G(f) ◦ aX .

A morphism a : F → G is an isomorphism if there is another morphism a−1 : G→ F such that
a ◦a−1 and a−1 ◦a are the identities. The set of morphisms from F to G is denoted by Hom(F,G).

Example 6.7. 1. Let FVectk be the category of finite dimensional vector spaces over k. Then the
functors id and ∗∗ on this category are isomorphic. The isomorphism is defined by the standard
maps aV : V → V ∗∗ given by aV (u)(f) = f(u), u ∈ V , f ∈ V ∗. But these two functors are not
isomorphic on the category of all vector spaces Vectk, since for an infinite dimensional vector space
V , V is not isomorphic to V ∗∗.

2. Let FVect′k be the category of finite dimensional k-vector spaces, where the morphisms
are the isomorphisms. We have a functor F from this category to itself sending any space V to
V ∗ and any morphism a to (a∗)−1. This functor satisfies the property that V is isomorphic to
F (V ) for any V , but it is not isomorphic to the identity functor. This is because the isomorphism
V → F (V ) = V ∗ cannot be chosen to be compatible with the action of GL(V ), as V is not
isomorphic to V ∗ as a representation of GL(V ).

3. Let A be an algebra over a field k, and F : A − mod → Vectk be the forgetful functor.
Then as follows from Problem 1.22, EndF = Hom(F,F ) = A.

4. The set of endomorphisms of the identity functor on the category A− mod is the center of
A (check it!).

6.4 Equivalence of categories

When two algebraic or geometric objects are isomorphic, it is usually not a good idea to say that
they are equal (i.e., literally the same). The reason is that such objects are usually equal in many
different ways, i.e., there are many ways to pick an isomorphism, but by saying that the objects are
equal we are misleading the reader or listener into thinking that we are providing a certain choice
of the identification, which we actually do not do. A vivid example of this is a finite dimensional
vector space V and its dual space V ∗.

For this reason in category theory, one most of the time tries to avoid saying that two objects
or two functors are equal. In particular, this applies to the definition of isomorphism of categories.
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Namely, the naive notion of isomorphism of categories is defined in the obvious way: a functor
F : C → D is an isomorphism if there exists F−1 : D → C such that F ◦F−1 and F−1 ◦F are equal
to the identity functors. But this definition is not very useful. We might suspect so since we have
used the word “equal” for objects of a category (namely, functors) which we are not supposed to
do. And in fact here is an example of two categories which are “the same for all practical purposes”
but are not isomorphic; it demonstrates the deficiency of our definition.

Namely, let C1 be the simplest possible category: Ob(C1) consists of one object X, with
Hom(X,X) = {1X}. Also, let C2 have two objects X,Y and 4 morphisms: 1X , 1Y , a : X → Y
and b : Y → X. So we must have a ◦ b = 1Y , b ◦ a = 1X .

It is easy to check that for any category D, there is a natural bijection between the collections
of isomorphism classes of functors C1 → D and C2 → D (both are identified with the collection of
isomorphism classes of objects of D). This is what we mean by saying that C1 and C2 are “the same
for all practical purposes”. Nevertheless they are not isomorphic, since C1 has one object, and C2

has two objects (even though these two objects are isomorphic to each other).

This shows that we should adopt a more flexible and less restrictive notion of isomorphism of
categories. This is accomplished by the definition of an equivalence of categories.

Definition 6.8. A functor F : C → D is an equivalence of categories if there exists F ′ : D → C
such that F ◦ F ′ and F ′ ◦ F are isomorphic to the identity functors.

In this situation, F ′ is said to be a quasi-inverse to F .

In particular, the above categories C1 and C2 are equivalent (check it!).

Also, the category FSet of finite sets is equivalent to the category whose objects are nonneg-
ative integers, and morphisms are given by Hom(m,n) = Maps({1, ...,m}, {1, ..., n}). Are these
categories isomorphic? The answer to this question depends on whether you believe that there
is only one finite set with a given number of elements, or that there are many of those. It seems
better to think that there are many (without asking “how many”), so that isomorphic sets need not
be literally equal, but this is really a matter of choice. In any case, this is not really a reasonable
question; the answer to this question is irrelevant for any practical purpose, and thinking about it
will give you nothing but a headache.

6.5 Representable functors

A fundamental notion in category theory is that of a representable functor. Namely, let C be a
(locally small) category, and F : C → Sets be a functor. We say that F is representable if there
exists an object X ∈ C such that F is isomorphic to the functor Hom(X, ?). More precisely, if we
are given such an object X, together with an isomorphism ξ : F ∼= Hom(X, ?), we say that the
functor F is represented by X (using ξ).

In a similar way, one can talk about representable functors from Cop to Sets. Namely, one
calls such a functor representable if it is of the form Hom(?,X) for some object X ∈ C, up to an
isomorphism.

Not every functor is representable, but if a representing object X exists, then it is unique.
Namely, we have the following lemma.

Lemma 6.9. (The Yoneda Lemma) If a functor F is represented by an object X, then X is unique
up to a unique isomorphism. I.e., if X,Y are two objects in C, then for any isomorphism of functors
φ : Hom(X, ?) → Hom(Y, ?) there is a unique isomorphism aφ : X → Y inducing φ.

101



Proof. (Sketch) One sets aφ = φ−1
Y (1Y ), and shows that it is invertible by constructing the inverse,

which is a−1
φ = φX(1X ). It remains to show that the composition both ways is the identity, which

we will omit here. This establishes the existence of aφ. Its uniqueness is verified in a straightforward
manner.

Remark. In a similar way, if a category C is enriched over another category D (say, the category
of abelian groups or vector spaces), one can define the notion of a representable functor from C to
D.

Example 6.10. Let A be an algebra. Then the forgetful functor to vector spaces on the category
of left A-modules is representable, and the representing object is the free rank 1 module (=the
regular representation) M = A. But if A is infinite dimensional, and we restrict attention to the
category of finite dimensional modules, then the forgetful functor, in general, is not representable
(this is so, for example, if A is the algebra of complex functions on Z which are zero at all points
but finitely many).

6.6 Adjoint functors

Another fundamental notion in category theory is the notion of adjoint functors.

Definition 6.11. Functors F : C → D and G : D → C are said to be a pair of adjoint functors if for
any X ∈ C, Y ∈ D we are given an isomorphism ξXY : HomC(F (X), Y ) → HomD(X,G(Y )) which is
functorial in X and Y ; in other words, if we are given an isomorphism of functors Hom(F (?), ?) →
Hom(?, G(?)) (C × D → Sets). In this situation, we say that F is left adjoint to G and G is right
adjoint to F .

Not every functor has a left or right adjoint, but if it does, it is unique and can be constructed
canonically (i.e., if we somehow found two such functors, then there is a canonical isomorphism
between them). This follows easily from the Yoneda lemma, as if F,G are a pair of adjoint functors
then F (X) represents the functor Y 7→ Hom(X,G(Y )), and G(Y ) represents the functor X 7→
Hom(F (X), Y ).

Remark 6.12. The terminology “left and right adjoint functors” is motivated by the analogy
between categories and inner product spaces. More specifically, we have the following useful dic-
tionary between category theory and linear algebra, which helps understand better many notions
of category theory.

Dictionary between category theory and linear algebra

Category C Vector space V with a nondegenerate inner product
The set of morphisms Hom(X,Y ) Inner product (x, y) on V (maybe nonsymmetric)
Opposite category Cop Same space V with reversed inner product
The category Sets The ground field k
Full subcategory in C Nondegenerate subspace in V
Functor F : C → D Linear operator f : V →W
Functor F : C → Sets Linear functional f ∈ V ∗ = Hom(V, k)
Representable functor Linear functional f ∈ V ∗ given by f(v) = (u, v), u ∈ V
Yoneda lemma Nondegeneracy of the inner product (on both sides)
Not all functors are representable If dimV = ∞, not ∀f ∈ V ∗, f(v) = (u, v)
Left and right adjoint functors Left and right adjoint operators
Adjoint functors don’t always exist Adjoint operators may not exist if dimV = ∞
If they do, they are unique If they do, they are unique
Left and right adjoints may not coincide The inner product may be nonsymmetric
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Example 6.13. 1. Let V be a finite dimensional representation of a group G or a Lie algebra g.
Then the left and right adjoint to the functor V⊗ on the category of representations of G is the
functor V ∗⊗.

2. The functor ResG
K is left adjoint to IndG

K . This is nothing but the statement of the Frobenius
reciprocity.

3. Let Assock be the category of associative unital algebras, and Liek the category of Lie
algebras over some field k. We have a functor L : Assock → Liek, which attaches to an associative
algebra the same space regarded as a Lie algebra, with bracket [a, b] = ab− ba. Then the functor L
has a left adjoint, which is the functor U of taking the universal enveloping algebra of a Lie algebra.

4. We have the functor GL1 : Assock → Groups, given by A 7→ GL1(A) = A×. This functor
has a left adjoint, which is the functor G 7→ k[G], the group algebra of G.

5. The left adjoint to the forgetful functor Assock → Vectk is the functor of tensor algebra:
V 7→ TV . Also, if we denote by Commk the category of commutative algebras, then the left adjoint
to the forgetful functor Commk → Vectk is the functor of the symmetric algebra: V 7→ SV .

One can give many more examples, spanning many fields. These examples show that adjoint
functors are ubiquitous in mathematics.

6.7 Abelian categories

The type of categories that most often appears in representation theory is abelian categories.
The standard definition of an abelian category is rather long, so we will not give it here, referring
the reader to the textbook [Fr]; rather, we will use as the definition what is really the statement of
the Freyd-Mitchell theorem:

Definition 6.14. An abelian category is a category (enriched over the category of abelian groups),
which is equivalent to a full subcategory C of the category A-mod of left modules over a ring A,
closed under taking finite direct sums, as well as kernels, cokernels, and images of morphisms.

We see from this definition that in an abelian category, Hom(X,Y ) is an abelian group for each
X,Y , compositions are group homomorphisms with respect to each argument, there is the zero ob-
ject, the notion of an injective morphism (monomorphism) and surjective morphism (epimorphism),
and every morphism has a kernel, a cokernel, and an image.

Example 6.15. The category of modules over an algebra A and the category of finite dimensional
modules over A are abelian categories.

Remark 6.16. The good thing about Definition 6.14 is that it allows us to visualize objects,
morphisms, kernels, and cokernels in terms of classical algebra. But the definition also has a big
drawback, which is that even if C is the whole category A-mod, the ring A is not determined by C.
In particular, two different rings can have equivalent categories of modules (such rings are called
Morita equivalent). Actually, it is worse than that: for many important abelian categories there
is no natural (or even manageable) ring A at all. This is why people prefer to use the standard
definition, which is free from this drawback, even though it is more abstract.

We say that an abelian category C is k-linear if the groups HomC(X,Y ) are equipped with
a structure of a vector space over k, and composition maps are k-linear in each argument. In
particular, the categories in Example 6.15 are k-linear.
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6.8 Exact functors

Definition 6.17. A sequence of objects and morphisms

X0 → X1 → ...→ Xn+1

in an abelian category is said to be a complex if the composition of any two consecutive arrows
is zero. The cohomology of this complex is H i = Ker (di)/Im(di−1), where di : Xi → Xi+1 (thus
the cohomology is defined for 1 ≤ i ≤ n). The complex is said to be exact in the i-th term if
H i = 0, and is said to be an exact sequence if it is exact in all terms. A short exact sequence
is an exact sequence of the form

0 → X → Y → Z → 0.

Clearly, 0 → X → Y → Z → 0 is a short exact sequence if and only if X → Y is injective,
Y → Z is surjective, and the induced map Y/X → Z is an isomorphism.

Definition 6.18. A functor F between two abelian categories is additive if it induces homomor-
phisms on Hom groups. Also, for k-linear categories one says that F is k-linear if it induces k-linear
maps between Hom spaces.

It is easy to show that if F is an additive functor, then F (X ⊕ Y ) is canonically isomorphic to
F (X) ⊕ F (Y ).

Example 6.19. The functors IndG
K , ResG

K , HomG(V, ?) in the theory of group representations over
a field k are additive and k-linear.

Definition 6.20. An additive functor F : C → D between abelian categories is left exact if for
any exact sequence

0 → X → Y → Z,

the sequence
0 → F (X) → F (Y ) → F (Z)

is exact. F is right exact if for any exact sequence

X → Y → Z → 0,

the sequence
F (X) → F (Y ) → F (Z) → 0

is exact. F is exact if it is both left and right exact.

Definition 6.21. An abelian category C is semisimple if any short exact sequence in this category
splits, i.e., is isomorphic to a sequence

0 → X → X ⊕ Y → Y → 0

(where the maps are obvious).

Example 6.22. The category of representations of a finite group G over a field of characteristic
not dividing |G| (or 0) is semisimple.

Note that in a semisimple category, any additive functor is automatically exact on both sides.
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Example 6.23. (i) The functors IndG
K , ResG

K are exact.

(ii) The functor Hom(X, ?) is left exact, but not necessarily right exact. To see that it need not
be right exact, it suffices to consider the exact sequence

0 → Z → Z → Z/2Z → 0,

and apply the functor Hom(Z/2Z, ?).

(iii) The functor X⊗A for a right A-module X (on the category of left A-modules) is right exact,
but not necessarily left exact. To see this, it suffices to tensor multiply the above exact sequence
by Z/2Z.

Exercise. Show that if (F,G) is a pair of adjoint additive functors between abelian categories,
then F is right exact and G is left exact.

Exercise. (a) Let Q be a quiver and i ∈ Q a source. Let V be a representation of Q, and W a
representation of Qi (the quiver obtained from Q by reversing arrows at the vertex i). Prove that
there is a natural isomorphism between Hom

(
F−

i V,W
)

and Hom
(
V, F+

i W
)
. In other words, the

functor F+
i is right adjoint to F−

i .

(b) Deduce that the functor F+
i is left exact, and F−

i is right exact.
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7 Structure of finite dimensional algebras

In this section we return to studying the structure of finite dimensional algebras. Throughout the
section, we work over an algebraically closed field k (of any characteristic).

7.1 Projective modules

Let A be an algebra, and P be a left A-module.

Theorem 7.1. The following properties of P are equivalent:

(i) If α : M → N is a surjective morphism, and ν : P → N any morphism, then there exists a
morphism µ : P →M such that α ◦ µ = ν.

(ii) Any surjective morphism α : M → P splits, i.e., there exists µ : P →M such that α◦µ = id.

(iii) There exists another A-module Q such that P ⊕Q is a free A-module, i.e., a direct sum of
copies of A.

(iv) The functor HomA(P, ?) on the category of A-modules is exact.

Proof. To prove that (i) implies (ii), take N = P . To prove that (ii) implies (iii), take M to be free
(this can always be done since any module is a quotient of a free module). To prove that (iii) implies
(iv), note that the functor HomA(P, ?) is exact if P is free (as HomA(A,N) = N), so the statement
follows, as if the direct sum of two complexes is exact, then each of them is exact. To prove that
(iv) implies (i), let K be the kernel of the map α, and apply the exact functor HomA(P, ?) to the
exact sequence

0 → K →M → N → 0.

Definition 7.2. A module satisfying any of the conditions (i)-(iv) of Theorem 7.1 is said to be
projective.

7.2 Lifting of idempotents

Let A be a ring, and I ⊂ A a nilpotent ideal.

Proposition 7.3. Let e0 ∈ A/I be an idempotent, i.e., e20 = e0. There exists an idempotent e ∈ A
which is a lift of e0 (i.e., it projects to e0 under the reduction modulo I). This idempotent is unique
up to conjugation by an element of 1 + I.

Proof. Let us first establish the statement in the case when I2 = 0. Note that in this case I is a
left and right module over A/I. Let e∗ be any lift of e0 to A. Then e2∗ − e∗ = a ∈ I, and e0a = ae0.
We look for e in the form e = e∗ + b, b ∈ I. The equation for b is e0b+ be0 − b = a.

Set b = (2e0 − 1)a. Then

e0b+ be0 − b = 2e0a− (2e0 − 1)a = a,

so e is an idempotent. To classify other solutions, set e′ = e + c. For e′ to be an idempotent, we
must have ec + ce − c = 0. This is equivalent to saying that ece = 0 and (1 − e)c(1 − e) = 0, so
c = ec(1 − e) + (1 − e)ce = [e, [e, c]]. Hence e′ = (1 + [c, e])e(1 + [c, e])−1.
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Now, in the general case, we prove by induction in k that there exists a lift ek of e0 to A/Ik+1,
and it is unique up to conjugation by an element of 1 + Ik (this is sufficient as I is nilpotent).
Assume it is true for k = m − 1, and let us prove it for k = m. So we have an idempotent
em−1 ∈ A/Im, and we have to lift it to A/Im+1. But (Im)2 = 0 in A/Im+1, so we are done.

Definition 7.4. A complete system of orthogonal idempotents in a unital algebra B is a collection
of elements e1, ..., en ∈ B such that eiej = δijei, and

∑n
i=1 ei = 1.

Corollary 7.5. Let e01, ..., e0m be a complete system of orthogonal idempotents in A/I. Then there
exists a complete system of orthogonal idempotents e1, ..., em (eiej = δijei,

∑
ei = 1) in A which

lifts e01, ..., e0m.

Proof. The proof is by induction in m. For m = 2 this follows from Proposition 7.3. For m > 2,
we lift e01 to e1 using Proposition 7.3, and then apply the induction assumption to the algebra
(1 − e1)A(1 − e1).

7.3 Projective covers

Obviously, every finitely generated projective module over a finite dimensional algebra A is a direct
sum of indecomposable projective modules, so to understand finitely generated projective modules
over A, it suffices to classify indecomposable ones.

Let A be a finite dimensional algebra, with simple modules M1, ...,Mn.

Theorem 7.6. (i) For each i = 1, ..., n there exists a unique indecomposable finitely generated
projective module Pi such that dimHom(Pi,Mj) = δij .

(ii) A = ⊕n
i=1(dimMi)Pi.

(iii) any indecomposable finitely generated projective module over A is isomorphic to Pi for
some i.

Proof. Recall that A/Rad(A) = ⊕n
i=1 End(Mi), and Rad(A) is a nilpotent ideal. Pick a basis of

Mi, and let e0ij = Ei
jj, the rank 1 projectors projecting to the basis vectors of this basis (j =

1, ...,dimMi). Then e0ij are orthogonal idempotents in A/Rad(A). So by Corollary 7.5 we can lift

them to orthogonal idempotents eij in A. Now define Pij = Aeij . Then A = ⊕i ⊕dim Mi

j=1 Pij , so Pij

are projective. Also, we have Hom(Pij ,Mk) = eijMk, so dimHom(Pij ,Mk) = δik. Finally, Pij is
independent of j up to an isomorphism, as eij for fixed i are conjugate under A× by Proposition
7.3; thus we will denote Pij by Pi.

We claim that Pi is indecomposable. Indeed, if Pi = Q1 ⊕Q2, then Hom(Ql,Mj) = 0 for all j
either for l = 1 or for l = 2, so either Q1 = 0 or Q2 = 0.

Also, there can be no other indecomposable finitely generated projective modules, since any
such module has to occur in the decomposition of A. The theorem is proved.
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