Tech. Rep. IRIS-02-413
Ingtitute for Robotics and Intelligent Systems, USC, 2002

Speed Control of a Pneumatic Monopod using a
Neural Network

KaleHarbick and Gaurav S. Sukhatme
kale|gaurav@robotics.usc.edu
Robotic Embedded Systems Laboratory
Robotics Research Laboratories
Department of Computer Science
University of Southern California
Los Angeles, CA 90089-0781

Abstract

We discuss a speed controller for a hopping robot with
a pneumatically powered leg. The controller uses a neural
network to model the neutral point as a function of running
speed and hopping height. The network is trained off-line
using training data taken from a simulated hopper that is
manually controlled by a human. Smulation experiments of
hopping in the sagittal plane show improved performance
over a Raibert PD controller, which uses a linear approxi-
mation for the neutral point.

I. INTRODUCTION

The benefits of legged systems over other forms of ter-
restrial locomation are obvious; they can navigate obstacles
which wheeled and treaded vehicles cannot. Dynamically-
stable legged systems have advantages over statically-stable
legged systems. Running machines can travel faster and can
navigate terrain which has points of support that are spaced
too far apart for walking machines to reach. Even for the
simplest running machine, a one-legged hopper, research
problems have not been completely explored.

Most running machines constructed thus far have served
as little more than existence proofs of different forms of lo-
comotion. We seek to contruct a running machine that builds
on basic locomotion with additional behaviors that would be
useful in a more functional robotic system. To this end we
have studied ways to improve the traditional Raibert three-
part control system [1].

The hopping machine considered in this paper is like a
pogo-stick, except it uses a pneumatic rather than mechan-
ical spring. The plant’s motion is restricted to the sagittal
plane. A diagram of the hopper model is shown in Figure
1. Table I defines the state variables and Table Il defines the
physical parameters of the hopper. The leg stroke, hip offset,
and mass parameters are similar to those used by Raibert for
his planar hopper [1].

Our controller is based on Raibert’s three-part control sys-
tem [1]. This method decomposes the control into three sep-

Fig. 1. 2D hopping machine in stance. The body is not shown.

arate control loops: forward velocity control, body attitude
control, and height control. The experiments reported in this
paper use a model-based height controller [2], while the body
attitude controller is unchanged. The speed controllers are
described in Section IlI.

We report results of speed regulation experiments, in
which the desired forward speed was changed in a step-wise
fashion while maintaining a fixed apex height. Simulations
show that a neural network-based speed controller performs
well over a wider range of desired speeds than the Raibert
speed controller.

The paper is organized as follows. Related work is dis-
cussed in Section Il. Section Il describes the two speed
controllers. Experimental results are presented in Section
IV. Conclusions and future work are discussed in Section V.

Il. RELATED WORK

A three-part control system has been used to control
monopod hopping robots [1]. This system used two propor-
tional controllers to control forward speed. This controller is
described in further detail in Section I1I.

A similar approach madifies the neutral point approxima-
tion with an additional factor of the ratio of leg length to rest

neutral point

CG print

Fig. 2. The neutral point is approximated using an estimation of the CG
print.

length [3].

A discrete closed form trajectory model was used to con-
trol a bow leg hopper [4]. Model parameters were exper-
imentally determined with a least squares fit to a set of
recorded trajectories.

A simulation of a vertical hopping machine was con-
trolled using a near-inverse discrete-time model [5]. Time-
varying or unknown parameters were estimated with a recur-
sive least-squares parameter estimator.

Other statistical learning methods such as RMRC have
been used to learn inverse kinematic mappings in real time

[6].
I1l. SPEED CONTROLLERS

A. Raibert Controller

Raibert describes the neutral point of a hop as the point
where the foot should be placed which will result in zero net
acceleration [1]. This point is a function of hopping height
and forward speed. Raibert used an approximation of the
CG print, i.e. the locus of points on the ground over which
the body center of mass travels during stance, to estimate the
neutral point. This is represented in Figure 2.

He approximated the length of the CG print as the stance
duration times the forward running speed, as in Equation 1.

T, L.
$f=f+kz'($—l‘d)- @

This foot position is converted into a desired leg angle
w.r.t. the body

Ty

Y4 = ¢ — arcsin 7

Finally a second PD loop is used to calculate the hip torque

T = —kp(y —va) — ka(7)-

We used the following values for gains: k; = 0.03, k, =
47.0, kg = 1.26.

& e}e
YAV,
O O

Fig. 3. Neural network.

B. Neural Network-Based Controller

One problem with the Raibert speed controller, as he
points out, is that the neutral point is nearly linear with for-
ward speed only up to a certain velocity. This point varies
with the physical parameters of the system, but for the plant
described in this paper, it is approximately 0.7 m/s. To
overcome this difficulty, we used a neural network to more
closely represent the neutral point function.

The original controller is modified to replace the first term
in Equation 1 with a neural network output. The second term
is left unchanged. The network is shown in Figure 3. The
hidden layer uses sigmoidal tangent activation functions and
the output layer is purely linear.

Training data was generated by a human operator control-
ling the foot position at varying speeds and apex heights. The
simulation recorded neutral point values for three different
apex heights (0.4 m, 0.5 m, and 0.6 m) and seven differ-
ent speeds (0.4 m/s to 1.6 m/s at 0.2 m/s intervals), for a
total of 21 training points. The neural network was trained
off-line using Levenberg-Marquardt optimization [7] [8].

Figure 4 shows a surface plot of the output of the trained
network given apex values from 0.4 m to 0.65 m and speed
values from -2.0 m/s to 2.0 m/s.

IV. EXPERIMENTS

The simulations were started with the hopper at zero for-
ward velocity. Two experiments were performed with each
speed controller: one with an apex height of 0.45 m and
another with an apex height of 0.5 m. In each experiment,
the desired speed was increased in a step-wise fashion at 0.1
m /s intervals, up to approximately 1.8 m /s. Figure 5 shows
the results of the experiment using the first height, and Fig-
ure 6 shows the results of the experiment using the second
height.

It is apparent that there is a large error present at higher
speeds with the Raibert controller. The neural network-based
controller tracks the higher desired speeds with less error.
Plots of error as a function of desired forward speed are
shown in Figure 7 for the first experiment and Figure 8 for

L || leg length (m)
T body horizontal velocity (m/s)
xy || distance from body c.m. to foot along horizontal dimension (m)
Ts || stance duration (s)
¢ body angle w.r.t. horizontal (rad)
~ angle of leg w.r.t. body (rad)
TABLE|
VARIABLE DEFINITIONS.
g gravitational acceleration —9.81m/s?
Lk viscous leg friction 50N/s
dhip distance from hip to body c.m. 0.06m
L0z || max leg length 0.285m
My sprung mass 8.375 kg
My unsprung mass 0.225 kg
Ap area of piston 4.91 x 10~ m?
Py nominal pressure of upper leg chamber | 4.0 x 102 kPa

TABLE

PHYSICAL PARAMETERS OF THE HOPPER.

Fig. 4. Surface plot of neural network output.

the second experiment. Table 111 shows the average absolute
and relative errors in speed.

V. CONCLUSIONS AND FUTURE WORK

We have shown that using a neural network to represent
the functional mapping between forward speed and neutral
point is a viable solution, and simulation results show that it
tracks higher desired speeds with less error than the Raibert
speed controller. The neural net controller adds little com-
putational load to the system and is thus feasible to use on a
real robot.

Future work in simulation includes 3D simulations and the
introduction of sensor and actuator noise. Once construction

of the real robot is completed, we will also test the two speed
controllers on it.

We plan to implement additional behaviors on top of the
basic locomotion. These include sitting and standing, lean-
ing against a wall or corner, and hopping up and down in-
clines.

We have done some preliminary work in simulation with
the incline problem, and have found that if the incline is suf-
ficiently small, no changes are needed to the controller. We
are exploring different strategies for negotiating steeper in-
clines.

Acknowledgments

The authors would like to thank Michael Poole for his work
on designing and constructing the physical robot frame,
presently under development, and Chad Jenkins for his ex-
pertise in training methods. The Vortex physics simulation
toolkit developed by CM Labs was used for the experiments
reported in this paper.

REFERENCES

[1] Marc Raibert, Legged Robots that Balance, MIT Press, Cambridge,
MA, 1986.

[2] Kale Harbick and Gaurav S. Sukhatme, “Controlling hopping height of
a pneumatic monopod,” in submitted to IEEE Intl. Conf. on Robotics
and Automation, 2002.

[3] M. Ahmadi and M. Buehler, “Stable control of a simulated one-legged
running robot with hip and leg compliance,” |EEE Transactions on
Robotics and Automation, vol. 13, no. 1, pp. 96-104, February 1997.

[4] G.Z. Zeglin and H.B. Brown, “Control of a bow leg hopping robot,” in
IEEE Intl. Conf. on Robotics and Automation, 1998.

[5] Joseph Prosser and Moshe Kam, “Control of hopping height for a one-

Apex Ht. (m) | Avg. Abs. Error (m/s) | Avg. % Error
Raibert 04 0.22 36.9
Controller 0.5 0.19 23.6
N. Net-based 0.4 0.03 8.3
Controller 0.5 0.04 12.3

AVERAGE ABSOLUTE AND PERCENT ERRORS IN SPEED.

TABLE Il

legged hopping machine,” Mobile Robots VII, vol. 1831, pp. 604-612,

November 1992.

[6] A.D’Souza, S. Vijayakumar, and S. Schaal, “Learning inverse kinemat-
ics,” in IEEE Intl. Conf. on Intelligence in Robotics and Autonomous

(71

(8]

Systems, 2001.

K. Levenberg, “A method for the solution of certain non-linear prob-
lems in least squares,” Quarterly Journal of Applied Mathematics, vol.

2,no. 2, pp. 164-168, 1944.

D. W. Marquardt, “An algorithm for least-squares estimation of non-
linear parameters,” Journal of the Society of Industrial and Applied
Mathematics, vol. 11, no. 2, pp. 431-441, 1963.

Forward Velocity (m/s)

Forward Velocity (m/s)

1.8

=
o)

=
S

=
N

[

o
o

0.4

0.2

1.8

1.6

1.4

=
N

[y

o
e

0.4

0.2

10 20 30 40 50 60 70 80 90
Time (s)

(a) PD controller.

100

10 20 30 40 50 60 70 80
Time (s)

(b) Neural network-based controller.

Fig. 5. Speed performance, apex height: 0.4 m.

90

Forward Velocity (m/s)

Forward Velocity (m/s)

-0.5

-0.5

10 20 30 40 50 60 70 80 90
Time (s)
(a) PD controller.
1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90
Time (s)

(b) Neural network-based controller.

Fig. 6. Speed performance, apex height: 0.5 m.

Q

Percent Error

Percent Error

250

200

150 -

100 -

_50 -

-100 ——

~150 ! ! ! ! ! ! ! ! !
(6] 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Desired Forward Velocity (m/s)

(a) PD controller.

200

150 -

100 -

50 -

_50 -

-100——

~150 ! ! ! ! ! ! ! ! !
(6] 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Desired Forward Velocity (m/s)
(b) Neural network-based controller.

Fig. 7. Percent error, apex height: 0.4 m.

Percent Error

Percent Error

200

150 -

100 -

_50 -

-100

-150

—200 ! ! ! ! ! ! ! ! !
(6] 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Desired Forward Velocity (m/s)

(a) PD controller.

250

200

150 -

100 -

50 -

-100

~150 ! ! ! ! ! ! ! ! !
(6] 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Desired Forward Velocity (m/s)
(b) Neural network-based controller.

Fig. 8. Percent error, apex height: 0.5 m.

