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Abstract. Leading algorithms for Boolean satisfiability (SAT) are based on ei-
ther a depth-first tree traversal of the search space (the DLL procedure [6]) or
resolution (the DP procedure [7]). In this work we introduce a variant of Breadth-
First Search (BFS) based on the ability of Zero-Suppressed Binary Decision Dia-
grams (ZDDs) to compactly represent sparse or structured collections of subsets.
While a BFS may require an exponential amount of memory, our new algorithm
performs BFS directly with an implicit representation and achieves unconven-
tional reductions in the search space.
We empirically evaluate our implementation on classical SAT instances difficult
for DLL/DP solvers. Our main result is the empirical Θ � n4 � runtime for hole-n
instances, on which DLL solvers require exponential time.

1 Introduction

Efficient methods to solve SAT instances have widespread applications in practice and
have been the focus of much recent research [16, 17]. Even with the many advances, a
number of practical and constructed instances remain difficult to solve. This is primarily
due to the size of solution spaces to be searched.

Independently from SAT, [9] explored Lempel-Ziv compression in exhaustive search
applications such as game-playing and achieved memory reductions by a small con-
stant factor. Text searches in properly indexed databases compressed using a Burrows-
Wheeler scheme were proposed in [8]. However, these works enable only a limited
set of operations on compressed data, and the asymptotic compression ratios are too
small to change the difficulty of search for satisfiability. A different type of compres-
sion is demonstrated by Reduced Ordered Binary Decision Diagrams (ROBDDs) and
Zero-Suppressed Binary Decision Diagrams (ZDDs) [13]. In general, Binary Decision
Diagrams implicitly represent combinatorial objects by the set of paths in a directed
acyclic graph. Complexity of algorithms that operate on BDDs is often polynomial in
the size of the BDD. Therefore, by reducing the size of BDDs, one increases the effi-
ciency of algorithms. There have been several efforts to leverage the power of BDDs
and ZDDs as a mechanism for improving the efficiency of SAT solvers. [4] [5] used
ZDDs to store a clause database and perform DP on implicit representations. [2] used
ZDDs to compress the containers used in DLL. Another method is to iteratively con-
struct the BDD corresponding to a given CNF formula [19]. In general this method has
a different class of tractable instances than DP [11]. Creating this BDD is known to
require exponential time for several instances [11], [19]. For random 3-SAT instances,
this method also gives slightly different behavior than DP/DLL solvers [12].



The goal of our work is to use ZDDs in an entirely new context, namely to make
Breadth-First Search (BFS) practical. The primary disadvantage of BFS — exponential
memory requirement — often arises as a consequence of explicit state representations
(queues, priority queues). As demonstrated by our new algorithm Cassatt, integrating
BFS with a compressed data structure significantly extends its power. On classical, hard
SAT benchmarks, our implementation achieves asymptotic speed-ups over published
DLL solvers. To the best of our knowledge, this is the first work in published literature
to propose a compressed BFS as a method for solving the SAT decision problem. While
Cassatt does not return a satisfying solution if it exists, any such SAT oracle can be used
to find satisfying solutions with at most �Vars � calls to this oracle.

The remaining part of the paper is organized as follows. Section 2 covers the back-
ground necessary to describe the Cassatt algorithm. A motivating example for our work
is shown in Section 3. In Section 4 we discuss the implicit representation used in Cas-
satt, and the algorithm itself is described in Section 5. Section 6 presents our experimen-
tal results. Conclusions and directions of our ongoing work are described in Section 7.

2 Background

A partial truth assignment to a set of Boolean variables V is a mapping t : V ��� 0 � 1 �
	�� .
For some variable v 
 V , if t � v ��� 1 then the literal v is said to be “true” while the literal
v̄ is said to “false” (and vice versa if t � v ��� 0). If t � v ����	 , v and v̄ are said not to be
assigned values. Let a clause denote a set of literals. A clause is satisfied by a truth
assignment t iff at least one of its literals is true under t. A clause is said to be violated
by a truth assignment t if all of its literals are false under t. A Boolean formula in
conjunctive normal form (CNF) can be represented by a set C of clauses.

2.1 Clause Partitions

For a given Boolean formula in CNF, a partial truth assignment t is said to be invalid if
it violates any clauses. Otherwise, it is valid. The implicit state representation used in
the Cassatt algorithm relies on the partition of clauses implied by a given valid partial
truth assignment. Each clause c must fall into exactly one of the three categories shown
in Figure 1.

We are going to compactly represent multiple partial truth assignments that share
the same set of assigned variables. Such partial truth assignments appear in the process
of performing a BFS for satisfiability to a given depth. Note that simply knowing which
variables have been assigned is enough to determine which clauses are unassigned or
not activated. The actual truth values assigned differentiate satisfied clauses from open
clauses. Therefore, if the assigned variables are known, we will store the set of open
clauses rather than the actual partial truth assignment. While the latter may be impos-
sible to recover, we will show in the following sections that the set of open clauses
contains enough information to perform a BFS.

Another important observation is that only clauses which are “cut” by the vertical
line in Figure 1 have the potential to be open clauses. The number of such cut clauses



– Unassigned Clauses:
Clauses whose literals are unassigned.

– Satisfied Clauses:
Clauses which have at least one literal sat-
isfied.

– Open Clauses:
Clauses which have at least one, but not all
of their literals assigned, and are not satis-
fied.
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Fig. 1. The three clause partitions entailed by a valid partial truth assignment. The vertical line
separates assigned variables (a through e) from unassigned variables ( f through j, grayed out).
We distinguish (i) clauses to the right of the vertical line, (ii) clauses to the left of the vertical
line, and (iii) clauses cut by the vertical line.

does not depend on the actual assigned values, but depends on the order in which vari-
ables are processed. This observation leads to the use of MINCE [1] as a heuristic
for variable ordering since it reduces cutwidth. MINCE was originally proposed as a
variable ordering heuristic to complement nearly any SAT solver or BDD-based appli-
cation. MINCE treats a given CNF as a (undirected) hypergraph and applies recursive
balanced min-cut hypergraph bisection in order to produce an ordering of hypergraph
vertices. This algorithm is empirically known to achieve small values of total hyper-
edge span. Intuitively, this algorithm tries to minimize cutwidth in many places, and
as such is an ideal complement to the Cassatt algorithm. Its runtime is estimated to be
O ��� V � C � log2V � , where V is the number of variables and C is the number of clauses in
a given CNF. By reducing the cutwidth in Cassatt, we obtain an exponential reduction
in the number of possible sets of open clauses. However, storing each set explicitly is
still often intractable. To efficiently store this collection of sets, we use ZDDs.

2.2 Zero-Suppressed Binary Decision Diagrams

In Cassatt we use ZDDs to attempt to represent a collection of N objects often in fewer
than N bits. In the best case, N objects are stored in O � p � logN ��� space where p � n �
is some polynomial. The compression in a BDD or ZDD comes from the fact that
objects are represented by paths in a directed acyclic graph (DAG), which may have
exponentially more paths than vertices or edges. Set operations are performed as graph
traversals over the DAG. Zero-Suppressed Binary Decision Diagrams (ZDDs) are a
variant of BDDs which are suited to storing collections of sets. An excellent tutorial on
ZDDs is available at [14].

A ZDD is defined as a directed acyclic graph (DAG) where each node has a unique
label, an integer index, and two outgoing edges which connect to what we will call T-
Child and E-child. Because of this we can represent each node X as a 3-tuple X � n � XT � XE �
where n is the index of the node X , XT is its T-Child, and XE is its E-Child. Each path
in the DAG ends in one of two special nodes, the 0 node and the 1 node. These nodes
have no successors. In addition, there is a single root node. When we use a ZDD we
will in reality keep a reference to the root node. The semantics of a ZDD can be defined
recursively by defining the semantics of a given node.
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Fig. 2. Steps Taken by Breadth-First Search

A ZDD can be used to encode a collection of sets by encoding its characteristic
function. We can evaluate a function represented by a ZDD by traversing the DAG be-
ginning at the root node. At each node X , if the variable corresponding to the index
of X is true, we select the T-Child. Otherwise we select with the E-Child. Eventually
we will reach either 0 or 1, indicating the value of the function on this input. We aug-
ment this with the Zero-Suppression Rule: we may eliminate nodes whose T � Child is
0. With these standard rules, 0 represents the empty collection of sets, while 1 repre-
sents the collection consisting of only the empty set. ZDDs interpreted this way have a
standard set of operations based on recursive definitions [13], including the union and
intersection of two collections of sets, for example.

3 A Motivating Example

� a � b �� ��� �
1

� b̄ � c �� ��� �
2

� d � e �� ��� �
3

� ā � b̄ � c̄ �� ��� �
4

� c � d̄ � e �� ��� �
5

3.1 Steps Taken by Breadth-First Search

In general, BFS expands nodes in its queue until reaching a violated clause, at which
point the search space is pruned. As a result, the number of nodes grows quickly.

The initial pass of the BFS considers the first variable a. Both a � 0 and a � 1
are valid partial truth assignments since neither violates any clauses. BFS continues
by enqueueing both of these partial truth assignments. In Figure 2, the contents of the
BFS Queue are listed as bit-strings. At Step 2, the BFS considers both possible values
for b. Because of the clause � a � b � , BFS determines that a � 0, b � 0 is not a valid
partial truth assignment. The remaining three partial truth assignments are valid, and
BFS enqueues them. At Step 3, because of the clause � ā � b̄ � c̄ � we know that a, b,
and c cannot all be true. The search space is pruned further because � b̄ � c � removes all
branches involving b � 1 � c � 0. At Step 4, the state space doubles.
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Fig. 3. Steps Taken by Cassatt

3.2 Steps Taken by Cassatt

The Cassatt algorithm performs a similar search, however partial truth assignments are
not stored explicitly. As a result, if two partial truth assignments correspond to the
same set of open clauses then only one of these will be stored. While the algorithm is
described in Section 5, here we demonstrate possible reductions in the search space. We
will call Cassatt’s collection of sets of open clauses the front.

Variable a appears in two clauses: clause 1, � a � b � and clause 4, � ā � b̄ � c̄ � . If the
variable a is assigned a � 1, then clause 1 becomes satisfied while making clause 4
open. If a � 0, then clause 1 becomes open. Because we cannot yet determine which
of these assignments (if any) will lead to to a satisfying truth assignment, it is neces-
sary to store both branches. The front shown in Figure 3, Step 1, is updated to contain
the two sets of open clauses which correspond to the two possible valid partial truth
assignments. Variable b appears in three clauses: clause 1, � a � b � , clause 2, � b̄ � c � ,
and clause 4, � ā � b̄ � c̄ � . These clauses are our new set of activated clauses. For the
first set, � 1 � , we consider both possible truth assignments, b � 0 and b � 1. Assigning
b � 0 satisfies clauses 2 and 4. However, it does not satisfy clause 1. We also see that
b corresponds to the end literal for clause 1. If we do not choose the value of b which
satisfies this clause, it will never be satisfied. As a result we cannot include this branch
in the new front. Note that realizing this only depends on noticing that b corresponds
to the end literal for some open clause. For b � 1 we see that clause 1 is satisfied, but
clauses 2 and 4 are not yet satisfied. So, � 2 � 4 � should be in the front after this step is
completed.

A similar analysis can be performed for the remaining set in the front, � 4 � . In Cas-
satt it is not necessary to consider these sets in succession; ZDD algorithms allow us to
perform these operations on multiple sets simultaneously. These sets of clauses, listed
in the front shown in Step 2, are all the state information Cassatt maintains. It is here
that this algorithm begins to differ substantially from a naive BFS. One of the sets in
the front is the empty set. This means that there is some assignment of variables which
could satisfy every clause in which any of these variables appear. As a result, there
is no need to examine any other truth assignment; the partial truth assignment which
leaves no open clauses is clearly and provably the best choice. As a result of storing
sets of open clauses, Cassatt prunes the search space and only considers the single node.



Whereas the traditional BFS needs to consider three alternatives at this point, Cassatt,
by storing open clauses, deduces immediately that one of these is provably superior. As
a result, only a single node is expanded. As seen in Step 2a, this effectively restructures
the search space so that several of the possible truth assignments are subsumed into a
single branch.

As Cassatt processes the third variable, c, it needs to only consider its effects on the
single, empty subset of open clauses. Since each new variable activates more clauses,
this empty subset once again, can potentially grow. Again, one possible variable choice
satisfies all activated clauses. This is shown in Step 3. As a result, Cassatt can once
again subsume multiple truth assignments into a single branch as indicated in Step 3a.

4 Advantages of Storing Open Clauses

If two partial truth assignments create the exact same set of open clauses, then clearly
space can be saved by only storing one of these subsets. This also cuts the search space.
Moreover, if a stored set of clauses A is a proper subset of another set of clauses B, then
the partial truth assignment corresponding to B is sub-optimal and can be discarded.
This is so because every clause which is affected by any partial truth assignment thus
far (every activated clause) has been considered when producing A and B. As a result,
there are no consequences to choosing the truth assignment which produces A over
the truth assignment which produces B. Every satisfying truth assignment based on the
partial truth assignment giving B corresponds to a satisfying truth assignment based on
A. These subsumption rules are naturally addressed by the ZDD data structure, which
appears both appropriate and effective as a compact data structure.

We use three ZDD operations originally introduced in [4]. The subsumed difference
XA  XB is defined as the collection of all sets in XA which are not subsumed by some set
in XB. Based on the subsumed difference operator, it is possible to define an operator
NoSub � X � as the collection of all sets in X which are not subsumed by some other set
in X . Finally, the subsumption-free union XA ! S XB is defined as the collection of sets in
XA ! XB from which all subsumed sets have been removed. For the sake of brevity, we
will not repeat the full, recursive definitions of these operators here, but only point out
that the operators introduced in [4] were shown for slightly different ZDD semantics
— to encode collections of clauses. Here we use the original ZDD semantics proposed
by Minato [13] — to encode collections of subsets. However, the definitions of opera-
tors themselves are unaffected. These operators provide a mechanism for maintaining a
subsumption-free collection of sets.

ZDDs are known to often achieve good compression when storing sparse collec-
tions. In general a collection of sets may or may not compress well when represented
by ZDDs. However in Cassatt our representation can be pruned by removing sets which
are subsumed by another set. Intuitively, this leads to a sparser representation for two
reasons: sets with small numbers of elements have a greater chance of subsuming larger
sets in this collection, and each subsumption reduces the number of sets which need to
be stored. By using operators which eliminate subsumed sets, then, we hope to improve
the chance that our given collection will compress well. In Cassatt this corresponds to
improved memory utilization and runtime.



A natural question to ask is whether the number of subsets to be stored (the front)
has an upper bound. An easy bound based on the cutwidth is obtained by noting that
for c clauses, the maximum number of incomparable subsets is exactly the size of the
maximal anti-chain of the partially ordered set 2c.

Theorem 4.1 [10, p. 444] The size of the maximal anti-chain of 2c is given by

"
c# c
2 $�% .

This simple upper bound does not take into account the details of Cassatt. Doing
this may yield a substantially tighter bound.

It should be clear from the example that simply by storing sets of open clauses,
Cassatt potentially searches a much smaller space than a traditional BFS. In general,
it cannot fully avoid the explosion in space. Although there are potentially many more
combinations of clauses than there are variables, Cassatt cannot examine more nodes
than a straightforward BFS. At each stage, Cassatt has the potential to reduce the num-
ber of nodes searched. Even if no reduction is ever possible, Cassatt will only examine
as many nodes as a traditional BFS.

5 Compressed Breadth-First Search

The Cassatt algorithm implements a breadth-first search based on keeping track of sets
of open clauses from the given CNF formula. The collection of these sets represents
the state of the algorithm. We refer to this collection of sets as the front. The algorithm
advances this front just as a normal breadth-first algorithm searches successively deeper
in the search space. The critical issue is how the front can be advanced in a breadth-first
manner and determine satisfiability of a CNF formula. To explain this, we will first be
precise about what should happen based on combining a single set of open clauses with
a truth assignment to some variable v. We will then show how this can be done to the
collection of sets by using standard operations on ZDDs.

Given a set of open clauses corresponding to a valid partial truth assignment t, and
some assignment to a single variable v & r, there are two main steps which must be
explained. First, Cassatt determines if the combination of t with v & r produces a new
valid partial truth assignment. Then, Cassatt must produce the new set of open clauses
corresponding to the combination of t with v & r. Since the front corresponds to the
collection of valid partial truth assignments, then if this front is ever empty (equal to
0), then the formula is unsatisfiable. If Cassatt processes all variables without the front
becoming empty then no clauses will be activated, but unsatisfied. Thus if the formula
is satisfiable, the front will contain only the empty set (equal to 1) at the end of the
search.

5.1 Detecting Violated Clauses

With respect to the variable ordering used, literals within a clause are divided into three
categories: beginning, middle, and end. The beginning literal is processed first in the
variable ordering while the end literal is processed last. The remaining literals are called
middle literals. A nontrivial clause may have any (nonnegative) number of middle lit-
erals. However, it is useful to guarantee the existence of a beginning and an end literal.



If a clause does not have at least 2 literals, then it forces the truth assignment of a vari-
able, and the formula can be simplified. This is done as a preprocessing step in Cassatt.
Cassatt knows in advance which literal is the end literal for a clause, and can use this
information to detect violated clauses. Recall that a violated clause occurs when all
the variables which appear within a clause have been assigned a truth value, yet the
clause remains unsatisfied. Thus only the end literal has the potential to create a vio-
lated clause. The value which does not satisfy this clause produces a conflict or violated
clause. This is the case since the sets stored in the front contain only unsatisfied clauses.
After processing the end variable, no assignment to the remaining variables can affect
satisfiability.

Determining if the combination of t and v & r is a valid partial truth assignment is
thus equivalent to considering if v corresponds to an end literal for some clause c in the
set corresponding to t. If the assignment v & r causes this literal to be f alse then all
literals in c are false, and combining t with v & r is not valid.

5.2 Determining the New Set of Open Clauses

Given a set of clauses S corresponding to some partial truth assignment and an as-
signment to a single variable v, all clauses in S which do not contain any literal cor-
responding to v’s should, by default, propagate to the new set S ' . This is true, since
any assignment to v does not affect these clauses in any way. Consider a clause not in
S containing v as its beginning variable. If the truth assignment given to v causes this
clause to be satisfied, then it should not be added to S ' . Only if the truth assignment
causes the clause to remain unsatisfied does it become an open clause and should be
added to S ' . Finally if a clause in S contains v as one of its middle variables then the
literal corresponding to this variable must again be examined. If the truth assignment
given to v causes this clause to become satisfied, then it should not be propagated to S ' .
Otherwise, it should propagate from S to S ' .

Table 1. New-Subset Rules

Beginning Middle End None

Satisfied Impossible No Action No Action No Action
Open Impossible if(t � l �)( 0) No Action S *,+ S *.- C

S * + S *
- C
Unassigned if(t � l �)( 0) Impossible Impossible No Action

S * + S *.- C

These rules are summarized in table 1. For a given clause and an assignment to some
variable, the action to be taken can be determined by where the literal appears in the



clause (column) and the current status of this clause (row). Here, “No Action” means
that the clause should not be added to S ' .

It should be noted that when an end variable appears in an open clause, no action
is necessary only with regard to S ' (it does not propagate into S ' ). If the assignment
does not satisfy this clause, then the partial truth assignment is invalid. However, given
that a partial truth assignment is valid then these clauses must become satisfied by that
assignment.

5.3 Performing Multiple Operations via ZDDs

Cassatt’s behavior for a single set was described in Table 1. However, the operations
described here can be reformulated as operations on the entire collection of sets. By
simply iterating over each set of open clauses and performing the operations in Table
1, one could achieve a correct, if inefficient implementation. However, it is possible to
represent the combined effect on all sets in terms of ZDD operations. In order to create
an efficient implementation, we perform these ZDD operations on the entire front rather
than iterating over each set.

To illustrate this, consider how some of the clauses in each subset can be violated.
Recall that if a clause c is violated, then the set containing c cannot lead to satisfiability
and must be removed from the front. The same violated clauses will appear in many
sets, and each set in the front containing any violated clause must be removed. Instead
of iterating over each set, we intersect the collection of all possible sets without any
violated clause with the front; all sets containing any violated clause will be removed.
Such a collection can be formulated using ZDDs.

More completely, a truth assignment t to a single variable v has the following effects:

– It violates some clauses. Let Uv/ t be the set of all clauses c such that the end literal
of c corresponds to v and is false under t. Then Uv/ t is the set of clauses which are
violated by this variable assignment.

– It satisfies some clauses. Let Sv/ t be the set of all clauses c such that the literal of c
corresponding to v is true under t. If these clauses were not yet satisfied, then they
become satisfied by this assignment.

– It opens some clauses. Let Av/ t be the set of all clauses c such that the beginning
literal of c corresponds to v and is false under t. Then Av/ t is the set of clauses which
have just been activated, but remain unsatisfied.

Note that each of these sets depends only on the particular truth assignment to v. With
each of these sets of clauses, an appropriate action can be taken on the entire front.

5.4 Updating Based on Newly Violated Clauses

Given a set of clauses Uv/ t which have just been violated by a truth assignment,
all subsets which have one or more of these clauses must be removed from the front.



Each subset containing any of these clauses cannot yield
satisfiability. We can build the collection of all sets which
do not contain any of these clauses. This new collection of
sets will have a very compact representation when using
ZDDs. Let U 'v/ t denote the collection of all possible sets of
clauses which do not contain any elements from Uv/ t . That
is, S 
 U 'v/ t � S 0 Uv/ t � /0. The ZDD corresponding to U 'v/ t
is shown in Figure 4.

In Figure 4, the dashed arrow represents a node’s E-
Child while a solid arrow represents a node’s T-Child. Be-
cause of the Zero-Suppression rule, any node which does
not appear in the ZDD is understood not to appear in any
set in the collection. As a result, to create a ZDD with-
out clauses in Uv/ t , no element in Uv/ t should appear as a
node in the ZDD for U 'v/ t . Because we look at a finite set
of clauses C, we wish to represent the remaining clauses
C 1 Uv/ t as don’t care nodes in the ZDD. To form the don’t
care nodes, we simply create a ZDD node with both its T-
child and its E-child pointing to the same successor. The
resulting ZDD has the form shown in Figure 4a. When we
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Fig. 4: (a) The U *v 2 t ZDD. (b)
The A *v 2 t ZDD

take front & front 0 U 'v/ t we will get all subsets which do not contain any clauses in
Uv/ t . As a result, the front will be pruned of all partial truth which become invalid as a
result of this assignment.

Instead of including all clauses in C 1 Uv/ t , we can further reduce this operation by
including only clauses within the cut. Including nodes to preserve clauses outside the cut
is superfluous. The ZDD representing U 'v/ t can thus be created containing O � cutwidth �
nodes in the worst case.

5.5 Updating Based On Newly Satisfied Clauses

Consider a clause which has just been satisfied and appears somewhere in the front.
Since the front consists of sets of activated, unsatisfied clause, then it must have been
open (unsatisfied) under some partial truth assignment. However, this occurrence has
just been satisfied. As a result, every occurrence of a satisfied clause can simply be
removed entirely from the front.

for each c 
 Sv/ t do
Temp0 & Subset0(Front, c)
Temp1 & Subset1(Front, c)
Front & Temp0 ! Temp1

Fig. 5: Pseudocode for 3 abstraction

Among other operations, the standard
operations on ZDDs include cofactoring, or
Subset0 and Subset1. Subset0(Z, a) creates
the collection of all sets in the ZDD Z with-
out a given element a, while Subset1(Z, a)
creates the collection of all sets in a ZDD Z
which did contain a given element a. How-
ever, the element a is not present in any of

the ZDDs returned by either Subset0 or Subset1. As a result, these operations can be
used to eliminate a given element from the front. This idea is illustrated in the pseu-



docode in Figure 5.
The combined effect of these operations on a ZDD is called existential abstraction

[14] and can be implemented with a single operation on the ZDD [15].

5.6 Updating Newly Opened Clauses

Consider a set of newly opened clauses Av/ t . Each set in the front should now also
include every element in Av/ t . We use the ZDD product to form the new front by letting
A 'v/ t 4 � Av/ t � and finding front 5 A 'v/ t .

When we build the ZDD A 'v/ t , only those clauses in Av/ t need to appear as nodes

in A 'v/ t . This is because of the Zero-Suppression rule: nodes not appearing in the
ZDD A 'v/ t must be 0. The ZDD for
A 'v/ t is simple as it only contains
a single set. The form of all such
ZDDs is shown in Figure 4b. When
the ZDD product operation is used,
front 5 A 'v/ t will form the new front.

In many cases, a shortcut can
be taken. By properly numbering
clauses with respect to a given vari-
able ordering, at each step we can
ensure that each clause index is
lower than the minimum index of
the front. In this case, all clauses
should be placed above the cur-
rent front. The front will essentially
remain unchanged, however new
nodes in the form of Figure 4b will
be added parenting the root node of
the front. In this case, the overhead
of this operation will be linear in
the number of opened clauses.

CASSATT(Vars, Clauses)
Front & 1
for each v 
 Vars do

Front† & Front
Form sets Uv/ 0 � Uv/ 1 � Sv/ 0 � Sv/ 1 � Av/ 0 � Av/ 1
Build the ZDDs U 'v/ 0 � U 'v/ 1

Front & Front 0 U 'v/ 1
Front† & Front† 0 U 'v/ 0
Front &76 Abstract(Front, Sv/ 1)
Front† &86 Abstract(Front†, Sv/ 0)

Build the ZDDs A 'v/ 0 � A 'v/ 1
Front & Front 5 A 'v/ 1
Front† & Front† 5 A 'v/ 0

Front & Front ! S Front†

if Front == 0 then
return Unsatisfiable

if Front == 1 then
return Satisfiable

Fig. 6: Pseudocode for the Cassatt Algorithm

5.7 Compressed BFS Pseudocode

Now that we have shown how the front can be modified to include the effects of a single
variable assignment, the operation of the complete algorithm should be fairly clear. For
each variable v, we will copy the front at a given step, then modify one copy to reflect
assigning v � 1. We will modify the other copy to reflect assigning v � 0. The new front
will be the union with subsumption of these two.

ZDD nodes are in reality managed via reference counts. When a ZDD (or some
of its nodes) are no longer needed, we decrement this reference count. When we copy
a ZDD, we simply increment the reference count of the root node. Thus, copying the
front in Cassatt takes only constant overhead. The pseudocode of the Cassatt algorithm
is shown in Figure 6.



Here, we order the steps of the algorithm according to the MINCE ordering, applied
as a separate step before Cassatt begins. We initially set the front to the collection con-
taining the empty set. This is consistent, because trivially there are no open clauses yet.
Recall that after all variables are processed, either the front will contain only the empty
set (be 1), or will be the empty collection of sets (be 0).

6 Empirical Validation

We implemented Cassatt in C++ using the CUDD package [18]. We also used an exis-
tential abstraction routine from the Extra library [15]. For these results, we disabled
reordering and garbage collection. These tests were performed on an AMD Athlon
1.2GHz machine, with 1024MB of 200MHz DDR RAM running Debian Linux. We
also include performance of Chaff [16] and GRASP [17], two leading DLL-based SAT
solvers. We also include results of ZRes, a solver which performs the DP procedure [7]
while compressing clauses with a ZDD. All solvers were used with their default config-
urations, except ZRes which requires a special switch when solving hole-n instances.
All runs were set to time out after 500s.

We ran two sets of benchmarks which are considered to be difficult for traditional
SAT solvers [3]. The hole-n family of benchmarks are come from the pigeonhole prin-
ciple. Given n � 1 pigeons and n holes, the pigeonhole principle implies that least 2
pigeons must live in the same hole. The hole-n benchmarks are a CNF encoding of the
negation of this principle, and are unsatisfiable as they place at most 1 pigeon in each
hole. The number of clauses in this family of benchmarks grows as Θ � n3 � while the
number of variables grows as Θ � n2 � . For hole-50, there are 2550 variables and 63801
clauses. The Urquhart benchmarks are a randomly generated family relating to a class
of problems based on expander graphs [20]. Both families have been used to prove
lower bounds for runtime of classical DP and DLL algorithms and contain only un-
satisfiable instances. [3] shows that any DLL or resolution procedure requires Ω � 2n 9 20 �
time for hole-n instances. Figure 7 empirically demonstrates that Cassatt requires Θ � n4 �
time for these instances. This does not include time used to generate the MINCE vari-
able ordering or I/O time.

The runtimes of the four solvers tested on instances from hole-n are graphed in
Figure 7a. The smallest instance we consider is hole-5; Cassatt efficiently proves un-
satisfiability of hole-50 in under 14 seconds. Figure 7b plots the runtimes of Cassatt on
hole-n vs. n for n : 50 on a log-log scale. We also include a plot of cn4 with a constant
set to clearly show the relationship with the empirical data (on the log-log scale, this
effectively translates the plot vertically).

The Urquhart-n instances have some degree of randomness. To help compensate
for this, we tested 10 different randomly generated instances for each n, and took the
average runtime of those instances which completed. Memory appears to be the limiting
factor for Cassatt, rather than runtime; it cannot solve one Urq-8 instance, while quickly
solving others. With respect to the DIMACS benchmark suite, Cassatt efficiently solves
many families. Most aim benchmarks are solved, as well as pret, and dubois instances.
However, DLL solvers outperform Cassatt on many benchmarks in this suite.
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Fig. 7. (a) Runtime of four SAT solvers on hole-n. (b) Cassatt’s runtime on hole-
n. Cassatt achieves asymptotic speedup over three other solvers

Table 2. Benchmark times and completion ratios for Urquhart-n. Timeouts were set to 500s

Urq-n Average Cassatt Chaff [16] ZRes [5] Grasp [17]
# Vars # Clauses % Solved Avg % Solved Avg % Solved Avg % Solved Avg

3 44.6 421.2 100% .07s 50% 139s 100% .20s 0% -
4 80.2 781.4 100% .39s 0% - 100% .57s 0% -
5 124.4 1214.4 100% 1.32s 0% - 100% 1.35s 0% -
6 177.4 1633.6 100% 4.33s 0% - 100% 2.83s 0% -
7 241.8 2261.4 100% 43.27s 0% - 100% 5.39s 0% -
8 315.2 2936.6 90% 43.40s 0% - 100% 9.20s 0% -

7 Conclusions

In this paper, we have introduced the Cassatt algorithm, a compressed BFS which solves
the SAT decision problem. It leverages the compression power of ZDDs to compact
state representation. Also, the novel method for encoding the state uses subsuming se-
mantics of ZDDs to reduce redundancies in the search. In addition, the runtime of this
algorithm is dependent on the size of the compressed, implicit representation rather
than on the size of an explicit representation. This is the first work to attempt using a
compressed BFS as a method for solving the SAT decision problem. Our empirical re-
sults show that Cassatt is able to outperform DP and DLL based solvers in some cases.
We show this by examining runtimes for Cassatt and comparing this to proven lower
bounds for DP and DLL based procedures.

Our ongoing work aims to add Boolean Constraint Propagation to the Cassatt algo-
rithm. With Constraint Propagation, any unsatisfied clause which has only one remain-
ing unassigned variable forces the assignment of that variable. It is hoped that taking
this into account will give a reduction in memory requirements and runtime. Another
direction for future research is studying the effects of SAT variable and BDD orderings
on the performance of the proposed algorithm.
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