On the Recommending of Citations for Research Papers

Sean M. McNeg, Istvan Albert, Dan Cosley, Prateep Gopalkrishnan,
Shyong K. Lam, Al Mamunur Rashid, Joseph A. Konstan, John Ried|

GroupL ens Research Project
Department of Computer Science and Engineering
University of Minnesota
Minneapolis, MN 55455 USA
{mcnee, ialbert, cosley, prateep, lam, arashid, konstan, riedl} @cs.umn.edu

ABSTRACT

Collaborative filtering has proven to be valuable for
recommending items in many different domains. In this
paper, we explore the use of collaborative filtering to
recommend research papers, using the citation web
between papers to create the ratings matrix. Specificaly,
we tested the ability of collaborative filtering to
recommend citations that would be suitable additional
references for a target research paper. We investigated six
algorithms for selecting citations, evaluating them through
offline experiments against a database of over 186,000
research papers contained in Researchindex. We aso
performed an online experiment with over 120 users to
gauge user opinion of the effectiveness of the algorithms
and of the utility of such recommendations for common
research tasks. We found large differences in the accuracy
of the algorithms in the offline experiment, especially when
balanced for coverage. In the online experiment, users felt
they received quality recommendations, and were
enthusiastic about the idea of receiving recommendations
in thisdomain.

Keywords
Collaborative Filtering, Recommender Systems, Citation
Graphs, Social Networks, Digital Libraries, Researchlndex

INTRODUCTION

People face the problem of information overload every day,
a problem that is only getting worse. As more and more
people publish information on the World Wide Web, it
becomes increasingly difficult to find needed information
quickly.

By recommending items to users based on previously
expressed user preferences, recommender systems help
users navigate and control complex information spaces.
The MovieLens recommender (www.movielens.org), for
example, helps users of the system find movies to watch
solely based on their opinions of films.

Collaborative Filtering (CF) is a widely used technique in
recommender systems. CF works by matching users in a

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or afee.

CSCW 02, November 16-20, 2002, New Orleans, Louisiana, USA.
Copyright 2002 ACM 1-58113-560-2/02/0011...$5.00.

system based on the similarity of each user's past
preferences. Each user has a ‘neighborhood’ of other users
with similar opinions about items in the system. This
neighborhood can be used to generate recommendations by
suggesting items to the user that he has not viewed but that
his neighbors have viewed and rated highly.

Collaborative filtering has severa limitations. One of the
most important is the startup problem [15]. When a CF
system is first created, there are many items in the system,
few users in the system, and no ratings. Without ratings,
the system cannot generate recommendations and users see
no benefit. Without users, there is no way for new ratings
to be entered into the system. When applying CF to a
domain, it is valuable to seek preexisting data that can be
used to seed such a database of ratings. In the case of
Movielens, the freely available EachMovie dataset was
used to “jump start” the system [7].

Collaborative filtering makes use of the relationships found
between people, an approach that fits nicely with the idea
that humans are fundamentally social creatures. One
conseguence of our sociability is that in our interactions
with other people, we create social networks. These
networks can be personal, professional, or political, can
have varying importance on peopl€’s lives, and have been
studied in detail by sociologists, psychologists, and
physicists, among others [17]. While studying direct
human-human social networks is extremely important, it is
also worthwhile to study the social networks of artifacts,
especialy when these networks directly relate people and
their artifacts together.

We are interested in how CF can be applied in one of these
social networks of artifacts: the network of research papers.
The citations between research papers form a graph that
can be viewed as a social network known as a citation web.
For any given paper, it is possible to follow the citation
web to see what papers cite it and what papers are cited by
it. Thisdata can be mapped onto a CF framework and used
to help overcome the startup problem [15].

Finding Research Papers

Searching for related work can be tedious and it is possible
to miss important developments in areas outside a
researcher’'s specialty. Many searches for related work
consist of starting with a small number of initial papers and
navigating the citation web near those papers.
Researchindex [12] provides an interface to the citation

web for computer science research papers. Search engines
such as Google and AltaVista also help researchers find
related work.

With these drategies, however, it is likely that some
important related work will be missed: Researchindex is
unable to effectively scan the entire citation web to find
connections between papers'. Search engines, while able to
scan all documents for relevant text, do not use semantic
information, such as paper citations, in their results. We
hypothesize that recommender systems, especially those
based on collaborative filtering, will discover more
powerful relationships among the citation web of research
papers than the above methods for searching.

We chose to use Researchindex as a test bed for our
exploration as it provides severa advantages.
Researchindex has spent years developing automatic
citation indexing techniques that work on the domain of
research papers [11]. They have demonstrated effective
citation processing heuristics both for extracting citations
from research papers, and for matching those citations with
similar citations in other research papers. They have
become a frequently visited and valuable resource to the
research community.

Contributions
We provide three contributions to the fields of
recommender systems and collaborative filtering.

First, we demonstrate four ways to apply collaborative
filtering to the domain of research papers using the citation
web that exists between papers. Several of these
algorithms differ from conventional approaches to
collaborative filtering. None of these approaches suffer
from the collaborative filtering startup problem.

Second, we provide an offline experimental evaluation of
the predictive quality of the four collaborative filtering-
based agorithms along with two other recommendation
algorithms in the domain of research papers.

Third, we provide an online experimental evaluation of
user experiences with these six recommenders. We assess
user perceptions of the relevance and novelty of the
resulting recommendations, overall user satisfaction, and
user opinion of the usefulness of the resulting system.

The outline of the rest of the paper is as follows. We first
discuss related work in the fields of collaborative filtering,
citation indexing, and socia networks. We then talk about
the citation web of research papers, and how we
implemented our CF agorithms in that domain. Next, we
describe our experiments, starting first with the specific
algorithms we tested and continuing with detailed
descriptions and analyses of both our offline and online

! Citations may be undercounted in Researchindex due to
imperfections in the process of automatic citation
indexing. Citations may aso be undercounted due to
copyright restrictions.

experiments. We conclude with a discussion of the
applicability of collaborative filtering to the domain of
research papers.

RELATED WORK

Collaborative Filtering

In the field of collaborative filtering, both Herlocker et al.
[7] and Breese et a. [1] have provided overviews and
frameworks for evaluating CF algorithms. Many
algorithms beyond the original k-nearest neighbor
algorithm [15] have been proposed and used for
collaborative filtering. These include item-based
agorithms [16] and model-based agorithms such as
Bayesian networks [1] and clustering [1]. Researchers
have experimented with CF systems in a wide variety of
domains, including Usenet news [15, 19], jokes [6], movies
[7, 8] and music [18]. Collaborative filtering has succeeded
in helping usersin all of these domains.

ReferralWeb combined collaborative filtering, searching,
social networks, and social networks of artifacts to create a
recommender system to refer people with common interests
to each other inside a pre-existing social network [10]. Our
work extends ReferralWeb by exploring ways to directly
apply CF to social networks themselves.

Most CF domains have independent items with relatively
thin relationships to each other and little pre-existing
ratings data. Research papers start with the rich web of
citation relationships among papers. Applying CF to this
domain successfully requires that the algorithms be
modified to interpret the citation web data effectively.

Citation Indexing

By introducing automatic citation indexing [11],
Researchindex was able to quickly create a large online
citation web of Computer Science research papers [2, 12].
Automatic citation indexing works by using a series of
heuristics to process documents. We are exploring
techniques through which collaborative filtering may be
able to improve the utility of citation indexing systems such
as Researchindex.

Woodruff et a. have a recommender algorithm which
“fuses text and citation data’ to create recommendations
inside a single digital book [20]. Hybrid filtering
algorithms such as this, which combine both semantic and
collaborative information, may have great potential applied
to the field of research papers. However, we do not study
such algorithms here.

Social Networks

Using the references found in research papers, it is possible
to create citation webs that reflect professional social
networks between researchers. Librarians and information
professionals have studied the creation of these webs and
ways to index them for years [3, 5]. In particular, many
people have studied the connections between research
papers and authors of research papers [13]. We are adding
to this work by investigating how research papers directly
relate to each other as opposed to the relationships that
exist between papers and authors, and how these paper-to-

paper relationships can be exploited to create a system to
recommend papers to authors.

RECOMMENDER SYSTEMS AND RESEARCH PAPERS
We draw a subtle but important distinction between the
idea of a citation and that of a paper. A citation represents
aresearch paper for which we only have areference (i.e, a
paper has cited this citation, but we do not possess the
paper which corresponds to the citation). A paper is a
citation for which we have access to the full text, including
the paper’s citation list. Thus, for a paper we have alisting
of al the citations that it references, some of which may
also be papers in our dataset but al of which must be
citations in our dataset. It should be noted that a paper can
exist without a citation. It would imply that the full text of
the paper is in the system, but there is insufficient
knowledge of its publication status, authors, etc. to create a
citation.

Integrating CF into the domain of research papers
Standard CF algorithms work by viewing a dataset as a
ratings matrix. Columns of the matrix represent ‘items’ in
the CF environment, while rows represent users. Each
entry in the matrix is the user’s rating of a particular item.
These ratings are gathered from users either implicitly,
such as through purchase records and browsing history, or
explicitly, by asking users to rate the items. Collaborative
filtering predicts which values would appear in blank spots
in this matrix by comparing the similarities of either the
rows (users) or the columns (items) in the matrix.

In order to perform collaborative filtering on the domain of
research papers, we need to map the citation web onto a
collaborative filtering ratings matrix. There are severa
ways to create a collaborative filtering ratings matrix from
the citation web between research papers.

The first way is to consider an analogy to MovielLens and
other current collaborative filtering systems. In such a
system, citations would be the ‘items’ in the matrix, while
real people would be the ‘users who rate papers. This
approach does not use the citation web and would suffer
from the startup problem while collecting an initial set of
ratings. We instead chose to directly mine the citation web.

An alternative approach is to make paper authors the
‘users’ and keep citations as ‘items.’ In this ratings matrix,
each author would “vote” for the papers that she has cited.
By using the citation web to populate the matrix, this
mapping does not suffer from the startup problem. Thisis
the method that has been explored before by Kautz et al.
[10] and Newman [13].

This approach suffers from a generality problem. Many
authors have written papers in several different fields over
the course of their careers. For example, Ben Shneiderman
has written many papers about human computer interaction
and user interface design. However, he started his career
with papers about FORTRAN and has also written severa
papers about Jewish heritage and history. With many
prolific authors in the system such as Ben Shneiderman, it
might be difficult to find a set of authors that would

describe your information need. Imagine a user submitting
as input a list of papers on user interfaces, and receiving
recommendations for papers on Jewish history. This
serendipity is useful in many domains, exposing users to
items they might not otherwise consider, but may not be as
useful in the context of research papers.

Instead of using an author’s list of citations, we chose
another mapping which uses the citation lists from
individual papers. Here, a paper would represent a ‘user’ in
the matrix and a citation would represent an ‘item.” Each
paper would then vote for the citations found in its
references list. This mapping uses the citation web to
populate the ratings matrix and therefore does not suffer
from the startup problem. This mapping aso does not
suffer from the loss of specificity that could occur with the
author-citation mapping.

By having the ‘users be papers, we are guaranteed that
every ‘user’ in the system provides ratings information in
the form of their votes. This allows us to create our ratings
matrix without any startup problems. These ‘users’ will
also never add more votes after the paper is first entered.
This is in contrast to most CF environments where it is
expected that users will add more ratings information over
time. It is aso expected that the citation lists will be of
high quality, which frees the system from ratings
consistency and ‘rogue user’ issues. This is the mapping
that will use.

There are other mappings worth considering. For instance,
there is the mapping where both the ‘users’ and ‘items’ in
the ratings matrix are citations. In this matrix, a rating
between the two would be some measure of co-citation
between the two elements. A basic co-citation metric is a
count of the number of times the two citations appear
together in areferenceslist on a paper. This measure of co-
citation is related to the item-item collaborative filtering
algorithm [16], which has been very successful in other
domains. We include a co-citation agorithm as an
aternative in our experiments.

Recommender Algorithms

Each of the six algorithms below receives a “basket” of
citations as input and returns a ranked list of recommended
citations. In our experiments, the basket consists of the
citations made by a “target paper” for which we
recommend other citations the author may wish to know
about. The algorithms do not recommend items in the
basket. The Google and Citation Graph Search agorithms
use additional information (the title and abstract of the
target paper) not used by the CF-based methods.

Collaborative Filtering Algorithms

We use the following four CF algorithms in our
experiments. There are many other possible CF algorithms
that we chose to not include (e.g. see[1, 7]).

Co-Citation Matching

Co-citation Matching works by counting co-citations. For
each citation in the basket, the algorithm counts the number
of times other citations were co-cited with it. The

agorithm recommends citations with the highest total co-
citations summed over all of the basket items.

User-Item CF

User-Item CF is the origina k-Nearest Neighbor CF
algorithm [15]. Given the ratings matrix discussed earlier,
the User-Item algorithm compares papers (rows) in the
matrix to create a neighborhood of the most similar papers
to the target paper. Since citations are binary (either a
paper is cited or not), the algorithm uses a cosine similarity
metric. The algorithm counts the number of times
neighbors make a citation, with the count weighted by the
similarity of each neighbor to the target paper. The
algorithm recommends citations with the highest weighted
counts. We used the freey avalable Suggest
recommendation engine for our implementation of this
algorithm [9].

Item-Item CF

Instead of building neighborhoods among users, Item-Item
CF ‘flips User-Item collaborative filtering by comparing
similar items [16]. The Item-Item algorithm compares
citations (columns) in the ratings matrix to create a
neighborhood, an ‘item’ neighborhood, of the closest
citations to each citation in the basket. Again, we use
Suggest for the implementation with a simple cosine
similarity metric.

Naive Bayesian Classifier

The Naive Bayesian classifier [1, 4] calculates probabilities
that any given citation in the dataset is related to the input
basket. The algorithm sorts the citations by probability and
recommends citations from highest to lowest probability.
The classifier is trained on citation lists from the dataset.
Even in domains where the naive Bayes principle does not
hold, naive Bayesian classifiers still work remarkably well
[4].

Non-Collaborative Filtering Algorithms

There are many other algorithms we could use as baselines.
We chose two algorithms that we feel approximated how
researchers look for relevant citations.

Localized Citation Graph Search

The Citation Graph Search uses keyword similarity
between the target paper’s abstract and the titles of papers
nearby in the citation graph. For atarget paper, it makes a
list of papers that cite the target, papers co-cited with the
target, and papers cited by items in the basket. The
algorithm uses TH/IDF term weighting to match the titles of
these nearby citations against the title and abstract of the
paper in question, and returns recommendations sorted by
relevance.

Keyword Search (‘Google’ Baseline)

The title of the paper in question is sent as a query to the
Google search engine, restricted to results that appear in
Researchindex. The algorithm recommends papers in the
order returned by Google.

EXPERIMENTS
We performed two different experiments to see how the six
algorithms would perform in the domain of research

papers. In the offline experiment, we were interested in
studying the ability of collaborative filtering methods to
find missing citations. In the online experiment we used
human subjects and focused on collecting user opinion on
the quality and usefulness of predictions made by our
algorithms.

OFFLINE EXPERIMENT

The offline experiment tests whether our algorithms are
useful for predicting specific relevant citations for a given
paper.

We started with a dataset based on the over 500,000
research papers available through Researchindex. In order
to make that data more manageable for our algorithms, we
chose to reduce this dataset by dropping papers that
contained fewer than two citations and by dropping
citations that were cited less then two times. The
assumption when doing so was that these papers and
citations do not contain enough ties to the rest of the dataset
and thus only introduce noise in a CF framework. About
186,000 papers and 485,000 citations remained after
removing these poorly connected papers. Papers that
remained had an average of 16 connections to other items,
either papers or citations, in the dataset.

Offline Experimental Design

This experiment consisted of removing citations from the
test dataset and then attempting to predict those missing
citations. For each paper in the test dataset, we randomly
removed one citation from that paper’s references list. The
remaining citations were used to generate a list of
recommended citations. We then found the rank of the
removed citation in the list of recommendations. This
protocol is similar to the “All but one” protocol in [1], but
we also include coverage when calculating the prediction
accuracy.

We divided our dataset into training and test datasets at a
90% to 10% ratio in the following manner: For 90% of the
papers we wrote their citations into the training dataset. For
the remaining 10% of the papers, we removed one citation
to create a test case for the test dataset. We included the
incomplete citation lists from the test cases in the training
dataset.

We performed a 10-fold cross validation for this
experiment, where in each fold we randomly assigned data
into either the test or training datasets. Each
recommendation algorithm was run with all of the datasets.

The experiment has some limitations. The most significant
one was that our recommendation algorithms might
discover citations that are more relevant than the one held
out. Such citations may have not been included in the
paper’'s references list because of limits on space or
because they overlapped with other references, possibly the
one left out. However, we feel that authors generally do a
good job selecting citations for their papers, so we expected
the removed citation to be recommended.

Another factor to consider was that our recommendation
agorithms could recommend citations that did not exist
when the paper in question was written. To dea with this
problem, we filtered out recommendations with a
publication year later than that of the target paper.

Offline Experiment Algorithms

Five of our six agorithms were used for the offline
experiments. We did not include Google Baseline because
it would have been an unfair and heavy use of Googl€e's
search engine.

Offline Experiment Metrics

We examine three metrics for this experiment: rank,
coverage, and effective rank. We define rank as the
position of the test citation in the filtered recommendation
list. Rank is a proxy for user utility, since users prefer to
find relevant results earlier. In this context, rank is also
similar to a precision metric from information retrieval
applications.

Coverage is the percentage of the time that an algorithm is
able to successfully make a recommendation. Normally,
this means that the algorithm was able to make some
recommendations. In this experiment, we define a
“successful” recommendation as one that includes the test
citation. Asacomplement to rank, coverage is similar to a
recall metric from information retrieval.

Since users are most interested in how much value they will
get from an algorithm in practice, we calculate an effective
rank metric that scales the recommendation percentage by
coverage for each rank tested. When measuring the
percentage of times a recommender returned an item below
a certain rank, effective rank penalizes recommenders for
those situations it was unable to recommend any item at all.
Thus, the effective rank metric, as a combination of rank
and coverage, is similar to the F1 or other combination
metrics found in information retrieval.

Offline Experiment Results

Figure 1 shows the performance of each recommender at
recommending the removed citation within itstop 1, 10, 20,
30, or 40 recommendations. Item-Item, User-Item, and
Graph Search al perform substantially better than either the
Co-citation or Bayesian recommenders.

However, Figure 1 does not take coverage into account.
The five recommenders vary greatly in their coverage. The
Bayesian recommender can eventually recommend 100
percent of the removed citations. Localized Graph Search,
on the other hand, only searches a small part of the citation
graph, generating predictions for only 28.1% of these
citations. Item-item (51.3%), Co-Citation (62.4%), and
User-item (67.5%) fall between these two extremes.

Figure 2 reveals that taking coverage into account by using
the effective rank metric described earlier greatly changes
the relative performance of the recommenders. Graph
Search falls to the bottom, while Naive Bayesian improves
to the middle of the pack. User-ltem and ltem-ltem
continue to lead al recommenders, with User-ltem’s

Recommendable Removed Citations
Recommended Before or at Rank

Percentage

L

1 10 20 30 40

‘DCo—citation BItem-item NUser-item BGraph Search BBayesian ‘

Figure 1. For removed citations that an algorithm
was able to recommend, the percentage of citations
recommended first, and in the top 10, 20, 30, or 40
by each algorithm

greater coverage putting it above the rest. The differences
between the User-Item and Item-Item recommenders versus
the other three were statistically significant at all ranks.

Offline Experiment Discussion

Graph Search performed well on the papers it was able to
recommend for, but based on its coverage, it was “cherry-
picking” easy-to-recommend test cases. This emphasizes
the importance of the effective rank results.
Recommendation algorithms must both provide high
quality recommendations, and be able to provide them over
as much of the dataset as possible.

Our test cases were slightly biased toward oft-cited papers,
because papers that were cited more often were more likely
to be test cases. Algorithms that are better at
recommending papers that are cited many times had an
advantage.

ONLINE EXPERIMENT

While the offline experiments allowed us to test the
effectiveness of our algorithms at a coarse level, it could
not assess the value of the recommended citations. What if
an algorithm recommended better or equivalent citations?
We felt that only an experiment with real people could
provide us with that information. We used the offline
experiment dataset for the online experiment as well.

Online Experimental Design

We created an online survey for authors of papers in
Researchindex to rate the relevance of citations
recommended for a paper they had written. We focused on
authors because we wanted people who were intimately
familiar with a paper to make the judgments about our
recommendations. We did not attempt to verify that a
subject in the study was actually the author they claimed to
be, as we felt there was little incentive for peopleto lie.

2 Unless noted otherwise, significance tests are at p < 0.05.

Removed Citations Recommended
Below or at Rank

A\

Percentage

1 10 20 30 40

‘l:lCo—citation BItem-item NUser-item BGraph Search BBayesian ‘

Figure 2: For all removed citations, the per centage of
citationsrecommended first, and in the top 10, 20, 30,
or 40 by each algorithm

Subjects were invited to our survey through a link from
Researchindex. After consenting to participate, we asked
each user for her name, as it would usually appear in a
paper. We then searched for papersin our test dataset that
the author had written and asked the author to choose a
paper. Each author was randomly assigned to one of our
six recommendation algorithms.

The algorithms generated a list of five recommended
citations that were not written by the subject. We felt that
recommending an author’'s own papers would not be
helpful for this experiment since few authors forget to cite
their own work.

Sometimes an algorithm could not produce a
recommendation list for a given paper. If this happened,
we dynamically reassigned the subject to other
recommendation algorithms until we were able to generate
recommendations. Data from these subjects is not included
below, as we were afraid that an algorithm’s inability to
produce recommendations for a paper might indicate that it
was a“hard” paper to recommend for.

The Survey

For each recommended citation, the subject answered the
following two questions: “How relevant is this citation to
your paper and its related work?’ with the scale: Relevant
and a good addition, Relevant but redundant, In the same
field but not relevant, In a different field and not relevant,
and No Answer, and “How familiar are you with this
citation?” with the scale: | have cited this myself, | have
read this but not cited it, | have heard of this but not read it,
| do not know this at all, and No answer.

The survey provided a link to the subject’s original paper
and links to the Researchindex entry for each of the
recommended citations so that authors could investigate
citations that they were not familiar with.

After evaluating all five citations, we asked the subject
about the citations as a whole. These questions were on a

five-point scale of Excellent, Good, Fair, Poor, and
Terrible. We asked about the overal quality, usefulness,
and novelty of the recommendations. We also asked for an
overall rating of the recommendations, “al things
considered”.

Finaly, we asked two questions about whether the
recommendations would be suitable for finding related
work and generating reading lists. These questions used a
scale consisting of Definitely Yes, Probably Yes, Maybe,
Probably Not, and Definitely Not.

Subjects were also given an opportunity to provide extra
comments they might have had about the experiment.

Table1: Number of subjectsfor each recommender

Algorithm Users
Co-Citation 23
User-ltem CF 31
Iltem-ltem CF 30
Naive Bayesian 19
Local Graph Search 26
Google 28

Online Experiment Algorithms
We used all six algorithmsin our online experiment.

Online Experiment Metrics

The answers for each question were tallied and expressed
as percentages. For some questions we merged answers
from multiple categories into baskets. For example, a
‘relevance’ basket would include both ‘relevant and a good
addition’ and ‘relevant but redundant’, but not include the
other possible answers for that question.

Online Experiment Results

Table 1 shows the number of users who received
recommendations from each recommendation algorithm.
Table 2 shows the overall user opinion from the online
experiments.

Figures 3 and 4 show users’ judgment of the relevance and
novelty of recommendations they received. Both figures
use the basketing approach described in the metrics section.
Since we excluded “no answer” responses in both figures,
the percentages in a figure for a given recommender do not
add up to 100 percent.

Figure 3 shows the percentage of recommendations users
considered relevant and irrelevant for each recommender.
We considered that a recommendation was relevant if the
user chose either the “relevant and a good addition” or the
“relevant but redundant” response. The Google, Naive
Bayesian, and Graph Search algorithms tend to do better
than the other agorithms, with one in two citations judged
asrelevant. The lowest-rated agorithm, Item-Item, returns
a relevant citation 25% of the time. Graph Search and
Google dominate the three least relevant, and the difference
between them and those three is statistically significant.

Quality of Individual Recommendations

S
o

Percentage
w
o

P\

Not Relevant Relevant

OCo-citation ~ BItem-item BHUser-item

B Graph Search BGoogle

B Bayesian

Figure 3: Users judgment of the relevance of
individual recommendations, grouped by algorithm

Figure 4 shows the percentage of recommendations users
considered familiar and novel for each recommender. We
considered a recommendation familiar if the user chose
either the “I have cited this myself” or the “| have read this,
but not cited it” response. The User-ltem and Item-Item
algorithms tend to produce more novel recommendations
than the others. Google produced the least novel
recommendations. The differences between Google and all
of the other algorithms were statistically significant, as was
the difference between both Item-ltem and User-Item
against al of the other algorithms.

Google produces both the most relevant and familiar
citations, while Item-ltem produces the least familiar and
least relevant citations. We measured the correlation
between a user’s relevance and novelty ratings to be —0.51.
This means that as novelty goes up, relevance tends to go
down.

Most users rated the overall, quality, usefulness, and
novelty of the recommendations they received in the
middle of the range, with more “poor” (43%) than “good”
(25%) ratings. The best quality was Graph Search, the best
usefulness was Google, the best novelty was User-ltem,
and the best “overall” was Graph Search. On the questions
about the helpfulness of the recommendations for research-
related tasks, users aso rated toward the middle of the
range, but were more likely to say “probably yes’ (50-56%)

Table 2: Overall User Opinion, in percentages

Novelty of Individual Recommendations

Percentage

Novel Familiar
OCo-citation ~ BItem-item User-item
B Graph Search BGoogle B Bayesian

Figure 4: Users judgment of the novelty of individual
recommendations, grouped by algorithm

than “probably no” (22-32%).

Users' perception of the usefulness of the recommendations
for research tasks differed based on the recommender that
generated the user’s recommendations. Figures 5 and 6
show results for the task-related questions broken down by
recommendation algorithm. In both figures, we counted
“Definitely Yes’ and “Probably Yes’ responses as helpful
and “Definitely No” and “Probably No” responses as
unhelpful. We did not count “Maybe” or blank responses.

Figure 5 shows the percentage of users who thought that a
system which generated recommendations like those they
received would be helpful for finding related work. The
Graph Search agorithm, which produced the most relevant
recommendations, was ranked most helpful for this task,
and Google, the most likely to generate familiar and
relevant citations was a so considered very helpful.

Figure 6 shows the percentage of users who thought that
their recommendations might be useful in finding papers to
read. The Graph Search algorithm aso performs well here,
while the User-Iltem and Naive Bayesian algorithms move
up relative to other algorithms. The difference between
both Graph Search and Google to Item-ltem was
statistically significant.

Online Experiment Discussion

More users thought that the algorithms would be helpful
than not helpful, both for finding related work and for

Terrible Poor Fair Good Excellent
Overall Quality 11 29 31 26 3
Overall Usefulness 16 32 31 20 1
Overall Novelty 7 28 35 25 5
All Things Considered 12 32 32 25 1
Definitely Not Probably Not Maybe Probably Yes Definitely Yes
Helpful Finding Related Work 8 24 18 34 17
Helpful Finding Papers to Read 8 15 21 38 19

Would recommendations such as these
be helpful in finding related work?

~
(S}

Percentage
= N w D w a
o o o o o o

I

Not Helpful Helpful

|

o

OCo-citation ~ BItem-item BHUser-item

B Graph Search BGoogle B Bayesian

Figure 5. Users judgment of the helpfulness of
recommendations in finding related work,
disregarding neutral and blank responses, grouped by
algorithm

locating papersto read. Thiswas true both on average over
all algorithms and for each individual algorithm on every
task.

This result seems at odds with users judgments on the
relevance and novelty of individual recommendations.
However, consider that even the worst agorithm in terms
of quality generated one relevant recommendation in four.
Over 60% of users received one or more recommendations
that they considered to be a good addition. Another 16%
received at least one that was relevant but redundant.

All four CF-based agorithms were able to make
recommendations for every paper. The baseline algorithms
were not, with Graph Search failing on 19% and Google
failing on 39% of recommendation requests. Scaling users
perception of the helpfulness of these algorithms by their
ability to make recommendations makes Google fall to the
bottom, and makes Graph Search roughly comparable to
User-Item.

The importance of this “cherry-picking” behavior for the
baseline algorithms, algorithms which are modeled after
how people currently search for related work, cannot be
stressed enough. It is important for two reasons. First,
these algorithms work well only for the subset of the papers
they could search over. This limitation over the coverage
of the space greatly reduced the number of possible
recommended citations. Second, both of these algorithms
scored very high on familiarity. Neither of these
algorithms could be effectively used to find novel
recommendations.

In order to find both relevant and novel recommendations,
no one single algorithm stands out. One interpretation is
that an effective system might incorporate several
algorithms. This could be donein several ways:

e Try the algorithms in descending order of quality
until one produces recommendations.

Would recommendations such as these
be helpful in finding papers to read?

80
70
60
50 4
40
30 4
20 4
10 A

Percentage

o)

Nk

Not Helpful Helpful

B Co-citation
B Graph Search BGoogle

BItem-item NuUser-item

B Bayesian

Figure 6. Users judgment of the helpfulness of
recommendations in finding papers to read,
disregarding neutral and blank responses, grouped by
algorithm

e Make recommendations from all agorithms, and
combine them, perhaps by learning which users
like which algorithms and weigh the algorithms’
recommendations.

e Use different recommenders for different tasks.
CF-based algorithms produced more novel
recommendations that might be more useful for
finding reading lists, while the baseline algorithms
might be more useful for finding related work.

The inverse correlation between novelty and quality was
also interesting. Many novel recommendations are indeed
not relevant. However, we received user comments stating
that it was difficult to accurately judge relevance only from
the information provided by a citation. This means that
systems for exploring citation webs such as Researchindex
must make it easy for users to quickly judge a citation’s
relevance by providing as much information as possible
about novel citations.

DISCUSSION

The User-Item and Item-Item agorithms performed very
well in the offline experiments, but did not do nearly as
well at locating relevant citations in the online experiments.
There are several possible reasons for this discrepancy.
Since authors often cite themselves, the offline experiment
would often test whether an algorithm could find other
relevant papers by the same author. In the online
experiment, we specifically prohibited agorithms from
recommending citations by the author of the paper. Since
these self-citations are presumably relevant and not novel,
excluding them would tend to decrease relevance and
increase novelty.

In many usage scenarios, it would be appropriate to
recommend citations by the same author. We believe that
the User-Item and Item-Item algorithms will perform better
online in such scenarios. Further, the offline experiment
constrained the recommenders to only recommend older

references, while the online experiments alowed all
references. There may be properties of the citation graph
that lead some a gorithms to perform better for discovering
older papers, while other agorithms do better at finding
newer papers.

Different algorithms performed better along different
dimensions of the tasks. User-Item and Item-ltem were the
dominant algorithms in the offline experiments by the
effective rank measure. On the other hand, real users rated
Item-Item weak at relevance, and User-Item was in the
middle of the pack at relevance. Users much preferred
User-Item for novelty, though, scoring Google, Graph
Search and Bayesian as the least novel. In genera,
algorithms that performed well at relevance performed
poorly at novelty.

Rather than identify one algorithm as the single best for all
applications, our experiments lead us to believe that
different usage scenarios would likely lead to different best
algorithms. For instance, consider the application of
finding a few references to complete a reference list for a
nearly complete paper. This scenario was most like our
online experiment. In general, our users preferred highly
relevant references for this application, and were skeptical
of the novel references suggested to them. One of our users
said, “My paper’s references were much more relevant (as
to be expected)”. There might be benefits to our
community if users sought more novel references, but our
surveys suggest that users would not use a recommender
that pushed them in the direction of novelty. Therefore, the
best recommenders for this application would be one that
produced the most relevant recommendations for users,
which was the Google recommender. Since it fails 2/5 of
the time, falling back to the second most relevant
algorithm, Naive Bayesian, would be best in these cases.

A weekly reading group seeking interesting papers to
expand their horizons might have very different goals.
Google and Graph Search would tend to keep them within a
narrow area of closely related papers. For instance, one
user said of Graph Search, “lI have cited all works
recommended by your system in some paper. They are
certainly very related. However, they lacked novelty in this
case.” This application would do better with an algorithm
that scored high in novelty, such as User-ltem, about which
one user said, “They would be somewhat useful if | was
trying to get a broader understanding but not if | was trying
to get a better understanding of the problem my paper was
solving.” Thus, User-ltem would be less suitable for
finding closely related references, but perhaps more
suitable for finding novel references for areading group.

Some usage scenarios fall in between these two. A
researcher entering a new research area in which he has
read a small number of papers might like a recommender
that can help him find a larger collection of papers that
span the new area. Here, relevance is important to find
papers that are within the new field. But, novelty is
important too, since otherwise the papers may be too

narrowly focused. We have observed this problem in
earlier research in which the Item-Item algorithm tended to
recommend movies that were very closely related to
previously seen movies, resulting in too narrow a view of a
user's tastes [14]. For these applications, the best
recommenders are those that do well at both relevance and
novelty. The User-Item algorithm was best at relevance in
the offline experiment, fourth best at relevance in the online
experiment, and best at novelty in the online experiment, so
it should do well in this scenario. An even better solution
might be to combine User-ltem with Graph Search or
Naive Bayesian, the recommenders users judged more
relevant, to make a hybrid algorithm that did well on both
relevance and novelty.

CONCLUSION

Recommender systems have arich future in recommending
research papers. A recommender can be a gresat tool to help
researchers find the papers that will be most relevant to
them. Our experiments show that the choice of agorithm
affects the type of recommendations produced. The best
algorithms we studied can either provide very relevant
recommendations or very novel recommendations, though
we found no single agorithm that provided both at the
same time. The use of the citation web to avoid the startup
problems that are a challenge for collaborative filtering was
effective. These algorithms all ran with very little data
from the user: just a citation to one of his papers, which we
were able to look up in Researchindex.

In the future, it would be interesting to see how other
recommendation algorithms would perform for these
experiments, especially text-based and hybrid agorithms
[20]. It would aso be interesting to see these algorithms
used with citation webs of research papers from other
fields, especially those in which the complete text of most
published papers are available online.

One application domain that would be interesting would be
to find people who are relevant to a paper. For instance, a
recommender could generate a list of people rather than
citations. An editor might use this recommender to locate
good reviewers for a paper. Editors sometimes search for
reviewers among the authors of the cited papers. Since
these are often closer colleagues of the author, that list may
not be broad enough. Using such a recommender would
broaden the pool of potential reviewers.

Another idea comes from one of our users, who said:
“Suppose | were working on a sequel (much research is, to
some extent, a sequel of earlier work). | am vitaly
interested to know about LATER papers that either cite my
earlier work (or should have or might have or is somehow
closely related)”. The recommenders mentioned here could
easily be tuned to only produce later papers, rather than
earlier papers as they did in the offline experiment.

While the two experiments were very different, and while
the agorithms varied in behavior, we believe they show
that recommenders based on the socia web of citations in

published research papers can be vauable aids to
researchers.

ACKNOWLEDGEMENTS

We would like to thank to Steve Lawrence, David Pennock
and their colleagues at NEC Research for their wonderful
cooperation in helping us both the Researchindex dataset
for the offline experiments and with linking Researchlndex
to our Web site for the online experiment. We would also
like to thank Ed H. Chi for his valuable comments. This
work is supported by grants from the NSF (DGE 95-54517,
1S 96-13960, IS 97-34442, |IS 99-78717, and 11S 01-
02229) and by Net Perceptions, Inc.

REFERENCES

1. Breese, J., Heckerman, D., and Kadie, C. Empirical
Analysis of Predictive Algorithms for Collaborative
Filtering. In Proc. UAI 98, Madison, 1998, 43-52.

2. Bollacker, K., Lawrence, S, and Giles, C. L.
Discovering relevant scientific literature on the web.
| EEE Intelligent Systems, 15(2), 42—47, 2000.

3. Egghe, L., and Rousseau, R. Introduction to
Informetrics. Elsevier, Amsterdam, 1990.

4. Friedman, N., Gieger, M., and Goldszmidt, M.
Bayesian Network Classifiers. Machine Learning, 29,
131163, 1997.

5. Garfield, E. Citation Indexing: Its Theory and
Application in Science, Technology, and Humanities.
Wiley, New Y ork, 1979.

6. Goldberg, K., Roeder, T., Gupta, D., and Perkins, K.
Eigentaste: A Constant Time Collaborative Filtering
Algorithm. Information Retrieval Journal, 4(2), 133—
151. 2001.

7. Herlocker, J., Konstan, J. A., Borchers, A., and Riedl,
J. An Algorithmic Framework for Performing
Collaborative Filtering. In Proc. SGIR 99, Berkeley,
1999, 230-237.

8. Hill, W., Stead, L., Rosenstein, M. and Furnas, G.
Recommending and evaluating choices in a virtual
community of use. In Proc. CHI 1995, Denver, 1995,
194-201.

9. Karypis, G. SUGGEST Top-N Recommendation
Engine. Available for download from
http://www.cs.umn.edu/~karpyis/suggest/.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Kautz, H., Selman, B., and Shah, M. Referra Web:
Combining Socia Networks and Collaborative
Filtering. Communications of the ACM, 40(3), 63-65,
1997.

Lawrence, S., Bollacker, K., and Giles, C. L. Indexing
and Retrieval of Scientific Literature. In Proc. CIKM
99, Kansas City, 1998, 139-146.

Lawrence, S., Giles, C. L., and Bollacker, K. Digital
libraries and autonomous citation indexing. |EEE
Computer, 32(6), 67—71, 1999.

Newman, M. E. J. Scientific collaboration networks: I.
Network construction and fundamental results. Phys.
Rev. E 64, 016131, 2001.

Rashid, A. M., Albert, I., Codley, D., Lam, S. K.,
McNee, S. M., Konstan, J. A., and Riedl, J. Getting to
Know You: Leaning New User Preferences in
Recommender Systems. In Proc. Ul 02, San
Francisco, 2002, 127-134.

Resnick, P., lacovou, N., Sushak, M., Bergstrom, P.,
and Riedl, J. GroupLens: An Open Architecture for
Collaborative Filtering of Netnews. In Proc. CSCW
94, Chapel Hill, 1994, 175-186.

Sarwar, B., Karypis, G, Konstan, J. A., and Riedl, J.
Item-based Collaborative Filtering Recommendation
Algorithms. In Proc. WWW 10, Hong Kong, 2001,
285-295.

Scott, J. Social Network Analysis: A Handbook, 2™
Edition. Sage Publications, London, 2000.

Shardanand, U., and Maes, P. Socia Information
Filtering: Algorithms for Automating “Word of
Mouth”. In Proc. CHI 95, Denver, 1995, 210-217.

Terveen, L., Hill, W., Amento, B., McDonald, D., and
Creter, J. PHOAKS: A system for sharing
recommendations. Communications of the ACM,
40(3), 59-62, 1997.

Woodruff, A., Gossweiler, R., Pitkow, J., Chi, E.H.,
and Card, S. K. Enhancing a Digital Book with a
Reading Recommender. In Proc. CHI 2000,
Amsterdam, 2000, 153-160.

