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ow within a program. Informationalways 
ows in all directions, causing a loss of precision.Another class of program analyses is based on set-inclusion constraints [Hei92, AW92, AW93]. Becauseinclusion constraints can model the direction of value 
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properties computed in program analyses as types. Constraints in our formalism are between type expressions,and solutions of the constraints are types. To a �rst approximation, types can be thought of as sets of values.We refer to Hindley-Milner style types as term types and to types based on set expressions [AW93] as settypes. The key property of term types is that they have unique head constructors.Our formalism covers an entire spectrum of program analyses with varying degrees of precision ande�ciency. On one extreme, the formalism can express Hindley-Milner type inference, and on the otherextreme, it can express complete inclusion-based analyses. Most importantly, we can express analyses inbetween these extremes, in particular analyses that consist mostly of term types but also include set typeswhere precision is needed.The formalism is based on a 2-sorted algebra of type expressions (Section 3). Inclusion constraints betweenthese types are solved using uni�cation and rewrite techniques (Section 4). At the Hindley-Milner end of thespectrum, the implementation of the constraint solving process essentially yields algorithmW [Mil78]. (Notethat the system described in [AW93] can also express Hindley-Milner type inference using only inclusionconstraints, but the inference algorithm still requires cubic time in this case.) To make our ideas concrete,we instantiate our framework to a particular analysis near the Hindley-Milner end of the spectrum, namelyuncaught exception inference for a subset of ML (Sections 2.2 and 5) and present preliminary results from animplementation showing that the analysis approaches the e�ciency of algorithmW . We start our expositionin Section 2 with a description of the problem that motivated the formalism described in this paper, and ourrunning example analysis: Type and exception inference for a subset of ML.2 MotivationThis section motivates our framework with an example application: Uncaught exception inference for a subsetof the ML language. Exception inference is an interesting problem for our formalism because we can expressit as a minimal re�nement of standard Hindley-Milner type inference, and it makes essential use of set types.Furthermore, exception inference is an interesting problem in its own right, because in practice large MLprograms can unexpectedly terminate with uncaught exceptions.2.1 The ProblemWe begin by illustrating the problem of types that are more general than needed. In ML, the type ofan exception value v is simply exn|no indication is given of the possible exception constructors of v.Consider a re�nement of the ML type system that models exception types with an explicit annotation ofthe set of exception constructors. For example, we model the type of the exception constructor Subscriptas exn(Subscript). A possible inference rule for if expressions based on inclusion constraints isA ` p : boolA ` e1 : �1A ` e2 : �2�1 � � � fresh�2 � �A ` if p then e1 else e2 : � [IF]The rule says that the result type must contain the types of both branches. The conditional expressionif p then Subscript else xreturns either the exception value Subscript (exceptions are �rst-class), or the value of the program variablex. Assuming x has type �, applying the inference rule to this expression gives the type � along with twolower bounds, written � where exn(Subscript) � � ^ � � �There are many solutions for � and � satisfying these constraints. One possible solution is� 7! int� 7! exn(Subscript) [ int



For many programming languages (and in particular for ML), this solution is uninteresting, because theunion of an integer and an exception cannot be used anywhere. We are really only interested in solutionswhere the type of the else branch is also an exception. However, we cannot simply require both branches tohave the same type as in a standard ML type system, because the else branch may contribute an exceptionother than Subscript. For example, if the else branch can return exn(Match), we would like to infer thatthe entire if can return exn(Subscript) or exn(Match). Thus we have two con
icting goals: On one handwe need the generality of inclusion constraints to allow di�erent exception constructors in the branches ofthe conditional, and on the other hand we do not want the full generality of inclusion constraints, since theyadmit many uninteresting solutions. In our example, the interesting solutions all have the form� = exn(
)� = exn(Subscript[ 
)which clari�es that the if expression and both branches return exceptions and that the set of exceptionconstructors of the result includes the Subscript exception and any exceptions contributed by the elsebranch. In summary, the example illustrates two points:{ For particular applications, inclusion constraints may admit more solutions than required.{ Set types are needed to express sets of values with more than one head constructor (e.g. Subscript[
).2.2 Sample ApplicationThis subsection sets the stage for our framework by proposing a type and exception inference system fora subset of ML. Here we describe only the type language and some examples. The type rules and animplementation are discussed in Section 5.The standard ML type system gives no information about the set of exceptions that an expression mayraise. Knowing only the types, a programmer must assume that each expression e has the worst possiblee�ect: Every imaginable exception may be raised during evaluation of e. The exception inference we describehere gives the programmer more precise information about possible exceptions. We present our analysis forMini-ML but discuss an implementation for core SML in Section 5.As an aside, note that for �rst-order languages, exceptions can be inferred separately from types. InML however, functions and exceptions are �rst-class values, and as a result, exception inference cannot beseparated from type inference.The syntax of Mini-ML is a typed lambda calculus with exception constants and raise and handleexpressions. e ::= x j fn x => e j e1 e2 j e handle pi => ei j raise ep ::= c j c(x)Handle expressions use pattern matching to provide specialized handlers for di�erent exceptions. The set ofconstants and primitives of the language are accessed through identi�ers in an initial environment.Every exception in ML has the type exn. In order to distinguish among di�erent exception constructors,we re�ne this type to exn(�), where � is a set type capturing the set of exception constructors. Furthermore,we need to re�ne the type of functions to include information about the possible exceptions raised duringan application. Function types are written �1 ��! �2, where �1 describes the domain of the function, �2 therange of the function, and � the possible exceptions raised by the function (notation borrowed from e�ectsystems, see Section 5). The resulting type language has two sorts, set types and term types, given by thefollowing grammar � ::= � j B j � ��! � j exn(�)� ::= � j c j c(�) j � \ � j � [ � j :fcgWe use � for term types and � for set types. Type variables are written � or �, depending on the sort. Theset B denotes a set of base types. We use c 2 ExnCons for exception constructors. Note that exceptions maybe constants or carry a value. An exception c carrying a value of type � has type exn(c(�)). Set types canfurthermore be formed by intersection, union, and complement. The type :fcg is the set of all values exceptvalues obtained by applying constructor c. Because exceptions can carry values, the two sorts of types aremutually recursive. Note that the term types used here are ML types with embedded set types.



A few examples illustrate the re�ned types. First consider the primitive raise in ML, which is used to raisean exception. Its ML type is raise : exn �! �. Using our re�ned types, the type becomes raise : exn(�) ��! �,capturing the fact that applying raise to an exception of type exn(�) causes the observable e�ect �.Consider a function catchFail that calls a function argument, and if the Fail exception is raised, returnsthe default value d.exception Failfun catchFail f d = f () handle Fail => dWe assign the type catchFail : (unit ��! �) 0�! � �\:fFailg������! �to this function. The type illustrates the dependencies between the exceptions carried by the function argu-ment f and the exceptions of catchFail. Given a function f : unit ��! � which may raise an exception fromthe set �, we know that the expression f() has type � and e�ect �. The handle expression prevents the Failexception from escaping the body of catchFail. As a result, we know that evaluating catchFail can resultin any exceptions raised by the argument function, except Fail (written � \ :fFailg). Set expressions arecrucial for describing such types.We are aware of two earlier approaches to uncaught exception detection for ML. In [GS94], Guzm�an andSu�arez describe an extended type system for ML similar to, but less powerful than, the one presented here.They do not treat exceptions as �rst class values, and they ignore value-carrying exceptions. In [Yi94], Yidescribes a collecting interpretation for estimating uncaught exceptions in ML. His analysis is presented asan abstract interpretation [CC77] and is much �ner grained than [GS94] or the system described here, butis also slow in practice.3 Types and DomainsSection 2.2 outlined a mixed type language for expressing ML types with re�ned exception information. Thisis a particular example of a class of analyses that is expressible in our framework. This section presents thegeneral case: We introduce the parameterized type language over which inclusion constraints are solved, showthe relationship between types and appropriate semantic domains, and de�ne what constitutes a solution toa system of inclusion constraints over types. Section 4 describes how to compute the solutions of constraints.3.1 Type LanguageWe introduce two sorts of types, u-types and s-types, which are similar to term types and set types, exceptthat u-types and s-types can be embedded within one another. The type language and resolution rules forinclusion constraints between u-types or s-types are parameterized by a set of constructor signatures �. LetS = fu; sg, then each signature is of the form:c : �1 : : : �n ! Sand each � is one of fu;u; s; sg. The overlined sorts mark contravariant arguments of c, the rest are covariantarguments. Let V be an S-sorted set of type variables, i.e. V = (Vu;Vs). We use greek lowercase letters�; �; �; : : : to denote type variables. Let �+ be the extension of � with the signatures[ : s s! s\ : s s! s:fc1; : : : ; cng : s for any set of s-constructors ci 2 �0 : s1 : sfor the set-operations union, intersection, complement of constructors, and constants 0 and 1 for the leasts-type and the greatest s-type respectively. The language of type expressions is formed by the sorted termalgebra T�+(V). We use letters T1; T2; : : : to refer to u-types and s-types.



To illustrate the type languages that can be formed, we give three example signature sets �. Figure 1gives the signatures of type constructors for ordinary Hindley-Milner types. All types are u-types in thiscase and the set of type constructors includes, for example, nullary constructors such as int and unaryconstructors such as list : u! u. Figure 2 shows the signatures of type constructors corresponding to theset types of [AW93]; all types are s-types. Finally, Figure 3 contains the signatures for the type languagegiven in Section 2.2 for our ML exception inference. There are constant type constructors of sort u for a setof non-parameterized base types B, constructors of sort s for all exception constructors, some with argumenttypes of sort u. The type constructor exn simply embeds exception s-types as u-types. Finally the functionconstructor � ��! � contains a contravariant u �eld for the domain, a covariant u �eld for the range, and acovariant s �eld for the exceptions that the function may raise.c : u1 : : :un ! u (for all n-ary ML type constructors)� �! � : u u! u (Function type)Fig. 1. Signature � for Hindley-Milner types.c : s1 : : : sn ! s (for all n-ary data constructors)� �! � : s s! s (Function type)Fig. 2. Signature � for set types [AW93].c : u (for all c 2 B basetypes)c : s (for all constant exception constructors c)c : u! s (for all exception constructors c with arguments)exn : s! u� ��! � : u s u! u (Function type)Fig. 3. Signature � for exception inference.For completeness, we conclude this section with two technical comments. First, type constructors withnon-variant (neither co- nor contravariant) �elds cannot be modeled directly in our formalism. An exampleof such a type constructor is the ML datatypedatatype 'a identity = Id of ('a -> 'a)However, we can represent this type constructor by doubling the non-variant �eld, one copy being contravari-ant, the other covariant. identity : u u! uAny ML type T identity can then be represented as identity(T; T ) with the desired non-variance in T .The second comment concerns strictness of constructors. We allow each constructor to be strict or non-strictin any of its covariant �elds (contravariant �elds are always non-strict). To keep notation to a minimumwe omit strictness annotations from constructor signatures. Where necessary, constructor strictness will bementioned explicitly.3.2 Semantics of TypesWe give semantics to types using a variation on the standard ideal model [MPS84]. The semantic domain Dcontains a least element ? and is equipped with a complete partial order �, where ? � t for all t 2 D. Typesare downward-closed subsets of D. A set X � D is downward-closed, i� 8t 2 X � f?g; t0 � t =) t0 2 X .



Similarly, a type X is upward-closed, i� 8t 2 X � f?g; t � t0 =) t0 2 X . We assume D is lifted (i.e.�x:? 6= ?).A suitable domain D is described in [AW93] where the authors use it to give meaning to set types. We�rst review the semantics of set types and then describe the necessary generalizations for our framework.Given a type assignment �V mapping type variables in V to types, the meaning function � mapping set typesinto the semantic domain D, is �(�) = �V(�)�(0) = f?g�(1) = D�(c(T1; : : : ; Tn)) = fc(t1; : : : ; tn) j ti 2 �(Ti)g [ f?g�(T1 ! T2) = ff j t 2 �(T1) =) f(t) 2 �(T2)g [ f?g�(T1 \ T2) = �(T1) \ �(T2)�(T1 [ T2) = �(T1) [ �(T2)The function � interprets types c(T1; : : : ; Tn) as sets of tuples labeled by c. Function types cannot be modeledas sets of tuples and are treated specially. Other standard type constructors, e.g. list also need to be modeledas special cases in such an interpretation. For example, the standard interpretation for a type list(T ) is�(list(T )) = X where X is de�ned by the equationX = fnil;?g [ fcons(t1; t2) j t1 2 �(T ); t2 2 Xgwhich is very di�erent from a set of tuples labeled by list.Having numerous special cases is impractical and interpreting all type constructors as labeled tupleswould severely limit the applicability of the formalism we are developing. Our solution is to parameterize thesemantics of types with mappings �c : (2D)n ! 2D for each n-ary constructor c in a given signature set �.Each �c gives meaning to type expressions with head constructor c by mapping argument types (downward-closed sets) to types. Given a type assignment �V , we now de�ne the meaning � of type expressions by�(�) = �V(�)�(0) = f?g�(1) = D�(c(T1; : : : ; Tn)) = �c(�(T1); : : : ; �(Tn))�(T1 \ T2) = �(T1) \ �(T2)�(T1 [ T2) = �(T1) [ �(T2)�(:fc1; : : : ; cng) = (D �Si(�ci(D; : : : ;D)) [ f?gWe have added a case for set-complement with the intuitive meaning. The notation �c(D; : : : ;D) denotesthe largest type with head constructor c. Since c can be contravariant in certain �elds, we use D to denoteD if it occurs in a covariant �eld, and f?g if it occurs in a contravariant �eld.The meaning functions �c must satisfy certain properties for the interpretation to be sensible and toguarantee the soundness of constraint resolution (see Section 4.2). These properties are summarized by theaxioms below:1. �c : (2D)n ! 2D if c 2 � is of arity n.2. The variance and strictness of �c agrees with the declared variance and strictness of c.(For covariant �elds, X � Y =) �c(A1; : : : ; An; X;B1; : : : ; Bm) � �c(A1; : : : ; An; Y; B1; : : : ; Bm).)3. �c(X1; : : : ; Xn) � f?g forall X1; : : : ; Xn ; st: �Xi � f?g if the ith �eld is strictXi � f?g otherwise4. �c(D; : : : ;D) \ �d(D; : : : ;D) = f?g for all c 6= d. (i.e. constructor meanings are disjoint)5.  [c2� �c(D; : : : ;D)! � D6. �c(X1; : : : ; Xn) \ �c(Y1; : : : ; Yn) = �c(X1 �1 Y1; : : : ; Xn �n Yn)for any upward-closed type �c(Y1; : : : ; Yn)where �i = �\ if the ith �eld is covariant[ if the ith �eld is contravariant



Axioms 1 and 2 require that the meaning function and the declared constructors agree in arity and variance.Axiom 3 requires that for all arguments each constructor c has at least one value besides bottom in itsinterpretation, as long as the arguments avoid the strictness of c. Axiom 4 says that distinct constructorsmap to disjoint meanings (besides bottom). Axiom 5 states that the domain D is larger than the union ofall the constructor meanings. This axiom guarantees that no �nite union is D and no complement is f?g1, afact that simpli�es the resolution of constraints involving set-complement. Finally, Axiom 6 is a distributivelaw required to simplify intersections syntactically.To illustrate that standard interpretations satisfy these axioms, consider the function type constructor� �! � : s s! s with the usual interpretation��!(X;Y ) = ff j t 2 X =) f(t) 2 Y g [ f?gThe interpretation agrees with the signature in arity and variance: As Y grows, more functions satisfy theimplication, and as X grows, fewer functions satisfy the implication (Axioms 1 and 2). Axiom 3 is satis�edsince even for the smallest function type X = D, and Y = f?g the interpretation contains the least function�x:?, which is di�erent from ?. Axiom 4 implies that no other constructors d 2 � map to function values,since f?g ! D contains every function. Axiom 5 is not relevant for a single constructor. Finally, Axiom 6 issatis�ed since the only upward-closed function type is ��!(f?g;D) (all functions):��!(X;Y ) \ ��!(f?g;D) = ��!(X;Y )= ��!(X [ f?g; Y \ D)Before we de�ne the solutions to systems of constraints in Section 3.3, we need the notion of a contour.Contours capture semantically the property that u-types have a single head constructor. A semantic notionof a single head constructor is needed to de�ne the solutions for u-variables. Intuitively, contours correspondto the largest u-types in the domain D.De�nition 1 (Contour). A set X � D is a contour, i� 9c : �1 : : : �n ! u 2 � such thatX = �c(Y1; : : : ; Yn)and for all k = 1 : : : n, Yk = 8<:a contour if �k = u or �k = uD if �k = sf?g if �k = sNote that by Axiom 3 above, contours are strictly larger than f?g. Given a contour assignment �Vu mappingu-variables to contours, we de�ne an alternative interpretation of u-types as contours:�(�u) = �Vu(�u)�(c(T1; : : : ; Tn)) = �c(Y1; : : : ; Yn) where c : �1 : : : �n ! u andYk =8<:�(Tk) if �k = u or �k = uD if �k = sf?g if �k = s3.3 Constraints and Admissible SolutionsConstraints are formed between pairs of u-types or pairs of s-types, written T1 �u T2 and T1 �s T2respectively. Consider again the example constraint exn(Match) � � from Section 2.1. Given the semanticsof ML, we want to rule out solutions such as � = int [ exn(Match). The only solutions we are interested inare of the form � = exn(�), where Match � �, i.e. � has a single head constructor in all solutions. We canachieve exactly this e�ect using �u constraints. The meaning of �s and �u constraints is given below.De�nition 2 (Solution). A pair (�V ; �Vu) consisting of a type assignment �V and a contour assignment�Vu is a solution to a system of constraints S if and only if1 Di�erent from [AW93].



{ �(T1) � �(T2) for every constraint T1 �� T2 2 S.(� = u or � = s){ �(T1) = �(T2) for every constraint T1 �u T2 2 S.(The contours of u-constrained types must be equal.){ �V(�) � �Vu(�) for every u-variable � in S.(The solution for � agrees with the contour assigned to �.)We illustrate De�nition 2 with a few examples. Consider the signatures � of strict constructorsc : s! ud : s! uand the constraint c(0) �u d(1). Since c is strict, c(0) = 0, so �(c(0)) � �(d(1)) is satis�ed for any �. For aninclusion �s this would be enough. However, the contours �(c(0)) and �(d(1)) are strictly larger than f?g(Axiom 3) and thus cannot be equal by Axiom 4. Therefore, this constraint is unsatis�able.Next consider the constraint � �u d(1). This constraint is satis�ed by any assignment for � of the formd(�). To see why � must be of this form, note that the contour �(�) must be equal to �(d(1)) in all solutions.Since any solution for � must agree with this contour, no solutions are lost by equating � = d(�) (� fresh).These equations make it possible to solve parts of the constraints using uni�cation. By the same reasoning,one can show that the constraints � �u c(1) ^ � �u d(1) have no solution.4 Computing SolutionsThis section describes how to compute the solutions of a system of u and s-constraints. Section 4.1 de-scribes why adapting the resolution of [AW93] to our type language is di�cult due to our parameterizedinterpretation of types and how this problem can be solved, and Section 4.2 describes the resolution rules.The following terminology is used in the next sections. Type expressions on the left of constraints are saidto occur in positive positions, and type expressions on the right of constraints occur in negative positions. Typesub-expressions occur in the same position (positive or negative) as their immediately enclosing expression,unless the sub-expression is a contravariant �eld of a constructor, in which case its position is inverse w.r.t. theenclosing expression. For example, assuming the signature for a function type constructor is � ! � : s s! s,then in the constraint T1 ! T2 �s T3 ! T4, the sub-expressions T1 and T4 occur negatively and T2 and T3occur positively.4.1 Upward-closed Monotypes and Type ComplementWe �rst review the theory developed in [AW93] to solve inclusion constraints and then adapt it to our newformalism. The simple part is to extend the resolution rules to solve u-constraints (Section 4.2). Here, wedeal with the more serious problem, namely adapting the resolution to our parameterized interpretations �cof type constructors.The resolution rules given by Aiken and Wimmers require the ability to compute two type expressionsT and :T for any type expression T . The type expression T is both ground (has no variables) and hasthe property that it denotes the smallest upward-closed set s.t. �(T ) � �(T ) for all assignments �. Forexample T1 ! T2 = 0 ! 1 (the set of all functions) for any T1 and T2. The type expression :T denotes(D� �(T ))[ f?g, which is the type complement of T . (To see this, note that T [:T = 1 and T \:T = 0.)The algorithms for computing T and :T given in [AW93] are syntax-directed and depend crucially onthe �xed interpretation of constructors described in Section 3.2. Since we parameterize the interpretation ofconstructors, we have no hope of giving an algorithm that computes upward-closed types and complementsyntactically.Before we outline our solution to this problem, we need to delve deeper into the reasons why upward-closure and type complement are needed for constraint resolution. Constraint resolution involves system-atically rewriting constraints into simpler forms. There are two forms of constraints that are di�cult todecompose during resolution: T1\T2 �s T3 and T1 �s T2[T3. In pure set theory, the constraint T1 � T2[T3is equivalent to T1 \ :T2 � T3. However, we interpret set expressions as types (downward-closed sets of



values [MPS84]) and the complement of a type is not necessarily a downward-closed set, and thus not a type.For example, the complement of the function type 1 ! 0 contains every function except the least function�x:?. Only the complements of upward-closed types are themselves types.Aiken and Wimmers show how to solve these problematic constraints under the following restrictions{ Unions T1 [ T2 in negative positions must be disjoint, i.e. T1 \ T2 = 0 in all solutions.{ Intersections in positive positions must be of the form T \ M , where M denotes an upward-closedmonotype (ground type). (In the rest of the paper, M stands for upward-closed monotypes.)The problematic constraints are then simpli�ed using the following two rules:T1 � T2 [ T3 , T1 \ :T2 � T3 ^ T1 \ :T3 � T2T1 \M � T2 , T1 � (T2 \M) [ :MThe resolution rules are to be read as left-to-right rewrite rules. Observe that the right-hand sides of therules introduce upward-closed types and complement types not present on the left.These resolution rules are unusable in our framework since we cannot form the upward-closure andcomplement of types during resolution. Fortunately, inspection of the rewrite rules shows that the set ofupward-closed monotypes required during resolution is �xed by the initial constraints. Therefore, we cancircumvent the problem by putting the constraints in a form that makes all required upward-closed monotypesexplicit in the initial system of constraints. To make the necessary upward-closed monotypes explicit in theconstraints, we de�ne an abbreviation Pat as follows.2 Let M be an upward-closed monotype. De�nePat(T;M) = (T \M) [ :MWith Pat we can reformulate the resolution rules for intersections in positive positions as followsT1 \M � T2 , T1 � Pat(T2;M)Note that the right-side of the equivalence uses only type expressions present on the left. Representingarbitrary disjoint unions in negative positions is more complex. Let T1 and T2 be disjoint types. ObservethatPat(T1; T1) \ Pat(T2; T2) \ Pat(0;:(T1 [ T2))= (T1 \ T1 [ :T1) \ (T2 \ T2 [ :T2) \ (T1 [ T2) def. of Pat= (T1 [ :T1) \ (T2 [ :T2) \ (T1 [ T2) T \ T = T= T1 \ T2 \ T1 [ T1 \ T2 \ T2 [ T1 \ :T2 \ T1 [ T1 \ :T2 \ T2 [ distribute:T1 \ T2 \ T1 [ :T1 \ T2 \ T2 [ :T1 \ :T2 \ T1 [ :T1 \ :T2 \ T2= T1 \ :T2 \ T1 [ :T1 \ T2 \ T2 T \ :T = 0; T1 \ T2 = 0= T1 \ :T2 [ :T1 \ T2 T \ T = T= T1 [ T2 T1 \ T2 = 0To represent T1[T2 in negative positions, we need the upward-closures T1, T2, and the complement :(T1[T2).Below, we show the resolution of a constraint involving T1 [ T2:T � T1 [ T2 = T � Pat(T1; T1) \ Pat(T2; T2) \ Pat(0;:(T1 [ T2)), T � Pat(T1; T1) ^ T � Pat(T2; T2) ^ T � Pat(0;:(T1 [ T2)), T \ T1 � T1 ^ T \ T2 � T2 ^ T \ :(T1 [ T2) � 02 Pat stands for pattern, since it is used most frequently in constraints generated for pattern matching.



S [ f0 �s Tg � S (1)S [ fT �s 1g � S (2)S [ fc(T1; : : : ; Tn) �� c(T 01; : : : ; T 0n)g � S [ fT1 ��1 T 01; : : : ; Tn ��n T 0ng where c : �1 : : : �n ! � (3)S [ fT1 [ T2 �s Tg � S [ fT1 �s T; T2 �s Tg (4)S [ fT �s T1 \ T2g � S [ fT �s T1; T �s T2g (5)S [ f� �� �g � S (6)S [ f� \M �s �g � S (7)S [ fT1 �s Pat(T2;M)g � S [ fT1 \M �s T2g if T1 6= � (8)S [ f� \M �s Tg � S [ f� �s Pat(T;M)g (9)S [ f:fc1; : : : ; cng �s :fd1; : : : ; dmgg � S if fd1; : : : ; dmg � fc1; : : : ; cng (10)S [ fc(: : : ) �s :fd1; : : : ; dmgg � S if c 62 fd1; : : : ; dmg (11)S [ fT1 �s T2g � S [ fT2 �s T1g (12)S [ fT1 �u T2g � S [ fT2 �u T1g (13)S [ f� �u c(T1; : : : ; Tn)g � S [ f� = c(�1; : : : ; �n); �i ��i Tig (14)�i fresh, c : �1 : : : �n ! uS [ fc(T1; : : : ; Tn) �u �g � S [ f� = c(�1; : : : ; �n); Ti ��i �ig (15)�i fresh, c : �1 : : : �n ! uFig. 4. Resolution rules for constraints.Instead of using unions in negative positions, constraints need to be written as intersections of Pat. Onlyunions of upward-closed monotypes remain, and these can only appear in second positions of Pat, wherethey never need to be decomposed.To summarize, we replace the two rules of [AW93] for simplifying intersections in positive positionsand unions in negative positions with a single rule, along with an abbreviation Pat containing an implicitcomplement. The new resolution rule uses only sub-expressions of the original constraints, and does notrequire the formation of upward-closed and complement types during resolution. Because an implementationof our system cannot know the intended interpretation of constructors, our approach e�ectively requires theanalysis designer to provide the necessary upward-closed and complement types explicitly to the system.4.2 Constraint ResolutionHaving dealt with the necessary changes to accommodate the parameterized semantics of constructors, wecan now focus on the resolution of constraints between u-types. Figure 4 shows the resolution rules. Dueto the sorted algebra of types the resolution rules preserve sorts, i.e. given constraints between types of thesame sort, the resolution rules only produce constraints between equal sorts. The rules should be read asleft-to-right rewrite rules. Rules 1{7 are from [AW93]. Below the line are the new rules. Rules 8 and 9 arediscussed above. Note the side condition on Rule 8, which, along with intersection simpli�cation (Figure 5),avoids a cycle in the rewrite rules. Rules 10 and 11 deal with complement types. Rules 12 and 13 
ip theinclusion for constraints arising from contravariant �elds. Rules 14 and 15 instantiate u-variables to satisfycontour equalities (similar to the approach of [HM97, Mos96]); these rules introduce fresh variables.We must ensure that the resolution process terminates. The simple constraint� �u c(�)produces the sequence of constraints � = c(�1), �1 �u �, �1 �u c(�1), etc. ad in�nitum. The problem isessentially the same as in uni�cation and can be solved with an occurs check that ensures the instantiatedvariable � does not appear in the instantiation.
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y discuss the soundness of the resolution rules. Rules 1, 2 and 6 are obviously sound. Rule 3follows from the variance of constructors (Axiom 2), Rules 4 and 5 from standard set theory. Rules 7{9 followfrom set theory, disjointness (Axiom 4), and Axiom 6. Rules 10 and 11 are sound by Axioms 4 and 5.While the resolution rules are sound, they may be incomplete. If the �c are not injective (e.g. con-sider strict constructors), the resolution of constructors may impose stronger constraints on arguments thannecessary, and more system may be rejected as inconsistent.As mentioned above, intersections in positive positions must be simpli�ed to guarantee that rule 9 needonly be applied to a left-hand side of the form � \M . We brie
y discuss the intersection simpli�cation inFigure 5. Intersections can in principle only be formed between s-types. However, it is convenient to express\-simpli�cation using intersections between u-types that are always eliminated as part of the simpli�cationprocess. We use the operators \s and \u to distinguish between intersections on s-types and u-types respec-tively. The notation \s and \u is used for unions that appear due to contravariant �elds. Since contravariant�elds in upward-closed monotypes must be 0, the only forms involving \s and \u are T \s 0 = T andT \u 0 = T . Intersections involving u-variables � \ c(: : : ) are simpli�ed by instantiating � = c(�1; : : : ; �n).The variable � must be of this form in order for the intersection to have a contour (see Section 3.2). Fur-thermore, note that in upward-closed monotypes appearing in intersections we allow the type 1 in covariant(resp. 0 in contravariant) �elds of sort u. Symmetric cases are omitted from Figure 5.Our motivation for the presented framework was to use uni�cation to solve constraints between u-typesin nearly linear time. Due to the generation of fresh variables during resolution of �u constraints, solvingmay actually require exponential time in the size of the constraints. The reason is that the constraints can3 Note that we have omitted the rules for transitive constraints, which are standard.4 Additionally, the meaning functions �c must satisfy �c(X1; : : : ; Xn) � Di =) X1 : : : Xn � Di�1, where Di areelements of the increasing sequence of approximations D0 � D1 � D2 : : : , that make up the domain D.



S [ f1 �s 0gS [ f1 �s c(: : : )gS [ f1 �s :fc1; : : : ; cngg n > 0S [ fc(: : : ) �s 0gS [ fc(: : : ) �� d(: : : )g c 6= dS [ fc(: : : ) �s :fd1; : : : ; dmgg c 2 fd1; : : : ; dmgS [ f:f: : : g �s 0gS [ f:f: : : g �s c(: : : )gS [ f:fc1; : : : ; cng �s :fd1; : : : ; dmgg fd1; : : : ; dmg 6� fc1; : : : ; cngFig. 6. Inconsistent constraint systems.describe types of exponential tree size and that fresh copies of such types may be formed. In uni�cationbased type inference, types can also be of exponential size, but their shared graph representation is alwayslinear in the original constraints and never copied. In practice, the complexity of our approach depends onthe application. As long as the inferred types are relatively small (as e.g. in the case of ML [HM97]), thepractical complexity appears to be close to linear.5 Exception Inference for MLWe now instantiate the developed framework to our motivating example from Section 2.2. The signatures oftype constructors appear in Figure 3 and have already been described in Section 3.1.We cast the type and exception inference for ML as an e�ect inference system [LG88]. In this model,every expression has a type and an e�ect. The type of an expression describes the set of possible unexcep-tional values of the expression, whereas the e�ect describes the set of exceptions that may be raised duringevaluation. Note that exception inference never fails for well-typed ML programs.Figure 7 shows the type rules for exception inference. Types for constants, exceptions and primitiveoperators are assumed to be de�ned in an initial type environment. Judgments have the form A ` e : � ! �,meaning that under the type assumptions A, expression e has type � and may raise the exceptions �. Thereare also judgments for exception patterns `p p : (�; c; �; A) meaning that pattern p matches exception �and binds variables x in the domain of A to the type A(x). Furthermore, the judgment infers the exceptionconstructor c and upward-closed monotype � of the pattern. Observe that the rule for handle expressionsmakes use of the full expressive power of set types. It uses intersection and complement to form the set ofexceptions that pass through the handler, and union is used to combine the exceptions of all the handlers.The constraint �0 �s Pat(�i; �i;) intuitively separates �0 into those values that match the pattern (�i) andthose that do not (:�i) (see de�nition Section 4.1).Some remarks about extending the described exception inference to core SML are in order.{ Let-polymorphism is handled as described in [AW93].{ Exception declarations in SML produce new exceptions at every evaluation. Exception declarationswithin let expressions can therefore give rise to an unbounded number of distinct exceptions, all sharingthe same name. Consequently, only exceptions declared at toplevel can safely be �ltered by name inhandle expressions. In practice, we �nd that the vast majority of exceptions are declared at toplevel.This problem does not arise in the CAML dialect of ML.{ Datatypes hide the internal structure of values. We must ensure that exceptions do not \disappear" intodatatypes. To this end, we extend datatypes containing exception values (directly or through functions)with a single extra type parameter to capture these exceptions.{ ML has mutable references. We treat these as special cases in our implementation.



A ` x : A(x) ! 0 [VAR]A[x 7! �] ` e : � ! �A ` fn x => e : (� ��! � ) ! 0 [ABS]A ` e1 : �1 ! �1A ` e2 : �2 ! �2�1 �u �2 ��! �A ` e1 e2 : � ! �1 [ �2 [ � [APP]A ` e : exn(�) ! �A ` raise e : � ! � [ � [RAISE]A ` e0 : �0 ! �0`p pi : (�i; ci; �i; Ai) for i = 1 : : : nA+Ai ` ei : �i ! �0i for i = 1 : : : n�pass = �0 \ :fc1; : : : ; cng�0 �s Pat(�i; �i) for i = 1 : : : n�i �u � for i = 0 : : : nA ` e0 handle pi => ei : � ! (�pass [Si=1:::n �0i) [HANDLE]`p c : (c; c; c; []) [PCON]typeof(c) = � �! exn(c(� ))`p c(x) : (c(� ); c; c(1); [x 7! � ]) [PAPP]Fig. 7. Type and exception inference rules for Mini-ML.We have implemented the ML exception inference using an untuned prototype implementation of the generalconstraint framework. The largest program we have tested so far is the lexer generator ml-lex (1200 linesof ML). The analysis time for ml-lex is 2.8sec on a 200MHz Pentium with 64MB of main memory. Thiscompares well to the 0.9sec the SML/NJ compiler requires to type-check the same program. The analysisinfers the following type for the main function lexGen:lexGen : string -(Match \/ eof \/ error \/ lex_error \/ Subscript)-> unitThe �ve uncaught exceptions correspond exactly to the results reported by Yi [Yi94].6 Related WorkWork on set-based program analysis [Hei92, FF97] and inclusion constraint-based type inference [AWL94,Pot96, FA96, TS96, MW97] has mostly focused on how to simplify constraints to achieve scalability. Thedeveloped techniques and heuristics are orthogonal to our approach of restricting the interesting solutions ofconstraints. We deem constraint simpli�cation still necessary on the regular inclusion constraints that arisein our approach.In [MNP97] the authors describe In�es, a system for solving inclusion constraints over non-empty setsof trees. They give an algorithm for computing the largest solution of the constraints and show that equal-



ity constraints between set expressions can be solved using uni�cation. Their constraint language is lessexpressive than ours and they only compute a particular solution of the constraints.In type disciplines based on primitive subtyping [Mit84, FM88], the base types form a partial order. Thisorder induces a partial order on types by structural extension over function type constructors, tuples, etc.Subtype constraints can be solved structurally until only atomic constraints (between atoms) remain. There isa strong parallel to our approach in that we can solve inclusion constraints between u-types structurally untilwe are left with inclusion constraints between s-types. Our approach di�ers however in that the constraintsbetween s-types may induce new constraints between u-types, whereas atomic subtyping constraints cannever induce new structural constraints.E�ect systems [Luc87] naturally contain a mixture of Hindley-Milner types and sets for e�ects. In [LG88]Lucassen and Gi�ord describe type and e�ect inference rules using a subset relation on types induced by thesubset relation of e�ect sets contained in the types. However, they do not show how to solve such constraintsand, in fact, in a later paper drop the subset constraints for equality constraints which they solve withgeneralized uni�cation [JG91]. Similarly, Tofte and Talpin [TT94] use a mixture of types and sets in an e�ectsystem to infer allocation and deallocation points of memory regions at compile-time. But their inferencerules are based on equality constraints which they solve using a generalized uni�cation procedure.Henglein's work on e�cient binding time analysis [Hen91] and tag inference [Hen92] also combines sub-typing and equality constraints. His algorithms runs in nearly linear time. They can unfortunately not bedirectly expressed in our framework.In [SH97] the authors study points-to analysis w.r.t. the precision{e�ciency tradeo�. They contrast analgorithm based on inclusion constraints [And94] with the equality based algorithm of [Ste96], and thendescribe a spectrum of algorithms in between. We are currently using the same analyses to tune and validateour framework.7 ConclusionWe described a parameterized constraint formalism that combines inclusion constraints over terms and sets.The formalism covers an entire spectrum of program analyses with varying degrees of precision and e�ciency,ranging from Hindley-Milner type inference to complete inclusion based analysis.We instantiated the framework with an example analysis for inferring types and exceptions for a subsetof ML. Preliminary timing measurements are very encouraging. The running time of our type inference withexceptions is roughly within a factor of three of standard type inference on medium-size programs.8 AcknowledgmentsWe would like to thank John Boyland and Rowan Davies for helpful comments on drafts of this paper.References[AKVW93] A. Aiken, D. Kozen, M. Vardi, and E. Wimmers. The complexity of set constraints. In E. B�orger,Y. Gurevich, and K. Meinke, editors, Computer Science Logic '93, volume 832 of Lect. Notes in Comput.Sci., pages 1{17. Eur. Assoc. Comput. Sci. Logic, Springer, September 1993.[And94] L. O. Andersen. Program Analysis and Specialization for the C Programming Language. PhD thesis,DIKU, University of Copenhagen, May 1994. DIKU report 94/19.[AW92] A. Aiken and E. Wimmers. Solving Systems of Set Constraints. In Symposium on Logic in ComputerScience, pages 329{340, June 1992.[AW93] A. Aiken and E. Wimmers. Type Inclusion Constraints and Type Inference. In Proceedings of the 1993Conference on Functional Programming Languages and Computer Architecture, pages 31{41, Copenhagen,Denmark, June 1993.[AWL94] A. Aiken, E. Wimmers, and T.K. Lakshman. Soft typing with conditional types. In Twenty-First AnnualACM Symposium on Principles of Programming Languages, pages 163{173, January 1994.[CC77] P. Cousot and R. Cousot. Abstract interpretation: A uni�ed lattice model for static analysis of programsby contruction or approximation of �xed points. In Fourth Annual ACM Symposium on Principles ofProgramming Languages, pages 238{252, January 1977.
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