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Abstract

In this paper, we propose a shifted power method for a type of polynomial optimization problem over unit spheres.
The global convergence of the proposed method is established and an easily implemented scope of the shifted
parameter is provided.
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1. Introduction

The polynomial optimization problem in which the objective function and constraints are polynomial functions
received much attention recently due to their wide applications in such as signal processing (Ghosh 2008, Qi
2003), biomedical engineering (Kofidis 2002, Lasserre 2001), material science (Soare 2008), quantum mechanics
(Dahl et al. 2008, Wang et al. 2009), and numerical linear algebra (Hof 2009, Qi 2005), see (Klerk 2008) for
a survey on the various classes of polynomial optimization with simplex, hypercube, or sphere constraints. The
polynomial optimization problem is a challenging task, as the simplest instances of polynomial optimization, such
as maximizing a cubic polynomial over a sphere, is NP-hard (Nesterov 2003). However, researchers have made
much contributions in this area from the theoretical side to numerical solution methods (Lathauwer 2000, He 2010,
Lasserre 2001, Luo 2010, Qi 2004, 2009, Zhang 2012).

In this paper, we consider the following type of polynomial optimization over unit spheres

min f (x1, x2, · · · , xs)
s.t. ∥xi∥2 = 1, xi ∈ Rni i = 1, 2, · · · , s (1.1)

where f : Rn1 × Rn2 × · · · × Rns → R is a homogenous polynomial function whose each term is also di-order
homogenous with respect to xi for i = 1, 2, · · · , s.

It is well known that tensor is a useful tool in polynomial optimization as a polynomial, especially a homogenous
polynomial, has a very simple expression with the aid of tensor, and furthermore, the optimal condition of a
homogenous polynomial optimization with a special structured feasible region can be deeply characterized (Qi
2005, Qi 2009).

A tensor is a multidimensional array of data whose elements are referred by using multiple indices, i.e.,

A = (Ai1i2···id
)
n1×n2×···×nd

,

where d, the number of indices, is called the order of the tensor, and the d-tuple (n1, n2, · · · , nd) is called the
dimension of the tensor. Tensor A ∈ Rn1×n2×···×nd is called super-symmetric if n1 = n2 = · · · = nd and Ai1i2···id is
invariant under any permutation of indices (i1i2 · · · id), i.e.,Ai1i2···id = Aπ(i1i2···id), where π(i1i2 · · · id) is a permutation
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of indices (i1i2 · · · id). Furthermore, a tensor A ∈ Rn1×n2×···×nd is called partially symmetric if its indices can be
partitioned into s index blocks and there exist positive integers d1, d2, · · · , ds such that d1 + d2 + · · · + ds = d,
n1 = n2 = · · · = nd1 , nd1+1 = · · · = nd1+d2 , · · · , nd1+d2+···+ds−1+1 = · · · = nd, and the elementAi1i2···id is invariant under
any permutation of indices within each index block, i.e.,Ai1i2···id = Aπ(i1i2···id1 )π(id1+1id1+2···id1+d2 )···π(id1+d2+···+ds−1+1···id).

By virtue of partially symmetric tensor, problem (1.1) can be written as

max Axd1
1 xd2

2 · · · x
ds
s

s.t. ∥xi∥2 = 1, xi ∈ Rni , i = 1, 2, · · · , s (1.2)

whereA is a partially symmetric tensor w.r.t. index blocks (i1i2 · · · id1 ), (id1+1id1+2, · · · id1+d2 ), · · · , (id1+d2+···+ds−1+1 · · · id).
This problem contains the problem of finding best rank-1 approximation or computing the largest eigenvalue in
magnitude of a super-symmetric tensor (Kofidis 2002, Kolda 2011, Zhang 2012, Qi 2009) as special cases. If s = 2
and d1 = d2 = 2, then this problem reduces to the problem considered in (Dah 2008, Wang 2009) arising from the
nonlinear elastic materials analysis and entanglement studies in quantum physics. The problem is also a special
case of the spherically constrained homogenous polynomial optimization problem considered in (Chen 2012).

Generally, there are three popular numerical solution methods for polynomial optimization. The first one is the
SOS approach which is based on the decomposition of a multivariate polynomials into sum of squares (Lasserre
2001, Parrilo 2003), and the second one is the semidefinite programming relaxation technique (Luo 2010) where
the concerned problem is approximated by a specially constructed semidefinite programming problem. These
two kinds of methods can obtain a global solution of the problem in a sense, however, the computing quantity
of these two methods is too large and they are efficient for small scale polynomial optimization problems. The
third method is the power method. This method is initiated from the power method for computing the largest
eigenvalue in magnitude of a square matrix (Golub 1996), and later was successfully extended to computing the
largest singular eigenvalue of a higher-order tensor (Lathauwer 2000) and the largest Z-eigenvalue in magnitude of
higher-order super-symmetric tensor (Kofidis 2002, Qi 2005), which in fact are a kind of homogenously polynomial
optimization problem with unit sphere constraints (Lathauwer 2000,kofidis 2002). It is also used to compute the
largest eigenvalue of a nonnegative tensor. The distinct feature of this method is that it meeds less computing cost
at each iteration and its convergence can be guaranteed under convexity assumption. To remove the confine, a
novel shifted technique is introduced into the objective function (Kolda 2011,Wang 2009).

In this paper, we extend the shifted power method to a more general type of polynomial optimization problem (1.1)
and establish the convergence of the method. The main contribution of the paper is as follows.

(1) We apply the shifted power method to a more general type of polynomial optimization problem defined on the
unit spheres and establish its convergence.

(2) We provide an easily implemented scope of the shifted parameters used in the designed iterative method.

The content of this paper is organized as follows. In the Section 2, we will give a short description on the tensor
algebra and give some notations. In Section 3, we will give the design power method and establish its convergence.

2. Preliminaries and Notations

In this section, we will give a short description on the tensor algebra and some notations used throughout the paper.

For tensorsA,B ∈ Rn1×n2×···×nd , their inner product is defined by

⟨A,B⟩ =
n1∑

i1=1

n2∑
i2=1

· · ·
nd∑

id=1

Ai1i2,···idBi1i2,···id .

For vectors xi ∈ Rni , i = 1, 2, · · · , d, their outer product, denoted by X = x1 ◦ x2 ◦ · · · ◦ xd, is a d-order (n1, · · · , nd)-
dimensional tensor T with the (i1i2, · · · id)-entry

Ti1i2···id = (x1)i1 (x2)i2 · · · (xd)id ,

where (xi)ir denotes the irth entry of vector xi for r = 1, 2, · · · , ni.

Based on the inner product of tensors with same order and same size, the inner product of X with a general tensor
A ∈ Rn1×n2×···×nd can be expressed as

⟨A,X⟩ =
n1∑

i1=1

n2∑
i2=1

· · ·
nd∑

id=1

Ai1i2···id (x1)i1 (x2)i2 · · · (xd)id .
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For simplicity, we denote the product by Ax1x2 · · · xd. If A is super-symmetric of dimension n and x1 = x2 =

· · · = xd = x ∈ Rn, then the product above is denoted asAxd. Certainly,Axd−1 is a n-dimensional vector with i-th
entry

(Axd−1)i =

n∑
i2=1

n∑
i3=1

· · ·
n∑

id=1

Aii2i3···id xi1 xi1 · · · xid ,

andAxd−2 is an n × n symmetric matrix.

Throughout this paper, we use Γn and Σn to denote the unit ball and sphere in Rn, and the subscript n is omitted if
no confusion is made.

3. Algorithm and Convergence

For problem (1.1), since the linear independence of the constraint qualification is always satisfied, thus for any
optimal solution (x∗1, x

∗
2, · · · x∗s), there exists multipliers λi ∈ R, i = 1, 2, · · · , s such that

A(x∗1)d1−1(x∗2)d2 · · · (x∗s)ds = λ1
d1

x∗1,
A(x∗1)d1 (x∗2)d2−1 · · · (x∗s)ds = λ2

d2
x∗2,

· · · · · ·
A(x∗1)d1−1(x∗2)2 · · · (x∗s)ds−1 =

λs
ds

x∗s.

This system constitutes the KKT condition of problem (1.2), which corresponds to the stationary point condition
of Lagrange function of the problem (Nocedal 1999).

As ∥x∗i ∥2 = 1 for i = 1, · · · , s, we conclude that

λ1

d1
= · · · = λs

ds
.

Certainly, this is the optimal objective function value at point (x∗1, x
∗
2, · · · x∗s), i.e.,

λi

di
= Ax∗1

d1 x∗2
d2 · · · x∗sds , i = 1, 2, · · · , s.

Based on the shifted power method for computing the largest eigenpairs of a super-symmetric tensor (Kolda 2011,
Wang 2009), we have the following shifted power method for solving problem (1.1).

Algorithm 3.1.

Input: partially symmetric tensor A ∈ Rn1×···×n1×n2×···×n2×···×ns×···×ns , positive shifted parameters α1, α2, · · · , αs,
initial point x(0)

i ∈ Rni , i = 1, 2, · · · , s, set k = 0 and take tolerance ε ≥ 0.

Output: approximated solution x∗1, x
∗
2, · · · , x∗s to problem (1.1)

Iterative Step: For k = 0, 1, 2, · · · , do

x̂(k+1)
1 = A(x(k)

1 )d1−1(x(k)
2 )d2 · · · (x(k)

s )ds + α1x1, x(k+1)
1 =

x̂(k+1)
1

∥x̂(k+1)
1 ∥ ,

x̂(k+1)
2 = A(x(k+1)

1 )d1 (x(k)
2 )d2−1 · · · (x(k)

s )ds + α2x2, x(k+1)
2 =

x̂(k+1)
2

∥x̂(k+1)
2 ∥ .

· · · · · · · · · · · · , · · · · · ·
x̂(k+1)

s = A(x(k+1)
1 )d1 (x(k+1)

2 )d2 · · · (x(k)
s )ds−1 + αsxs, x(k+1)

s =
x̂(k+1)

s

∥x̂(k+1)
s ∥ .

λ(k+1) = A(x(k+1)
1 )d1 (x(k+1)

2 )d2 · · · (x(k+1)
s )ds .

If |λ(k+1) − λ(k)| ≤ ε, terminate; otherwise, k = k + 1.

end if

end for

177



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 7, No. 2; 2015

To see the well-definedness of the algorithm, we need to show that, at each iteration, the gradient of the shifted
objective function,

g(x1, x2, · · · , xs) = f (x1, x2, · · · , xs) +
s∑

i=1

αix⊤i xi = Axd1
1 xd2

2 · · · x
ds
s +

s∑
i=1

αix⊤i xi

w.r.t. xi on Σn1 × · · · × Σns is bounded away from zero for i = 1, 2, · · · , s.

Lemma 3.1. There exist αi > 0, i = 1, 2, · · · , s such that the polynomial function

g(x1, x2, · · · , xs) = Axd1
1 xd2

2 · · · x
ds
s +

s∑
i=1

αix⊤i xi

is strictly convex with respect to xi on Γn1 × · · · × Γns for i = 1, 2, · · · , s, and its gradient w.r.t. xi on Σn1 × · · · × Σns

is bounded away from zero for i = 1, 2, · · · , s.

Proof. With the notation of the product of tensor, the function g can be expressed as

g(x1, x2, · · · , xs) = Axd1
1 xd2

2 · · · x
ds
2 +

s∑
i=1
αix⊤i xi

= x⊤i
(
unfold

(Axd1
1 xd2

2 · · · x
di−2
2 · · · xds

2
)
xi + αIni

)
xi +

s∑
i=1, j,i

αix⊤i xi.

where unfold
(Axd1

1 xd2
2 · · · x

di−2
2 · · · xds

2
)

is the unfolded matrix of 2-order tensor in Rni×ni , and Ini is an identity matrix
of dimension ni.

To show the strict convexity of function g(x1, x2, · · · , xs) w.r.t. xi on Γn1 × · · · × Γns for i = 1, 2, · · · , s, it suffices to
show that the unfolded matrix of 2-order tensorAxd1

1 xd2
2 · · · x

di−2
i · · · xds

s +αIni is positive definite on Γn1 × · · · × Γns .
From the partial symmetry of tensor A, this matrix is symmetric, and from the Geršgorin disc theorem (Golub
1996), the spectral radius of matrix unfold

(Axd1
1 xd2

2 · · · x
di−2
i · · · xds

s
)

is less than or equal to

n1∑
i1,i2,··· ,id1=1

n2∑
id1+1,id1+2,··· ,id1+d2=1

· · ·
nd∑

id1+···+ds−1+1,··· ,id=1

|Ai1,i2,··· ,id |.

Denote the sum above as α. Then, for any αi > α, the matrix

unfold
(Axd1

1 xd2
2 · · · x

di−2
i · · · xds

s

)
+ αiIni

is positive definite w.r.t. x1, · · · , xs on Γn1 × · · · × Γns . From the continuity of the smallest eigenvalue and largest
eigenvalue of matrix w.r.t. its elements and the boundedness of Γn1 × · · · × Γns , we conclude that the eigenvalue of
the above matrix is bounded away from zero on Γn1 × · · · × Γns . This means that the matrix is nonsingular w.r.t.
x1, · · · , xs on Γn1 ×· · ·×Γns , and thus the gradient of the polynomial function g(x1, · · · , xs) w.r.t. xj on Σn1 ×· · ·×Σns

is bounded away from zero for j = 1, 2, · · · , s. 2

Theorem 3.1. For Algorithm 3.1 with ε = 0, if αi for i = 1, 2, · · · , k satisfies that

g(x1, x2, · · · , xs) = Axd1
1 xd2

2 · · · x
ds
s +

s∑
i=1

αix⊤i xi

is strictly convex with respect to x1, x2, · · · , xs, then

(1) the generated sequence {g(x(k)
1 , x

(k)
2 , · · · , x

(k)
s )} is strictly increasing;

(2) if the algorithm terminates after finite steps, then final point is a KKT point of problem (1.1), and if algorithm
generate an infinite sequence {(x(k)

1 , x
(k)
2 , · · · , x

(k)
s )}, then

lim
k→∞
∥(x(k+1)

1 , x(k+1)
2 , · · · , x(k+1)

s ) − (x(k)
1 , x

(k)
2 , · · · , x

(k)
s )∥ = 0

and any accumulation point of {(x(k)
1 , x

(k)
2 , · · · , x

(k)
s )} is a KKT point of the problem.
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Proof. To prove (1), we first show that for any k = 0, 1, 2, · · · and i = 1, 2, · · · , s, it holds that

g(x(k+1)
1 , · · · , x(k+1)

i−1 , x
(k+1)
i , x(k)

i+1, · · · , x
(k)
s ) ≥ g(x(k+1)

1 , · · · , x(k+1)
i−1 , x

(k)
i , x

(k)
i+1, · · · , x

(k)
s ). (3.1)

In fact, since the function g(x1, x2, · · · , xs) is convex w.r.t. xi for i = 1, 2, · · · , s on Γn1×Γn2×···×Γns
, thus for any

i = 1, 2, · · · , s, it holds that

g(x(k+1)
1 , · · · , x(k+1)

i−1 , x
(k+1)
i , x(k)

i+1, · · · , x
(k)
s ) − g(x(k+1)

1 , · · · , x(k+1)
i−1 , x

(k)
i , x

(k)
i+1, · · · , x

(k)
s )

≥ ⟨∇xi g((x(k+1)
1 , · · · , x(k+1)

i−1 , x
(k)
i , x

(k)
i+1, · · · , x

(k)
s ), x(k+1)

i − x(k)
i ⟩.

(3.2)

Owning to

x(k+1)
i =

∇xi g(x(k+1)
1 , · · · , x(k+1)

i−1 , x
(k)
i , · · · , x

(k)
s )

∥∇xi g(x(k+1)
1 , · · · , x(k+1)

i−1 x(k)
i , · · · , x

(k)
s )∥
,

one has from the Cauchy-Schwarz inequality that

⟨∇xi g(x(k+1)
1 , x(k+1)

2 , · · · , x(k+1)
i , x(k)

i+1 · · · , x
(k)
s ), x(k)

i − x(k+1)
i ⟩ ≥ 0. (3.3)

This means that inequality (3.1) holds.

To show the assertion, we further need to analyze inequality (3.2). For this inequality, as

∇xi g(x(k+1)
1 , · · · , x(k+1)

i , x(k)
i+1 · · · , x

(k)
s ) , 0, k = 0, 1, 2, · · ·

from Lemma 3.1 and the assumption, by the Cauchy-Schwarz inequality, one has

⟨∇xi g(x(k+1)
1 , · · · , x(k+1)

i , x(k)
i+1, · · · , x

(k)
s ), x(k+1)

i − x(k)
i ⟩ = 0

if and only if

x(k+1)
i = x(k)

i =
∇xi g(x(k+1)

1 , · · · , x(k+1)
i , x(k)

i+1, · · · , x
(k)
s )

∥∇xi g(x(k+1)
1 , · · · , x(k+1)

i , x(k)
i+1, · · · , x

(k)
s )∥
. (3.4)

From the iterative procedure, (3.4) is also equivalent to

g(x(k+1)
1 , · · · , x(k+1)

i−1 , x
(k)
i , · · · , x

(k)
s ) = g(x(k+1)

1 , · · · , x(k+1)
i−1 , x

(k+1)
i , x(k)

i+1 · · · , x
(k)
s ).

Thus, the sequence {g(x(k+1)
1 , x(k+1)

2 , · · · , x(k+1)
s )} is strictly increasing.

For (2), we first consider the case that the algorithm terminates after finite steps, say, stops at Step k0. Then from
Algorithm 3.1 and discussion for (1),

g(x(k0+1)
1 , x(k0+1)

2 , · · · , x(k0+1)
s ) = g(x(k0)

1 , x
(k0)
2 , · · · , x

(k0)
s )

and
x(k0+1)

i = x(k0)
i , i = 1, 2, · · · , s.

Combining this with the iterative procedure of Algorithm 3.1 yields that

∇xi g(x(k0)
1 , · · · , x

(k0)
i , · · · , x

(k0)
s ) = ∥∇xi g(x(k0)

1 , · · · , x
(k0)
i , · · · , x

(k0)
s )∥x(k0)

i ,

i.e.,
∇xi f (x(k0)

1 , · · · , x
(k0)
i , · · · , x

(k0)
s ) = (∥∇xi g(x(k0)

1 , · · · , x
(k0)
i , · · · , x

(k0)
s )∥ − αi)x(k0)

i .

This means that (x(k0)
1 , x

(k0)
2 , · · · , x

(k0)
s ) is a KKT point of the problem (1.2).

Now, consider the case that the algorithm generates an infinite sequence. In this case, as the sequence g(x(k)
1 , · · · , x

(k)
s )

is increasing, we know that it converges to g∗ as the sequence is defined over unit spheres and thus bounded from
above. In particular, one has

lim
k→∞

(
g(x(k+1)

1 , · · · , x(k+1)
s ) − g(x(k)

1 , · · · , x
(k)
s )
)
= 0.
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Taking (3.2) and (3.3) into consideration, we obtain that

lim
k→∞
⟨∇xi g(x(k+1)

1 , · · · , x(k+1)
i , x(k)

i+1, · · · , x
(k)
s ), x(k+1)

i − x(k)
i ⟩ = 0, i = 1, 2, · · · , s.

As

x(k+1)
i =

∇xi g(x(k+1)
1 , · · · , x(k+1)

i−1 , x
(k)
i , · · · , x

(k)
s )

∥∇xi g(x(k+1)
1 , · · · , x(k+1)

i−1 , x
(k)
i , · · · , x

(k)
s )∥
, i = 1, 2, · · · , s, (3.5)

and ∇xi g(x(k+1)
1 , · · · , x(k+1)

i−1 , x
(k)
i , · · · , x

(k)
s ) is bounded away from zero on Γn1 × · · ·Γns , we conclude that

lim
k→∞
∥x(k+1)

i ∥2 − ⟨x(k+1)
i , x(k)

i ⟩ = 0, i = 1, 2, · · · , s.

Due to that ∥x(k)
i ∥ = ∥x

(k+1)
i ∥ = 1, one in turn has

lim
k→∞
⟨x(k+1)

i , x(k)
i ⟩ = 1, i = 1, 2, · · · , s,

and
lim
k→∞
∥x(k+1)

i − x(k)
i ∥ = 0, i = 1, 2, · · · , s. (3.6)

Thus,
lim
k→∞
∥(x(k+1)

1 , x(k+1)
2 , · · · , x(k+1)

s ) − (x(k)
1 , x

(k)
2 , · · · , x

(k)
s )∥ = 0.

Since the generated sequence {(x(k+1)
1 , x(k+1)

2 , · · · , x(k+1)
s )} is bounded, by the Bolzano-Weierstrass theorem, the se-

quence must has at least one accumulation point and these accumulation points constitute a connected set on
Γn1 × · · · × Γni . Now, we show that each such accumulation point is a KKT point of problem (1.1).

In fact, suppose {(x̂1, x̂2, · · · , x̂s)} is an accumulation point of the generate sequence, then there exists subsequence
{(x(k j)

1 , x
(k j)
2 , · · · , x

(k j)
s )} converging to this point. From (3.6), we know that {(x̂1, x̂2, · · · , x̂s)} is also a limit of sub-

sequence {(x(k j+1)
1 , x(k j+1)

2 , · · · , x(k j+1)
s )}. Replacing k by k j in (3.5) and letting j → ∞ yield that (x̂1, x̂2, · · · , x̂s) is a

KKT point of problem (1.1) as discussed in the case of terminating within finite steps. 2

4. Conclusion

In this paper, we proposed a shifted power method for a type of polynomial optimization problem over unit spheres.
Its validity is guaranteed theoretically. However, numerical experiments and numerical comparison are required to
show the efficiency of the method and this will be done in our future research.
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