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1. Extended Abstract
In the study of human learning, there is broad evidence that
our ability to retain a piece of information improves with
repeated exposure, and that it decays with delay since the
last exposure. This plays a crucial role in the design of ed-
ucational software, leading to a trade-off between teaching
new material and reviewing what has already been taught.
A common way to balance this trade-off is spaced repe-
tition, which uses periodic review of content to improve
long-term retention. Though spaced repetition is widely
used in practice, e.g., in electronic flashcard software, there
is little formal understanding of the design of these sys-
tems. Our paper addresses this gap in three ways. First, we
mine log data from spaced repetition software to establish
the functional dependence of retention on reinforcement
and delay. Second, we use this memory model to develop a
stochastic model for spaced repetition systems. In particu-
lar, we propose a queueing-network model of the Leitner
system for reviewing flashcards, and empirically test the
validity of our queueing model via a Mechanical Turk ex-
periment. Our experiments verify a key qualitative predic-
tion of our model: the existence of a sharp phase transition
in learning outcomes upon increasing the rate of new item
introductions. Finally, we propose a heuristic approxima-
tion for our queueing model that provides a computation-
ally tractable means of optimizing the design of the Leitner
system. We discuss various aspects of the resulting optimal
design, and also outline ways of extending our model to
study other aspects of designing spaced repetition systems.

1.1. Introduction

The ability to learn and retain a large number of new pieces
of information is an essential component of human learn-
ing. Scientific theories of human memory, going all the

way back to 1885 and the pioneering work of Ebbinghaus
(Ebbinghaus, 1913), identify two critical variables that de-
termine the probability of recalling an item: reinforcement,
i.e., repeated exposure to the item, and delay, i.e., time
since the item was last reviewed. Accordingly, scientists
have long been proponents of the spacing effect for learn-
ing: the phenomenon in which periodic, spaced review of
content improves long-term retention.

A significant development in recent years has been a grow-
ing body of work that attempts to ‘engineer’ the process
of human learning, creating tools that enhance the learning
process by building on the scientific understanding of hu-
man memory. These educational devices usually take the
form of ‘flashcards’ – small pieces of information content
which are repeatedly presented to the learner on a sched-
ule determined by a spaced repetition algorithm (Gwern,
2016). Though flashcards have existed for a while in phys-
ical form, a new generation of spaced repetition software
such as SuperMemo (Wozniak & Gorzelanczyk, 1994),
Anki (Elmes, 2015), Mnemosyne (Bienstman, 2006), Pim-
sleur (Pimsleur, 1967), and Duolingo (duo, 2011) allow a
much greater degree of control and monitoring of the re-
view process. These software applications are growing in
popularity (Gwern, 2016), but there is a lack of formal
mathematical models for reasoning about and optimizing
such systems. In this work, we combine memory models
from psychology with ideas from queueing theory to de-
velop such a mathematical model for these systems. In par-
ticular, we focus on one of the simplest and oldest spaced
repetition methods: the Leitner system (Leitner, 1974).

The Leitner system, first introduced in 1970, is a heuristic
for prioritizing items for review. It is based on a series of
decks of flashcards. After the user sees a new item for the
first time, it enters the system at deck 1. The items at each
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deck form a first-in-first-out (FIFO) queue, and when the
user requests an item to review, the system chooses a deck
i according to some schedule, and presents the top item.
If the user does not recall the item, the item is added to
the bottom of deck i − 1; else, it is added to the bottom
of deck i + 1. The aim of the scheduler is to ensure that
items from lower decks are reviewed more often than those
from higher decks, so the user spends more time working
on forgotten items and less time on recalled items. Exist-
ing schemes for assigning review frequencies to different
decks are based on heuristics that are not founded on any
formal reasoning, and hence, have no optimality guaran-
tees. One of our main contributions is a principled method
for determining appropriate deck review frequencies.

The problem of deciding how frequently to review differ-
ent decks in the Leitner system is a specific instance of the
more general problem of review scheduling for spaced rep-
etition software. The main tension in all settings is that
schedules must balance competing priorities of introducing
new items and reviewing old items in order to maximize the
rate of learning. While most existing systems use heuristics
to make this trade-off, our work presents a principled un-
derstanding of the tension between novelty and reinforce-
ment.

1.2. Related Work

The scientific literature on memory models is both old (dat-
ing back to more than a century) and also highly active. The
basic memory model, the so-called exponential forgetting
curve, was first studied by Ebbinghaus in 1885 (Ebbing-
haus, 1913) – it models the probability of recalling an item
as an exponentially-decaying function of the time elapsed
since previous review and the memory ‘strength’. The ex-
act nature of how strength evolves as a function of the num-
ber of reviews, length of review intervals, etc. is a topic of
debate, though there is some consensus for the existence
of a spacing effect, in which spaced reviews lead to greater
strength than massed reviews (i.e., cramming) (Dempster,
1989; Cepeda et al., 2006). Recent studies have proposed
more sophisticated probabilistic models of learning and
forgetting (Pashler et al., 2009; Lindsey et al., 2014), and
there is a large body of related work on item response the-
ory and knowledge tracing (Linden & Hambleton, 1997;
Corbett & Anderson, 1994). Our work both contributes to
this literature (via observational studies on log data from
the Mnemosyne software system) and uses it as the basis
for our queueing model and scheduling algorithm.

Though used extensively in practice (cf (Gwern, 2016) for
an excellent overview), there is very limited literature on
the design of spaced repetition software. One notable work
in this regard is that of Novikoff et al. (Novikoff et al.,
2012), who propose a theoretical framework for spaced
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Figure 1. The Leitner Queue Network: Each queue represents a
deck in the Leitner system. New items enter the network at deck
1. Green arrows indicate transitions that occur when an item is
correctly recalled during review, and red arrows indicate transi-
tions for incorrectly recalled items. Queue i is served (i.e., cho-
sen for review) at a rate µi, and selects items for review in a FIFO
manner.

repetition, based on a set of deterministic operations on an
infinite string of content pieces. In particular, they assume
identical items, and design schedules to implement deter-
ministic spacing constraints, which are fixed in advance,
based on an intuitive understanding of the effect of mem-
ory models on different learning objectives. The focus in
(Novikoff et al., 2012) is on characterizing the combina-
torial properties, in particular, the maximum asymptotic
throughput, of schedules that implement various spacing
constraints. Though our work shares the same spirit of for-
malizing the spaced repetition problem, we improve upon
their work in three ways: (1) in terms of empirical verifi-
cation, as our work leverages both software log-data and
large-scale experimentation to verify the memory models
we use, and test the predictions made by our mathemati-
cal models, (2) in computational terms, wherein, by using
appropriate stochastic models and approximations, we for-
mulate optimization problems that are much easier to solve,
and (3) in terms of flexibility, as our model can more eas-
ily incorporate various parameters such as the user’s review
frequency, non-identical item difficulties, different memory
models, etc.

1.3. Contributions and Argument Outline

Our key contributions fall into two categories. First, we
introduce a principled methodology for designing review
scheduling systems with various learning objectives. Sec-
ond, the models we develop provide qualitative insights and
general principles for spaced repetition learning. Our over-
all argument consists of the following three steps:



A Queueing-Theoretic Foundation for Optimal Spaced Repetition

1. Mining large-scale log data to identify human memory
models: First, we perform observational studies on data
from Mnemosyne (Bienstman, 2006), a popular flash-
card software, to compare different models of retention
probability of items as a function of reinforcement and
delay. Our results add to the existing literature on mem-
ory models, and also provide the empirical foundation
upon which we base our mathematical models.

2. Mathematical modeling of spaced-repetition systems:
Our main contribution lies in embedding the above
memory model into a stochastic model for spaced-
repetition learning systems, and using this model to op-
timize the review schedule. Our framework, which we
refer to as the Leitner Queue Network, is based on ideas
from queueing theory and job scheduling. Though con-
ceptually simple and easy to simulate, the Leitner Queue
Network does not however provide a tractable way to
optimize the review schedule. To this end, we propose
a (heuristic) approximate model, which in simulations
is close to our original model for low arrival rates, and
which leverages the theory of product-form networks
(Kelly, 2011) to greatly simplify the scheduling prob-
lem. This allows us to quantitatively study the structure
of optimal scheduling policies.

3. Verification of mathematical model in controlled exper-
iments: Finally, we use Amazon Mechanical Turk (mtu,
2005) to perform large-scale experiments to test our
mathematical models. In particular, we verify a crit-
ical qualitative prediction of our mathematical model:
the existence of a phase transition in learning outcomes
upon increasing the rate of introduction of new content
beyond a maximum threshold. Our experimental results
agree well with our model’s predictions, thereby reaf-
firming the utility of our framework.

Our work thus provides the first mathematical model for
spaced repetition systems which is empirically tested and
which admits a tractable means for optimizing such sys-
tems. In the process, it opens several directions for fur-
ther research: developing better models for such systems,
providing better analysis for the resulting models, and per-
forming more empirical studies to understand these sys-
tems. Moreover, our experimental platform can help serve
as a testbed for future studies, and to this end, we release
all data and software tools to replicate our experiments and
facilitate follow-up studies.

1.4. Key Results

The Leitner Queue Network model predicts a sharp de-
crease in the rate of learning when the rate of new item
introductions exceeds a certain threshold. In a controlled
experiment on Mechanical Turk, we expose students to dif-
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Figure 2. Results of an experiment on Mechanical Turk, where
over 300 students spent 15 minutes reviewing flashcards for
English-Japanese and English-ASL vocabulary. Each student was
randomly assigned to a fixed arrival rate of new items. Plot (a)
compares the empirical throughput observed in the Mechanical
Turk experiment with simulated throughput and the theoretical
phase transition threshold – the empirical data agree well with the
simulations. Plots (b-c) examine the final state of each of the Leit-
ner decks in the Mechanical Turk experiment – items tend to pile
up in deck 1 when the system is destabilized by a high arrival rate.

ferent arrival rates of new items and observe a phase transi-
tion near the threshold predicted by our model. See Figure
2 for details.
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1.5. Conclusion

Our work develops the first formal mathematical model
for reasoning about spaced repetition systems – in par-
ticular, the Leitner system – that is tractable to optimize
and validated by empirical data. Our formalization sug-
gests the maximum speed of learning as a natural design
metric; using techniques from queueing theory, we de-
rive a tractable program for calibrating the Leitner sys-
tem to optimize the speed of learning. Additionally, the
queueing framework opens doors to leveraging an exten-
sive body of work in this area to develop more sophisti-
cated extensions. To inspire and facilitate further research
in this direction, we release (1) all model and evaluation
code, (2) framework code for carrying out user studies,
and (3) the data collected in our Mechanical Turk study.
For a complete description of our methodology and re-
sults, see our full paper (Reddy et al., 2016). Code and
data for replicating our experiments are available online at
http://siddharth.io/leitnerq.

1.6. Future Work

• The primary direction of future work is to obtain a better
understanding of the Leitner Queue Network, and better
approximations with rigorous performance guarantees.
Doing so will allow us to design better control policies,
which, ideally, can optimize the average learning rate in
the transient regime. The latter is critical for designing
policies for cramming (Novikoff et al., 2012), a comple-
mentary problem to long-term learning where the num-
ber of items to be learnt is of the same order as the num-
ber of reviews. We have some ongoing work that focuses
on this setting.

• Our approximation of the Leitner Queue Network
(which provides a tractable review schedule optimiza-
tion problem) is only valid at low arrival rates and for
moderately-sized review sessions. If a delay-driven Leit-
ner Queue Network is simulated for a longer period, then
it exhibits instability due to the presence of a positive
feedback loop where a burst of new arrivals leads to large
delays which leads to more items re-entering the queue.
We are currently investigating ways to control this in the-
ory, and also trying to replicate it via experiments.
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