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Abstract A significant efforts have been done by scientists and researchers in the last few years to develop many
non-destructive techniques for damage recognition in a beam like dynamic structures. In this paper, theoretical,
numerical, fuzzy logic methods employed for diagnosis of damage in the form of cracks of the cantilever composite
beam with an aim to detect, quantify, and determine its intensity and locations. The Glass fiber reinforced epoxy
composite engaged in the analysis due to high strength and stiffness-to-weight ratios. The theoretical analysis is
performed to get the relationship between change in natural frequencies and mode shapes for the cracked and non-
cracked composite beam. The Numerical analysis is performed on the cracked composite beam to get the vibration
parameters such as natural frequency and mode shape, which is used to design fuzzy logic, based smart artificial
intelligent technique for predicting crack severity and its intensity. Online fuzzy based smart technique has been
developed, first three natural frequencies and mode shapes used as input parameters, Gaussian membership
functions is considered to detect cracks location and depth. The results of theoretical and numerical analysis are
compared with experimental results having good agreement with the results predicted by the fuzzy inference system.
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1. Introduction

The demand for composite materials is increasing,
especially in the aerospace, civil and automobile industries,
due to its unique characteristics such as high stiffness and
strength to weight ratio, higher fatigue and wear resistance
and higher damage tolerance capability. Sometimes composite
and isotropic structures subjected to dynamic loading,
which is one of the causes of damage mostly, cracks and
delamination. The presence of the cracks on the dynamic
structures introduces a local flexibility, which changes the
dynamic behavior of the structures.

For the last few years, several methodologies have been
explored for monitoring and detection of the damage in
the composite materials. Kisa [1] has developed a new
numerical method for free vibration analysis of cracked
cantilever composite beam having multiple transverse
cracks. The proposed method integrates the fracture
mechanics and the joint interface mechanics to couple
substructures. Kisa et al. [2] are presenteda new
numerical methodology for free vibration analysis of
circular cross sectional beams containing multiple non-
propagating open cracks. In the proposed methodology the
component mode synthesis technique is combined with
the finite element method. Krawczuk et al. [3] are
presented two models to calculate Eigen frequencies of
cracked graphite fiber reinforced polyimide composite

beam. In the first model the crack is exhibited by a mass-
less substitute spring. The fracture mechanics and the
Castigliano theorem are used to calculate the flexibility of
the spring. The finite element method is utilized in the
second model. Hoffman et al. [4] are presents three neural
classification methodologies were calculated from their
performance on a fault diagnosis problem needful for the
multiple fault identification. Adams et al. [5] propose a
non-destructive method for evaluating the integrity of
structures. Crack location and crack depth identified by
proposed theoretical method and justified by experimental
investigation. Sekhar [6] is determined dynamic
characteristics of cracked rotor containing two cracks
through finite element analysis and the influence of one
crack over the other for natural frequencies, mode shapes
and for threshold speed limits has been observed. Pawar et
al. [7] are developed online damage detection method for
composite rotor blade. Finite element method used to
obtain system parameters such as blade response, loads
and strains of the damage and un-damage rotor blade,
these parameters used as input to genetic fuzzy systems
for identification of damage in the rotor blade. Katunin [8]
is presented discrete wavelet transform method for
identification of multiple cracks on polymeric laminate
beam. The natural mode shapes of non-cracked and
cracked beams were estimated experimentally using laser
Doppler vibrometry for estimation of the crack locations
in laminated beams. Saravanan et al. [9] have proposed a
method based on the vibration signatures acquired from
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the machines to effectively identify the conditions of
remote moving parts of the machine. The proposed
method has been designed using fuzzy controller and
decision trees to produce the rules automatically from the
feature set. The developed fuzzy controller has been tested
with characteristic data and the results are found to be
inspiring. Das et al. [10] are presented finite element,
theoretical, experimental and fuzzy logic methodologies

for forecasting the crack severity and its intensity on beam.

Finite element analysis is being executed on the cracked
beam structure to measure the vibration parameters, which
is subsequently used in the fuzzy logic controller for
prediction of crack depths and locations. Results from
experimental analysis are very close to the results
predicted by the theoretical, finite element and fuzzy
analysis. Parhi [11] has developed a fuzzy based
navigational control system for multiple mobile robots
working in a cluttered environment. He has been designed
to navigate in cluttered environment without hitting any
obstacles along with other robots. Mohammed et al. [12]
are proposed a neuro-fuzzy system for identification of
multiple damage in pre-stressed square membrane
structure. The neuro-fuzzy system receives the wavelet-
based damage feature index vector as the input and gives
the damage status of the structure as the output.
In the present work, the artificial intelligent technique has
been adopted for the identification of cracks. Theoretical
and numerical have been performed to find the dynamic
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response of a cracked cantilever composite. The
theoretical and numerical results have been compared. An
inverse method has been designed based on fuzzy
technique with Gaussian membership function and used to
forecast the damage severity and its intensity. The
experiment results are compared with the various analysis
results. A close agreement observed between the results.

2. Theoretical
Composite Beam

Analysis of Cracked

2.1. Stiffness and Mass
Composite Beam Element

The method suggested by Krawczuk [3] can be used to
find the stiffness and mass matrices of the composite beam
element and assume to three nodes in an element, one
node in the middle and two at the extreme end of an
element, and three degrees of freedom at each node is, 6 =
{u, v, 6} shown in fig , the applied system forces F= {F;,
Si, My, R, S; M, Fs, S; M3} and corresponding
displacements o = {ul, Vi, 01, Uy, Vo, 05, Uz, Va, eg}are
shown in Figure 2. The stiffness matrix for a three-node
composite beam element with three degrees of freedom at
each node, for case of bending in x-y plane, given as
follows [3].
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Figure 1. Nodal displacement in element coordinate system
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Figure 2. Applied forces on beam element

Kel = [QijJ(gxg) (D

Where gi, j=1... 9) are shown in Appendix A.
The mass matrix of the composite beam element can be
given as [3]

Mg =[ M ](9x9), @)

Where M;(i, j=1... 9) are shown in Appendix B.

2.2. The Determination of Stiffness Matrix for
the Cracked Composite Beam Element
According to the St. Venant’s principle, the stress field

is influenced only in the vicinity of the crack. The
additional strain energy generates due to crack, which
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change flexibility coefficients expressed by stress intensity
factors, can be derived by Castigliano’s theorem in the
linear elastic range. In this study, the bending-stretching
effect due to mid-plane asymmetry encouraged by the
cracks is neglected. The coefficients of compliance Cj; are
derived from the strain energy release rate (J), which
induced by cracks developed by Griffith—Irwin theory [16].
J can be expressed as

_U(RA)
1=

Where A = area of the crack section, Pi= corresponding
loads, U = strain energy of the beam due to presence of
crack and can be written as [15]

i—N =N j=N
D; Y Kfi+Dpp > Ky > Kuj
i=1 i=1 j=1 A (4)
A N iN
+Dy Z Kiii + D3 Z Kini
i=1 i=1

(3

U=

Where: K, K, and Ky, are the stress intensity factors for
fracture modes of opening, sliding and tearing type of
crack. Dy, Dy,, D, and D; are the coefficients depending
on the material parameters [13]

01 ,
—— Non-crack 7
¥

0.08 & --- Crack 7

4
P
r
d

[=]

[=]

o
%

Relative Amplitude ——

0 0.2 0.4 0.6 08 1

Relative distance from fixed end —>
a

Dy = ~0.5dp,Im(31°2),
5152

Dyp = dyyIm (515,), (5)

D, =0.5dy;Im(s; +55),

D3 =0.5dyy dss

The coefficients s;, s, and djjare given in Appendix C.
The stress intensity factors, K, K, and K, expressed as [14]:

K ji = oiv/maY;(&)F;; (@/H), ®6)

Where o; = stress for the corresponding fracture mode,
F;i (@/H) = correction factor for the finite specimen size;
Y;(£), =correction factor for the anisotropic material [13],

a = crack depth and H= element height. Additional
displacement due to crack, according to the Castigliano’s
theorem [17], in the direction of the load P;, is
OU(P; A)
Uj=———.

i (7)
op,

Substituting the Eq. (3) into Eq. (7), displacement and
strain energy release rate J can be related as follows:
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Figure 3. a Relative Amplitude vs. Relative distance from fixed end (1 mode of vibration), b Magnified view at the first crack location (B;=0.25), ¢

Magnified view at the second crack location ($,=0.5)

The flexibility coefficients, which are highly depend on
the stress intensity factors and the shape and size of crack
and, can be written as [16]:
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The compliance coefficient matrix, can be derived from M1 0 0 0 0 0]
the above equation, can be assumed according to the 0 1 0 0 0 0
displacement vector 3 =1{u,v,0! as
P tuv6) 0 0 1 0 0 0
c :[CiJ](e . (10) -1 0 0 -1 0 O
X
[T'=l0 -1 0 0 -1 o0 (11)
Where c; (i, j=1 to 6) are derived by using egs. (3)- (9). 0 L./2 -1 0 L.J2 -1
The matrix of transformation [T] is calculated by using € ¢
the equation of overall equilibrium of elemental forces (Fi 0 0 0 1 0 0
=1, 9) and (Si = 1, 6). The final matrix of transformation 0 0 0 O 1 0
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Figure 4. a Relative Amplitude vs. Relative distance from fixed end (2"mode of vibration), b Magnified view at the first crack location (B1=0.25), ¢

Magnified view at the second crack location ($,=0.5)

Hence the stiffness matrix of a cracked beam element
can be obtained as

Kerack = TCiT! (12)

Natural frequencies are calculated by following
151,

equation [21]
1/2
2
a ——
[PALe4 J

Where o is the co-efficient, which value is catalogued by
Warburton, Young and Felgar.

The theoretical analysis results for the first three mode
shapes for non-cracked and cracked composite beam are
shown in Figure 3, Figure 4, and Figure 5 and the
orientation of the cracks are p;=0.25, B,=0.5, y;=0.1667
and y,=0.5. Magnified view at the vicinity of the first and

Wi (13

second crack for first three mode of vibration are shown in
Figure 3b, Figure 3c, Figure 4b, Figure 4c, Figure5b and
Figure 5c. A sudden jump has been observed in relative
amplitudes; these changes in amplitudes will be helpful in
the prediction of crack location and its intensity.

3. Numerical of Cracked

Composite Beam

Analysis

The numerical analysis is brought out for the cracked
cantilever composite beam shown in Figure 6, to find the
vibration signatures, e.g. natural frequencies and mode
shapes of transverse vibration at different crack depth and
crack location. The individual material properties of fiber
and matrix listed in Table 1. The cracked beams of the
current research have the following dimensions.
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Figure 5. a Relative Amplitude vs. Relative distance from fixed end (3“mode of vibration), b Magnified view at the first crack location (,=0.25), ¢
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Figure 6. Geometry Cracked Cantilever beam

Table 1. Properties of Glass fiber- reinforced epoxy composite

Fiber (Glass) Matrix (Epoxy)
Elastic Modulus (Gpa) Ei=724 En=3.45
Rigidity Modulus (Gpa) Gi=29.67 Gm=1277
Poisson’s Ratio v = 0.22 vy = 0.35
Mass Density (gm-cm) pr=2.6 pm=12

Length of the Beam (L) = 800mm; Width of the beam
(W) = 50mm; Thickness of the Beam (H) = 6mm

1. Relative first crack depth (y;=a;/H) varies from
0.0833 t0 0.5;

2. Relative second crack depth (y,=a,/H) varies from
0.0833 t0 0.5;

3. Relative first crack location (B;=L,/L) varies from
0.0625 to 0.875;

4. Relative second crack location (B,=L,/L) varies from
0.125 t0 0.9375;

X

Figure 7. Geometry of Structural Solid Shell (SOLSH190) element
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Figure 8. Meshing at the vicinity of crack

Numerical modal analysis based on the finite element
modeling is performed for studying the dynamic response
of a dynamic structure. The natural frequencies and mode
shapes are most important modal parameters in designing
a structure under complex loading conditions. The
numerical analysis is accepted by using the finite element
software ANSYS in the frequency domain and obtain
natural frequencies, and mode shapes.
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Figure 9. Layers Stacking in ANSY'S

A higher order 3-D, 8-node element (Specified as
SOLSH190 in ANSYS) having three degrees of freedom
at each node: translations in the nodal x, y, and z
directions is selected and used throughout the analysis
shown in Figure 7. Each node has three degrees of
freedom, making a total twenty four degrees of freedom
per element. The hexagonal meshing at the vicinity of
crack is shown in Figure 8. The layers, stacking of
composite beam is in the ANSYS shown in Figure 9.
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Figure 10. a Relative Amplitude vs. Relative distance from fixed end (1 mode of vibration), b Relative Amplitude vs. Relative
distance from fixed end (2" mode of vibration), ¢ Relative Amplitude vs. Relative distance from fixed end (3" mode of vibration)
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The results of numerical analysis for the first three
mode shapes for cracked composite beam plotted along
with theoretical analysis results for cracked and non-
cracked beam, orientation of cracks (B;=0.25, B,=0.5,
y1=0.1667 and y,=0.5) is shown in the Figure 10.

4. Fuzzy Logic Analysis for Identification
of Cracks

The fuzzy controller has developed having six input
parameters and two output parameters as shown in Figure 11.
The linguistic term used for the inputs are as follows;
Relative first natural frequency = “rfnf”; Relative second
natural frequency = “rsnf’; Relative third natural
frequency = “rtnf”; Relative first mode shape difference =
“rfmd”; Relative second mode shape difference = “rsmd”;
Relative third mode shape difference = “rtmd.

The linguistic term used for the outputs are as follows;
Relative first crack location = “rfcl” Relative second crack

location = “rscl” Relative first crack depth = *“rfcd”
Relative second crack depth = “rscd”.

Inputs Outputs
rfnf > el
rsnf ——» Fuzzy Model >
rtnf ——» ——» rfed
rimd —— ——» rscl
rsmd—)
rimd , —— rsed

Figure 11. Gaussian fuzzy model

The membership functions for linguistic terms, used in
fuzzy inference system shown in Figure 13 and described
in Table 2.
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Figure 12. Fuzzy inference system

4.1. Fuzzy Tools for Identification of Crack

The rules for fuzzy mechanism can be defined, based
on above fuzzy linguistic terms as follow:

rfnf is rfnf, and rsnf is rsnfy
if | and rtnfis rtnf, rfmd is rfmd,

and rsmd is rsmd¢ and rtmd is rtmd, (14)
then rfcl is rfclpeerg and rfed is rfed,peerg

and rscl is rsclgpeerg and rscd is rscdgpcetq

where a, b, c,e, f,g=11t0 12

According to fuzzy methodology a factor, Wapcery iS
defined in the rules as follows [11]

Wancefg = # Mnfy (freqg ) A 4 rsnf, (freqy )
A urtnfy (freqc)/\,u rfmdg (modshdife) (15)

A g rsmdg (modshdiff)Ayrtmdg (modshdifg)

Where freqa , freqb and freq ¢ are the first, second and

third relative natural frequencies of the cracked cantilever
composite beam respectively; modshdif,, modshdify
and modshdifg
of the cracked cantilever composite beam. The
membership values of the relative crack location and
relative crack depth, (location),giand (depth) g (i= 1, 2)
by applying the composition rule of inference can be
written as [11];

average relative mode shape differences

Hiclighcefg (location)

=Wabcefg " Hrcligneefq (location) Vigngtnh € reli

(depth) (16)

Hrcdi abcefg

= Wabcefg " Hredigneefg (depth) Vdepth € redi

The outputs of all the fuzzy set rules combined to
achieve the inclusive conclusions can be written as
follows;
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Hrgi (location) = iy, (location) v..... Relative crack location (rfcl, rscl)

V Hrcli ey (10€ETION) V... J(Iocatlon) - Hrey , (location) . d (location)

V Hrcliy y121919121, (10CALION) 17 J Hrei, , (location) . d (location)

(depth) = up . (depth) v - (18)

Hreii \QEPIN) = Lhyeyiy 4444 (OEPTN) Voo Relative crack depth (rfcd, rscd)

V Aoty (AEPI) N wovss ¥ Lty 5115151, (d€PEN) j(depth) + Hrcly , (depth) . d (depth)

The crisp values of the relative crack location and j Hrely 5 (depth) . d (depth)
relative crack depth can be written with the help Centre of
gravity method as [11]:
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Figure 13. Fuzzy membership functions for (1, 2, 3) relative natural frequency of first three bending mode of vibration, (4, 5, 6) relative mode shape
difference of first three bending mode of vibration, (7, 8) first and second crack depth and (9, 10) first and second crack location



16

Journal of Mechanical Design and Vibration

Table 2. Description of fuzzy linguistic terms.

Membership Functions Linguistic Terms Description of the Linguistic terms
LINFL, L2NF1, L3NFL, LANFL, L5NFL rfnfy s Low ranges of relative _natural frequency of the first mode of vibration in
descending order respectively
MINFL, M2NF1 inf; - Medlur_n ranges of relat_lve natural frequency of the first mode of vibration in
' ascending order respectively
HINF1, H2NFL, H3NFL, HANF1, HSNFL s 1o ngher_ ranges of relatl\_/e natural frequency of the first mode of vibration in
ascending order respectively
LINF2, L2NF2, L3NF2, LANF2, L5NF2 rsnfys Low ranges of relative n_atural frequency of the second mode of vibration in
descending order respectively
MINF2, M2NF2 rsnfs 5 Medlum ranges of relatlve_ natural frequency of the second mode of vibration
' in ascending order respectively
HINF2, H2NF2, H3NF2, HANF2, H5SNF2 rsnfoss ngher ranges of relative r_1atura| frequencies of the second mode of vibration
in ascending order respectively
LINF3, L2NF3, L3NF3, LANF3, L5NF3 ftnfys Low ranges of relative n_atural frequencies of the third mode of vibration in
descending order respectively
MLNF3, M2NF3 rtnf, 5 Medlum ranges of relatlve_ natural frequencies of the third mode of vibration
' in ascending order respectively
HINF3, H2NF3, H3NF3, HANF3, H5NF3 fthfess ngher_ ranges of relatlv_e natural frequencies of the third mode of vibration in
ascending order respectively
SIMSL, S2MS1, S3MSL, S4MSL, S5MSL rfmdys Small ranges of first relative mode shape difference in descending order
respectively
M1MSL, M2MSL1 rfmds 1 medlun_1 ranges of first relative mode shape difference in ascending order
respectively
H1MSL, H2MS1, H3MSL, HAMSL, H5MS1 rfmds sz ngher_ranges of first relative mode shape difference in ascending order
respectively
SIMS2, S2MS2, S3MS2, S4MS2, S5MS2 rsmdys Small ranges of second relative mode shape difference in descending order
respectively
M1MS2, M2MS2 rsmds - medlun_1 ranges of second relative mode shape difference in ascending order
respectively
H1MS2, H2MS2, H3MS2, HAMS2, H5MS2 rsmds.1p ngher_ranges of second relative mode shape difference in ascending order
respectively
SIMS3, S2MS3, S3MS3, S4MS3, S5MS3 rtmdys Small ranges of third relative mode shape difference in descending order
respectively
M1MS3, M2MS3 rtmds - medlun_1 ranges of third relative mode shape difference in ascending order
' respectively
H1MS3, H2MS3, H3MS3, HAMS3, H5MS3 rtmds.1p ngher_ranges of third relative mode shape difference in ascending order
respectively
S1CL1, S2CL1...... S23CL1 rfclyos Small ranges of relative first crack location in descending order respectively
M1CL1, M2CL1, M3CL1 rfclya.26 Medium ranges of relative first crack location in ascending order respectively
B1CL1, B2CL1....... B23CL1 rfcly7.a9 Bigger ranges of relative first crack location in ascending order respectively
S1CD1, s2CD1...... S10CD1 rfcds-10 Small ranges of relative first crack depth in descending order respectively
MCD1 rfcdyy Medium relative first crack depth
L1CD1, L2CDL1...... L10CD1 rfcdiz.n Larger ranges of relative second crack depth in ascending order respectively
S1CL2, S2CL2...... $23CL2 rsClyas Small ranges of relative second crack location in descending order
respectively
M1CL2, M2CL2, M3CL2 Sl Medlur_n ranges of relative second crack location in ascending order
respectively
B1CL2, B2CL2....... B23CL2 rslyras Blgger_ ranges of relative second crack location in ascending order
respectively
S1CD2, S2CD2...... S10CD2 rscdi-1o Small ranges of relative second crack depth in descending order respectively
MCD2 rscdiy Medium relative second crack depth
L1CD2, L2CD2...... L10CD2 rscdiz-o1 Larger ranges of relative second crack depth in ascending order respectively

4.2. Fuzzy Controller for Detecting Crack
Location and Crack Depth

Relative first natural frequency; relative second natural
frequency; relative third natural frequency; average
relative first mode shape difference; average relative
second mode shape difference and average relative third

mode shape difference are the input parameters for fuzzy
controller. Relative first crack location; relative first crack
depth; relative second crack location and relative second
crack depth are the outputs from fuzzy controller. Twenty
four numbers of fuzzy rules among several hundred rules
are listed in Table 2. Figure 8 represents the fuzzy
controller results when rule 6 and rule 16 are activated
from Table 2.
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5. Experimental Analyses

An experiment has been performed on cracked
composite beam shown in Figure 11. Ten cracked
composite beam specimens have been taken in
experimental analysis with different crack location and
depth. The composite beam was clamped on a vibrating
table one by one. The cracked composite beams have been
vibrated with the help of an exciter and a function
generator. The vibration signatures such as natural

/000000000

frequencies and mode shapes of the composite beams
correspond to 1%, 2" and 3" mode of vibration have been
recorded by placing the accelerometer along the length of
the beams and displayed on the vibration indicator. These
results for first three mode shapes are plotted in Figure 12.
Corresponding theoretical and numerical results for the
cracked beam are also printed in the same graph for
judgment. The name and description of instruments used
in the analysis are listed in Table 3.
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Figure 14. Resultant values of relative crack depths and relative crack locations when Rules 6 and 16 of Table 5.2 are activated
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Table 3. Examples of twenty five fuzzy rules out of several hundred fuzzy rules

Sl. No. Some rules for fuzzy controller

1 If rfnf is MINF1,rsnf is L2ZNF2,rtnf is LINF3,rfmd is M2MS1,rsmd is M2MS2,rtmd is HLMS3, then rfcd is S1ICD1,and rfcl is
S6CL1 and rscd is S4CD2,and rscl is BSCL2

9 If rfnf is MINF1,rsnf is MINF2,rtnf is MINF3,rfmd is H3MS1,rsmd is H3MS2,rtmd is H4MS3, then rfcd is S6CD1,and rfcl is
S18CL1 and rscd is S5CD2,and rscl is M2CL2

3 If rinf is MINF1,rsnf is LLNF2,rtnf is L1F3,rfmd is H3MS1,rsmd is H2MS2,rtmd is H3MS3, then rcdl is S4CD1,and rfcl is S17CL1
and rscd is S6CD2,and rscl is S6CL2

4 If rfnf is M2NF1,rsnf is MINF2,rtnf is MINF3,rfmd is M1MS1,rsmd is HIMS2,rtmd is H2MS3, then rfcd is S4CD1,and rfcl is
S11CL1 and rscd is S4CD2,and rscl is M2CL2

5 If rfnf is MAINF1,rsnf is L2ZNF2,rtnf is L3NF3,rfmd is HIMS1,rsmd is HIMS2,rtmd is H2MS3, then rfcd is S4CD1,and rfcl is
S11CL1 and rscdis SICD2,and rscl is B13CL2

6 If rfnf is LINF4,rsnf is L2NF3,rtnf is M3NF2,rfmd is H2MS1,rsmd is H3MS2,rtmd is L1MS3, then rfcd is S3CD1,and rfcl is
S16CL1 and rscd is SBCD2,and rscl is B3CL2

7 If rfnf is LANFL1,rsnf is LANF2,rtnf is LANF3,rfmd is M2MS1,rsmd is HIMS2,rtmd is HIMS3, then rfcd is L1CD1,and rfcl is
S11CL1 and rscdis S4CD2,and rscl is BLOCL2

8 If rfnf is HINF1,rsnf is M2NF2,rtnf is M1INF3,rfmd is H2MS1,rsmd is H2MS2,rtmd is H2MS3, then rfcd is S6CD1,and rfcl is
S6CL1 and rscd is S4CD2,and rscl is BSCL2

9 If rfnf is LINF1,rsnf is LANF2,rtnf is LANF3,rfmd is M1MS1,rsmd is M1MS2,rtmd is M2MS3, then rfcd is S2CD1,and rfcl is
S6CL1 and rscd is L1CD2,and rscl is B5CL2

10 If rfnf is H2NF1,r_snf is H1NF2,rtnf_ is HINF3,rfmd is H4MS1,rsmd is HIMS2,rtmd is HIMS3, then rfcd is S7CD1,and rfcl is
S17CL1 and rscd is S6CD2,and rscl is B16CL2

11 If rinf is MlNFl,_rsnf is L1NF2,rtnf is L2NF3,rfmd is S1IMS1,rsmd is S2MS2,rtmd is HLMS3, then rfcd is S2CD1,and rfcl is
S11CL1 and rscdis S6CD2,and rscl is BLOCL2

12 If rinf is L4NF1,r_snf is L4NF2,rtnf_ is LANF3,rfmd is H2MS1,rsmd is SIMS2,rtmd is H2MS3, then rfcd is L1CD1,and rfcl is
S17CL1 and rscd is S5CD2,and rscl is M2CL2

13 If rfnf is MINF1,rsnf is L3NF2,rtnf is LINF3,rfmd is S2MS1,rsmd is M1MS2,rtmd is SIMS3, then rfcd is S6D1,and rfcl is S12CL1
and rscd is MCD2,and rscl is M1CL2

14 If rinf is L2NF1,rsnf is LINF2,rtnf is LANF3,rfmd is H2MS1,rsmd is H2MS2,rtmd is H2MS3, then rfcd is S2CD1,and rfcl is
S12CL1 and rscd is S4CD2,and rscl is B13CL12

15 If rinfis I-_|2NF1,rsnf is H1N_F2,rtnf is HINF3,rfmd is S2MS1,rsmd is H3MS2,rtmd is HLMS3, then rfcd is S4CD1,and rfcl is S5CL1
and rscd is S6CD2,and rscl is B6CL2

16 If rfnf is L3NF1,fsnf is LlNF2,rtnf_ is HINF3,rfmd is S2MS1,rsmd is M1MS2,rtmd is L3MS3, then rfcd is L5CD1,and rfcl is
M2CL1 and rscd is L3CD2,and rscl is S10CL2

17 If rfnf is HINF1,rsnf is M2NF2,rtnf is MINF3,rfmd is H2MS1,rsmd is H4MS2,rtmd is H3MS3, then rfcd is S6CD1,and rfcl is
S17CL1 and rscd is S4CD2,and rscl is S6CL2

18 If rinf is LANF1,rsnf is LANF2,rtnf is LANF3,rfmd is HIMS1,rsmd is HIMS2,rtmd is H2MS3, then rfcd is S2CD1,and the rifle is
S17CL1 and rescued is SICD2,and rscl is M2CL2

19 If rinf is L3NF1,r_snf is L4NF2,rtnf_is L4ANF3,rfmd is M2MS1,rsmd is H2MS2,rtmd is H3MS3, then rfcd is MCD1,and rfcl is
S17CL1 and rscdis S2CD2,and rscl is B19CL2

20 If rfnf is H2NF1,r_snf is H1NF2,rtnf_ is HINF3,rfmd is H3MS1,rsmd is H4MS2,rtmd is H4MS3, then rfcd is S6CD1,and rfcl is
S11CL1 and rscd is S4CD2,and rscl is M2CL2

21 If rfnf is H3NF1,rsnf is L2ZNF2,rtnf is M2NF3,rfmd is L2MS1,rsmd is H2MS2,rtmd is HIM3, then rfcd is SOCD1,and rfcl is S18CL1
and rscd is S11CD2,and rscl is SBCL2

29 If rfnf is MlNFl,rsnf is L3NF2,rtnf_ is HANF3,rfmd is H2MS1,rsmd is S4MS2,rtmd is H3MS3, then rfcd is S12CD1,and rfcl is
S18CL1 and rscd is S3CD2,and rscl is BLOCL2

23 If rfnf is H3NF1,r_snf is MlNFZ,rtnf is LINF3,rfmd is M2MS1,rsmd is H3MS2,rtmd is H4MS3, then rfcd is MCD1,and rfcl is
S14CL1 and rscd is S4CD2,and rscl is B14CL2

24 If rfn_f is HAF1,rsnf is MlFZ,rtnf is L4F3,rfmd is S4M1,rsmd is HLM2,rtmd is H4M3, then rfcd is S16CD1,and rfcl is B11L1 and
rscd is M2CD2,and rscl is B2CL2

25 If rfnfis L3NFL,rsnf is LANF5,rtnf is H2NF3,rfmd is S3MS4,rsmd is M1IMS2,rtmd is HIMS3, then rfcd is LICD3,and rfcl is S5CL1

and rscd is S2CD2,and rscl is B5CL2

Figure 15. Schematic block diagram of experimental set-up

1. Delta tron Accelerometer; 2. Vibration analyzer; 3. Vibration indicator embedded with Pulse Lab shop software; 4. Power Distribution; 5. Function
generator; 6. Power amplifier; 7. Vibration exciter; 8. Cracked Cantilever Composite beam
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6. Discussions

In this section a brief summary of the present work,
different parameters and various methodologies used for
cracks identification of composite beam are depicted
below.

In this section a discussion over the results, obtained
from the various methodologies used for cracks
identification of composite beam are depicted below.

The nodal displacement in an element of composite
beam with the orientation of the fibers and its cross
sectional view is shown in Figure 1. Three nodes
considered in an element, two nodes at the extreme end
and one node at the middle of the element, assumed to be
a node of the element having three degrees of freedom,
two translations and one rotation about three mutually
perpendicular axes. Two tensile loads and one moment
acting on a node of the element are demonstrated in Figure 2.
The relative amplitude of crack and non-crack cantilever
beam for 1%, 2" and the 3" mode of vibration, obtained
from theoretical analysis, plotted against relative distance
from fixed end of cantilever beam shown in Figure 3,
Figure 4 and Figure 5. The relative amplitude of the crack
beam is slightly higher than non-crack, because of cracks,
reducing mass and stiffness of the beam. It is observed
through the magnified views at the crack locations (with
=0.125 and =0.25) that there are reasonable changes in
mode shapes due to the presence of crack with higher

intensity of the beam (Figure 3, Figure 4 and Figure 5).
Moreover, these changes in mode shapes are more
prominent at the second crack position and for the higher
mode of vibration. The geometry of the -cantilever
composite beam with cracks is shown in Figure 6. The
Geometry of Structural Solid Shell (SOLSH190) element,
the meshing at the vicinity of the crack and the layers,
stacking of composite beam are shown in Figure 7, Figure 8
and Figure 9 respectively. The numerical analysis results
of cracked beam and theoretical analysis results of cracked
and intact, presented in Figure 10, for comparison purpose.
The individual material properties of fiber and matrix are
listed in Table 1. The fuzzy linguistic terms and twenty
five fuzzy rules out of several hundred are presented in
Table 2 and Table 3 respectively. The fuzzy Gaussian
membership function and fuzzy inference system with six
input parameter e.g. three relative natural frequencies and
three relative mode shape difference and four outputs e.g.
two relative crack locations and two relative crack depths
shown in Figure 11 and Figure 12. The outputs from a
fuzzy inference system by activating the rule 6 and rule 16
of the Table 2 using center of gravity method are
presented in Figure 14. The authentication of various
analysis results, an experimental setup is fabricated shown
in Figure 15. Experimental analysis results with various
analysis results are presented in figure 16. A comparison
of theoretical, numerical, fuzzy and experimental analysis
results for cracked composite beam is in Table 4. To the
different set of first three relative natural frequencies and
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first three mode shapes, relative first and second crack  the fuzzy results are more close to experimental results.
locations and depths are compared together which  The detail description of Instruments used in experimental
outcome of various proposed methods. It is observed that  analysis is listed in Table 5.

Table 4. Comparison of the resul

ts between Fuzzy controller, Theoretical, Numerical and Experimental analysis

- &l & L|5g L La Fuzzy controller relative Theoretical relative
S_E|a_Z2|%_F|E88, 228, |ELy, 1% crack location “rfcl” 1% crack location “rfcl”
- - =~ w = = = “ ” “ ”
% § 2| 2 g z| 2 g e 8222522058 1:; crack depth “rfed” 1:; crack depth “rfed”
S5 | 885|885 |9SLE|Q g £ 2 2 e £ E 2™ crack location “rscl 2™ crack location “rscl
g =& 21 & 2 éﬂE = g, ° : s © ) 2" crack depth  “rscd” 2" crack depth  “rscd”
£ = g™ N ) rfcl rfcd rscl rscd rfcl rfcd rscl rscd
0.99607 | 0.99700 | 0.99829 | 0.000131 | 0.002025 | 0.002401 | 0.186 | 0.167 | 0.438 | 0.251 | 0.190 0.169 0.440 0.253
0.98098 | 0.99557 | 0.99892 | 0.002745 | 0.004556 | 0.010636 | 0.126 | 0.415 | 0.881 | 0.335 | 0.129 0.419 0.882 0.336
0.99651 | 0.99425 | 0.99796 | 0.000786 | 0.002644 | 0.001004 | 0.316 | 0.166 | 0.511 | 0.251 | 0.320 0.169 0.513 0.254
0.99001 | 0.99318 | 0.98710 | 0.001452 | 0.005709 | 0.005084 | 0.253 | 0.416 | 0.561 | 0.165 | 0.255 0.419 0.566 0.169
0.98809 | 0.98584 | 0.98255 | 0.002876 | 0.012103 | 0.013515 | 0.381 | 0.511 | 0.750 | 0.251 | 0.381 0.515 0.754 0.255
0.99672 | 0.98724 | 0.99719 | 0.001761 | 0.003319 | 0.005937 | 0.435 | 0.250 | 0.568 | 0.334 | 0.441 0.252 0.566 0.337
0.99788 | 0.97843 | 0.97519 | 0.002839 | 0.012215 | 0.023485 | 0.565 | 0.336 | 0.678 | 0.505 | 0.565 0.338 0.689 0.509
0.99874 | 0.99877 | 0.99628 | 0.000262 | 0.004753 | 0.015194 | 0.627 | 0.083 | 0.870 | 0.414 | 0.631 0.086 0.871 0.419
0.99114 | 0.99799 | 0.99803 | 0.000103 | 0.001659 | 0.001829 | 0.185 | 0.251 | 0.311 | 0.252 | 0.189 0.254 0.315 0.254
0.99701 | 0.98999 | 0.99803 | 0.001527 | 0.004641 | 0.002392 | 0.434 | 0.332 | 0.565 | 0.166 | 0.442 0.338 0.569 0.169
. Bl El. El2s z8 23 Numerical relative Experimental relative
“_E|la_Z2|®w_E|828. |= g 8. |BES2y. 1% crack location “rfcl” 1% crack location “rfcl”
2| gL | eEL |05 252|085 T 1% crack depth  “rfcd” 1% crack depth  “rfcd”
228|228 | 222 |82 E|lesfE|laBSE nd o kan nd k]
ES5| 885|885 |9SLE|Q g £2 2 e £ E 2™ crack location “rscl 2" crack location “rscl
g 2| & 2| & = éﬂE 5 &, 5 |g, o : 2" crack depth  “rscd” 2" crack depth  “rscd”
£ 2 g™ LN L ™ rfcl rfcd rscl rscd rfcl rfcd rscl rscd
0.99607 | 0.99700 | 0.99829 | 0.000131 | 0.002025 | 0.002401 | 0.189 | 0.165 | 0.438 | 0.251 | 0.1875 | 0.1667 | 0.4375 | 0.250
0.98098 | 0.99557 | 0.99892 | 0.002745 | 0.004556 | 0.010636 | 0.126 | 0.417 | 0.879 | 0.334 | 0.125 | 0.4167 | 0.8750 | 0.333
0.99651 | 0.99425 | 0.99796 | 0.000786 | 0.002644 | 0.001004 | 0.313 | 0.168 | 0.511 | 0.251 | 0.3125 | 0.1667 | 0.5000 | 0.250
0.99001 | 0.99318 | 0.98710 | 0.001452 | 0.005709 | 0.005084 | 0.253 | 0.417 | 0.563 | 0.167 | 0.250 | 0.4167 | 0.5625 | 0.1667
0.98809 | 0.98584 | 0.98255 | 0.002876 | 0.012103 | 0.013515 | 0.376 | 0.510 | 0.752 | 0.253 | 0.375 | 0.5000 | 0.750 0.250
0.99672 | 0.98724 | 0.99719 | 0.001761 | 0.003319 | 0.005937 | 0.438 | 0.249 | 0.564 | 0.334 | 0.4375 | 0.2500 | 0.5625 | 0.333
0.99788 | 0.97843 | 0.97519 | 0.002839 | 0.012215 | 0.023485 | 0.563 | 0.335 | 0.688 | 0.503 | 0.5625 | 0.333 | 0.6875 | 0.500
0.99874 | 0.99877 | 0.99628 | 0.000262 | 0.004753 | 0.015194 | 0.628 | 0.084 | 0.869 | 0.417 | 0.625 | 0.0833 | 0.875 | 0.4167
0.99114 | 0.99799 | 0.99803 | 0.000103 | 0.001659 | 0.001829 | 0.188 | 0.251 | 0.311 | 0.252 | 0.1875 | 0.250 | 0.3125 | 0.250
0.99701 | 0.98999 | 0.99803 | 0.001527 | 0.004641 | 0.002392 | 0.438 | 0.335 | 0.564 | 0.168 | 0.4375 | 0.333 | 0.5625 | 0.1667
Table 5. Decription of Instruments used in experimental analysis
S No Name of the Instrument Description of Instruments
Product Name :Pocket front end
Product Type :3560L
. . Manufacturer Bruel & kjaer
! Vibration Analyzer Frequency Range :7 Hz to 20 Khz
Channels :2 Inputs, 2 Tachometer
Input Type:Direct/CCLD
Manufacture Bruel & kjaer
Product Type :4513-001
Sensitivity :10mv/g-500mv/g
2 Delta Tron Accelerometer Frequency Range :1Hz-10KHz
Supply voltage : 24volts
Operating temperature
Range : -50°C to +100°c
. - PULSE LabShop Software Version 12
3 Vibration indicator Manufacture :Bruel & kjaer
Product Type :4808
Permanent Magnetic Vibration Exciter
Force rating 112N (25 Ibf) sine peak
(187 N (42 Ibf) with cooling)
. . . Manufacture :Bruel & kjaer
4 Vibration Exciter Frequency Range :5Hz to 10 kHz
First axial
resonance : 10 kHz
Maximum bare table
Acceleration ;700 m/s2 (71 g)
ProductType 12719
5 Power Amplifier Manufacture :Bruel & kjaer
Power Amplifier :180VA
6 Test specimen Double crack cantilever composite beam with dimension 800mmx50mmx6mm
7 Power Distribution 220V power supply, 50Hz
Product Model :FG200K
Manufacturer : Aplab
Frequency Rang :0.2Hz to 200 KHz
8 Function Generator VCG IN connector for Sweep Generation

Sine, Triangle, Square, TTL outputs
Output Level 15Vp-p into 600 ohms
Rise/Fall Time : <300nSec:
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Conclusions

The following conclusions derived from the various

studies as mentioned above are described below

1.In the present work, theoretical, numerical,
experimental and fuzzy logic technique has been
adopted for the identification of cracks of the beam
like dynamic structure.

2. Online fuzzy controller is developed based on
Gaussian membership function, relative first three
natural frequencies and relative first three mode
shape difference used as input parameters and
outputs are relative crack location and relative crack
depth.

3. Theoretical and numerical analysis is performed to
get modal parameters such as natural frequencies and
mode shapes of cracked and non-cracked cantilever
composite beam.

4. An experimental setup is established to validate the
results, obtained from various discussed methods.
Results of experimental analysis for faulty dynamic
beam structures are in good agreement with
theoretical, numerical and fuzzy analysis results. It is
observed that fuzzy results are more closed to
experimental results.

5. This online fuzzy inverse technique can be used for
health monitoring of structures and mechanical
system, which reduced computational and damage
detection time.
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O15 = —Os1 =042 = Upg = —Usg =—0gg = —Us7 = 075 = 8BHQ3/3L,,

O16 =061 = —U34 = —0U43 =049 =0oq = —Up7
Gh7 =071 = BHQu /3L,

Oig =g =27 = U7 = BHQy3/3L,

O73 =37 =019 = —Gg1 = BHQy3/6,

022 = Ugg = 7BHQy1 /3L

O3 =3z = —Ogg = —Cgg = BHQ3/2,

U5 =052 = s = g5 = ~8BHQg3/3L,

026 =Us2 =059 = g5 = —Us53 = U35 = —0gg = —0gg = 2BHQ33/3,

= —76 = 2BHQ3/3,
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U2 = Uz = BHQ33/3L,

Oag = Ug3 = —029 = —Cgz = BHQg3/6,

Qa5 = Q54 =16BHQ3/3L,,

Q44 =16BHQ;4/3L,,

Us5 = 16BHQ33/3L,,

U33 =Cgg = BH(7H?Qy1/36L, + L¢Q33/9),

U36 =63 = dgo = Uog = BH(—2H?Qq1/9L¢ +L,Q33/9),
U39 = g3 = BH(H?Qy1/36L, — L,Q33/18),

Geg = BH(4H?Qy1/9L, +4L,Q43/9),

046 =0s6 =0,

Where B, H, L. are the geometrical parameters of the composite beam element, Q;;, Q;3 and Qg are stress-stress
constants and given as [18]

(_gll = 611m4 + 2((_:12 + 2633)m2n2 + 622”4,

Qi3 = (C11 —Cyp —4Cg3)m°n +Cpp — Cpp — 2Cggmn®

Qgs = (C1y —2Cyp +Cpp — 2C3)m*n® + Cgg(m* +1n%),

Where m=cosa, n=sina and C;; terms are determined from the relation [15]

— E

- 11
Cu="—>5 ,
(1-v33E92/Byq)
Co2=C11E22/E11.

Cro=v12C22: S33=C12
Where Eii, Ex, Gip, Gas, V12, Vo3 and p are the mechanical properties of the composite and calculated using the
following formulae [18]:

Ei1 =Efp+En(1l-9),
E _E |:Ef+Em+(Ef_Em)§9}
22 = t=m 3
Ef +Em _(Ef _Em)(ﬁ

Vig =Vi@+Vn (1-9),

14+Vim =V E /Enn }

Vo3 :Vf¢7+vm(1_(/’)|: >
1_Vm +VmVi2 Em/Ell

Gir =G {Gf"'Gm"‘(Gf_Gm)(ﬂ}
12 — m I}
Gf""Gm_(Gf_Gm)(”
p=pi@+pm(l-9),
Gz3=—E22 '
2(1+V23)

Where, m and f denote matrix and fiber, respectively. E, G, v and p are the modulus of elasticity, the modulus of
rigidity, the Poisson’s ratio and the mass density respectively.

Appendix B
Where M;; (i, j=1... 9) are given as
Myg =Mpy =My7 = Mgg =Myy =My =2pBHL, /15,
My7 = M7y =Myg = Mgy =—pBHL, /30,
M3 = Mgy = —Mgg = —Mgz = —Mgg = ~Mgg = pBHLZ /180,
Meg = Mg = —Myg = Mgy =pBHL? /90,
Mg = Mgg = pBHL, (L% /1890 + H2/90),
Mgg = 2pBHL, (L% /1890 + H2/90),



Journal of Mechanical Design and Vibration 23

M3g = Mgz = Mgg = Mgg = pBHL (— L2, /945+ H2/180),

Mag = Mg3 = pBHL, (L%, /1890 — H2/90),

My4 = Mg = 8pBHL, /15,

My = Mp1 =Mz =Mgy =My5 = Mgy = Mg = Mgy = Myg = Mgy =Mig = Moy

=Myq =My =My7 =My = M3y =Myz =Mgzg =Mgz = Mgz =M73 =My5 =Mgy

=Myg =My =Myg = Mgy = Myg =Mgyg =Msg =Mgg = Mgz =M75 =Ms5g = Mgg

=Mg7 =Myg = Mg = Mgy =Myg =Mg7 =0

Where p is the mass density of the element, B is the width of the element, H is the height of the element and L, denotes
the length of the element.

Appendix C

The roots of the follow characteristic equation give the complex constants s; and s, [18]:

61154 - 261653 + (2612 +a66 )52 — 26265 +622 =0,

Where d_ij constants are

dyq = dyym? +(2d;, +dgg)M?n? +dyyn?,

622 = d11n4 + (2d12 + d66)m2n2 + d22m4,

Byy = (dyg +dpp —dgs)m?n +dyp(m* +n%),

Oy = (— 20y + 203, +dgg)m®n + (dpy — 20y, —dgg)mn®,

A6 = (—2dyq + 20y +dgg)mn® + (d — 23, — dgg)m°n,

666 = 2(2d11 —4d12 + 2d22 —d66)n2m2 +d66 (m4 + n4),

Where m =coso.n =sina and Jij are compliance constants of the campsite along the principal axes. Jij can be
related to the mechanical constants of the material by

1 2 E 1 2 vV
dyg =——(1- Vi) —22),dyp = ——(1-V53),01p = —22 (1+V73),dgs =1/G12,dag =1/G 3 55 = dge.
Eqq =] Ez Eqq



