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1. Introduction

Singular perturbation problems (SPPs) arise in various
fields of science and engineering which include fluid
mechanics, fluid dynamics, quantum mechanics, control
theory, semiconductor device modeling, chemical reactor
theory, elasticity, hydrodynamics, gas porous electrodes
theory, etc. SPPs are characterized by the presence of a
small parameter (0< ¢ < 1) that multiplies the highest

derivative term. This leads to boundary and/or interior
layers in the solution of such problems. A much attention
has been drawn on these problems to obtain good
approximate solutions for the past few decades. Since
classical numerical methods fail to produce good
approximations for these equations, it is inevitable to go
for non-classical methods. There are several articles
available at the literature but they are mainly based on
singularly perturbed problems containing one equation.
Some authors have developed robust numerical methods
for a system of singularly perturbed convection-reaction-
diffusion problems on smooth data. Very few researchers
can be seen for problems with non-smooth data which
frequently arises in electro analytic chemistry, predator-
prey population dynamics, etc. as a perfect application.
Oseen equations form a convection-diffusion system

where as linearized Navier-Stokes equations yield a
reaction-diffusion system at large Reynolds number.

For a parameter-uniform methods pertaining to singular
perturbation problems, one can refer the books [1,2,3]. A
standard finite difference method is proved uniformly
convergent on a fitted piece wise uniform Shishkin mesh
for a single equation reaction-diffusion problem [2]. The
same approach for coupled system of two singularly
perturbed reaction-diffusion problems, with diffusion
coefficients &, &, was originally proposed by Shishkin [4]

and identified three different cases
(i)0<e =¢, <L(ii)0< g <& =L(iii)0<g <& <1
For case- (i) Matthews et al. [5] proved almost first order

convergence using classical finite difference scheme on
Shishkin mesh for a system of singularly perturbed
reaction-diffusion equations subject to Dirichlet boundary
conditions. Tamilselvan et al. [6] developed a numerical
method using fitted piecewise uniform Shishkin mesh for
the coupled system of singularly perturbed reaction-

diffusion equations for case- (|) with discontinuous source

term subject to Dirichlet boundary conditions and
obtained almost first order uniform convergence.
Singularly perturbed linear second order ordinary
differential equations of reaction-diffusion type with
discontinuous source term subject to Dirichlet boundary
conditions having diffusion parameters with different
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magnitudes was studied by Paramasivam et al. [7]. In that
paper, the authors constructed a numerical method using
classical finite difference scheme on Shishkin mesh with
first order parameter-uniform accuracy. Using mesh
equidistribution technique, Das and Natesan [8] studied
the singularly perturbed system of reaction-diffusion
problems subject to Dirichlet boundary conditions on
smooth data having diffusion parameters with different
magnitudes. In that article, the central difference scheme
is used to discretize the problem on adaptively generated
mesh and obtained an optimal second order parameter
uniform convergence.

In recent years, system of singularly perturbed Robin
type reaction-diffusion problems has attracted a lot of
attention for many researchers. Das and Natesan [9]
achieved perfect second order accuracy for a single second
order Robin type reaction-diffusion problems using
adaptively generated grid for smooth case. In that article,
the authors proposed the cubic spline difference scheme
for mixed boundary conditions and the classical central
difference scheme for the differential equation at the
interior points to get second order parameter uniform
convergence. Das and Natesan [10] also proposed an
efficient hybrid numerical scheme, which uses cubic
spline difference scheme in the inner region and central
difference scheme in the outer region, for singularly
perturbed system of Robin type reaction-diffusion
problems on Shishkin meh for smooth case. It has been
shown that the scheme is g-uniform convergent with
almost second order accuracy. Two hybrid difference
schemes on the Shishkin mesh were constructed by
Mythili Priyadharshini and Ramanujam [11] for solving
the singularly perturbed coupled system of convection-
diffusion equations with mixed type boundary conditions
on smooth data which generate ¢ -uniform convergent
numerical approximations to the solution. Recently,
Mahabub Basha and Shanthi [12] have considered a
numerical method for singularly perturbed coupled system
of convection-diffusion Robin type boundary value
problems with discontinuous source term. Motivated by
the above works, in this article, we have developed a
uniformly convergent numerical method on the Shishkin
mesh for a system of two coupled singularly perturbed
reaction-diffusion Robin type boundary value problems
with discontinuous source term.

This paper is organized as follows: In Section-2, some
analytical results of the solution of singularly perturbed
MBVP with discontinuous source term are presented. The
numerical method is described in Section-3. Error analysis
is carried out in Section-4. Numerical examples are
provided in Section-5 and conclusions are given in
Section-6.

Throughout this paper, C denotes a generic positive
constant independent of the singular perturbation
parameter ¢, the nodal points x; and the number of mesh

intervals N which may not be same at each occurrence.
Let y:D=[a,b]>R. The norm which is suitable for

studying the convergence of numerical solution to the
exact solution of the singular perturbation problem is the

maximum  norm yD:supXED|y(x)| Further,

109] = (|2 (0L ly2(9])" and ¥ = max,cp {|ya].| 2}

2. Continuous Problem
2.1. Statement of the Problem
Find y;,y, €Y =C°(Q)~C? (Q‘UQJr) such that

Ry(x) =
—eyy (X)+ay (X) Yy (X)+ag2 (X) Yo () = f(x), (D
VxeQ Q"

P,y (x)=
—& ¥, (X)+ay (X) v (X) + a5 (X) Y, (X) = f,(x), (2
VxeQ Q"
with the boundary conditions
BioY1(0) = a1 (0)— vy (0) = . (3)
Biyi (1) =7y (1) + A (1)=aq, (1)
B2oY2(0)= 25, (0) -8y, (0) =T, (5)
BotY (1) =72Y2 (1) +28,y, (1) =s, ©)
where & is a small parameter (O<e<l) |,
01,02, B1:B2.71,72:61,6, >0 and
a1 (X), a5 (X), @91 (X),a95(x) are such that
a, (X) <0, 85, (x) <0, (7)

a1 (x) >[az (X)) 222 (X) >[ags (x)], Vx € @ (8)
and also

[f.]@)|<C,[[f,](d)<C. 9

Here Q=(01),Q =(0,d),Q"=(d,1),deQ and

Y=(vY2 )T .

It is also assumed that the source terms f;, f, are
sufficiently smooth on Q\{d}; At the point d € Q, the
functions f;, f, have jump discontinuity. In general, this

discontinuity gives rise to interior layers in the solution of
the problem. Since f;, f, are discontinuous at d, the

solution y of (1)-(6) does not necessary to have a
continuous second order derivative at the point d. i.e.,
Y1,¥, C%(Q). But the first derivative of the solution

exists and is continuous.
The above system (1)-(6) can be written in matrix form

as
2
) | e
Py = 1_J_ X y+A(x)Y = f(x),
0 —£—
dx
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with the boundary conditions
( B10Y1(0)] _ ( PJ [ Biiy1 (1)] _ (QJ
Baoy2(0)) \r)(Bay2(1)) (s)

— f
where A(x)= [all(x) aﬂ(x)j and f(x):( 1(X)j.
a1 (X)  ax(x) f5(x)

The jump at d is denoted in any function @ with
[a)](d):a)(d+)—a)(d_)_

Remark-1: The presence of & multiplying the
derivative terms in the mixed boundary conditions
amplifies the significance of the boundary layers at both

ends. In the absence of ¢, the layers are sufficiently weak
[9,13].

2.2. Some Analytical Results

In this section, the existence of a solution, the
maximum principle and stability result are established for
the MBVP (1)-(6).

Theorem-1: The MBVP (1)-(6) has a solution

yz(yl,yz)T with y;,y, €Y.

Proof: The proof is by construction. Let ¥~ and y*

be the particular solutions of the following system of
equations

~o(¥7) () + AT ()= T (x).x e,
and
~o(7) (x)+ AT (1) = T (x) xe Q"

respectively.
Also let ¢ and i be the solutions of the following
MBVPs:

respectively.

Here ¢ =(d.d) W =(v1.v2).a=(,2,),
B=(B.5).7=(1n.72).6 =(8.,5,),0=(0,0)'
and 1= 1 )

Then y can be written as

where

Bo = (@%1(0)~ 480"y, (0)) (v (0)-44D" 1 (0)),
20 = (@292 (0)- 46,07, (0)) - (2¥z (0)- 48,07 v; (0)),
B = (@1 (1) -840 (1))~ (@y (V)-a8D7y (1)),
By, = (@Y, (1) 8,0 ¥, (1)) ~(e¥; (1)-48D "3 (1)),

K and K" are matrices with constant entries.
n (0,1),0<¢,7<1 and 4,7 cannot have internal
maximum or minimum [14].
Hence ¢ <0, >0,x<(0,1).

. ki, O
Choose the matrices K= and
0 ky

« [k 0
K :[ ' *J so that yy,y, eCH(Q). i.e., we impose
0 k

the conditions y( ) y(d*) and y( ) y(d*).

For the matrices K and K" to exist it requires

V’l(d) 0 —¢1(d) 0
0 v, (d) 0 —4(d) 20
yi(d) 0 —g4'(d) O '
0 —w'(d) 0 —¢'(d)

This implies (w2, 262 ) (Awr -vadh ) > 0.
Theorem-2: (Maximum principle) Suppose y;,y, €Y.
Further Y=(y1.Y2 )T
0)>0,B 0)>0, 1)>0, . _
Bioy1 (0) 223’2( ) _Bllyl() and [VJ(d)SO.
BxuY,(1)20,RY(x)20,R,¥(x)20
Also let aj, (x)<0 and ay (x)<0 on Q. Then if there
exists T=(tut) Lt eV,

t,(0) >0, B,,t >0, Bt . _
Bioty (0) 2_02( ) ?111() and [t }(d)so,
B,it; (1) >0,RE(x)>0,R,E(x)>0
then y(x)>0,VxeQ.

Proof:

n= max{maxxEQ (_ylj maxXeQ{ Y2 j}
4 t

Assume that the theorem is not true.
Then >0 and there exists a point x, such that

Further, X, eQ Q" or X =d.
(yi+7)(x)20,i=12,xeQ.

Case-(i): (yp+mt)(X%)=0, for xy =0. It implies that
(y+nt;) attains a minimum at Xx,.
0< B (Y1 +mt)(%o)=

o (Y1 +11t) (%o )= Bulyy +11t1) (%) <O,
contradiction.

suppose that satisfies

a function such that

Define

Also

Therefore,

which is a
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Case-(ii): ( yl]( 0)=1% €Q Q" ie.,

4
(yp+7t1)(Xg) = 0. Therefore,

0<PR(yi+7t)(%)=
—s(yi+1ty) (%o)+au1 (% ) (Yo +1t) (%)
+ayp (%) (Y2 +77t5) (%) <0,

since ((y,+nt;) attains a minimum at x,, which is a
contradiction.

Case-(iii): [_t—ylj(xo) =1,% =d, ie.,
1

(yp+7ty)(Xo) =0. Since (y; +nt;) attains a minimum at

Xg, then

0<| (1) |(xo)=[ w1 ](@)+n[t|(d) <0, which
is a contradiction.

Case-(iv): (y; +17ty ) (X9 ) =0, for xy =1. It implies that
(y, +nty) attains a minimum at xy, Therefore,

0<By (W +mt)(%)=

1 (Y1 +77t) (X0 ) = 8u(y1 +77t1) (%) <0,
contradiction.

Case-(v): (Yo +7ty)(Xg)=0,% € Q" (_£Q". Similar to
Case-(ii), it leads to a contradiction.

Case-(vi): (Y, +7ty)(X9)=0,% =d. Similar to Case-
(iii), it leads to a contradiction.

Case-(vii): (y, +mty)(Xg)=0,% =0. Similar to Case-
(i), it leads to a contradiction.

Case-(viii): (Y, +7ty)(Xy)=0,% =1. Similar to Case-
(iv), it leads to a contradiction.

Hence, ¥(x)>0,VX e Q.

Corollary-1: Consider the differential equations (1)-(2)
subject to the conditions (7)-(8). Let t = (tl,tz)T where

which is a

1 x d .
2 X8 e o4,
r g g XY L)
%—§+Z,XEQ+U{1},
and
1—1+— xeQ~ {0 d}
-2 88 A
%—L%,xmw{l}

Then the above maximum principle is true for the
MBVP (1)-(6).

Remark-2: The MBVP (1)-(6) has a solution and it is
unique.

Theorem-3: (Stability result) Consider the differential
equations (1)-(2) subject to the quasi-monotonicity and
diagonally dominant conditions (7)-(8). If y;,y, €Y,
then

|Yi( |<C[max{]BlOy1 ||B11Y1 ||BZOy2 )|
[Baay2 (U RV oo PV e HhXEQi=12
Proof: Let
R = C[max{|ByoY; (0)].[Biaya (1)][B2oY2 (0)|.
By, (1)), PlVQ-UQ+ Py Yor ot 3

Define the functions @ (x) = (a’f (x),a)z’(x))T , Where

a; (X)= Rty (x)£yy(x), @3 () =Rty () £y, (x). Itis
easy to prove that

aw (0)-&fo™ (0)20,7@" (1)+edo™ (1)=0,
R&" (x)=0,Ra (x)20,
[5'}(d)35, by a proper choice of C. Therefore, by the

and

maximum principle the required result follows.
Remark-3: The MBVP (1)-(6) is well-posed. i.e., the
problem has a unique stable solution.

2.3. Derivative Estimates

In this section, the derivative estimates for the MBVP
(1)-(6) are provided.
Theorem-3: Let y be the solution of the MBVP (1)-

k
(6). Then for k=1, 2 and VXeﬁ\{d},‘V(k)‘SE(l+g 2)

3
and ‘7(3)‘ <Ce 2.

Proof: This theorem can be proved by using the results
of [10] and [15].

Remark-4: The sharper bounds on the derivatives of
the solution are obtained by decomposing the solution y

into smooth and singular components as y =V + W, where
the smooth component Vv is given by

RY(x)= i (x) xe @ A"k =12
av (0)- BV (0)=A"(0) F(0),
(d-)=A"(d)F(d-),v(d+)=
7V(1)-&57 (1)= A1) F(1)

and the singular component W is given by

AH(d) T (d+),

<l

RW(X)=0,xeQ Q" k=12,

[w( J[v (][ % (@) ]=-[7 (@],

B=(A.B2)7 =(1.72).0 =(1,5;)
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The solution W can be constructed by the procedure
given in [16]. Therefore, the singular component is well
defined.

Theorem-4: The smooth and singular components v
and w of y satisfy the bounds

C 1+8(1_;le| (x,p) |, xeQ”
‘vi(k)(x)‘ <
C l+g(l_g]B (x,p) |, xeQ"
and
_k
‘Wi(k)(x)‘ . Ce iIB%, (x,p), xeQ~ ii12

Ce 2B, (x,p), xeQ"
where
B, (x, p) = e ~*VPTE 4 g=(@-20elz

fois

B [x p}_ e—[x dyels +e—[1 xX)e

and
p=min, 5{p, P2}, pr=min, &

P2 =min, 5 {ay; (X)+ag (X)}.
Proof: This theorem can be proved by using the results

{311(X)+312(X)}’

of [15,16,17] and by following the technique of [16,17,18].

Note that Vi, Vo, W, W, 2 CO(Q), but

VLW,V + W, € CH(Q).

3. Discrete Problem

A fitted mesh method for problem (1)-(6) is now
described. On Q™ \_Q" a piecewise uniform mesh of N
mesh intervals is constructed as follows:

The interval Q™ is subdivided into three subintervals
[0,7].[,d =53] and [d—7,d] for some 7; that

satisfies 0<2'1S%. On [0,7;] and [d —7,d] a uniform
mesh with % mesh intervals is placed while [7,d —7;]

has a uniform mesh with % mesh intervals. The

subintervals [d,d +7,],[d +75,1-7,] and [1-7,,1] of

Q" are treated analogously for some 7, satisfying

(1-d)
4

denoted by
N _ N N .

Q. =¢%:1<i <?—1 U xi:?+1£|£N—1 .

O<ry < . The interior points of the mesh are

Clearly xy =d and QY :{xi}y. Note that this mesh is
2
and 7, =%. The

transition parameters z; and 7, are functions of N and &

a uniform mesh when T1=%

and are chosen as rlzmin{%,Z g/pInN} and

2 :min{%,Z elpln N}.

The six mesh  widths are given by
82'1 4(d—2T1) 81,'2
= :—, :—,h h =
=y ==ty ) =hg =
4(1-d-27,)
hg =———==.
N

On the piecewise uniform mesh Q , & cubic spline

scheme is used for Robin boundary conditions and the
classical central difference scheme is used for the
differential equations at the interior points. Then the fitted
mesh method for MBVP (1)-(6) is:

PNV = —26% yii+ang (%) Yoi + 2 (X ) Yo =
fl(Xi),VXi EQE‘,

(10

PzNVi =—e57 Yy +ag (%) Yo+ (%) Ya; =

(11)

ie, PNy= (—552 + A(x))V =f
and at xy =d, the scheme is given by [19,20]

oGl

f(d)= ’

with the boundary conditions

BioY: (0) = a1y1(0) -8 " 1 (0) = p, (13)
Bivi(D)=rn@+e8S vu()=a. (1,
BaoY2 (0)=a,y, (0)— 88,8y, (0) =T, (15)
Bo1Y2 (1) =722 (1) + 25,87y, (1) =S, (16)
52y- ( Yi— D™ y') D+y y|+1 Yi
1 ]
hy hy
where D7y, = A Vil oy Cxho =% - Xy,
i1
- (h+hiy)
2

and S*y;(0),S7y;(1) can be obtained from the one
sided limits
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h h
S (X?)———é Miji =g Mijia* i Hl?h Yi(%) )
(=) i hi Yi(%)-yj(xia)
S (Xi ):I?le,ifl_lTlM j,i + hi_l (18)

for j=1,2, respectively of the first order derivatives of
cubic spline function, given in [9,10]. Substituting
My Mo from —eMy; +ay; (%) yai +@5 (%) Vo = f10%)
and &M +a1 (%) Yui + a0 (X ) Vo = T2 (%) to (17)
and (18), we get the approximation of the one sided first
order derivatives at both boundary points. Hence, the
discretization of the Robin boundary conditions of (13)-
(16) reduce to

ﬁf (0‘1 +hﬁj+all(xo)5ﬂ1} Y10
o o

{ 3<9h0,31 2y (% . 1) by } Vir

shiann (%)
2

% f11 (%),

(19

+&fiany (Xo) Yo,0 +

35p
ho

{ 3 %, all(XN—1)351:|
YN

2,1

-+ T (%) +

hi-1 2

3¢ &0,
+|: (71+—1j+311( )551} YN
-1 I\

N £61ay7 (XN —1)

(20)

Yo,N-1 + 0131 (XN ) Y2.N

2
3 &0
N-1
&
{ho( 2+%]+322(X0)8ﬂ2}y2’0
3¢? Ay (%)
{_ ghgﬂz + 22(21) ﬂz}y2]1+gﬁ2a21(xo)ylyo (21)
Eﬂ a. X 3¢er
it 221( l)ylyl:i+gﬂ2f21(x0)+%f21(xl)l
h 2
{ 3 % , azz(XN—1)552}
Ya,N-1

3¢ &0
+|: [7’2 +—2]+322(XN )852:IY2,N
PNt PNt (22)

)
+5 2321(XN—1)

> YiN-1 +552321(XN ) YiN
3¢S &o.
= h: . +€52 f22 (XN )+Tz f22 (XN,]_),

The following discrete maximum principle and discrete
stability result can be proved analogous to the continuous
results stated in Theorem-2 and Theorem-3.

Theorem-5: (Discrete maximum principle) For any
mesh function ¥ (%), assume that

Bio W1 (%)= 0,B30W5 (X0 )= 0, By ¥y (X )0,

Bo¥, (% )2 0,RNP(%)20,P P (%)20,vx € Qf
and D'¥, -D ¥, <0. Also let
2 2

apo (%) <0,851(x) <0. Then if there exists a mesh
BlOtO >0, Bzoto >0, 821tN >0,
RVE > 0,P)E > 0vx e QN
D'ty ~D Tty <0, then ¥(x)=0vx e Q}.
Cérollary?z: Consider the discrete problem (10)-(15)
subject to the conditions (7)-(8). Let § = (tl'i noy )T where

function t such that and

l——'+9,0sisﬁ,
¢ 4 8 2
1i = :
l—ﬁ+9, N +1<i<N,
4 4 42
and
1_ﬁ+9'03|5ﬁ,
. 2 8 8 2
2,1
L X 4 N) jcien
2 4 42
Then the above discrete maximum principle is true for
(10)-(15).
Theorem-6: (Discrete stability result)If

Z(%)=(21(%).Z2(x ))T is any mesh function, then

VXi S ﬁgN y
j=1.2,|; ()| = CImax{Byoy1 (0)].[Buyya (1),
|Bzo Y2 (0)| ’|Bz1y2 (1)| RY,,- ot Py, ot H

4. Error Analysis

Using the results of Theorem-4, the procedure adopted
in [10,17] and the basic ideas of the proofs of some
theorems presented in [16] for the derivation of estimates
for the truncation error, the following inequalities can be
derived for the MBVP (1)-(6):

N T(y. _[: —ll 2,
(R =R )Y00) <CN ' InN) -

xi e QN k=12

At the point xy =d, using the procedure adopted in
2
[19,20] with appropriate barrier functions, it is easy to see
that
(R -R )7 <CNTINNY,

k=12

(24)
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The truncation errors of the solution y at boundary
points x=0,1, for the discrete problem (10)-(16), where
Robin boundary conditions are discretized by using spline
approximation from (17)-(22), lead to the following
estimates [9]:

(PkN —Pk)V(Xi)SEN_Z!
i=0,Nk=12

(25)
Theorem-7: The error of the numerical scheme (10)-
(16) at inner grid points x; ng‘ satisfies

Vi () = Yiei | <CINTH I ND?,
k=12,

(26)

for N sufficiently large.

Proof: Using (23), (24) and (25), the desired result
follows.

Remark-5: (Adjoint system) Consider the MBVP (1)-
(6).

Suppose that the quasi-monotonicity condition (7) is
not satisfied by the system. Then the following system is
adjoined to (1)-(2):

—g)A’I(X)ﬁLall(X))A/l(X)—afz (%) ¥4 (x)+ 22 (x) ¥ (x) ©7)
=-f(x),

=& (%) =231 (x) 95 () + 21 (x) 52 (X) + 235 (x) I ()

==, (%), vxe Q Q" 9
2§ (X)+ 2y (x) 5 (x) - a,
o5 () ran (05 ()-ab (0920
+ap () 94 () = f1(x),
~e9a (-1 ()% (0 +an ()95 ()

f,(x), ¥xe Q™ (_Q",

—pad (1) +e 9, (1) =-q, (31)

+ag5 (X) ¥4 (X) =
29, (0)- A9 (0) =

¥, (0) - h, ¥y (0)=-1,729,(1) + &6, ¥ (1)=-s, (32)

(2193 (O) - gﬁly?:‘ (0) =p, 7/193 (1) + 6‘5193' (1) =q, (33)

AARE Ja (0)=r,7,94(1)+&5, A 1)=s, (34)

and

afz(x):{alz(x)’ if alz(x)zol

0, otherwise
ary =gy (X)—ara (%)
and

az aZl |f a21
1
0 otherwise

a1 = a1 (X) —az; (X)-

)20

Vz(ylyyz)T is a solution of (1)-(6),

V:(—yl,—yz,yl,yz) is a solution of the above adjoint

system (27)-(34). The results derived for (1)-(6) still hold
good even if the quasi-monotonicity condition is not met.

Since

5. Numerical Results

In this section, two examples are given to illustrate the
computational methods discussed in this paper.

Consider the following singularly perturbed Robin type
boundary value problems with discontinuous source term:

Example-1:

ey (x)+ 2y (%)= y2 (x) = fu(x), xe @ LQ",
Y2 (X) = Y1 (%) +2y,(x) = 5 (x), x e Q7 _Q",
3y1(0)—¥1(0)=0,2y; (1) + ey (1) =1,

3y, (0)-¢y,(0)=2.2y, (1) + ¢y, (1) =2,

1,0<x<0.
fl(x):{ 0=x<05 and

08,05<x<1
2,0<x<05
f
2(x)= {1805<x<1

Example-2:

—ey; (X)+2(x+1)° yl(x)—(1+ x3)y2(x)= f1(x),
xeQ Q"

_gy;(x)—ZCOSL%XJ y1(X)+2.26"%y, (x) = f, (),
xeQ Q"
¥1(0)-e%1(0) =0,2y, (1) + ¥ (1) =1,

¥2(0) =36y, (0)=0,y, (1) +y, (1) =1,

X
fl(x): 2¢7,0<x<0.5 and
1,05<x<1

where

where

2,05<x<1.

The maximum errors and the orders of convergence for
the solution of the above two examples are presented for
various values of and in the Table 1- Table 2 and
Table 3- Table 4 respectively. For a finite set of values

e=1{10"1107,...
{

10x+1,0<x<05
fz( ):{

,10‘15}, maximum point-wise errors

EL\']- are computed as Eyj =max N ‘y;\‘ ~8192‘ for
’ ' X Qg

8192

i =12, where ;™ is the piecewise linear interpolant of

the mesh function y8192

onto [0,1]. From these values,
the &— uniform maximum error

E) =max, E}},j=12

is calculated by

Further, the order of

EN
convergence is computed by pJ =log, { 2N ] ji=12.
j
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Table 1. Maximum point-wise errors E,l\ll . & —uniform error ElN and & — uniform order of convergence plN for different values of the

mesh points N for the solution Y; of Example-1

Number of mesh points N
¢ 64 128 256 512 1024 2048 4096

10* 4.5229E-03 2.2575E-03 1.1143E-03 5.4000E-04 2.5219E-04 1.0812E-04 3.6047E-05
107 1.4428E-02 7.4183E-03 3.7173E-03 1.8153E-03 8.5103E-04 3.6557E-04 1.2200E-04
10° 3.8752E-02 2.1588E-02 1.1278E-02 5.6259E-03 2.6660E-03 1.1514E-03 3.8528E-04
10 6.4210E-02 4.4804E-02 2.8419E-02 1.6701E-02 8.1900E-03 3.5958E-03 1.2133E-03
10°® 6.4016E-02 4.4504E-02 2.8031E-02 1.6250E-02 8.6693E-03 4.1064E-03 1.4761E-03
10° 6.4016E-02 4.4504E-02 2.8031E-02 1.6250E-02 8.6693E-03 4.1064E-03 1.4761E-03
107 6.4016E-02 4.4504E-02 2.8031E-02 1.6250E-02 8.6693E-03 4.1064E-03 1.4761E-03
10°® 6.4016E-02 4.4504E-02 2.8031E-02 1.6250E-02 8.6693E-03 4.1064E-03 1.4761E-03
10° 6.4016E-02 4.4504E-02 2.8031E-02 1.6250E-02 8.6693E-03 4.1064E-03 1.4761E-03
10% 6.4016E-02 4.4504E-02 2.8031E-02 1.6250E-02 8.6693E-03 4.1064E-03 1.4761E-03
E," 6.4210E-02 4.4804E-02 2.8419E-02 1.6701E-02 8.6693E-03 4.1064E-03 1.4761E-03
p." 0.52 0.66 0.77 0.95 1.08 1.48 -

Table 2. Maximum point-wise errors Eg‘z . & —uniformerror E2N and & — uniform order of convergence pg‘ for different values of the

mesh points N for the solution Y, of Example-1

Number of mesh points N
¢ 64 128 256 512 1024 2048 4096

10" 4.5062E-03 2.2534E-03 1.1132E-03 5.3974E-04 2.5213E-04 1.0811E-04 3.6040E-05
10? 1.4426E-02 7.4179E-03 3.7172E-03 1.8152E-03 8.5103E-04 3.6557E-04 1.2200E-04
10°® 3.8752E-02 2.1588E-02 1.1278E-02 5.6259E-03 2.6660E-03 1.1514E-03 3.8528E-04
10 6.4210E-02 4.4804E-02 2.8419E-02 1.6701E-02 8.1900E-03 3.5958E-03 1.2133E-03
10° 6.4016E-02 4.4504E-02 2.8031E-02 1.6250E-02 8.6693E-03 4.1064E-03 1.4761E-03
10° 6.4016E-02 4.4504E-02 2.8031E-02 1.6250E-02 8.6693E-03 4.1064E-03 1.4761E-03
107 6.4016E-02 4.4504E-02 2.8031E-02 1.6250E-02 8.6693E-03 4.1064E-03 1.4761E-03
108 6.4016E-02 4.4504E-02 2.8031E-02 1.6250E-02 8.6693E-03 4.1064E-03 1.4761E-03
10° 6.4016E-02 4.4504E-02 2.8031E-02 1.6250E-02 8.6693E-03 4.1064E-03 1.4761E-03
10% 6.4016E-02 4.4504E-02 2.8031E-02 1.6250E-02 8.6693E-03 4.1064E-03 1.4761E-03
EN 6.4210E-02 4.4804E-02 2.8419E-02 1.6701E-02 8.6693E-03 4.1064E-03 1.4761E-03
p 0.52 0.66 0.77 0.95 1.08 1.48 -

Table 3.

Maximum point-wise errors Eyl. & — uniform error ElN and & — uniform order of convergence

mesh points N for the solution Y; of Example-2

plN for different values of the

Number of mesh points N
¢ 64 128 256 512 1024 2048 4096

10! 3.3958E-02 1.7143E-02 8.5109E-03 4.1366E-03 1.9348E-03 8.3011E-04 2.7686E-04
10? 9.9367E-02 5.2230E-02 2.6474E-02 1.3004E-02 6.1144E-03 2.6304E-03 8.7847E-04
10°® 2.4631E-01 1.4540E-01 7.8468E-02 3.9818E-02 1.9036E-02 8.2580E-03 2.7695E-03
10* 3.8266E-01 2.9741E-01 2.0468E-01 1.1431E-01 5.7489E-02 2.5598E-02 8.6990E-03
10° 3.7988E-01 2.9480E-01 2.0143E-01 1.2316E-01 6.7860E-02 3.2738E-02 1.1889E-02
10° 3.7929E-01 2.9458E-01 2.0137E-01 1.2315E-01 6.7856E-02 3.2737E-02 1.1889E-02
107 3.7910E-01 2.9451E-01 2.0135E-01 1.2314E-01 6.7854E-02 3.2736E-02 1.1889E-02
10°® 3.7904E-01 2.9449E-01 2.0134E-01 1.2314E-01 6.7854E-02 3.2736E-02 1.1889E-02
10° 3.7902E-01 2.9449E-01 2.0134E-01 1.2314E-01 6.7854E-02 3.2736E-02 1.1889E-02
10" 3.7901E-01 2.9448E-01 2.0134E-01 1.2314E-01 6.7854E-02 3.2736E-02 1.1889E-02
EN 3.8266E-01 2.9741E-01 2.0468E-01 1.2316E-01 6.7860E-02 3.2738E-02 1.1889E-02
p." 0.36 0.54 0.73 0.86 1.05 1.46 -
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Table 4. Maximum point-wise errors EENZ . & —uniform error E2N and & — uniform order of convergence pgj for different values of the

mesh points N for the solution Y, of Example-2

Number of mesh points N
¢ 64 128 256 512 1024 2048 4096
10* 5.8034E-02 2.9453E-02 1.4658E-02 7.1346E-03 3.3396E-03 1.4334E-03 4.7816E-04
10* 1.7003E-01 9.0019E-02 4.5787E-02 2.2528E-02 1.0602E-02 4.5626E-03 1.5241E-03
10° 4.2076E-01 2.5056E-01 1.3576E-01 6.9016E-02 3.3024E-02 1.4332E-02 4.8077E-03
10* 6.5436E-01 5.1220E-01 3.5386E-01 1.9808E-01 9.9726E-02 4.4428E-02 1.5102E-02
10°® 6.5586E-01 5.1023E-01 3.4915E-01 2.1365E-01 1.1777E-01 5.6831E-02 2.0642E-02
10° 6.5681E-01 5.1066E-01 3.4932E-01 2.1372E-01 1.1779E-01 5.6838E-02 2.0644E-02
107 6.5711E-01 5.1079E-01 3.4937E-01 2.1374E-01 1.1780E-01 5.6840E-02 2.0644E-02
10*® 6.5721E-01 5.1084E-01 3.4939E-01 2.1374E-01 1.1780E-01 5.6840E-02 2.0645E-02
10° 6.5724E-01 5.1085E-01 3.4940E-01 2.1374E-01 1.1780E-01 5.6840E-02 2.0645E-02
10 6.5725E-01 5.1086E-01 3.4940E-01 2.1375E-01 1.1780E-01 5.6841E-02 2.0645E-02
EN 6.5725E-01 5.1220E-01 3.5386E-01 2.1375E-01 1.1780E-01 5.6841E-02 2.0645E-02
pN 0.36 0.53 0.73 0.86 1.05 1.46 -
discontinuous source term was examined. A difference
13 : : : : : : : : : scheme using fitted mesh method on piecewise uniform
________ - Shishkin mesh was constructed for solving the problem
16f | l which gives &— uniform convergence. A cubic spline
a4t T T T T T oy scheme is used for Robin boundary conditions and the
\ l classical central difference scheme is used for the
'z 1 differential equations at the interior points. From the
1 ] obtained numerical results, it is noted that the rate of
= convergence is approaching to almost the second order as
0.8 N increases and are in agreement with the theoretical
061 i results.

Remark-6: The authors are in the process of extending
04y ] the same analysis for convection-diffusion problems
02k m— considered in [21].

—

Figure 1. Numerical solutions

£=10">,N =256

Example-1  for

Yi.Yp, of

Figure 2. Numerical solutions

£=10"* N = 256.

Y1, Yo of Example-2 for

6. Conclusions

A system of two coupled singularly perturbed reaction-
diffusion Robin type boundary value problem with
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