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1. Introduction

Statistical lifetime distributions are used extensively in
data modeling. They are widely applied in areas such as
reliability engineering, survival analysis, social sciences
and a huddle of other applications. The Weibull
distribution is a very widespread model in reliability and it
has been exceedingly used for analyzing lifetime data.
Several new models have been derived, either from or in
some way are related to the Weibull distribution. When
modeling monotone hazard rates, the Weibull distribution
may be an initial choice because of its negatively and
positively skewed density shapes. However, it does not
provide a reasonable parametric fit for modeling
phenomenon with non-monotone failure rates such as the
bathtub shaped and the unimodal failure rates that are
common in reliability and biological studies.

Recently, various methods of generating new
distributions have been studied in the statistical literature.
Among these methods, the compounding of some discrete
and important lifetime distributions has been in the
foreword of lifetime modeling. So, several families of
distributions were proposed by compounding some useful
lifetime and truncated discrete distributions.

In this paper, properties of Weibull-Poisson distribution
(WPD) and inverse Weibull-Poisson distribution (IWPD)
will be considered. We provide forms for characteristic
function, rth raw moment, mean, variance, median,
Shannon entropy function, Rényi entropy function and
Relative entropy function. This paper deals also with the

determination of R = P[Y < X] when X and Y are two
independent WPD (IWPD) distributions with different
parameters.

2. Weibull-Poisson Distribution

In 2009 [3], DeMorais introduced Weibull Poisson
distribution (WPD). He assumed that Z has a truncated
Poisson distribution with parameter A > 0 and probability
mass function given by,

p(z):e"blzr‘l(z+1)(1—e‘/1)_l,z:1,2,... (1)

Where, I'(p) = fooo xP"le ™ dx (forp >0) is the
gamma function. DeMorais assumed also that {W;}%, to
be independent and identically random variable having the
Weibull density function defined by,

m(w)=ocB w< e BwW” Ww>0
Where « > 0 is the shape parameter and $ > 0 is the
scale parameter.

If the random variables Z and W’s are independent,
then the random variable X = Min{W,, W,, ... ,W,}, Will
distributed as Weibull Poisson with the following
probability density function,

—)» . oC
f(x)= mx"c‘le_ﬁxoC ehe Px x>0 2
1- e"‘ ’
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In this paper we will refer to Weibull Poisson
distribution by X~WP (e, B,1), which is mean that the
random variable X follow Weibull Poisson distribution
with parameters «, § and 4.

The WPD is well-stimulated for industrial and
biological implementations. As an example, consider the
time to recrudesce of tumor under the first-activation
scheme. Suppose that Z is the number of cells which
Causing tumor for an individual left active after the initial
treatment follows a truncated Poisson distribution and let
W; be the time spent for the ith cell to produce a detectable
tumor mass, for i > 1. If {W;};5, is a sequence of
independent and identically distributed (iid) Weibull
random variables independent of Z, then the time to
recrudesce of tumor of a squeamish individual can be
modeled by the WPD. Another example considers that the
failure of a device occurs due to the presence of an
unknown number Z of initial defects of the same type,
which can be distinguishable only after causing failure and
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are repaired completely. Let W; be the time to the failure
of the system owing to the ith defect, for i > 1, and W;'s are
iid Weibull random variables independent of Z, which is a
truncated Poisson random variable, then the time to the
first failure is fittingly represented by the WPD. In reliability
analysis, the distributions for X = Min{W,,W,, ... ,W,}
and Y = Max{W;,W,, ... ,W;} can be used in serial and
parallel systems with identical components, which appear
in many industrial and biological implementations. The
first stimulation scheme may be queried by certain
diseases. Consider that the number Z of latent factors that
must all be activated by failure follows a truncated
Poisson distribution and assume that W represents the
time of impedance to a disease appearance owing to the
ith latent factor has the Weibull distribution. In the last-
stimulation scheme, the failure occurs after all Z factors
have been activated. So, the WPD is suitable to fit the
time of failure under last- stimulation scheme.
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Figure 1. Pdf, cdf and hazard functions of the WPD for some values of the parameters

Percontini, et al. in 2013 [5], proposed new five-
parameter distribution by compounding the Weibull

Poisson and beta distributions. They called it the beta
Weibull Poisson distribution.
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The cdf of WPD, corresponding to (2) is obtained by [3],
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So, the reliability function of WPD is,
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Figure 1 plots some shapes of the pdf, cdf and hazard
functions of WPD.

2.1. The Moments

The rth raw moment of the WP random variable X is,
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The mean and variance of WP variable X are
respectively,
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The characteristic function of X~WP(, 3, 1) is,
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2.2. Shannon Entropy, Renyi Entropy and
Kullback-Leibler Divergence

An entropy of a random variable X is a measure of
variation of the uncertainty. The Shannon entropy (SE) of
WP(«x,, 1) random variable X can be found as follows,

SE = E{—Inf(x)}
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TO solve
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The Kullback-Leibler divergence (KL) (or the relative
entropy) is a measure of the difference between two
probability distributions G and G

G and G . In applications, G typically represents the
"true" distribution of data, observations, or a precisely

calculated theoretical distribution, while G typically
represents a theory, model, description, or approximation
of G . Specifically, the Kullback-Leibler divergence of

G’ from G, denoted DKL(G||G*), is a measure of the
information gained when one revises ones beliefs from the

(1-w),
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probability distribution G . More exactly, it is the amount
of information that is lost when G~ is used to
approximate G ,defined operationally as the expected
extra number of bits required to code samples from G

using a code optimized for G" rather than the code

optimized for G.
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2.3. Stress-Strength Reliability

Inferences about R = P[Y < X], where X and Y are two
independent random variables, is very common in the
reliability literature. For example, if X is the strength of a
component which is subject to a stress Y, then R is a
measure of system performance and arises in the context
of mechanical reliability of a system. The system fails if
and only if at any time the applied stress is greater than its
strength.

Let Y and X be the stress and the strength random
variables, independent of each other, follow respectively
WP(x,B,4) and WP(a,b,c), then, the Stress-Strength
reliability is,

R =Off(x)F(x)dx
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3. Inverse Weibull-Poisson Distribution

In 2015 [2], Bera introduced Inverse Weibull-Poisson
distribution (IWPD). He assumed that Z has a truncated
Poisson  distribution  with  parameter 6 >0 with
probability mass function which is defined in (1). Bera
assumed also that {W;}%, to be independent and
identically random variable having the Inverse Weibull
density function defined by,

m(w)=ocp wB-lgoew P ,W>0

Where o« > 0 is the scale parameter and B > 0 is the
shape parameter.

If the random variables Z and W's are independent,
then the random variable X = Max{W;, W,, ... , W5}, Will
distributed as Inverse Weibull-Poisson with the following
probability density function,

_ —)
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In this paper we will refer to Inverse Weibull-Poisson
distribution by X~IWP(«,3,6), which is mean that the
random variable X follow Inverse Weibull-Poisson
distribution with parameters , 8 and 6.

Hassan, et al. in 2016 [4], studied Exponentiated
Inverse Weibull-Power Series Family of Distributions by
compounding the Inverse Weibull and Power Series
distributions. In fact, they studied inclusively Inverse
Weibull-Poisson  distribution, since the  Poisson
distribution is special case from Power Series distribution.

x>0 (14)

The cdf of WPD, corresponding to (14) is obtained by,
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Figure 2 plots some shapes of the pdf, cdf and hazard
functions of IWPD.

3.1. The Moments

The rth raw moment of the IWP random variable X is,
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So, the mean and variance of WP variable X are
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Figure 2. Pdf, cdf and hazard functions of the IWPD for some values of the parameters
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The characteristic function of X~IWP(, 8, 8) is,
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3.2. The entropy

The Shannon entropy (SE) of IWP(x,$,0) random
variable X can be found as follows,
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Reényi entropy of IWP(x,B,8) random variable X
can be found as follows,
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Then, the Kullback-Leibler divergence can be found as
follows,
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3.3. Stress-Strength Reliability

Let Y and X be the stress and the strength random
variables, independent of each other, follow respectively
IWP(x,B,0) and WP(b,c,a), then the Stress-Strength
reliability is,
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4. Summary and Conclusions

In view of the great importance of the Statistical
lifetime distributions in lifetime data modeling. Recently,
various methods of generating new distributions have
been proposed in the statistical literature. Among these
methods, the compounding of some discrete and important
lifetime distributions has been in the foreword of lifetime
modeling. So, several families of distributions were
derived by compounding some useful lifetime and
truncated discrete distributions. In this paper, properties of
Weibull-Poisson distribution (WPD) and inverse Weibull-
Poisson distribution (IWPD) is derived. We provide forms
for characteristic function, rth raw moment, mean,
variance, Shannon entropy function, Rényi entropy
function and Relative entropy function. This paper deals
also with the determination of stress-strength reliability R
= P[Y < X] when X (strength) and Y (stress) are two
independent WPD (IWPD) distributions with different
parameters.
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