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Abstract. There are protocols to privately evaluate any function in
the passive (honest-but-curious) setting assuming that the honest nodes
are in majority. For some specific functions, protocols are known which
remain secure even without an honest majority. The seminal work by
Chor and Kushilevitz [7] gave a complete characterization of Boolean
functions, showing that each Boolean function either requires an honest
majority, or is such that it can be privately evaluated regardless of the
number of colluding nodes.
The problem of discovering the threshold for secure evaluation of more
general functions remains an open problem. Towards a resolution, we pro-
vide a complete characterization of the security threshold for functions
with three different outputs. Surprisingly, the zero-one law for Boolean
functions extends to Z3, meaning that each function with range Z3 either
requires honest majority or tolerates up to n colluding nodes.

1 Introduction

Multi-party secure function evaluation (SFE) is a cornerstone of modern cryp-
tography, and has been extensively studied since it was introduced by Yao [15].
In this work we consider the joint evaluation by n parties of a public n-ary func-
tion f in such a way that no collusion of parties learns anything more than what
they do by knowing their own inputs and seeing the output. We consider the
symmetric case where all participants receive the same output.

Several models of adversaries occur in the SFE literature. A first distinction
is whether the adversary has limited computational power (computational se-
curity) or not (information-theoretic security). A second important distinction
is whether the parties corrupted by the adversary must still follow the protocol
(passive) or not (active). In the present work, we are concerned with information-
theoretic security and all adversaries considered are passive. We assume that the
parties communicate over a complete network with private channels, meaning
that the adversary cannot see messages sent between two honest parties.

Another important limitation put upon the adversary is which parties she
can corrupt. The most common adversary is allowed to corrupt up to a threshold
t ≤ n participants for some t which is typically a function of n. We say that a
function for which there is a protocol tolerating up to t corruptions is t-private. In
this paper, we will only consider threshold adversaries. More general adversarial



models have also been studied, both in terms of a more general specification of
the parties the adversary can corrupt by Hirt and Maurer [10] and considering a
mix active and passive adversarial corruptions by Beerliová-Trubíniová et al. [2].

There exist protocols to securely evaluate any function b(n− 1)/2c-privately
in our setting by Ben-Or, Goldwasser, and Wigderson [3], and Chaum, Crépeau,
and Damgård [4]. For some functions, in particular Boolean disjunction, this
has been proved to be an upper bound meaning that there are no protocols
to evaluate them which remain secure against more than b(n − 1)/2c colluding
parties. For other functions, in particular summation over a finite Abelian group,
there are n-private protocols. This raises the question of determining the privacy
threshold of functions.

Chor and Kushilevitz [7] completely answered the question for Boolean func-
tions. They proved a zero-one law showing that each Boolean function is either
b(n− 1)/2c-private (and not dn/2e-private) or n-private. Their work presents a
proof that a function containing an OR-like substructure (an embedded OR) is
b(n− 1)/2c-private and that all Boolean functions without such a substructure
can be computed by a single Boolean summation.

Proving that a function f cannot be t-privately computed is often done by a
partition argument, reducing to the two-party case. In these proofs, the parties
are partitioned into two parts of size ≤ t and we think of f as a two-party
function with each party supplying all inputs for one set of the partition. If the
two-party function is not 1-private, then f is not t-private. Chor and Ishai [6]
analyzed partition arguments and gave a generalization partitioning the parties
into k > 2 sets which increases the power of the framework. However, in this
paper, we will only need partitioning arguments with two sets.

Chor, Geréb-Graus, and Kushilevitz [5] showed that for every t, dn/2e ≤ t ≤
n− 2 there exists a function such that it is t-private but not (t+ 1)-private. We
remark that the functions they construct in their proofs have very large ranges
which grow exponentially with t.

The privacy of symmetric1 functions with Boolean arguments has been stud-
ied by Chor and Shani [9]. For such functions, they prove a necessary condition
on the preimages of outputs for the function to be dn/2e-private. They also
define a class called dense symmetric functions where this necessary condition
is also sufficient for n-privacy. Thus, they also prove a zero-one law where for
a class of functions, where each function in the class is either n-private or not
dn/2e-private.

For two-party computation, a complete characterization of the 1-private func-
tions was made independently by Beaver [1] and Kushilevitz [14]. They both
show that a function f is 1-private if and only if it is decomposable, and for
decomposable functions, there is a straightforward 1-private protocol. One of
our protocols, Protocol 3, can be viewed as a generalization of the protocol for
decomposable functions to the multi-party case.

1 Here, symmetric means the standard notion of a symmetric function, not the SFE-
specific notion that all parties receive the same output.
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Künzler, Müller-Quade, and Raub [13] give a combinatorial classification
of functions computable in several different adversarial models, including the
information-theoretic passive model which we work with in this paper. However,
in this setting, they consider the broadcast model of communication which gives
different results from private channels. For instance, summation is not n-private
in the broadcast channel model.

1.1 Our Contribution

In this work, we extend the zero-one law of Boolean privacy to functions with
three outputs. For notational convenience, we talk about functions with range
Z3, but we would like to emphasize our results do not depend on any algebraic
structure over the range of the function. More formally, we prove the following
statement:

Theorem 1 (Main theorem). For every n-argument function f : A1 × . . . ×
An → Z3, f is either n-private, or it is b(n−1)/2c-private and not dn/2e-private.

The core part of our proof is a structure lemma (Lemma 8) showing that
every function f with range Z3 must have at least one of three properties (which
we define more formally later):

– f has an embedded OR
– f is a permuted sum
– f is collapsible.

We provide protocols for n-privately evaluating those functions of the two latter
types which do not contain an embedded OR.

Our definition of an embedded OR is a generalization of the one commonly
found in the literature, but the presence of one implies that there is no protocol
which can securely evaluate f and tolerate more than t colluding parties for some
t (but potentially for a t > dn/2e).

Finally, we prove (Theorem 22) that the existence of an embedded OR (in our
generalized sense) also implies the existence of a “small” embedded OR, giving
t = dn/2e. By combining this result with our structure lemma and the result
from [7] that a function with an embedded OR of size at most dn/2e cannot be
dn/2e-privately computed, our main theorem follows. We state the proof more
formally in Section 6.

We remark that while our statements are true for n = 2, there are complete
classifications [1,14] for the 2-party case which are simpler than ours (for n = 2,
our protocols reduce to decomposition) and not limited to functions with range
Z3. Our contribution lies in the case when n ≥ 3.

The proof of our theorems are significantly more involved than the analogous
proofs for Boolean functions. In several of our proofs we need to apply a fairly
extensive case analysis.

Our result answers in part a question raised by Chor and Ishai [6] by showing
that partition reductions (with only two sets) are universal for proving non-
privacy of functions mapping to Z3.
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2 Notation and Preliminary Theorems

We use boldface letters to refer to vectors, like: x, y. We work with functions
with range Z3, and use the three Greek letters α, β, and γ to denote the three
different outputs of the function. We take as convention that the three represent
distinct outputs (so α 6= β 6= γ). Sometimes we need to discuss an output as
being not α, which we denote by 6 α.

In the proceeding discussion, we often need to discuss the behavior of a
subfunction when keeping some subset of its arguments fixed. To simplify this
discussion, we introduce some notation. For disjoint S1, S2, S3 ⊆ [n] we define

fa
{S1}(x) def= f({xi}i∈S1 , {ai}i∈SC

1
)

fa
{S1,S2}(x,y) def= f({xi}i∈S1 , {yi}i∈S2 , {ai}i∈(S1∪S2)C )

fa
{S1,S2,S3}(x,y, z) def= f({xi}i∈S1 , {yi}i∈S2 , {zi}i∈S3 , {ai}i∈(S1∪S2∪S3)C ) .

We sometimes consider singleton sets S1, S2, S3 and then denote them simply by
their only element, with some abuse of notation. That is,

fa
{i}(x)

def= f(a1, . . . , ai−1, x, ai+1, . . . , an)

fa
{i,j}(x, y)

def= f(a1, . . . , ai−1, x, ai+1, . . . , aj−1, y, aj+1, . . . , an) ,

and analogously for fa
{i,j,k}(x, y, z) and fa

{i,j,k,l}(x, y, z, w).
We need to describe details of functions’ behaviors, and adopt a geometric

viewpoint. In the proofs, we speak of inputs as being neighbors and of rows, diag-
onals, and rectangles and induced rectangles in the function table. By neighbors
we mean points at Hamming distance 1. By a row, we mean the values taken
by the function fixing all but one values, i.e. the values fa

{i}(x) for all x ∈ A1

with a fixed i and a which are clear from the context. By a rectangle, we mean
the values fe

{S1,S2}(a, c), fe
{S1,S2}(a,d), fe

{S1,S2}(b, c), fe
{S1,S2}(b,d). Note that a

rectangle by this definition is a high-dimensional structure. By induced rect-
angle, we mean a rectangle as before but where |S1| = |S2| = 1, thus looking
like a rectangle in the function table. We only use the concept of a diagonal of
a 2 × 2 induced rectangle. For fixed inputs a and dimensions i, j we say that
fa
{i,j}(x1, y1), fa

{i,j}(x2, y2) is a diagonal for x1 6= x2 and y1 6= y2.

Definition 1 (Redundant inputs). For an n-argument function f , we say
that inputs x, y, x 6= y are redundant for player k if for all a it holds that
fa
{k}(x) = fa

{k}(y).

Definition 2 (Normalized function). An n-argument function f with no re-
dundant inputs for any player is said to be normalized.

We take as convention that all functions are normalized. This assumption is
without loss of generality as a function can easily be normalized by for each set of
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redundant inputs removing all but one. A protocol for evaluating the normalized
function can be used to evaluate the original function as well by performing the
same procedure.

To prove Theorem 1, we make use of a theorem by Chor and Kushilevitz [7]
which states that there is no 1-private protocol for a 2-party computation of
disjunction. Through standard simulation techniques, this gives impossibility
results for multi-party protocols of functions containing an OR-like substructure.
This is commonly referred to as an embedded OR, or a corner. We formally
define an embedded OR and then restate their result. For a two-party function,
the definition is straightforward:

Definition 3 (Embedded OR (2 parties)). We say that a two-argument
function f contains an embedded OR if there exists inputs x1, x2, y1, y2 (x1 6=
x2, y1 6= y2) such that f(x1, y1) = f(x1, y2) = f(x2, y1) 6= f(x2, y2).

However, when considering the n-party case, the definition of an embedded
OR becomes slightly more complex. In particular, we need our definition to
capture the size of the collusion required to realize an embedded OR, as that
size also limits the impossibility result that follows from the existence of such an
embedded OR. To this end, we define an embedded OR as having a degree k. We
remark that Kilian et al. [11] define an embedded OR as one of degree 1. Much of
the previous literature has mostly been concerned with Boolean functions, and
then, the existence of an embedded OR (of any degree) implies the existence of
one of degree 1, as proved in [11]. However, for functions with larger ranges, the
situation is more complex, as shown by our Theorem 22.

Definition 4 (Embedded OR (n parties, induced, generalized), corner-
free).We say that an n-argument function f contains an embedded OR of degree
k if there exists disjoint subsets S1, S2 ⊂ [n] where |S1|, |S2| ≤ k, and values
a such that the two-argument function f ′(x,y) = fa

{S1,S2}(x,y) contains an
embedded OR. We refer to an embedded OR of degree 1 as an induced embedded
OR, and one of degree greater than 1 as a generalized embedded OR. A function
without an embedded OR (of any degree) is said to be corner-free.

With the definitions in place, we are ready to restate a result by Chor and
Kushilevitz [7]. The result we need was not presented as a separate lemma in
their paper, but instead follows as a corollary from two of their lemmas which
we restate in simplified form.

Lemma 2 (Partition lemma, [7]). Let f : A1×. . .×An → R be dn/2e-private.
Then for every subset S1 of size dn/2e, the two-argument function f ′(x,y) =
f{S1,SC

1 }
(x,y) is 1-private.

Lemma 3 (Corners lemma, [7]). A two-argument function is not 1-private
if it contains an embedded OR.

Corollary 4. A function containing an embedded OR of degree at most dn/2e
is not dn/2e-private.
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We also make use of [7, Theorem 4] which states that a corner-free Boolean
function can be expressed as a Boolean sum:

Theorem 5 ([7]). For a corner-free Boolean function f there are functions fi

such that f(x1, . . . , xn) =
∑n

i=1 fi(xi) where the sum is computed modulo 2.

We formally restate the theorem from [11] showing that a generalized em-
bedded OR in a Boolean function implies an induced embedded OR. In our
terminology:

Theorem 6 ([11]). A Boolean function f containing an embedded OR contains
an embedded OR of degree 1.

We show functions and subfunctions which depend on up to 4 arguments.
To be able to draw them, we show 2-dimensional projections separated by lines
with vertical lines indicating a 3rd dimension and horizontal lines indicating a
4th dimension. We present sample function in Figure 1, showing a function which
contains an embedded OR of degree 2 but does not contain an embedded OR of
degree 1. The highlighted embedded OR occurs with the subsets S1 = {P1, P3}
and S2 = {P2, P4} with inputs (2, 1) and (1, 2) for S1 and (1, 1) and (2, 2) for
S2. As the function is drawn, the coalition S1 in the embedded OR controls the
horizontal position, and S2 controls the vertical position.

0 1 1 2
1 0 2 1

2 0 0 1
0 2 1 0

Fig. 1. An example function containing an embedded OR of degree 2 (highlighted).

We use the following lemma which we believe is well-known. A proof is in-
cluded in the full version of this paper [12].

Lemma 7. If an n-argument function f : A1 × . . . × An → G, where G is an
Abelian group, has the property that for every pair of dimensions j, k and inputs
x1, x2, y1, y2,a the following equality holds:

fa
{j,k}(x1, y1) + fa

{j,k}(x2, y2) = fa
{j,k}(x1, y2) + fa

{j,k}(x2, y1), (1)

then f can be rewritten as f(x1, . . . , xn) =
∑n

i=1 fi(xi).

3 A Structure Lemma

The main step towards proving Theorem 1 is the establishment of a structure
lemma for functions with range Z3. Thus, we turn toward some global properties
of functions (as opposed to the comparatively local property of the existence
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of an embedded OR). The first such property captures the case when we can
split the range of a function into two parts, and compute a Boolean sum to
discover which part the output lies in. If we can then proceed with further
such subdivisions until we arrive at a single possible output, this immediately
gives a protocol to compute f . We prove that this further subdivision is always
possible for corner-free f with range Z3 in Lemma 21. We remark that this is a
further generalization of the multi-party decomposability defined in [13], which
in turn was a generalization of 2-party decomposability defined in [14]. We show
a collapsible function and the generalized decomposition of it in Figure 2.

Definition 5 (Collapsible). We say that a function f : A1 × . . . An → R is
collapsible if there is a subset R′, ∅ ⊂ R′ ⊂ R such that the Boolean function

f ′(x) =
{

1 if f(x) ∈ R′
0 otherwise

does not contain an embedded OR and can thus be n-privately computed. We
refer to f ′ as being collapsed.

For a collapsible function f with range Z3 if f is collapsible we can choose
R′ with two elements α, β and say that f is collapsible by collapsing α and β.

0 1 2 2 2 0
1 0 2 2 2 1
2 2 0 1 0 2

(a) Collapsible f

1 1 0 0 0 1
1 1 0 0 0 1
0 0 1 1 1 0

(b) f collapsed

Fig. 2. An example collapsible function and the collapsed function.

Summation in a finite Abelian group is a function which is known to be n-
private [8]. In a summation, the effect of one party’s input can be thought of as
applying a permutation to the sum of the other parties’ inputs. We generalize
this by defining a permuted sum where we give one of the parties a special role
and let her input select an arbitrary permutation to be applied to the sum of
the other parties’ inputs. All functions which are sums, i.e. can be rewritten as∑n

i=1 fi(xi), are also permuted sums. In our applications, the sum may be a
Boolean sum or over Z3. We show two example functions which are permuted
sums in Figure 3

Definition 6 (Permuted sum). We say that a function is a permuted sum
if it can be written as πxi

(
∑

j 6=i fj(xj)) where πx is a permutation. We refer to
party i as the permuter.

With these definitions, we are now ready to state and prove our structure
lemma:
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0 0 1 1 2 2
1 2 0 2 0 1

(a) f

0 1 2 0 2 1 1 0 2
1 2 0 2 1 0 0 2 1
2 0 1 1 0 2 2 1 0

(b) g

Fig. 3. Two example permuted sums. In f , party 2 (selecting column) is the permuter
selecting one of the 6 permutations. The function g = πx3(x1 + x2) where π1 is the
identity permutation, π2 = (12) and π3 = (01).

Lemma 8 (Structure lemma). For every normalized n-argument function
f : A1 × . . .×An → Z3, at least one of the following holds:

– f has an embedded OR
– f is a permuted sum
– f is collapsible

We present protocols for n-privately evaluating permuted sums (Protocol 2)
and collapsible functions (Protocol 3) which do not contain an embedded OR.
In Theorem 22 we show that if f contains an embedded OR, it also contains a
small embedded OR. This, together with Corollary 4 concludes the proof of our
Theorem 1.

To prove the structure lemma, we perform a case-analysis based on a property
of f we call a link:

Definition 7 (Link, link-free). We say that an n-argument function has a
link ( over output α) in dimension k if there exists inputs x, y, x 6= y, and a
such that α = fa

{k}(x) = fa
{k}(y). We say that f has links in c dimensions if

there are precisely c distinct k such that f has a link in dimension k. We say
that a function is link-free if it has no links.

Lemma 9. In a corner-free n-argument function f : A1 × . . . × An → Z3, if
there are links between inputs x and y in dimension k over two distinct outputs,
then x and y are redundant for player k.

Proof. Let f have links over α and β between inputs x and y in dimension k.
That is, there exists values a, b such that fa

{k}(x) = fa
{k}(y) = α, and fb

{k}(x) =
fb
{k}(y) = β. Suppose that for some c we have fc

{k}(x) 6= fc
{k}(y) . Then one of

fc
{k}(x) and fc

{k}(y) equals α or β. If one of them is α then f has an embedded
OR with S1 = {k}, S2 = {k}C using inputs (x, y) and (a, c). If one is β then f
has an embedded OR with S1 = {k}, S2 = {k}C using inputs (x, y) and (b, c).

ut

Looking at the proof of Lemma 9 we begin to see the importance of the small
range of the function to the analysis. It also highlights the added complexities
compared to the Boolean case, as for a Boolean function any link implies that
two inputs are redundant. From the lemma and its proof follow two corollaries
about normalized functions with range Z3:

8



Corollary 10. For a normalized n-argument function f : A1 × . . . × An →
Z3 with a link over α in dimension k for inputs x, y, for all a, we have that
fa
{k}(x) uniquely determines fa

{k}(y). More specifically, the possible combinations
of values are (α, α); (β, γ); (γ, β).

Proof. Follows from the proof of Lemma 9. ut

Corollary 11. A normalized n-argument function f : A1 × . . . × An → Z3

cannot have links over α in dimension k for inputs x, y, and x, z.

Proof. By Corollary 10 the value at x determines the value at both y and z and
hence inputs y and z are redundant. ut

Analogously to an embedded OR, we introduce notation for the various 2×2
substructures in a function. Apart from the embedded OR, two of them feature
prominently in our proofs. Firstly, a 2×2 substructure with one output occurring
on the diagonal, and the two other values occurring once each on the opposite
diagonal is called Aff3. Secondly, a 2 × 2 substructure where one output is on
one diagonal, and another is on the other is referred to as an XOR. For the XOR,
we also define the type of an XOR as the pair (without order) of outputs in the
XOR. All the substructures which can occur (up to symmetries) are depicted in
Figure 4. A 2× 2 substructure where only one output occurs is called constant,
and if we want to emphasize that it is the output α which occurs, we write
(α)-constant.

α α
α α

(a) Constant

α α
α β

(b) OR

α α
β β

(c) 2-link

α α
β γ

(d) Link

α β
β α

(e) XOR

α β
γ α

(f) Aff3

Fig. 4. The six 2× 2 substructures.

Definition 8 (Type of an XOR). If an XOR consists of outputs α and β we
say that it is an XOR of type (α, β), denoted (α, β)-XOR. The order of elements
is not important, so for functions to Z3 there are three possible types of XOR:
(α, β), (α, γ), (β, γ).

Our name Aff3 comes from the fact that it can be expressed as an affine
function modulo 3, analogously to the fact that XOR can be expressed as a sum
modulo 2. We do not need that it is affine, but we make use of the fact that a
function where all subfunctions are of the form Aff3 can be written as a sum on
the form

∑n
i=1 fi(xi) with summation in Z3.

Lemma 12. An n-argument corner-free function f : A1 × . . .× An → Z3 such
that all 2× 2 subfunctions are of the form Aff3 can be expressed as

∑n
i=1 fi(xi)

with summation in Z3.
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Proof. By Lemma 7 we need to verify that (1) holds for all 2× 2 subfunctions,
which are all of the form Aff3. For all ways of assigning 0, 1 and 2 (distinctly) to
α, β, γ we have that 2α ≡ β+ γ (mod 3). As 2 ≡ −1 (mod 3) this is equivalent
to α+ β + γ ≡ 0 (mod 3). ut

In our proof of Lemma 8 we consider the substructures occurring in f . We
begin by establishing three preliminary lemmas. The lemmas come into play
primarily in cases when f contains links in few dimensions (none or one), and if
f has an XOR spanned by dimensions i, j and f is link-free in those dimensions,
then |Ai| = |Aj | = 2, giving some intuition for the condition on the size of the
two inputs in the lemmas. We highlight the proof idea for each of the lemmas
and give full proofs in the appendix.

Lemma 13. Let f be an n-argument corner-free function f : A1×. . .×An → Z3

with i, j such that |Ai| = |Aj | = 2 such that for all a, fa
{i,j} is an XOR. If all

three types of XOR’s occur then there is a dimension k such that the input in
dimension k determines the type of XOR.

Proof (Idea). We show that if no such k exists then f contains an embedded
OR. Full proof in Section A.1. ut

Lemma 14. Let f be an n-argument corner-free function f : A1×. . .×An → Z3

with i, j such that |Ai| = |Aj | = 2 and an output α such that for all a precisely
one diagonal of fa

{i,j} has two α’s. Then f is collapsible.

Proof (Idea). If f is not collapsible then the collapsed function contains an em-
bedded OR. We show that this implies an embedded OR in f as well. Full proof
in Section A.2. ut

Lemma 15. An n-argument corner-free function f : A1 × . . . × An → Z3 with
i, j such that |Ai| = |Aj | = 2 and such that for some a, fa

{i,j} is an Aff3 and for
some b, fb

{i,j} is an XOR is collapsible.

Proof (Idea). We prove that f fulfills the conditions of Lemma 14. Full proof in
Section A.3. ut

Our proof of Lemma 8 proceeds in three separate lemmas, depending on
whether the function f is link-free (Lemma 16), has links in one dimension
(Lemma 17), or if it has links in two or more dimensions (Lemma 18). As the
proofs are long and consist mainly of case analysis, we simply state the lemmas
here. The proof of the first lemma is given in the appendix, and the two others
in the full version of this paper [12].

Lemma 16. Every n-argument link-free, corner-free function f : A1 × . . . ×
An → Z3 is collapsible or a permuted sum.

Proof (Idea). Case analysis showing we can apply one of Lemma 13, Lemma 14
and Lemma 15. Full proof in Section A.4 ut
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Lemma 17. Every n-argument function f : A1× . . .×An → Z3 with links in 1
dimension and without an embedded OR is collapsible or a permuted sum.

Proof (Idea). Case analysis showing we can apply one of Lemma 13, Lemma 14
and Lemma 15. Proof in the full version of this paper [12]. ut

Lemma 18. Every n-argument function f : A1× . . .×An → Z3 with links in 2
or more dimensions and without an embedded OR is collapsible.

Proof (Idea). We show that all links must be over the same output. This gives
some implications for the substructures of f which we use to show f must be
collapsible. Proof in the full version of this paper [12]. ut

4 Protocols

With the structure lemma established, we can now turn to the question of n-
private protocols for collapsible functions and permuted sums. From the defi-
nitions of the two classes, we have two natural and easy protocols. The main
problem we need to address in this section is proving the existence of a protocol
for collapsible functions. For a function which is collapsible by collapsing β and
γ it is clear from the definition that we can n-privately evaluate if the output is
α or if it is one of β and γ. The key issue is to prove that we can then proceed
with a second step where we can n-privately evaluate whether the output is β
or if it is γ.

The construction of this second step relies on the passive model of adversaries
and the knowledge that the output of the function is not α. Thus, in our second
step we compute a sum which may have different outputs at points where the
original function had α’s. Such a construction is inherently insecure with active
adversaries, as they may switch inputs between the first step of the decompo-
sition and the second and would then learn some information about the other
parties’ inputs.

In both of our protocols we use a subprotocol by Chor and Kushilevitz [8]
for n-private summation over any finite Abelian group. For completeness, we
include a description of their protocol as Protocol 1. When used in our protocol
for a permuted sum, the summation is either Boolean or in Z3 depending on the
function f (but not on the inputs).

Protocol 1 (Summation [8]). The protocol for summation where party Pi

participates with input xi proceeds as follows:

1. In round 1 ≤ i ≤ n − 2, party Pi sums all its received messages, wi =∑i−1
j=1 zj,i. Then, it chooses random group elements zi,i+1, zi,i+2, . . . , zi,n−1.

Finally, it computes zi,n such that xi + wi =
∑n

j=i+1 zi,j and sends zi,j to
Pj (j > i).

2. In round n−1, party Pn−1 computes zn−1,n = xn−1+
∑n−2

j=1 zj,n−1 and sends
zn−1,n to Pn.

11



3. In round n, party Pn computes the sum s as s = xn +
∑n−1

j=1 zj,n.

All sums are computed over some fixed finite Abelian group.

Protocol 2 (Permuted sum). The protocol for evaluating a permuted sum
f , where party Pi (without loss of generality we assume the permuter is party
n) participates with input xi proceeds as follows:

1. Use Protocol 1 to privately compute s =
∑n−1

j=1 fj(xj) such that only the
permuter learns s.

2. The permuter computes the output as πxn
(s) and sends it to the other

parties.

The sum is computed modulo 2, or 3, depending on f .

Protocol 3 (Collapsible). The protocol for evaluating a function f collapsible
with partition R′ = {γ}, where party Pi participates with input xi proceeds as
follows:

1. Use Protocol 1 to compute s =
∑n

i=1 fi(xi) (mod 2), with fi such that s = 1
iff f(x) = γ

2. If s = 0, compute s′ =
∑n

i=1 gi(xi) (mod 4), with gi such that f(x) = α
implies s′ = 0, and f(x) = β implies s′ = 2.

The correctness of Protocol 2 follows immediately from the definition of a
permuted sum. In Protocol 3, since f is collapsible, the functions fi exist by
the definition of a collapsible function. However, the existence of appropriate
gi is not as straightforward. We prove, constructively, in Lemma 21 that they
always exist for corner-free collapsible functions with range Z3. We stress that
the choice of gi does not depend on the input x, but only on the function f .

The privacy of both these protocols is straightforward, and we only sketch
the arguments.

Theorem 19. Protocol 2 is n-private.

Proof. The subprotocol used for summation was proven to be n-private in [8].
Due to the structure of the function, we see that the permuter, Pn, learns the
sum s from f(x) and xn, since s = π−1

xn
(f(x)). ut

Theorem 20. Protocol 3 is n-private.

Proof. The subprotocol used for summation was proven to be n-private in [8].
When the output is γ then, by the privacy of the summation sub-protocol,
the protocol is private. Furthermore, when the output is one of α, β, then the
privacy of the composed protocol also follow directly from the privacy of the
subprotocols. The first sum only reveals that the output is one of α, β, and then,
the condition on gi is sufficient to guarantee that the sum s′ reveals nothing but
whether the output is α or β, as with a passive adversary we are guaranteed
that s′ is either 0 or 2. ut

12



While the privacy is straightforward, the proof that there are functions gi as
required by Protocol 3 is rather involved and we simply state the lemma here
and give the proof in [12]. One may intuitively expect that such functions could
simply be Boolean, but it turns out that for some f we do need the full range
of Z4.

Lemma 21. Protocol 3 can evaluate all corner-free, collapsible functions with
range Z3.

Proof (Idea). We construct a function g such that f(x) = α =⇒ g(x) = 0
and f(x) = β =⇒ g(x) = 2. By case analysis on the induced rectangles in g,
we show that g satisfies the conditions of Lemma 7 and hence there are gi as
required by Protocol 3. Proof in the full version of this paper [12]. ut

5 An Embedded OR Implies a Small Embedded OR

Previously, we have often assumed that functions are free of embedded OR’s
of any degree (i.e., that they are corner-free). However, to be able to apply
Corollary 4 we need to show that a sufficiently small embedded OR exists.

For Boolean functions f , if f has an embedded OR of any degree, then it
also has an embedded OR of degree 1, as proved in [11], explaining the zero-one
nature of Boolean privacy.

It turns out that for functions with range Z3, similarly to the Boolean case,
the presence of a large embedded OR implies that the function also contains a
small one. We state the theorem here and give the proof in [12].

Theorem 22. Every n-argument function f : A1× . . . An → Z3 that has an em-
bedded OR of any degree has an embedded OR of degree at most 3. Furthermore,
every 4-argument function f : A1 × A2 × A3 × A4 → Z3 that has an embedded
OR, also has one of degree at most 2.

Proof (Idea). The basic idea is similar to that used in the proof of Theorem 6.
However, while the boolean case is fairly straightforward, our proof results in a
fairly extensive case analysis. Proof in the full version of this paper [12]. ut

6 Proof of the Main Theorem

We now conclude by re-stating our main theorem and presenting the proof.

Theorem 1 (Main theorem). For every n-argument function f : A1 × . . . ×
An → Z3, f is either n-private, or it is b(n−1)/2c-private and not dn/2e-private.

Proof. If f is corner-free, then by Lemma 8 it is a permuted sum, collapsible, or
both. Thus, it can be n-privately computed by Protocol 2 or Protocol 3.

If f is not corner-free, then by Theorem 22 it contains an embedded OR of
degree at most dn/2e. Thus, by Corollary 4, f is not dn/2e-private. ut
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A Proofs

A.1 Proof of Lemma 13

Lemma 13. Let f be an n-argument corner-free function f : A1×. . .×An → Z3

with i, j such that |Ai| = |Aj | = 2 such that for all a, fa
{i,j} is an XOR. If all

three types of XOR’s occur then there is a dimension k such that the input in
dimension k determines the type of XOR.

Proof. We assume that there is an (α, β)-XOR and an (α, γ)-XOR at Hamming
distance 1. We denote the dimension by which they differ by k and relabel the
inputs in dimension k such that fa

{i,j,k}(·, ·, 1) is an (α, β)-XOR and fa
{i,j,k}(·, ·, 2)

is an (α, γ)-XOR.
We proceed to show that there is no b such that fb

{i,j,k}(·, ·, 1) or fb
{i,j,k}(·, ·, 2)

is a (β, γ)-XOR. Assume to the contrary that there is a b such that fb
{i,j,k}(·, ·, 1)

is a (β, γ)-OR (the case if it occurs at input 2 in dimension k is analogous). We
illustrate this case in Figure 5 where we for simplicity show b as differing from
a in only one dimension, which is not something we assume in the proof.

α β α γ
β α γ α

γ β
β γ

Fig. 5. Illustration of a contradiction in the proof of Lemma 13.

What values can the function take at fb
{i,j,k}(1, 1, 2)? We claim that any

output at that position would violate the assumption that f is corner-free. In
Figure 5 we can see why this is true for a simple function (writing α, β or γ
anywhere in the missing 2×2 field can be verified to result in an embedded OR).
For brevity, we only discuss the case when fb

{i,j,k}(1, 1, 2) = α here (the other
cases are almost identical and the core idea is captured by Figure 5). Proofs of
all three cases are given in the full version of this paper [12].

Assume fb
{i,j,k}(1, 1, 2) = α. Then we can find y (equal to 1 or 2) such that

fa
{i,j,k}(1, y, 2) = α as fa

{i,j,k}(·, ·, 2) is an (α, γ)-XOR. We can also find x such that
fa
{i,j,k}(x, y, 1) = α as fa

{i,j,k}(·, ·, 1) is an (α, β)-XOR. However, as fb
{i,j,k}(·, ·, 1)

is a (β, γ)-XOR we are guaranteed that fb
{i,j,k}(x, 1, 1) 6= α. Thus, f contains an

embedded OR with S1 = {i, k} and S2 = SC
1 using (1, 2); (x, 1) on S1 and y; 1

or j and a; b on the rest of S2.
We now conclude that there is no b such that fb

{i,j,k}(·, ·, 1) or fb
{i,j,k}(·, ·, 2)

is a (β, γ)-XOR. As f has all types of XOR’s, there must still be a (β, γ)-XOR in
the function. Thus, we see that |Ak| ≥ 3, and we can assume there is a b such
that fb

{i,j,k}(·, ·, 3) is a (β, γ)-XOR.
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We claim that fa
{i,j,k}(·, ·, 3) must be a (β, γ)-XOR. To see this we observe

that if it was another type of XOR, then by the same proof that showed that there
is no (β, γ)-XOR for k = 1, 2 we could have shown that there was not (β, γ)-XOR
for k = 3, but we know that fb

{i,j,k}(·, ·, 3) is a (β, γ)-XOR. We now see that for
a given xk, all XOR’s must be of the same type as that at fa

{i,j,xk}(·, ·, k) which
concludes our proof. ut

A.2 Proof of Lemma 14

Lemma 14. Let f be an n-argument corner-free function f : A1×. . .×An → Z3

with i, j such that |Ai| = |Aj | = 2 and an output α such that for all a precisely
one diagonal of fa

{i,j} has two α’s. Then f is collapsible.

Proof. We claim that f is collapsible by collapsing β and γ. To prove this we
show that the collapsed function

g(x) =
{

1 if f(x) ∈ {β, γ}
0 if f(x) = α

does not contain an embedded OR of degree 1. Then by Theorem 6 we have
that g is corner-free and Theorem 5 implies that the collapsed function can be
written as a Boolean sum.

We begin by observing that as each 2 × 2 plane spanned by dimensions i, j
contains exactly one diagonal with α’s, each such 2× 2 plane contains two α’s,
as if it had three α’s it would be an embedded OR and if it had four α’s both
diagonals would have two α’s. We further make the observation that a pair of
neighboring outputs in dimension i (and analogously in j) are such that exactly
one of them is α. More formally, for all c if fc

{i}(1) = α then fc
{i}(2) 6= α and if

fc
{i}(1) 6= α then fc

{i}(2) = α.
As g is Boolean, by Theorem 6 we know that if g has an embedded OR (of any

degree), it also has an embedded OR of degree 1. We assume by contradiction that
there is an embedded OR of degree 1 in g. We reorder inputs and dimensions such
that the embedded OR is spanned by dimensions 1, 2 using inputs (1, 2); (1, 2),
with other inputs as a. We say that ga

{1,2} is an embedded OR with slight abuse
of notation (as |A1| or |A2| could be greater than 2). We see that the embedded
OR cannot have three 1’s as g takes the value 0 where f takes the value α, so
an embedded OR with three 0’s corresponds to an embedded OR with three α
in f , which is corner-free. Thus, the embedded OR must have three 1’s.

From our observation we know that each 2× 2 plane in g spanned by i, j has
two 0’s, so there cannot be an OR in g with three 1’s spanned by dimensions i, j.
Thus, at least one of i and j must be different from both 1 and 2. We assume
i 6= 1, 2 and reorder inputs such that the embedded OR occurs when xi = 1. Let
b be a with the value at xi removed.

We now consider what values occur at fb
{1,2,i}(·, ·, 2). We know that of the

four outputs of fb
{1,2,i}(·, ·, 1) one is α and three are different from α. But by our

observation, this implies that of the four outputs of fb
{1,2,i}(·, ·, 2) three are α and
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one is different from α. This concludes our proof as it shows that an embedded
OR in g implies an embedded OR in f which we assumed to be corner-free. ut

A.3 Proof of Lemma 15

Lemma 15. An n-argument corner-free function f : A1 × . . . × An → Z3 with
i, j such that |Ai| = |Aj | = 2 and such that for some a, fa

{i,j} is an Aff3 and for
some b, fb

{i,j} is an XOR is collapsible.

Proof. Let the output that appears twice in fa
{i,j} be α, and reorder inputs such

that fa
{i,j}(1, 1) = fa

{i,j}(2, 2) = α.
We now claim that fb

{i,j}(1, 2) = fb
{i,j}(2, 1) = α. As fb

{i,j} is an XOR we know
that fb

{i,j}(1, 2) = fb
{i,j}(2, 1). If fb

{i,j}(1, 2) = fb
{i,j}(2, 1) ∈ {β, γ} then there is

an embedded OR with S1 = {i, j} and S2 = SC
1 as using inputs (1, 2); (2, 1) on

S1 and a; b on S2. We assume the other diagonal of the XOR consists of β’s,
i.e. fb

{i,j}(1, 1) = fb
{i,j}(2, 2) = β, and that fa

{i,j}(1, 2) = β, fa
{i,j}(2, 1) = γ. This

is without loss of generality as we can relabel outputs and switch the roles of
parties 1 and 2.

α β
γ α

(a) fa
{i,j}

β α
α β

(b) fb
{i,j}

Fig. 6. An XOR and Aff3 in f . The outputs involved in proving that f has no links in
dimension i are highlighted.

We claim that the function f cannot have any links in dimensions i or j. To
see this for dimension i, we see that fa

{i,j}(1, 1) = α and fa
{i,j}(2, 1) = γ but also

fb
{i,j}(1, 2) = α and fb

{i,j}(2, 2) = β. Thus, the value of fc
{i}(2) is not a function

of the value of fc
{i}(1) for all c and the contrapositive form of Corollary 10 gives

that f cannot have a link between inputs 1 and 2 in dimension i. Similarly
for dimension j, we have that fa

{i,j}(2, 2) = α and fa
{i,j}(2, 1) = γ, but also

fb
{i,j}(1, 2) = α and fb

{i,j}(1, 1) = β. This demonstrates that fc
{j}(1) is not a

function of fc
{j}(2) for all c, and by the contrapositive form of Corollary 10,

there is no link between inputs 2 and 1 in dimension j.
We proceed by proving that for all c precisely one of the two diagonals of

fc
{i,j} contains two α’s. What are the possible values for (fc

{i,j}(1, 2), fc
{i,j}(2, 1))?

We proved (when c = b but we made no use of any properties of b) that they
cannot be (β, β) or (γ, γ). Furthermore, as fb

{i,j}(1, 2) = fb
{i,j}(2, 1) = α it cannot

be that precisely one of the values is α, as then f would have an embedded OR
with S1 = {i, j} and S2 = SC

1 using inputs (1, 2); (2, 1) on S1 and b; c on S2.
Thus the only remaining possibilities are (α, α); (β, γ); (γ, β). As f has no links in
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dimension i or j we see that in the first case neither fc
{i,j}(1, 1) nor fc

{i,j}(2, 2) can
equal α. In the two latter cases we have again by the link-freeness in dimensions
i and j that fc

{i,j}(1, 1) = fc
{i,j}(2, 2) = α. By Lemma 14 we have that f is

collapsible as claimed. ut

A.4 Proof of Lemma 16

Lemma 16. Every n-argument link-free, corner-free function f : A1 × . . . ×
An → Z3 is collapsible or a permuted sum.

Proof. For a link-free and corner-free function, only two types of induced rect-
angles are possible: XOR and Aff3. If f contains an XOR spanned by dimensions
i and j, then |Ai| = |Aj | = 2 since f is link-free.

We proceed with a case analysis. If f does not contain an XOR, then we select
the first case. Otherwise, we pick an arbitrary XOR occurring in f and fix the
dimensions i and j spanning it, and denote by a a set of inputs such that fa

{i,j}
is an (α, β)-XOR (if f has an XOR, we can relabel outputs such that there is an
(α, β)-XOR). When we have fixed dimensions i, j we select among the four last
cases of our proof based only on the 2× 2-planes spanned by dimensions i, j.

Case 1: Only Aff3 (all dimensions). If all induced rectangles of f are of the
form Aff3, then f satisfies the condition of Lemma 12 and is a (permuted) sum.

Case 2: Both XOR and Aff3 (spanned by i, j). By Lemma 15, f is collapsible.
Case 3: Only XOR, one type of XOR (spanned by i, j). If only one type of XOR’s

occur, then f is a Boolean corner-free function and by Theorem 5 we have that
f is a sum, and thus also a permuted sum.

Case 4: Only XOR, two types of XOR (spanned by i, j). We assume that f
contains XOR’s of types (α, β) and (α, γ). Then α occurs on exactly one diagonal
of all 2× 2 planes spanned by dimensions i, j and by Lemma 14 f is collapsible
by collapsing β and γ.

Case 5: Only XOR, three types of XOR (spanned by i, j). By Lemma 13 we see
that there must be a dimension k such that the input in dimension k determines
the type of the XOR. Reorder inputs such that for input 1 in dimension k the
2×2-planes spanned by i and j are (α, β)-XOR’s. We let a = (1) and S1 = {k}C
and see that fa

{S1} is a Boolean corner-free function. Thus, Theorem 5 implies
that fa

{S1}(x1, . . . , xk−1, xk+1, . . . , xn) =
∑

i6=k fi(xi) with the sum computed
modulo 2.

We claim that f is a permuted sum with Pk as the permuter and the sum
computed modulo 2. To see this, we prove that for all xk ∈ Ak and for all inputs
b we have fb

{k}(xk) = πxk
{fb
{k}(1)}. As f is link-free, we have that fb

{k}(xk) 6=
fb
{k}(1). If xk is such that the 2× 2-planes spanned by dimensions 1 and 2 when
the input in dimension k is xk are (α, β)-XOR then this means that fb

{k}(1) =
α =⇒ fb

{k}(xk) = β and fb
{k}(1) = β =⇒ fb

{k}(xk) = α. Similarly if the XOR’s
are (α, γ)-XOR’s fb

{k}(1) = α =⇒ fb
{k}(xk) = γ, and as the 2 × 2-planes are

XOR’s we have fb
{k}(1) 6= α =⇒ fb

{k}(xk) = α. The case for xk with (β, γ)-
XOR’s is analogous, concluding the proof. ut
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