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ABSTRACT
HISTOGRAM ESTIMATORS OF BIVARIATE DENSITIES
by

Joyce Ann Stevens Hisemann

One-dimensional fixed-interval histogram estimators of univariate pro-
bability density functions are less efficient than the analogous variable-
interval estimators which are constructed from intervals whose lengths are
determined by the criterion of integrated mean squared error (MSE)
minimization. Similarly, two-dimensional fixed-cell-size histogram estima-
tors of bivariate probability density functions are less efficient than vari-
able cell size estimators whose cell sizes are determined from IMSE minim-
ization. Only estimators whose cell sides are parallel to the coordinate axes

are examined.

The estimators are classified according to the functional dependence
of their cell dimensions upon z and y : each cell dimension of the
Minimally Restricted Mesh depends upon both z and y ; one cell dimen-
sion of the Se’m'l-ﬁxed-dimension Mesh is fixed, and the other depends

upon either z alone or y alone; one cell dimension of the Variable-

dimension Mesh I depends upon z and the other upon y; one cell dimen-



sion of the Variable-dimension Mesh II depends upon z alone or y alone
and the other depends upon both z and y. The Minimally Restricted Mesh
results in the smallest IMSE of the four types, but is not implementable.
The other meshes are implementable and are listed above in order of
decreasing IMSE. Random vectors from Dirichlet, mixed bivariate and
elliptical bivariate normal distributions were gexferated and used to con-
struct optimal histograms. The Variable-dimension Mesh II produced his-
tograms having IMSEs from 20 to 90 percent smaller than those from his-
tograms based upon optimal fixed-dimension meshes. The most substantial
improvements were observed for mixed bivariate normal densities having
strongly unequal variances. Modest improvements (20%) were observed for
skewed densities and slightly elliptical densities, but no improvements
were observed in cases of highly elliptical densities whose axes were

rotated 45% from the coordinate axes.



TABLE OF CONTENTS

1. INTRODUCTION
1.1 Important Non-parametric Estimators of Probability Density
1.2 Choice of Methods
1.3 Research Objectives
2. THEORY
2.1 One-dimensional Estimation
2.2 Two-dimensional Estimation
2.3 Minimally Restricted Mesh
2.4 Fixed-dimension Mesh
2.5 Semi-fixed-dimension Mesh
2.6 Variable-dimension Mesh I: g(x), h(y)
2.7 Variable-dimension Mesh II: g(x), h(x,y)
3. IMPLEMENTATION
3.1 Introduction
3.2 Cell Dimensions
3.3 Determination of Cell Boundaries
3.4 Heights Above Cells

3.5 Simulations

v

4. RESULTS »

4.1 Hardware and Software

4.2 Integrated Mean Squared Error

20

29

31

33

35

37

40

40

40

48

48

51

52

52

52



DEDICATION

I dedicate this work to the memory of Joyce Alberta and Hermione.



5. APPLICATION
6. DISCUSSION

REFERENCES

92

95

98



(Tx—1» Z¢)- A histogram estimate is constructed by placing a block of height

/ along each such interval.

The histogram estimate may also be derived in the following way
(Rosenblatt, 1965): Since the probability density f.unction is the derivative of
the cumulative distribution function, we may estimate the density f by a

central difference approximation to the derivative of F:

F(z+h) — F(z=h)
2h

f(z)=

[u(z+hl _ V(:c—h)]

n n
B 2h
_ Uz+h) = Az—h)
2nh
1 g, | 2= (1.1.1)
" nh E:l o h S
z — I xr — I;
where K, is a function of o If ; > 1, the sample point z; lies

outside the interval (z—h, z+k] and K, is set equal to zero, i.e., the point

T — z;
does not contribute to the estimate of f at z. If . - <1, z; lies

within the interval and K|, is set equal to 1 /2 so that z; contributes Elrgz- to



1. Introduction

Non-parametric density estimation refers to the estimation of probabil-
ity density functions whose general form as well as parameters are unknown.
Of the several methods of non-parametric probability density estimation, we
will discuss the four most frequently encountered and, for our purposes, the

four most instructive: the kernel, the k-nearest-neighbor, the series, and the

histogram.

1.1 Important non-parametric estimators of probability density

We begin with a random sample of size n from a population whose
underlying density is the object of our study. Let {z) be the number of
sample points having values less than or equal to z. Then a natural approxi-

mation to the cumulative distribution function F is

podz)

n

Similarly, a natural approximation to the probability density function f is

;= Az ) — Az—1)

n(zy — zk-l)

where the z; are points defined by a mesh on the real line and where 1, =

Az;) — Azx_,) is the number of sample points falling in the kth interval



‘rough’ to represent f adequately since it will reflect random fluctuations in
the data. It is apparent, therefore, that in both types of estimation, a partic-
ular choice of & may not be optimal throughout the entire domain of support
of f. In addition, an optimal choice of h will depend upon sample size, since
a smaller sample size requires a larger h so that a sequence of separate peaks

is not obtained; on the other hand, a larger sample size will accommodate 2

smaller h.

Figure 1.1. Above: example of histogram in which & is too small so that [ is
too rough (variance is large and bias is small). Below: example of histogram

in which h is too large so that [ is too smooth (variance is small and bias is
large).

The k nearest-neighbor method is a fixed-frequency approach (Breiman,
et al., 1077) in which the number of sample points k = Az+h) — Az—h)

falling in an interval is fixed and the sizes of the intervals (z—h, z+h] vary



the estimate f(z). It should be apparent that this procedure will produce a
histogram estimate of f where f at z is represented by the height of the his-
togram block which is centered at z and of width 2h. The shape of the his-

togram will depend upon the choice of kh, the parameter of interval width

(also called window, cell, or bin size).

The kernel method is a straightforward generalization of the above, see
Parzen (1962) and Rosenblatt (1965). If one inquires whether it is really
desirable that every point falling into a given interval contribute equally to
the estimate there when, perhaps, those points falling near the boundaries of

the interval are of less importance to the estimate at z, an estimator which

weights the contribution of points according to their distance from z recom-

—-22
z — I

mends itself. Let = z and, as an example, let K, = -712-; e 2

in (1.1.1) so that all points of the sample contribute to the estimate at z but

in inverse proportion to their distances from z. K, is called the kernel fune-

tion and may be any function which satisfies conditions which insure estima-

tor consistency.

In the kernel approach, the shape of the estimate depends upon the

choice of kernel and of 'smoothing parameter’ h. In both histogram and ker-
pel estimation, h may be considered to be a smoothing parameter since for
large h, / will appear 'smoother’ than when h is small, variance is large,

bias is small and f follows f more closely. If ~ is too small, f will be too



-00 f=]

7 {f(-’ﬂ) - }ia@;(z)] ? dz.

Use of this particular criterion leads to the following definition of the a;:

b = E[¢i(2)]

=L S i)

Ly Y

where 73, £k = 1,...,n,is 2 sample from f. The density estimate becomes:

ﬂn=§[limm$@)

fm1 | T k=l

=i f: h [f}‘f’;(%)@(z ]
k=1 tm=]

We observe that this estimator depends upon the choice of series and upon
the number of terms m which are to be included in the approximation. Since
the series is a global estimator with adaptability being limited to the selec-

tion of an optimal m, the approach does not readily lend itself to



in order to accommodate the constant number of points. The estimate

f(z)=

n z — I
-—1-—2 K ~|, where h; is the radius of the window with k
nhk fo=l hk

neighbors, depends upon the choice of k and is subject to less random varia-
tion (i.., has a smaller variance) when k is ldrge but is also subject to
smaller errors due to averaging (i.e., has a smaller bias) when the interval
length , and therefore k, is smaller. Again, the optimal choice of parameter,

k in this case, may not be constant throughout the domain of support of f.

Like the histogram and k-nearest-neighbor methods, the series method

(Cencov, 1962) may also be interpreted as a special case of kernel estimation

T —z s

if K, [—-—h—-’i—] is set equal to hY)¢;(z;)d;(z) with ¢; defined as follows.
i=1

The density function f can be considered to be a waveform which may be

approximated by a series of orthonormal basis functions such as Fourier

series, Legendre polynomials, Hermite polynomials and others. If {¢;} is the

selected set of orthonormal basis functions, then the density [ is approxi-

mated by:

N o
f(z) = Y a;9i(z)
i=1
where the series is truncated so that there are a finite number of terms m
and where the a; are approximated by d; which are determined by minimiz-

ing an error criterion such as



will also develop some practical criteria for the construction of optimal histo-
grams in applied problems in which the form of the underlying density is

known or assumed. The problem of constructing pure data-based histograms

is beyond the scope of this paper.



modifications designed to provide optimality within particular subregions of

the domain of support.

1.2 Choice of methods

In any applied problem, the choice of approach depends upon practical
as well as theoretical considerations. We have selected the histogram estima-
tor for investigation, because it is conceptually the simplest, the easiest to
apply and, therefore, the most commonly used of all probability density esti-

mators.

1.3 Research objectives

In all of the density estimation approaches presented above, there is a
recurring problem of simultaneously controlling both variance and bias
through judicious choice of parameter as well as the difficulty created by the
fact that the optimal parameter in one region of the domain of support may
very well not be optimal in another region. Both of these questions have
been addressed for probability densities which are functions of only one vari-
able (Scott, 1979, 1982), (Scott and Terrell, 1983). New complications arise
when densities of more than one variable are considered (Terrell, 1983, 1984,
1986), (Scott, 1985). It is the purpose of the present paper to address the
questions of parameter choice and parameter variability in the case of histo-
gram estimators of bivariate probability density functions. Results of this

research should provide a basis for future research in higher dimensions. We
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IMSE| f(z)] = jVar[ f(z) dz + jBiasﬁ[ f(z)] d=.

The optimal fixed interval length is derived as follows. Let f'(z) be
square Riemann integrable and defined over the -entire real line. Let h be
the length of each interval and let n be the sample size so that h(n)—0 as
n—o0 and nh(n)—c0 as n—oo. Let v;(z) be the number of points falling in
the ith interval (y,+th, y,+(i+1)k] where y,+ih=y;. If we have an
independent random sample, then v;(z) has 2 binomial (n, p;), distribution
where p; is the probability that a sample point will fall in the th interval,
e,

yi+h

p; = [ f(z)dz.
Y

Then the histogram estimator of f/ at z becomes

2 l/,-(.'l:) . .
f(:z;) = 7 T € (yo+th, Yo +(t+1)h]
which is the proportion of sample points falling in the interval divided by the

size of the interval.

We will derive an expression for the integrated mean squared error

beginning with the bias term (c.f., Scott, 1986).



2. Theory

2.1 One-dimensional estimation

In 1979, Scott addressed the question of optimal interval length
(binwidth) for histograms which were constructed.- to approximate the proba-
bility density function of one random variable and whose interval lengths
remained constant throughout the domain of support. The integrated mean
squared error (discussed below) was suggested as a global measure of histo-
gram error and, thereby, introduced a rigorous treatment of variance and
bias into the context of histogram estimation. A global measure is preferred
since it is the shape of the density that is of interest, so that an optimal his-

togram is one which best approximates the form of the true distribution.

Let f(z) be the probability density function at a point z, and let f(z)

be its estimator. Then the mean squared error (MSE) of f(z) is defined as:

MSE|[f(z)) = E[( f(z) — f(z) )*]
= E[( J(z) = E[f@=) 21+ Elf(=z) = f(2) ]

= Var[f(:r)] + Biasz[f(:r)]

so that the integrated mean squared error (IMSE) becomes
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+h

yi+h ¥
= [[JW)—-f@)Pdv - -};{f [f(y)—f(y.)]dy]‘
¥

yi+h yith — .
“y__y’)a[f(y) y,-( )]1 {f (v-1.) [f(y)y_y{(y.)]dy‘

_ J(&) — f(i‘!i) st 9 1 f (&) — f (%) yith
- { & — ¥ T i(y—y'°) dy — h{ € — i {‘_(y-—y:) dy

3
- [ref £ - [ref L (2.1.1)
where El 7E2 163 564 € (yi, yf+h]'

so that over all the intervals of the histogram we have

2

Jeusttien= 5 [/ @ - 8 [rea)s i

{ »=—00 { o= —00

- {%—#}]i{ﬂ(ﬂ]’ dy + o(h?)

= 'h; Z[ ’(y)]2 dy + o(h?
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Bias|f(y)] = E| fly)— 1)}

- Ei’;‘) ~ ()

yi+h
=-}z- [ 1(z)dz — [f(y)
]

1 yith
= J U@ -/ for y € (y;, vi+h]
Vi

y

;+h
=_}z_ [1f@)=1w))de — [f(¥) = ()]
Yi

so that

yi+h 1 yith
f Biasg[f(x)] = [17(z)~- S(v:)] dz
¥

Ye

yith vith

~2 1@ =Gy [ 1@ =] dz

y;+h

+ f[f(y)—f(y;)l2 dy
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by the Riemann integrability of f}(z)as n — o0 and nh —o00. Therefore,

the integrated mean squared error becomes:
IMSE='—1"+"‘& I [f’(:c)]2 dz + o(h?) + o 1.
nh 12 n
Differentiating the above expression with respect to h and setting the result
equal to zero, we obtain asymptotically

0= =5+ %jf; [f'(aa)]2 iz

so that

1

* 6 3

of 1@ @ |

—00

When the optimal constant interval length h¥* is used, the following minimal

IMSE will be obtained
1

IMSE® = -:-;- 6 2 n_% [7 {f’(z)]z}% .

-0

The problem of optimality in different regions of the domain of support
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by the Riemann integrability of [ [y )]2 as n — oo and h —0.

Now, considering the variance term in the expression for the integrated

mean squared error, we have

a Vi v;)-
Vorl 1)) = g
np;(1 — p;)
- n2h?
1 y.+h y.-+h
=-—h'; f [(z) dz — —7 ff(a:)d:z
¥ ¥
p B2
= _n_h? f f(z) dz - -;’7 2(f,,) (2.2.2)
Y
where Eo € (yt' ’ y:+h] .
Then
oo oo yit+h oo
[ varlf@) = =58 [ 1(2) doh — =5 f5E)H
—o0 nh® % n 5

= —,j;_off(z) dz —-};712(7:) iz + o[-};]
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= -i—h%); - =1%E,)
and
o= i el 42 e 2]
- [} 22— [reeaf 2L
Therefore

f(Es) _ 1

MSEg e = L = L) + [ 2 = [ £

(2.1.3)

using (2.1.1) and (2.1.2) above.

The mean squared error averaged over an interval will no longer remain con-
stant but will vary according to the size and location of the interval. There-
fore, for a particular location z in the domain of support, we wish to obtain
an optimal interval length h{z) which will minimize the mean squared error
averaged over that particular interval. The minimal integrated mean squared
error will be obtained only when the entire sequence of optimal interval

lengths is employed.



15

remains, however.

In 1982 and 1983, Terrell and Scott addressed this issue for probability
densities of one random variable. If the interval lengths are allowed to vary,

that is, if h becomes a function of z, then the mean squared error over one

interval becomes

1 y.-+h(z) )
MSE(y,-,y.--l-h(z)] = ——h (x) { Var[f(z)] d.'B

1 vi+h(z) .
+7z—(;)_ i{ Bias*[f(z) dz =A + B

where

1 yi+h(z) 1 yi+h(z) 1 .
i | | e -

¥

A

+ s [ (] 22 - [rrea] —"—351—1]

¥

R I 1
= h(z) f [nh"’(x) h(z)f (&) — _n'f2(Eo)]

1 [/(55)

ote) — L%, hio
- h(z) h() f(go)h( )]

nh?(z) n
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That h; (n,z) — 0 for each interval i as n — 0 in the case of a pormal
density can be seen from the following argument. Let us truncate our esti-
mate at 7, and z; so that f(z)=0 for z <z,,2and z 2 z.

The integrated mean squared error

IMSE = E[j /(=) = f(2)) dz]

- B| [ (&) = 1@ de| + E| [ (1) = ()" do

+E| (@)= @) da
becomes
=E|[(f(z) — f"(:l:))2 dz| + _j [f(:r,)]2 dr + f[f(m)]2 dz

if 1z, — z, | is sufficiently large so that an arbitrarily small number of points
fall outside the interval (z,,z;].

For
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Holding x constant and minimizing the mean squared error (2.1.3) over
(v;, y;+h] by differentiating with respect to h and setting the result equal to

zero, we have

1 (s)
nh%(z)

+ %h(z) [f z,(ES)]2 —é‘ h(z) [/ "(54)]2

1 hm[—;- (16 - [0 ]

/(&) g
n [-ﬁ- 1] - 5|76 ]

Y (z) =

for a particular value of z. We assume that h'(z) is approximately constant
over the interval (y; y;+h] and substitute h*(z) into (2.1.3) above to obtain

the mean squared error over the interval:

2 2

MSE" (g peuny = 20 113(69) [% [ -+ [m&)ﬂ% - Lr7e,)

and the integrated means squared error:

1

[f'(£4,-)]2r bt + 0[-,1;].

2

n ® § f%(fsi) [% [f '(fai)]2 -

fwe—00

IMSE® =

2o [
2o [
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variable interval case. If f(z) is the normal distribution with mean equal to

zero and variance equal to one,

1
3

h = 3.491 n_ for the fixed interval case

and

2 z2 1

h =~ 2.469 |z |—3 e 6 .n 3  for the variable interval case.
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—z2 —z?

1 _ "2 1 _ "2

[(x)=v5;e ) 1—F(z)zme

Choose z, sothat 1 — F(z,) = -:‘;- Then

72

= V27ra:,,e2

and the optimal asymptotic interval width

1
. B 8/ (z,) ':s-z_l__’
b = [nlf'(xmz] m 0

as n —+00.

[ ]
Since [f*z)dz — 0 asn — o0
z.

and

[Uie) = f@) de — J17(e) = [ do, weave

—2Zq

1

IMSE" = N n_%}o [f(z) j’(a:)]%dz + o[max h;2] + 0['};‘]

2o |eo

-00

by the Riemann integrability of f(y) and [f '(y)]q .

Comparison of the minimal obtainable integrated mean squared error for the

fixed and variable interval cases shows that the minimal IMSE for the fixed

interval case is always greater than or equal to the minimal IMSE for the
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Let X=(z,y) be a bivariate random variable with joint probability den-
sity function f(z,y). If the domain of support is subdivided into rectangles of
the form (z; z;+¢]X(y;, vi+h] where ¢>0 and h>0 are the lengths of the

sides, a histogram estimator of f(z,y) at the point (z,y) may be defined in

analogy with the univariate case as:

f(z,y) = ﬂf—g’-’%-)- for z € (I," .'B;+g], Yy € (yi‘ y‘--{-h]

where {z,y) is the number of sample points falling in the rectangle and
where ¢ and h may be constant, functions of z; or y; alone, or functions of

both z; and y;. The integrated mean squared error is defined as before and in

the bivariate case becomes:

[~ =T~ =]

MSE(f(@w) = | [ EL( (@)~ f(2:9) )'] daty
-7 1 {E[ F(o) = BLI )] + [ ELF(2.9) = 1 (@.9) 12} sedy

= 7 [ 1 Ver[f(z.w)] + Bias?[ f(z,y)]] dzdy.

-0 —00

Once again {z,y) has a binomial (n,p) distribution with p the probability

that a sample point (z,y) lies in the above rectangle centered at
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2.9 Two-dimensional estimation

In our discussion of the one-dimensional case of histogram estimation it
was apparent that there were only two possible types of mesh from which 2
histogram might be constructed: kb could remain constant throughout the
domain of support or could vary according to sc;me criterion of optimality.
However, when the concept of histogram estimation is extended to two
dimensions, the number of possible grid types becomes infinite: the plane may
be partitioned into sets of any shape as long as the sets are mutually
exclusive and the subdivision is exhaustive. Since most histograms based
upon arbitrary partitions would not be implementable, Terrell (1983)
confined his investigation to rectangular meshes with cell sides parallel to the
coordinate axes. Scott (1985) studied a number of other mesh types, some
having triangular and others hexagonal shapes, but found that hexagons
resulted in only slightly improved estimates at a cost of some difficulty in
implementation and that regular triangles, which were also difficult to imple-
ment, resulted in worse, estimates than did Terrell's variable-dimension rec-
tangles. Terrell also demonstrated that a partition of the plane by a rhom-
boidal mesh produced histogram estimators equivalent to those produced by
a rectangular mesh. In view of the above, the mesh types in the present
paper have been confined to rectangular grids having cell sides of variable
length and width parallel to the coordinate axes. The problem of grid orien-

tation is a separate topic of research and will not be treated here.
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+ [ f(s,t) = S (zi,9;) ]2’
so that the bias over one rectangle is

yith zi+g ) 1 y+h z,+yg
[ [ Bias*[](z,9)] s [ [ f(z) = f(z9:)] dzdy
¥i Z ¥ Z

9 yi+h zi+g
T ok [ J () = f(zi9:) ] dzdy
¥ z,

yith zi+yg
A [ [ U(sst) = f(mw) ] dsdt
¥ EN

jl.'+h z,+¢

+ [ JUS(sst) = f(ziys) )? dsdt
Y Z;

yith z;+g

= [ J U9 = ()] dady

2
yi‘"h z,+g

B _;I ;‘: { [ /(2,y) = f(z0,0:) | dzdy
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[z;+'§, y;+%] , so that

y+h z+g
p= [ [ f(z,y) dzdy where z € (z;, 7;+9) and y € (¥;, v;+h] .
Yi z,

and
Bias[f(z,y)] = E| flz,y) = f(=zsy) ]
- E[ﬂ;ﬁ’-)-] — [(z9)
n yith z,+g

=—n—g;£ {f(z,y) dzdy — f(z,y)

1 yi+h z;+g

- [ [ U (w) = (@ow) ] dedy = [f(2:9) = f(z9:) ]
¥ z;
and

g2h2

yi+h zi+g
Bias2[j(z9y)] = - [ f f [ j(z9y) - I(I{,y,‘) ] dzdy]’
Y Zi

Yi

yith zitg
— —:;[ [(8:t) = [ (=is97) 1[ [ [U@e) = f )] dzdy\
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yith yitg

+22en b it | [ (am)o—w) dedy
z y ¥i %

vi+h yitg

+ {%‘L(Emﬁﬂ)r [ f (y—y;)? dzdy
y %

z

2
) yith yit+g yith ¥ty

~ %(Efs,fjs) { .[ (z—z;) dzdy + %yL(fie’fjs) { ,[ (y—y;) dzdy

by the integral form of the mean value theorem where each €x o k=1,..,6,1s 2
particular value of €, for some z and where each § k9 k=1,..,6, is a particu-
lar value of &, for some y, and where z —z; >0, y — 3 >0 since

z € (z;, zi+g), v € (95 y;+h]. The above then becomes

2 2
8 %h , 9 3 2p? 8 R
= [’5&(5;1@'1)} ’%— + 25{6'(5.'2,5_{2)5'36'(5;3,5;'3)9 T {6{/ (61'4,61‘4)] 'g':;'

(ol gt B o at]
gh [317(&’5,&]5) 9 + ay(&sﬁ;&;ﬁ) 2]

3 2 99 8 i
= -Ls-h— [%(5,1,611)] + %—%(gi21€j2)%(€i3’€j3) + _g%_ {%(EM’EJ'“)}

252 ’
- _gli *q—4h—- {g%(&s,ﬁjs) + h%‘s(&s’@'s)l :
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3]

l(x— 2Le) 4 g —y,)—‘u—)’]?dzdy

yi+h z,+
—i;{f fg[z—x.)—ﬂ—)' +(y— y)—ﬂ—l]dzdyr

where @ = (z;4+€(z—z;) , vi+€(y—y;)) and b = (z;+&(z—=;) , v;+E(y—v)))

and where 0 < £ < 1, by the mean value theorem.
Let &, = 5;+&(z—z;) and &, = y; +&(y—v;)-

Then the above becomes

yi+h yi+g

- ;ll: !. (z—xi)2 [%(E“Ey)]: + 2(1:_ i)(!l _yi) [%(Em&y )} [%(Eu&/)]

2
+ (3/"!/:‘)2 [%5(63 ,fy)] dzdy
yith yi+g »
- -;]:; [ f j: [(x-zt)—éL(Ez:Ey) + (y—y.‘)%(fufy)] dxdy[

2 yvi+h yitg
= [%(Eil;&jl)} f f (z— z')2 dzdy
L h Zi
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+ E Z‘, gh[ gh [—L(E.z,f,z)] {%(€i3a§j3)] - ‘% [%‘5(&;5,5 js)] l%ﬁ‘(&s,fjs)“

J=—00 f=—00

2 V)
+ 5 S [—"; ‘%3(&,-4,&,-4)] ~ ff[%ﬁ(&s,e,-e)ﬂ.

Jm—00 {=m—00

As n — oo and g,h — 0 , we have by the Riemann integrability of partial

derivatives :

oo 00 . oo ool-z_ Q[_2 o °°h2 _@..L
7ime-T 72« 175

The variance of f(z,y) is:

Var[f(a:,y)] = Var [-5;3’%)-]

1
= _——n2g2h2 Var|[fz,y)]

n
= ——————(1—
anghgp( p)

1 yi+h yit+g 1 yi+h yit+g 2
=—=z ] [I(=y)dedy — —55 [ [ f(z,y) dzdy
z; g z;

212
ng h ¥ ¥
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3 2
=i:i[%§(£.-l,e,-1)]z + L8 60 Wit + -‘L;‘—[—Z{,-(fmf,-4)]

2 ‘ 2
- '%:'“ [92 {%(Eis:f js)] + 29’*%5:'(5.'5,5 js)%f/-(&ﬁ’& jo) + h? [%ﬁ'(fis,fjs)] ]

2
= ’L:"h- {%(Eil’eﬂ)} + 'Q'—QL(6121€J2)_8-L(€:3’€J3) + L- [—5(6‘4’614)]

3

2 2,2 3 2
- £t [%ﬁ(s.-s,e,-s)] — B 5 P o) — 4 [%(Eis,fjs)}

4
9 2
= gh [‘931 [%(ﬁil,fjl)] - '24’2' [%&'(Eis’gﬁ)]]

+ gh[ o [—L(s.z,f,z)] [%5(&.-3,5,-3)] -4 [%{;(&.-s,e,-s)] [%(e,-s,e,-s)]]
+ gh [%2' [%‘5(5:‘4,51'4)] - ',;_2 [%(6:‘6!6.1'6)]] ’

so that

f f Bias*| f (z,9)] = Z 2 gh ['%2- [""L(Emfn)] [—L(Emaf;s)]]

j=—00 {m=—00
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ting the expression above equal to zero, we obtain the following conditions :

ofo ?n,[—'—'[—+l[ﬂ]2]dxdy=o

—00 —00 nth 6 Oz
and (2.2.2)
i _:.[_ L3 Q.L dzdy =0
_{o _,Lﬂy [ngh2 + 6 | Oy it '

If we solve the above equations simultaneously for ¢ and A and choose the
rectangular dimensions accordingly, we will obtain the minimum integrated
mean squared error. Different solutions to the above equations are obtained
depending upon whether g and h are constant, functions of only one variable

or functions of both variables, each case reflecting a different type of mesh.

2.3 Minimally restricted (Free) mesh

If ¢ and h are functions of both z and y, we obtain a subdivision of the

domain of support by rectangles of arbitrary dimensions.
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yi+h yi+g

= f ff(z,y) dzdy — th 2(6:76;)

2h2

'

where §; € (v;, z;+9], & € (vi y;+h] , so that

y.+h yi+g

T Iveliemay=—tz § £ T e o

-0 —C0 J=—00 fm—00 ¥

- T S 1UEE) ok

J=—00 {m—00

o f ff(z,y) dzdy — "};f .fo(—"?,y)dzdy + o[i]

ngh -0 —O0 —_00 =00

as n —+ 0.

Thus the integrated mean squared error becomes :

IMSE = f f [ij_zl). L [ az] + -’% [%]2] dzdy (2.2.1)

oo oo | ngh

+ o(g?) + o(h®) + o{-}:]

Now, treating ¢ and h as if they were continuously varying functions in z
and y, we take the derivative with respect to g in the arbitrary direction 7,

and the derivative with respect to k in the arbitrary direction 1, and set-
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g(z,y) = i, .13

and

Alr—

h(z,y) = .. 1B

which yield an optimal integrated mean squared error
1 1 !

L _2 oo o 17! 1 B
IMSE* =26 2n 2 [ [[/(z9)* [l‘%ﬂ {%5{]2 dzdy .
—00 —00 1 [ |

9.4 Fixed-dimension (Regular) mesh

If ¢ and h remain constant throughout the domain of support, we

obtain a subdivision which is mutually exclusive, exhaustive, and easily

implementable.
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Figure 2.3. Minimally restricted (Free) mesh

Unfortunately, these will not necessarily be either mutually exclusive or
exhaustive if we try to specify the optimal width and height in each region of
the plane. Such a scheme is clearly not implementable but is rather of
theoretical interest because it provides a lower bound for the integrated
mean squared error for all possible rectangular meshes whoses cell sides are
parallel to the coordinate axes. Since 1, and 7, are arbitrary functions of z

and y, the equations (2.2.2) hold if and only if

f(z.y) _1 <_9L2
ng(z,9)h(z,y) 6 7Y) [az]

and

f(zy) 1, arf
ng(z,y)h*(z,y) 5 h o) [31’]

The solution to these equations is easily obtained as
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o o0 (_Q[_V 1%
36 [ f Lay dzdy
g = \ o o0 (_a__[_V

n f 'rLBx dzdy

i oo T ’ ]
and
o oo 1=
ol 0
36 dzdy
. _{o _{ogazjz
nQ[f f {%3[/} d:z:dy]ﬂ
| T ]

Substitution of these values into (2.2.1) yields the minimal integrated mean
squared error for this mesh type :
. 1l 1T o F) 2 % o o 4 2 %‘
IMSE' =26 % n ® {f [ [—L] aay|* | [ J {—f— dzdy|" .
—00 —00 Oz —00 —00 ay
A similar argument is found in Nezames (1980). As will be demonstrated in

later sections, more efficient yet easily implementable mesh types may be

designed.

2.5 Semi-fixed-dimension (Semiregular) mesh

If g is a function of z, and h remains constant throughout the domain

of support of [, we obtain a partition in which, for example, the cell widths

.
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Figure 2.4. Fixed-dimension (Regular) mesh

The histogram estimator produced by this scheme, however, is less efficient
relative to that produced by the minimally restricted mesh than others

which will be proposed later. When ¢ and h are both constant, equations

(2.2.2) become

and

with solution
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b |penof[11|5]

2 1| e 2r. » 1L
PRI IR

—00

and

2

(XY [
—

T [I 1] [%ﬂ dxdy] ° f [f/(x,y)dy]
n4 -0 —00 =00 | —o0

which yields the following
L _lfo w (o) +
IMSE® =26 2n 2 {f I [5{,‘} dxdy]

2

_of:o{ J 1(z) dy]3 [_Z [%i-r dy]%dz

A similar semi-fixed-dimension mesh may be obtained if ¢ remains constant

PN A

and k becomes a function of y. The expression for ¢, k(y), and the IMSE

are identical to those for the above k, ¢g(z), and IMSE, respectively, except

that %ﬁ- and %, dz and dy are exchanged throughout.

9.6 Variable-dimension (Grid) mesh I: ¢(z), h(y)
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remain constant while the lengths vary in order to accommodate changes in
the form of the probability density function in different regions of its domain

of support. This scheme produces a histogram estimator which is more

efficient than the fixed-dimension mesh.

Figure 2.5. Semi-fixed-dimension (Semiregular) mesh

With the above assumptions, equations (2.2.2) become

f f dzdy = —;—_{o _j;og(x) [%&]Z dzdy

nh(y —00 —00 92(3)

and
00 o 2
_ L o
h2(y f —jo.o g(z) :cdy = eh(y)_{o —_L[ay] dzdy

with solution
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e - 2034

hQ(y) Ceo 9(2)

If f(z,y) can be written as the product of two functions, each of which is a

function of only one variable, i.e. , if

f(z,y) =r(z) s(y)

then analytic solutions of the following form may be obtained

1 (oo o 2l 2 1= % ) =
6e - ‘-—f Ljf(z,y) d:r:]3 [—f [%5'] d:c]3 dy [-f f(z,y) dy]
9(z) = A "JL
1l Joo e 2 0o N S L 2 1+
ool 0
|
3
1 oo [ oo L3 2 1+ B oo L
o 4] [ff(z,y) dy]s Lj [—%fx-] dy]sd:c [_f f(z,9) dx]a
1
8 L
3

nt- 1]

-—00

h(y) = ;
1 00 % oo _8_L2 %’ 00 §_L2
PR TR MR

yielding an optimal integrated mean squared error
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If ¢ is a function of z and A is a function of y , we obtain a mesh
which is adaptable in both dimensions to the form of the density function

and which is almost as easily implemented as the fixed-dimension mesh.

Figure 2.6. Variable-dimension (Grid) mesh I: g(z),h(y)

In several respects this type of mesh is optimal since it combines both adap-
tability and ease of implementation. Marginal histograms as well as histo-
grams along any strip in either direction may easily be obtained. Although
each such histogram is not itself optimal, the set of all such histograms so
constructed is optimal on the average. Difficulties arise, however, when an

attempt is made to solve the equations deriving from (2.2.2) under the above

restrictions on ¢ and A :

S O EAi
w2@) e ) T e _{o[az] @
and (2.6.1)
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Figure 2.7. Variable-dimension (Semigrid) mesh II: g(z),h(z,y)

An analytic solution to the equations deriving from (2.2.2) under the present

restrictions is, however, readily obtainable as :

' 2
| S [f (x,y)%ﬂa dy
g(z) = 6" n 1= oo 2
GE

oo |w

]

fax

-0

and
oo _QLQ I
i _1 = 2 f[az] dy 8
h(z,y) = 6% n * [f(:c,y)]3 ' {%ﬂ : - 2
I [f(z,y) -35] dy

with
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2

1 __1. oo | oo 00 2 1
IMSE® =26 2n 2 f {ff(z,y) d:z:]3 {f [%] d:zc]3 dy

—00 | ~00

jfo U J(z,y) dyr [j [%5] dy]—g dz

4

N

In the general case when f (z,y) is not separable, a numerical rather than an

analytic solution has been obtained. The algorithm will be treated in section

3 of this paper.

9.7 Variable-dimension (Semigrid) mesh II: g¢(z), k(z,¥)

If g is a function of z and h is a function of both z and y , we obtain a
mesh which performs better in terms of the integrated mean squared error
than the variable-dimensioned mesh described in section 2.6 but at a cost of

considerable difficulties in implementation.
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3. Implementation

3.1 Introduction

In the previous section, several types of two-dimensional meshes were
introduced together with expressions for their opti.‘mal cell dimensions and for
the expected minimal integrated mean squared error. Theoretically optimal
histograms were constructed on the basis of these expressions using a variety
of probability density functions. The integrated mean squared error was cal-
culated in each case and the IMSEs compared in terms of their efficiencies
relative to the least restrictive mesh previously introduced (the mesh in
which each cell dimension is a function of both z and y). No optimal histo-
grams were constructed for the latter case since, as noted previously, 2
completely freely varying mesh is not implementable. Since the theoretical
mean squared error also depends upon sample size, a variety of sample sizes
(from 50 to 5000) were used and their effect upon the IMSE, relative
eficiency, and form of the optimal histogram were observed. Finally, simu-

lated data were used to test several of the theoretical constructs.

3.2 Cell dimensions ¢ and A

In cases where the bin dimensions g and & remain constant throughout
the domain of support, where g is a function of z and h remains constant,

where k is a function of y and ¢ remains constant, where ¢ is a function of
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2

2 1l 2
[—g—ﬁ-] dy]4 f[/(z,y)%[y-]s dy4 dz .

-—00

oo
IMSE" = 26 % n j[

Since for each of the mesh types above we are minimizing the integrated
mean squared error under increasingly tight constraints, it may be shown
that the minimum IMSE becomes larger as more constraints are placed

upon the mesh, in particular :

IMSE (free) < IMSE (semigrid) < IMSE (grid) < IMSE (semiregular)

< IMSE (regular).
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given point the average number of histogram intervals per unit distance
along a particular axis. Solving the first equation for G(z) and the second

equation for H(z) , the following numerical approach may be constructed :

Let H, be any positive real number between 1072 and 10%. Then for

n=l,...,N, where N is a positive integer, let

:
12 (s} 3
172
Gulz) =

=<}

H,(y) /(z,y) dy

B

| 7% |

and

(3.2.1)

>

" 2 ]
R CAPE
6_{0‘63/] dz
Hn+1(y)= oo
_f G,(z) f(z,y) dz

!

and replace H,(y) in the first equation by H,.i(y) upon each iteration.
When the analytic forms of ¢(z) and f(y) are known, as in the case of
separable f(z,y), the algorithm was observed to produce convergence to the
correct value with four place accuracy within five iterations. That conver-

gence should occur may be seen from the following argument.

Let equations (3.2.1) define the sequences {Gn} and {Hn} and let
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z alone and h is a function of both z and y, or where g is a function of both
z and y and k is a function of y alone, we have seen that analytic solutions
to the equations for optimal binwidth are obtainable. The implementation of
optimal histograms on the basis of these is straightforward. If ¢ is a function
of z alone and k is a function of y alone, the anbalytic solution given in sec-
tion 2.6 has been obtained for the case in which f(z,y) may be written as a
product of functions r(z) and s(y). Again, implementation is straightforward.
However, in the general case in which f (z,y) is not separable, no analytic
solution to the simultaneous integral equations (2.6.1) has been obtained.
Rather, a numerical procedure involving a functional iteration was used to
determine the optimal ¢(z) and h(y). Since the solution depends upon both
the functional form of the density and the sample size, the iteration must be
performed whenever these are modified. Let the equation (2.6.1) be written

in the following form:

00 oo 2
[H(y) (z,9) dy = —Z—Gs(x)f [%i—] dy

<) oo 2

1 1
@) 2 HV=

preted as a " bin density function "  i.e.,a function which determines at a

where G(z)= so that G and H may each be inter-
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1

e 9
H,(t) s(t) dt 1
[—oo (1) } [B(y)};

Hy(v) = 5 L ) (3.2.3)
THAENE @) e
Multiplying equation (3.2.2) by r(z) and integrating yields
00 | 1 2
00 J1A@)® [r(2)? dz w H
[ Guaa(s) 1() do = —= [_f G,(u) r(u) du]

-0

-
o 1 2 )
l_f [B)® [s(¥)® dyr

(3.2.4)
Similarly, from (3.2.3) :
0o 1 2
o0 J1B@)® ls(v)® dy o L
_f Hypa(v) s(y) dy = — [f H,(t) s(t) dt]

.
00 1 2 |3
{_fw A ) dx]3

(3.2.5)

If we let
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Az) = %—{o [%&]ﬁ dy

2
17 |8L
B - dz.
If these sequences converge, their limits will satisfy equations (2.6.1). If

f(z,y) = r(z) s(v), we have

1

_1 i
Gry1 = [-f H,(v) s(y) dy] : [%&%]3

1

1 1 i 1
[l (o] 2]

1
* I}
G,(u) r(u) du 1
_ [.J;o (v) r(u) } {A(zl]; |

() - (329)

1 2 3

1
{f B@)® ls()]? dy‘

-0

Similarly,
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so that
| - [ a) H
:Gn+l(x) - Gn(:z” = ll{(wn+1) : — (wn) 3}[ r(:)] ‘l
| |
and

|H, a(y) — Ha(9)} =

1 1 L
o™ e ¥ 202
{( n+1) ( n) 3][ s(y)] .

Thus on any interval in which r(z) and s(y) are bounded away from zero,

1 1
Alz) |3 and Bly)|® are bounded and, if the sequences (¥pf, (Ws
r(z) s(y)

converge,

lim | Gpa(s) = Ga(z)} =0
n—0o0

and

lim !Hn+l(y) - Hn(y)= =0.
n—00

We show that the sequence v, converges. By (3.2.4) and (3.2.5),

1

Voo =K1 vg 9 (3.2.8)

and



and

we can write

and

2

o0 1 £
JA@)® [r(=)® dz

K1=

K2=

1 2

-~00

[ B sw)®

-—00

{7 B)? [s(@)]? dy]S

dy

2

{7 U@)® @)

1
3
dz

v, = 7 G,(z) r(z)dz

w, = THn(y) s(y)dy

1

Gpin(2) = (Wapr)

_L
Hn+1(y) = (Un+1) 3.

[m
)

S(y)

o

9

?

1

]3

47
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1

v = lim v, = lim K;v, S =K;v
N —=+00 fn ~—+00

1
9

8 s
so that v® =K, and v=K & . Similarly, the sequence (3.2.7) converges

S
to K28 .

In cases where f(z,y) is not separable, the proof of convergence depends

upon the solution of difficult cubic equations and is not yet available.

3.3 Determination of cell boundaries

Whether determined analytically or numerically, once the optimal cell
dimensions v and w have been obtained, a mesh must be constructed in the
plane. The direct use of optimal cell dimensions for the construction of this
mesh may lead to serious complications: after placing the first cell boundary
in one of the dimensions, the center of the next adjacent cell must be deter-
mined by solving a difficult equation which may not even have a unique
solution. An alternative method suggested in 1983 in the Terrell-Scott
investigation of optimal interval width for one-dimensional histograms is to
integrate the bin density function G(z) or H(y) with respect to z or y
respectively, to place a boundary at the point along the particular axis at
which the corresponding bin density function attains the value one, and to

repeat the process beginning each integration at the most recently deter-

mined boundary. In view of our asymptotic arguments it is apparent that
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0'.—-

Wy = Ko * Wy (3-2.7)

If v>K;®, then

‘Ug >K1

1
vv ¥ > K,

1 s

v>Kpv® > K 5.

s
If 0<v<K,%, then

Thus the sequence defined by (3.2.6) is monotonic and bounded and, there-

fore, convergent. If the limit is denoted by v, we have
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where the parameters [y Ha Mg, My, 15 92, 93, 94, Py, py, and p were varied in

order to test our methods on wide variety of distributions.

Based upon a discussion by H.A. David (1981), a special routine was

designed for the generation of random vectors from the Dirichlet distribution:

-’

Jen) = T TE g = e @)

where 0< z <1 ,0<5y <1, a, fyy>0,andz +y=1.

If n uniform (0,1) random variables are ordered so that
0 < uppy S ) <..Zymysl, the joint density of u(;y and u(j), 1 <7,

is given by

n!

. i—1 j—i—1 n—j
1) G—i—1) (n—g)t ) [“U) - ”(")] [1 - ”(f)]

If z=ug), ¥ =13 " Y the joint density of z and y is given by

n!
(i—1)! (—i—1)! (n—J)!

xt’—l yj—i-l (l_z_y)n—j

where z +y =1 and =,y =0 which is a Dirichlet distribution with
parameters =1, B ==j —{, and y=n—J3 +1. Therefore, Diri-
chlet(a, B,7) random vectors may be obtained by generating a random
sample of n = o + B+~ —1 uniform (0,1) random numbers, ordering them

as described above, and setting T = %(a) s ¥ = Y(e+f) ~ Y(o) -
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the initial point for this procedure is not important as sample size increases.

3.4 Heights above cells

Having constructed an optimal mesh, optim@l histograms may be pro-
duced by generating n random vectors (z,y) from the same bivariate distri-
bution which was used to construct the mesh by counting the number of
points v which fall in each cell, and by forming the estimate /, the height of
the histogram block above the cell, where f is set equal to v divided by the

product of n with the area of the cell.

A library routine was used together with other code for the generation of

random vectors from a bivariate normal density:

— p
/o) 2m010,\/ 1—p;°

(1—p)
ono30,\/ 1—pa°
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These procedures were implemented, and the resulting IMSEs, efficiencies,

and graphs are presented in Section 4.
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3.5 Simulations

Simulations were performed in which an optimal mesh was obtained for
a given probability density function f and a given sample of size n, followed
by the generation of a large number of samples from f. The empirical

IMSE:

yi+h; ity

m n Py
IMSE, =2 % | [ (f(zy)— f(=z9) )P,
J=1 im=1 y; z
where n is the number of interval boundaries in the x-direction and m is the
number of interval boundaries in the y-direction, was calculated for each
sample and the average empirical IMSE obtained. A comparison of these

with the theoretical IMSEs is presented in the next chapter.
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4. Results

4.1 Hardware and Software

The algorithms described in the previous cﬂapter were coded in FOR-
TRAN 77 and implemented on a VAX 780 and subsequently on a VAX 750
and a UNIX pyramid. IMSL subroutines were used for sorting and random
vector generation. Histogram graphics were produced on a Maclntosh Apple
personal computer and an Imagen laser printer using Pascal programs writ-
ten by Hausi Miiller. Probability density graphics were produced by the Pre-

cision Visuals DI-3000 software package and Surface Display Library on a

VAX 785 and a Versatec plotter.

4.2 Integrated mean squared errors

Circular, elliptical and bimodal bivariate normal distributions and Diri-
chlet distributions were used to test the concepts presented in the previous
chapters. Arrays containing the bin dimensions ¢ and h were calculated for
each case, the resulting bin density function arrays were used to set bin
boundaries in the plane, random vectors sampled from the appropriate distri-
butions were distributed among the bins, and optimal histograms were con-
structed. The theoretical integrated mean squared error was calculated for

each grid type for each distribution and the IMSEs compared on the basis of
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their efficiencies relative to the free grid for each particular distribution.

Simulations to test the effects upon real data were also run.

Figures 4.2.1, 4.2.2, 4.2.3, and 4.2.4 show the effect of increasing sample
size upon the form of the bivariate histogram. The same bivariate density
was used in each case. The effects of increasing sample size upon the

integrated mean squared error may be found in Table 4.2.1.

Figure 4.2.1. Grid histogram based upon a sample size of 50 from the bivari-
ate normal density 3.4.1 with p = .5, py =pp =0,y =0 =03 =0,=1, i)
= -1, p’2=07 “3=11 #4-’—'0-
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Figure 4.2.2 Grid histogram based upon a sample size of 500 (parameters
same as in Figure 4.2.1).

Figure 4.2.3. Grid histogram based upon a sample size of 1000 (parameters
same as in Figure 4.2.1).
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Figure 4.2.4. Grid histogram based upon a sample size of 5000 (parameters
same as in Figure 4.2.1).

Normal

Oy=0y=03=0,=1 p=5 =1 po=0 us=1 p,=0
Sample | Theoretical Theoretical Efficiency
Size Grid IMSE | Free IMSE | of Grid Mesh

50 11.75 10.12 .8613

100 8.310 7.156 8611

225 5.354 4.771 8911

500 3.592 3.200 .8909
1000 2.540 2.263 .8909
1500 2.074 1.848 .8910
2000 1.796 1.600 .8008
5000 1.136 1.012 .8908

Table 4.2.1.
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In every case the free grid performed best but, as noted previously, is
not implementable and is of theoretical interest only because it provides a
lower bound on the integrated mean squared error achievable by these
" methods. Also in every case, the errors for the regular mesh were largest,
those for the semiregular mesh smaller, those for the grid still smaller, and
those for the semigrid smallest for the implementable grid types. The fol-

lowing figures illustrate the four types of histogram for the case of the bivari-

ate circular normal density.
0.158
0132

0105,

Amplitude
o
g
w>

-

Figure 4.2.5. Bivariate normal density 3.4.1 withp =1, py = P2 = 0, 0y = 0y
=O’3=0’4=17“1=IJ‘2=“3=“4=0'
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Figure 4.2.6. Regular histogram (density as in Figure 4.2.5, sample size =
2000).

Figure 4.2.7. Semiregular histogram (density as in Figure 4.2.5, sample size
= 2000).
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—

Figure 4.2.9. Semigrid histogram (density as in Figure 4.2.5, sample size =
2000).
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Four sets of bimodal normal distributions were studied, each set having
a different distance between modes. Within each set, the modes were first
aligned along the x-axis, then along the y-axis, and finally along the line
z =1y . This was done in order to examine the difference in performance
between the various grid types when presented with the same data under
several rotations. Figures 4.2.10 through 4.2.24 illustrate the case of a mixed
bivariate unimodal normal density, and figures 4.2.25 through 4.2.39 illus-

trate the case of a mixed bivariate bimodal normal density.

0.096
N Vi
4 il
i,
{ Zm // ;IIIII [/ i\
03 \
Y/ L) "““‘ \\\\\\\\\,&
o N
R
N I///;';l:,':n“.g%?}g:y
IS
‘.' 3
sisss
0"0
4

Figure 4.2.10. Bivariate normal density 3.4.1 with p = .5, py = pp =0, 0, =
02=G3=04=11 My = -1, Ko =0, p3 =1, py = 0.
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Figure 4.2.11. Regular histogram (density as in Figure 4.2.10, sample size =
2000).

Figure 4.2.12. Semiregular histogram (density as in Figure 4.2.10, sample size
= 2000).
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Figure 4.2.13. Grid histogram (density as in Figure 4.2.10, sample size =
2000).

Figure 4.2.14. Semigrid histogram (density as in Figure 4.2.10, sample size =
2000).
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0.0961

£ &

Armplitude
g
o

Figure 4.2.15. Bivariate normal density 3.4.1 with p = .5, p; = P2 =0, 0y
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Figure 4.2.16. Regular histogram (density as in Figure 4.2.15, sample size =
2000).

Figure 4.2.17. Semiregular histogram (density as in Figure 4.2.15, sample size
= 2000).
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Figure 4.2.18. Grid histogram (density as in Figure 4.2.15, sample size =
2000).

Figure 4.2.19. Semigrid histogram (density as in Figure 4.2.15, sample size =
2000).
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Figure 4.2.20. Bivariate normal density 3.4.1 with p = .5, py = P2
02=0'3=0'4=1,u1=u2=u3=u4=.7071
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Figure 4.2.21. Regular histogram (density as in Figure 4.2.20, sample size =
2000).

Figure 4.2.22. Semiregular histogram (density as in Figure 4.2.20, sample size
= 2000).
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Figure 4.2.23. Grid histogram (density as in Figure 4.2.20, sample size =
2000). |

Figure 4.2.24. Semigrid histogram (density as in Figure 4.2.20, sample size =
2000). |
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Figure 4.2.25. Bivariate normal density 3.4.1 with p =.5,p, = p, =0, 0y =
Oy =0y =04 =1, ) =-1.5, g =0, 3 = 1.5, p4 = 0.
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Figure 4.2.26. Regular histogram (density as in Figure 4.2.25, sample size =
2000).

Y Ay 4

Figure 4.2.27. Semiregular histogram (density as in Figure 4.2.25, sample size
= 2000).
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Figure 4.2.28. Grid histogram (density as in Figure 4.2.25, sample size =
2000).

Figure 4.2.29. Semigrid histogram (density as in Figure 4.2.25, sample size =
2000).
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Figure 4.2.30. Bivariate normal density 3.4.1 with p = .5, p; = P = 0, oy =
Oy =03 =04 =1, ) =0, lg =-1.5, Y3 =0, p4 = L.5.
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Figure 4.2.31. Regular histogram (density as in Figure 4.2.30, sample size =
2000).

Figure 4.2.32. Semiregular histogram (density as in Figure 4.2.30, sample size
= 2000).
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Figure 4.2.33. Grid histogram (density as in Figure 4.2.30, sample size =
2000).

Figure 4.2.34. Semigrid histogram (density as in Figure 4.2.30, sample size =
2000).
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Figure 4.2.35. Bivariate normal density 3.4.1 with p = .5, py = pp = 0,0, =

02 = 03 = 0-4 = 1, ﬂl = IJQ = '1.060, l’l’3 = IJ4 = 1.060.
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Figure 4.2.36. Regular histogram (density as in Figure 4.2.35, sample size =
2000).

Figure 4.2.37. Semiregular histogram (density as in Figure 4.2.35, sample size
= 2000).
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Figure 4.2.38. Grid histogram (density as in Figure 4.2.35, sample size =
2000).

Figure 4.2.39. Semigrid histogram (density as in Figure 4.2.35, sample size =
2000).
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There was, of course, no difference in performance by the regular, grid, and
free meshes when alignment was made along either the x- or y-axes. There
were differences, however, in the semiregular and semigrid cases. When
bimodality is expressed in a particular direction, the adaptability of the
model in that direction determines the relative size of the integrated mean
squared error. Because of the structure of the semiregular grid used (in
which the interval widths in the x-direction were variable and the interval
widths in the y-direction were constant), the integrated mean squared errors
were less when the modes were aligned along the x-axis than when they were
aligned along the y-axis. Because of the structure of the semigrid mesh used
(in which the interval widths in the x-direction were variable and the interval
widths in the y-direction were variable within each strip), the integrated
mean squared errors were greater when the modes were aligned along the x-
axis than when they were aligned along the y-axis. This is due to the fact
that this mesh provides greater adaptability in the y-direction by allowing
bin boundaries to be set independently within each strip. In all cases, the
integrated mean squared errors were greater when the modes were aligned
along the line £ = y . This occurs because of the basic structure of all of the
meshes: cell sides are parallel to the x- and y-axes in all cases. The IMSE

results and efficiencies relative to the free mesh for specific cases are found in

Tables 4.2.3 and 4.2.4.



Bivariate Normal Distribution

0,=0,=03=0,=1 sample size = 2000

Parameters of Normal Distribution

No| p | o | P [ Ko B3 By
1 |11 0 0 0 0 10 0
2 510 0 -5 0 5 0
3 S5 10 0 0 -5 0 .5
4 S 10 0 -.3536 -.3536 .3536 .3536
5 S5 1 0 0 -1 0 1
6 510 0 0 -1 1
7 510 0 -.7071 -.7071 7071 7071
8 510 0 -1.5 0 1.5 0
9 S5 10 0 0 -1.5 0 1.5
10 510 0 -1.061 -1.061 1.061 1.061
11 S 10 0 -2 0 2 0
12 510 0 0 -2 0 2
13 S5 10 0 -1.414 -1.414 1.414 1.414
14 1 2 2 0 0 0 0
15 1 .5 5 0 0 0 0
16 | 1 N 710 0 0 0
17 |1 .8 810 0 0 0
18 S5 10 0 -.25 0 .25 0
19 S5 10 0 0 -.25 0 .25
20 S5 10 0 -.1768 -.1768 .1768 1768
21 S 10 0 -1.2 0 1.2 0
22 S5 10 0 0 -1.2 0 1.2
23 510 0 -.8485 -.8485 .8485 .8485
oy=.5 0,=5 0;=2 0,=2 sample size = 2000
24 510 0 -1.5 0 1.5 0
0,=.2 0,=.2 0,=3 0,=3 sample size = 2000
25 510 0 -1.5 0 1.5 0

Table 4.2.2. Identifying numbers and density parameters
for Tables 4.2.3 and 4.2.4.




Bivariate Normal Distribution

U1=02=03=U4=1

sample size = 2000

Theoretical IMSE 1073
No. | Regular | Semireg. Grid Semigrid Free
1 3.643 3.336 3.054 2.840 2.643
2 3.229 2.947 2.699 2.509 2.334
3 3.229 2.958 2.699 2.509 2.334
4 3.242 3.014 2.802 2.612 2.401
5 2.484 1.961 1.796 1.785 1.600
6 2.484 2.274 1.796 1.776 1.600
7 2.576 2.491 2.410 2.226 2.027
8 2.355 2.090 1.915 1.802 1.681
9 2.355 2.156 1.915 1.772 1.681
10 2.399 2.290 2.182 2.007 1.816
11 2.498 2.281 2.089 1.939 1.830
12 2.4908 2.287 2.089 1.904 1.830
13 2.504 2.314 2.139 1.966 1.812
14 3.757 3.531 3.321 3.068 2.983
15 4.519 4.421 4.329 3.909 3.645
16 6.035 5.999 5.066 5.369 5.076
17 7.837 7.811 7.790 7.023 6.467
18 3.531 3.233 2.963 2.755 2.413
19 3.531 3.233 2.963 2.755 2.422
20 3.533 3.247 2.985 2.788 2.428 |
21 2.343 1.880 1.722 1.552 1.036
22 2.343 2.147 1.722 1.598 1.171
23 2.437 2.366 2.296 2.116 1.732
24 7.200 5.539 4.928 4.416 3.763
25 43.040 30.120 25.420 22.540 19.900

Table 4.2.3.
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Bivariate Normal Distribution

0,=0,=03=0,=1 sample size = 2000

Theoretical Efficiencies relative to Free Grid

No. | Regular | Semireg. | Grid | Semigrid | Free
1 .7255 7923 .8654 . .9306 1.000
2 7228 7920 .8647 .9303 1.000
3 7228 7890 8647 9303 1.000
4 .7406 .7966 .8569 9192 1.000
5 6441 .8159 .8909 .8963 1.000
6 6441 .7036 .8909 .8502 1.000
7 7869 8137 .8411 9106 1.000
8 7138 .8043 8778 9329 1.000
9 7138 7797 8778 .9486 1.000

10 7570 .7930 .8323 .9048 1.000
11 7326 .8023 .8760 9438 1.000
12 7326 .8002 .8760 9611 1.000
13 7236 7831 8471 9217 1.000
14 .7940 .8448 .8982 9723 1.000
15 .8066 .8245 8420 .9325 1.000
16 8411 .8461 .8508 .9454 1.000
17 .8252 .8279 .8302 .9208 1.000
18 .6834 7464 .8144 .8759 1.000
19 | .6859 7491 | .8174 | .8791 | 1.000
20 .6872 7478 .8134 .8709 1.000
21 4422 .5510 .6016 .6675 1.000
22 4998 .5454 .6800 7328 1.000
23 7107 7320 7544 .8185 1.000
24 .5228 .6794 .7636 .8521 1.000
25 4624 .6607 7828 .8829 1.000

Table 4.2.4
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The integrated mean squared error of the elliptical bivariate normal
distribution is quite similar to that of the circular normal when
Py = Po = 0.2 but as ellipticity increases, the error increases rapidly and is
tripled at p, =p, =0.8. The differences in adaptability between the
different mesh types nearly disappears at greater ellipticities, because all of
the meshes consist of line segments which are parallel to the axes. The ability
to adapt to highly elliptical distributions is limited primarily to decreasing
cell size, so that not only is the error similar for each grid type, but also the
forms of the optimal histogram are quite similar. Figures 4.2.41 and 4.2.42

demonstrate the similarity of form.
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Figure 4.2.40. Bivariate normal density 3.4.1 withp=1,p, =.5, 00 =0y, =
O3 =04=1, g = flg = Uz = g =0.
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Figure 4.2.41. Regular histogram (density as in Figure 4.2.40, sample size =
2000).

Figure 4.2.42. Grid histogram (density as in Figure 4.2.40, sample size =

2000).
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Further improvement can be made only by the rotation of the entire mesh so
that the cell sides become parallel to the major axis of an elliptical distribu-
tion or to the line joining the modes of a bimodal distribution. Terrell
(1984) provided a solution to this problem of orientation in the case of a reg-

ular mesh. He defined an "information matrix"

(2724,

and showed that the integrated mean squared error of a histogram based
upon a regular mesh is minimal when the product of the diagonal elements of
I; is minimal. This occurs when the product of the diagonal elements is equal
to the determinant of I , that is when I is diagonal. I; is diagonalized by
pre- and post- multiplying by an orthonormal matrix whose columns are the
eigenvectors of I; . Then the axes of the histogram are oriented in the direc-
tion of the eigenvectors of I; and the constant bin dimensions
g =C,,h =C, are chosen according to the expressions given in section
2.2. The problem of orientation of general meshes is beyond the scope of
this paper.

Simulations were performed in which the average empirical integrated
mean squared error was obtained. These averages were slightly better than
the theoretical IMSEs but always higher than the lower bound provided by

the free mesh. The averaging of 100 simulations using the circular normal
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distribution produced an empirical IMSE of 3.179 for the regular mesh, 2.992
for the semiregular mesh, and 2.807 for the grid mesh. The averaging of 100
simulations using density 3.4.1 with p = .5, py = p, =0, 0y =0y =03 =04 =
1, 4y =-1.5, gy = 0, 3 = 1.5, uy =0, produced an empirical IMSE of 1.928
for the regular mesh, 1.792 for the semiregular mesh, and 1.748 for the grid
mesh. Terrell and Scott (1983) obtained empirical results for the one dimen-

sional case which were also slightly better than those predicted by theory.

A set of Dirichlet distributions with a variety of parameters was studied
in order to observe the performance of the different meshes with skewed dis-
tributions. One of these is illustrated in the next figure; the corresponding
histograms follow. Tables 4.2.5 and 4.2.6 contain the theoretical IMSEs and
relative efficiencies. Results were similar in general to the results from the
normal distributions, the semigrid mesh showing a 20% improvement over the

regular mesh.
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Figure 4.2.43. Dirichlet density 3.4.2 with « =10, 8 =7, vy =5.
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Figure 4.2.44. Regular histogram (density as in Figure 4.2.43, sample size =
2000).

Figure 4.2.45. Semiregular histogram (density as in Figure 4.2.43, sample size
= 2000).
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Figure 4.2.46. Grid histogram (density as in Figure 4.2.43, sample size =
2000).

Figure 4.2.47. Semigrid histogram (density as in Figure 4.2.43, sample size =
2000).



Dirchlet

sample size = 2000

Parameters Theoretical IMSE

o B ~ | Regular | Semireg. | Grid | Semigrid | Free
3 3 3 2018 .1938 .1865 1612 .1358
5 5 5 3164 3072 2987 2650 2279
3 3110 4926 4325 .3792 3497 3157
7 7 7 4363 4249 4146 3698 .3198
8 6 8 4584 4448 4293 .3855 .3350
10 5 7 .4948 4823 4653 4157 3607
10 5 5 L4888 .4801 4706 4139 .3562
4 10 4 4989 . 4866 4776 4172 .3549
10 7 7 5212 5114 5011 4456 3855
10 5 10 .5b48 5344 5058 4577 4003
10 7 5 .5331 5268 5217 4582 .3951
3} 10 3 5623 .5436 5282 4524 3774
10 3 3 .5626 5373 5284 4483 3774
10 | 10 | 10 .6178 .6028 5890 5277 .4575
10 4 4 4989 4881 4776 4155 .3549
10 3110 6270 5970 5311 4843 4275
4 4 | 10 4474 .4099 3754 .3439 3068
10 4 | 10 .5720 .5483 .5087 4615 .4047
5 5110 4481 4197 3933 3584 3175
5 10 5 4888 4783 4707 4152 .3562

Table 4.2.5.
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Dirchlet

sample size = 2000

Parameters Theoretical Efficiencies relative to Free Grid
e B ~ | Regular | Semireg. | Grid | Semigrid | Free
3 3 3 6729 7007 7282 8424 1.000
5 5 5 7203 7419 .7630 8600 1.000
7 7 7 7330 7526 7713 8648 1.000
10 | 10 | 10 .7405 .7590 7767 .8670 1.000
3 3110 .6409 7299 .8325 9028 1.000
10 3 3 .6708 7024 7142 .8418 1.000
3 |10 3 6712 .6943 .7145 8342 1.000
10 3110 .6818 7161 .8049 8827 1.000
4 4 | 10 .6857 .7485 8173 8921 1.000
10 4 4 7114 7271 7431 8542 1.000
4 10 4 7114 7293 7431 8507 1.000
10 4 | 10 7075 7381 7956 .8769 1.000
5 10 .7085 .7565 8073 .8859 1.000
10 5 7287 7419 .7569 .8606 1.000
5 10 5 7287 7447 7567 8579 1.000
10 5 | 10 7215 7491 7914 8746 1.000
10 5 7 .7290 7479 7752 8677 1.000
10 7 5 7411 .7500 7573 .8623 1.000
10 7 7 .7396 .7538 .7693 .8651 1.000
8 6 8 .7308 7531 7803 .8690 1.000

Table 4.2.6.
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The greatest improvements in IMSE made possible by adaptive meshes
were observed for mixed normal distributions in which the variances differed
widely. It was already noted that a 20% improvement can be expected for
mixed normal distributions havling the same variance as well as for unimodal
normal and Dirichlet distributions. An improvement in efficiency of over 90%
may be obtained when the variances of bimodal normals differ, for example

when 0 = 0, = .2, 03 = 0, = 3 (see Tables 4.2.3 and 4.2.4).
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5. Application

Scott (1986) provided data on paired cholesterol and triglyceride levels
in 320 patients with heart disease. It is assumed that these levels have a
bivariate elliptical normal distribution with mean vector and covariance
matrix estimated from the sample. Histograms were constructed using the
four mesh types discussed in previous sections. All of the histograms suggest
a bimodal structure in which the modes are separated by less than 2 o so
that the bimodality is not represented by separate peaks but rather by an

elongation of the cells in the y-direction.

Figure 5.1. Regular histogram based upon bivariate elliptical normal data
from 320 cardiology patients; normal model as in equation 3.4.1 with p = 1,
py = .226, p, = 2.162, 0y = .4301, p, = 1.794, 0, = 1.019.
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Figure 5.2. Grid histogram based upon bivariate elliptical normal data from
320 cardiology patients; normal model as in equation 3.4.1 withp =1, p; =
226, 1, = 2.162, oy = .4301, yp = 1.794, 0, = 1.019.

A similar structure is apparent in the theoretical cases in which the modes
are separated by 2 o. It is impossible using our methods to distinguish
between the form of distributions when the modes are between 2.2 and 2.7 ¢
apart with such small sample sizes. For example, we were not able to
demonstrate separate peaks with our histograms at a sample size of 10,000
when the modes were separated by 2.4 o even though the t.rue functional

form had two clearly defined peaks; See Figures 5.3 and 5.4.
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Figure 5.3. Bivariate normal density 3.4.1 withp =1, py = pp =0, 09 = 0y =
0’3 == 0'4 = 1, ul ="1.2, 1.1.2 =0, ll:3 = 1.2, [.l4 = 0.
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Figure 5.4. Semiregular histogram (density as in Figure 5.1 with sample size
of 10,000). The Grid and Semigrid histograms constructed from the same

density and sample size were similar in appearance and did not show bimo-
dality.
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6. Discussion

Some general observations may be made regarding the implications of
our research. Specifically, we should indicate under what conditions
variable-dimension meshes are preferable to ﬁxe;i-dimension meshes. When-
ever the density consists of distinct sections whose forms are substantially
different, such as is the case for a mixed bivariate normal density having
unequal variances, we strongly recommend the use of variable-dimension
meshes. In the case of densities whose forms approach that of the circular
normal and where the choice of mesh will not result in substantial decreases
in error, the investment of time and effort relative to improvement of esti-
mate should be considered. Although the Grid mesh will not produce as
efficient an estimator as the Semigrid it, nevertheless, may be preferable to

the Semigrid because of its ease of implementation and symmetry.

In the case of a highly elliptical density whose major axis is not approxi-
mately parallel to one of the coordinate axes, no improvement will result
from the use of variable dimension meshes. In order to obtain better esti-
mates in this case, a change of coordinates should be made so that the major
axis of the density is parallel to one of the coordinate axes, and only then
should one of the more efficient meshes be constructed. Further research in

mesh orientation is recommended.
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Since the histogram estimator, even one based upon variable-dimension
mesh, may not adequately represent bimodal densities in which the distance
between the modes is small, another type of estimator such as a variety of
the Rosenblatt kernel may be preferred. Again, the importance of accuracy

and the level of sophistication must be balanced in each application.
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