AnnealedImitation: FastDynamicsfor Maximum Clique

Marcello Pelillo

Dipartimentod

i Informatica

Universita Ca’ Foscaridi Venezia
Via Torino 155, 30172VeneziaMestre, Italy

Abstract— We proposea new classof heuristics for the max-
imum clique problem (MCP) whosebasic ingredientsare: (1) a
parameterized continuous formulation of MCP, (2) an instability
analysis of equilibria of imitation dynamics from evolutionary
gametheory, and (3) a principled way of varying a regularization
parameter during the evolution processso asto avoid inefficient
solutions. The resulting “annealed imitation” class is showvn
to contain algorithms that are dramatically faster than and
as accurate as state-of-the-art neural network heuristics for
maximum clique.

I. INTRODUCTION

The maximum clique problem (MCP) is a well-known
graph-theoretiproblemwhich finds importantapplicationsn
mary different domains.Sinceit is known to be NP-hard,
however, exact algorithmsare guaranteedo returna solution
only in a time which increasegxponentiallywith the number
of verticesin the graph. This makes them inapplicableeven
to moderatelylarge probleminstancesMoreover, a seriesof
recent theoreticalresults shav that the problemis in fact
difficult to solve evenin termsof approximation.n light of
thesenegative results,much effort hasrecentlybeendirected
towardsdevising efficient clique finding heuristics for which
no formal guaranteeof performancemay be provided, but
are arnyway of interestin practicalapplications.n the neural
network community therehasalsobeenmuchrecentinterest
aroundthis importantproblem.We refer to [2] for a recent
review concerningalgorithms, applications,and compleity
issuesrelatedto the MCP.

In the mid-1960s,Motzkin and Straus[11] establisheda
remarkableconnection betweenthe MCP and a quadratic
programmingproblemon the standardsimplex. The Motzkin-
Straus formulation, and variations thereof, has motivated
various neural network heuristics for maximum clique. In
particular replicatorequationsfrom evolutionarygametheory
have proven to be quite effective in solving this and related
combinatorialoptimizationproblemg[1], [4], [12], [13], [15].

In this paper we first introducea wide family of payof-
monotonicdynamical systemsof which replicator equations
arejustaspecialinstanceThemodelsin this family enjoy pre-
cisely the samedynamicalpropertiesas replicatorequations,
and hencethey naturally suggesthemseles as heuristicsfor
the maximumclique problem.However, asstandardeplicator
equationsthey areinherentlyunableto escapdrom inefficient
local solutions.

We then focus on a well-known subclassof payof-
monotonicdynamicswhich arisesin modelingthe evolution
of behaior by way of imitation processesWe investigate
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the propertiesof a parameterizedormulationof the Motzkin-
Strausprogramasa function of its parameterA detailedanal-
ysis of thesepropertiessuggestsan entire classof heuristics
for the MCP which is basedon the idea of properlyvarying
the parameterduring the im itation optimization process so
asto avoid unwantedinefficient solutions.A similar ideahas
beenproposedby Geeand Pragerin a different contet [5].
Experimentshaw thatthis “annealedmitation” classcontains
algorithmswhich are dramaticallyfasterthanandasaccurate
as state-of-the-artneural network heuristics for maximum
clique.
[I. PAYOFF-MONOTONIC DYNAMICS AND THEIR
PROPERTIES

Evolutionary gametheory considersan idealized scenario
wherebyin a large populationpairs of individuals are repeat-
edlydrawn atrandomto play a symmetrictwo-playergame.In
contrastto traditional gametheoreticmodels,playersare not
supposedo behae rationally or to have completeknowledge
of the details of the game.They act insteadaccordingto a
pre-programmedbehaior pattern,or pure strat@y, andit is
supposedthat some evolutionary selectionprocessoperates
over time on the distribution of behaviors. We referthe reader
to[8], [16] for excellentintroductiongo this rapidly expanding
field.

Let J = {1,---,n} be the setof available pure stratgies
and, for all i € J, let z;(¢) be the proportionof population
membergplaying stratey ¢, attime ¢. The stateof the popula-
tion at a given instantis the vectorx = (z1,---,z,)’, where
a prime denotestransposition.Clearly, populationstatesare
constrainedo lie in thestandardsimplex of then—dimensional
EuclideanspacelR™ (seeFig. 1):

A={x€elR" : z; >0foralli e J, ex=1}

wheree = (1,...,1)', andhencee'x = }_, z;.

Let A = (a;;) bethen x n payof matrix. Specifically for
eachpair of stratgjiessd,j € J, a;; representghe payof of
an individual playing strat@y ¢ againstan opponentplaying
stratgyy j. In biological contets payof is typically measured
in termsof Darwinianfitnessor reproductve succesgi.e., the
players expectednumberof surviving offspring), whereasn
economicapplicationsthey usuallyrepresenfirms’ profits or
consumersdutility. If the populationis in statex, the expected
payof earnedby ani-strateist is:

mi(x) = ) aizz; = (Ax); 1)
j=1



Fig. 1. Thesimplex A in IR3.

while the meanpayof over the entire populationis

n
7(x) = Z zimi(x) = x'Ax . @)
i=1
In evolutionary gametheory the assumptionis madethat
the gameis playedover andover, generatiorafter generation,
and that the action of natural selectionwill result in the
evolution of the fittest stratgies. If successie generations
blendinto eachother, the evolution of behaioral patternscan
be describedby a set of ordinary differential equations.A
generalclassof evolution equationss given by:

®3)

where a dot signifies derivative with respectto time, and
g = (g91,---,9,) is a function with opendomain containing
A. Here, the function g; (¢ € J) specifiesthe rate at which
purestratgy s replicateslt is usuallyrequiredthatthe growth
function g is regular [16], which meansthat it is Lipschitz
continuousandthat g(x) - x = 0 for all x € A. The former
condition guaranteesis that the systemof differential equa-
tions (3) hasa uniquesolutionthroughary initial population
state. The condition g(x) - x = 0, instead,ensuresthat the
simplex A is invariantunder(3), namelyary trajectorystarting
in A will remainin A.

Payoff-monotonicgamedynamicsrepresent wide classof
regular selectiondynamicsfor which useful propertieshold.
Intuitively, for a payof-monotonic dynamicsthe strategies
associatedto higher payofs will increaseat higher rate.
Formally, a regularselectiondynamics(3) is saidto be payof-
monotonicif:

& = 2i9:(X)

9i(x) > g;(x) & mi(x) > mj(x) 4)

for all x € A.
The following result, proved in [7], [13], generalizeshe
celebratedundamentatheoremof naturalselection[8], [16].

Theoem1: If the payof matrix A is symmetric, then
m(x) = x'Ax is strictly increasingalong ary non-constant
trajectoryof any payof-monotonicdynamics.In otherwords,
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7 (x(t)) > 0 for all ¢, with equalityif andonly if x = x(t) isa
stationarypoint. Furthermorea vectorx is an asymptotically
stablepointif andonly if it is a strictlocal maximizerof = (x)

in A.

A well-known subclasof payof-monotonicgamedynam-
ics is given by:

i = x; | P(mi(x)) — Z (7 (x)) (5)

where¢(u) is anincreasingunction of ». Thesemodelsarise
in modelingthe evolution of behaior by way of imitation pro-
cesseswhere playersare occasionallygiven the opportunity
to changetheir own stratgjies[7], [16].

When ¢ is the identity function, i.e., ¢(u) = u, we obtain
the standardreplicatorequations:

(6)

whosebasicidea is that the averagerate of increasez; /z;
equalsthe differencebetweenthe averagepayof of stratey i
andthe meanpayof over the entire population.

Another popular model ariseswhen ¢(u) = e®* which
yields:
)

n
N — KTi(x E: Krj(x
T;=T; | € (0 _ rje i(x)

Jj=1

where k is a positive constant.As « tendsto 0O, the orbits
of this dynamicsapproachthose of the standard first-order
replicatormodel (6), sloved down by the factor x; moreover,
for large valuesof x the model approximateshe so-called
“best-reply” dynamics[7], [8].

I1l. ANNEALED IMITATION DYNAMICS FOR MAXIMUM
CLIQUE

Let G (V, E) be an undirectedgraph, where V. =
{1,---,n} is the setof verticesand E C V x V is the set
of edges.A subsetof verticesC' is called a clique if all its
verticesaremutuallyadjacentj.e.,for all 7,5 € C, with ¢ # j,
we have (i, j) € E. A cliqueis saidto be maximalif it is not
containedn ary largerclique,andmaximunif it is thelargest
cligue in the graph.The maximumclique problemasksfor a
cligue of maximumcardinality Given a subsetof verticesC,
we will denoteby x¢ its characteristic vector, which is the
point of A definedas

where|C| denotesthe cardinality of C.
Considerthe following family of (standard)quadraticpro-
grams:

ifieC
otherwise

1/C1,

C
€T =
0,

i

maximize f,(x) =x'(4g + al)x
subjectto x € A

(8)



whereAg = (a;5) is theadjacencymatrix of G, i.e.,then xn
symmetricmatrix definedas

az-jz{

I is the identity matrix, and « is an arbitrary real parameter
The family includes as special casesthe original Motzkin-
Strausprogram[11] andits spurious-freeegularizedversion
proposedby Bomze[1] (correspondingo the casesa = 0
and a = % respectiely). The following theorem,which
generalizesa result proven in [1], establishesa connection
betweenthe maximum clique problem and programs(8);
see[3], [14] for proof.

L
0,

if (i,j)€E,
otherwise,

Theoem?2: Let C beasubsebf verticesof agraphG, and
let x¢ beits characteristiosector Then,for ary 0 < a < 1,
C is a maximal (maximum)clique of G if andonly if x“ is
alocal (global) solutionof (8). Moreover, all solutionsof (8)
are strict and are characteristiozectorsof maximalcliquesof
G.

By virtue of Theorem1l, the previous result implies that
(characteristicyectorsof) maximalcliquesarein one-to-one
correspondenc® asymptoticallystablepoints of any payof-
monotonic dynamicsunder payof Ag + al, provided that
0 < a < 1. This naturally suggestausing payof-monotonic
dynamicsas a useful heuristicfor the maximumclique prob-
lem. Clearly, thereis no guaranteehat the corvergedsolution
will be a global maximizerof f,, andthereforethat it will
yield a maximumclique in G.

In an attemptto avoid local optima, we now follow [3]
andinvestigatethe stability propertiesof equilibria of payof-
monotonicdynamicswhenthe parameter is allowedto take
on negative values.Indeed,we shall restrict our analysisto
imitation dynamics(5).

For a given subsetof verticesC, let:

v(C) = néagdegc(i) —[Cl+1. ©)
wheredegq (i) = ;e ai; denotesthe degree of vertex i
relative to C. Notethatif C' is a maximalcliquetheny(C) <
0. The next theoremshaws that v(C) plays a key role in
determiningthe stability of equilibria of imitation dynamics.

Theoem3: Let C' be a maximal clique of graph G =
(V,E), andlet x¢ beits characteristiovectot If v(C) < a <
1, thenx® is an asymptoticallystablestationarypoint under
ary imitation dynamics(5) with payof matrix A = Ag + al,
and hencea (strict) local maximizerof f, in A. Moreover,
assumingC' # V, if a < y(C) thenx® becomesunstable.

Proof. Assume without loss of generality that C
{1,---,m} and supposethat v(C) < a < 1. To simplify
notations,put x = x¢. The Jacobiarof ary regular selection
(and henceimitation) dynamicsi; = z;g;(x) at x hasthe
following block triangularform:

(10)
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wherethe entriesof M (x) and N(x) are given by m,-aga"—z(,"),
O is the (possiblyempty) matrix containingall zeros,and

D(x) = diag{gm+1(X),---,gn(x)} .

We shall seethat the (relevant) eigervaluesof J(x) arereal
and negative. This implies that x is a sink and hence an
asymptoticallystablepoint [6]. Thefactthatx is a strictlocal
maximizerof f, in A follows directly from Theoreml.

The eigervaluesof J(x) arethoseof M (x) togetherwith
thoseof D(x), and since D(x) is diagonalits eigervalues
coincide with its diagonalentries,i.e., gm41(X), - ., gn(X).
This set of eigervaluesgovernsthe asymptoticbehaior of
the external flow underthe systemobtainedby linearization
aroundx, and are usually calledtransvesal eigervalues[8].

For imitation dynamics(5) the growth functionsg; have the
following form:

9i(%) = $(mi(x)) — > _ zr (i (%))
k=1

but sinceC is a(maximal)clique,r (x) = w(x) forall k € C,
andtherefore

9i(x) = ¢(mi(x)) — ¢(m(x)) .

Moreover, ¢ is a strictly increasing function, and hence
9i(x) < 0 if andonly if m;(x) < w(x). Now, sinceC is a
maximalclique,m;(x) = (Agx); = deg(¢)/m forall i > m,
and7(x) = (m — 1+ a)/m. But, for all i > m we have
deg (i) —m+1 < v(C) < a, andthis yields 7;(x) < 7(x).
Henceall trans\ersaleigervaluesare negative.

It remaingo shaov thattheeigervaluesof M (x) arenegative
too. When A = Ag + af we have:

¢'(m(x)) [(1 9(r(x)) —7r(x)> ee' + (a— 1)1]

whereee’ is the m x m matrix containingsall ones,andthe

Mo =" ¥ (x)
eigervaluesof M (x) are

= S0
with multiplicity m — 1, and
¢(n(x) [(;_ o(xx) _ _
w o= EER (1 SRR - o) m ]
= —¢(n(x))

with multiplicity 1. Sincea < 1 and ¢ is strictly increasing,
we have \; < 0.

Since we analyzethe behaior of imitation dynamicsre-
stricted to the simplex A, we are interestedonly in the
eigervaluesof J(x) associatedvith eigervectorsbelongingto
the tangentspaceet = {y € IR” : 'y = 0}. It is simpleto
shaw [14] thatthe eigervectorassociatedvith Ay = —¢(m(x))
is x, and if y is an eigervector of J(x) associatedwith
an eigervalue A # —¢(n(x)), thene'y = > .y; = 0.
Hence,the eigervalue A\, can be neglectedin our analysis,
andthe remainingones,including the trans\ersaleigervalues,



areindeedall relevant. We have shownn thattheseeigervalues
are negative andthis concludeghe first part of the proof.
Finally, to concludethe proof, supposethat C # V (i.e.,
m < n) anda < y(C) = max;>m dego (i) — m + 1. Then,
thereexistsi > m suchthatm — 1+ a < deg (i) andhence,
dividing by m, we get ;(x) — 7(x) > 0 andthen g;(x)
o(mi(x)) — ¢(w(x)) > 0, which implies that a trans\ersal
eigervalueof J(x) is positive, i.e., x is unstable. O

Theorem3 providesus with animmediatestrateyy to avoid
unwantedlocal solutions,i.e., maximal cliques that are not
maximum.Supposeahat C' is a maximalclique in G thatwe
want to avoid. By letting o < v(C), its characteristiosector
x¢ becomesan unstablestationary point of ary imitation
dynamicsunder f,, and thuswill not be approachedy ary
interior trajectory Hence,if thereis a cligue D suchthatstill
~v(D) < « holds, thereis a (more or lessjustified) hope to
obtain in the limit xP, which yields automaticallya larger
maximalclique D. Unfortunatelytwo othercasesouldoccur:
(@) no other cliqgue T' satisfiesy(T') < a, i.e., @ hasa too
large absolutevalue; (b) evenif thereis sucha clique, other
attractorscould emegewhich arenot characteristiozectorsof
a clique (note that this is excludedif o > 0 by Theorem2).
The properchoiceof the parametew is thereforea trade-of
betweenthe desireto remove unwantedmaximal cliquesand
the emepgenceof spurioussolutions.

Insteadof keepingthe value of « fixed, our approachis
to start with a sufiiciently large negatve o and adaptvely
increasdt during the optimizationprocessjn muchthe same
spirit as simulated or mean-field annealingprocedures.Of
course,in our casethe annealingparametethas no interpre-
tation in terms of a hypotheticaltemperatureThe rationale
behindthisideais thatfor valuesof « thataresuficiently neg-
ative only the characteristiozectorsof large maximal cliques
will be stable attractive points for the imitation dynamics,
togetherwith a setof spurioussolutions.As the value of «
increasesspurioussolutionsdisappeartand at the sametime
(characteristicvectors of) smaller maximal cliques become
stable We expectthatatthe beginningof theannealingprocess
the dynamicsis attractedtoward “promising” regions,andthe

searchis furtherrefinedasthe annealingparameteincreases.

In summary a high-level descriptionof the proposedalgo-
rithm is asfollows:

1. Start with a sufficiently large negative «;

2. Let b be the barycenter of A and set x = b;

3. Run any imitation dynamics starting from x, under
Ag + al, until convergence and let x be the con-
verged point;

4. Unless a stopping condition is met, increase « and
goto 3;

5. Select & with 0 < & < 1 (e.g. & = %), run any imita-
tion dynamics starting from current x under Ag + &1
until convergence, and extract a maximal cliqgue from
the converged solution.

Thelaststepin thealgorithmis necessarif we wantto extract

also the vertices comprisingthe clique found, as shawvn in
Theorem2.

It is clearthatfor the algorithmto work, we needto select
an appropriateannealingschedule.To this end, we employ
the following heuristic suggestedn [3]. Supposethat the
underlying graphis a randomone in the sensethat edges
are generatedindependentlyof each other with a certain
probability ¢ (in applicationsg will bereplacedby the actual
graphdensity),and supposethat C' is an unwantedclique of
sizem. Take § > 0 small,say0.01,andconsiderthe quantity:

Ym =1— (1 —qg)m —/mgq(1 - q) "

wherev = 1/2(n —m). In [3] it is proventhat~(C) exceeds
¥ With probability 1 — 6. Thusit makessenseo use?,, as
a heuristicproxy for the lower boundof v(C), to avoid being
attractedby a clique of sizem.

Furthermore,a well-known result due to Matula (see,
e.g.,[9]) accuratelypredictsthe size of the maximumclique
in randomgraphswith sufficiently mary vertices.Let

(11)

M(n,q) = 2log; /,n — 2log; /4 log, /g n + 210g; g +1.
(12)
Matula proved that, asn — oo, the size of the maximum
cliquein an n-vertex g-randomgraphis either | M (n,q)]| or
[M(n,q)] with probability tendingto 1.

The previousresultssuggestisa sortof “two-level” anneal-
ing strateyy: the level of cliquesize,whichin turninduceshat
of the “actual” annealingparameterMore precisely if we do
not have ary a priori information aboutthe expectedsize of
the maximum clique, we can use Matula’s formula M (n, q)
to have an initial (more or lessaccurate)estimateof it. Let
m = [M(n,q)]; by settingthe initial valuefor « (stepl of
our algorithm) at someintermediatevalue betweenw,, and
Fm_1» €0, = (F,, + Vm_1)/2, We expect that only the
characteristiovzectorsof maximal cliqueshaving size m will
survive in f,, togetherwith mary spurioussolutions. After
the initial cycle, we decreasen, recalculatey,, and7,,_;
andupdatea = (7,,, + ¥,,_1)/2 in step4 asin the previous
step.The whole processs iterateduntil eitherm reachesl or
a becomegreaterthan zero.

IV. EXPERIMENTAL RESULTS

In this section we presentexperimentsof applying our
annealedmitation heuristicgo a selectionof DIMA CSbench-
mark graphst In our simulations, we used the following
discrete-timemodelsin steps3 and5 of the algorithm:

x; (t)mi(t)

D = S Om () (13)
and ©
. o mi(t)erm
Z; (t + 1) - 2?21 ZUJ (t)eh:ﬂ'_,- (t) (14)

1Datacanbe found at http://dimacs.rutgers.edu.
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TABLE |
PERFORMANCE OF THE ANNEALED IMITATION HEURISTICS (AIH) AND MFA-CM OVER A SELECTION OF DIMACS GRAPHS (SEE TEXT
FOR EXPLANATION). THE TIMES REPORTED IN THE MFA-CM COLUMN REFER TO AN IMPLEMENTATION ON A 32-PROCESSOR
CONNECTION MACHINE CM-5, WHILE THE TIMES IN THE OTHER COLUMNS WERE OBTAINED ON A 200 MHZz PENTIUM ||-BASED

MACHINE.
Clique size Iterations Time (secs)
AIH AlH AIH MFA AIH AIH AlH AlH AIH AIH MFA
Graph n w Ist | k=3 | k=7 CM 1st k=3 k=7 1st k=3 k=7 CM
c-fat20Q1 200 12 12 12 12 6 324 146 85 1.15 0.55 0.37 3.1
c-fat20Q2 200 24 24 24 24 24 41 31 17 0.21 0.14 0.12 2.9
c-fat2005 200 58 58 58 58 58 37 25 18 0.21 0.16 0.15 2.9
brock2001 200 21 18 18 19 19 1135 | 349 153 8.12 2.02 1.11 2.8
brock20Q2 200 12 8 8 9 9 268 125 87 241 0.87 0.66 2.75
brock20Q03 200 15 11 11 12 11 542 205 271 3.48 1.09 1.69 2.75
brock2004 200 17 14 14 14 14 1367 555 255 19.62 4.98 2.30 2.75
brock40Q1 400 27 21 22 23 24 1025 | 308 | 1054 | 20.2 20.2 63.88 | 18.3
brock4002 400 29 19 19 22 21 1288 | 361 180 | 26.75 | 17.47 6.06 22.0
brock40Q3 400 31 18 21 21 22 1278 301 152 23.79 16.11 5.78 20.9
brock4004 400 33 22 23 22 23 608 382 356 | 13.35 | 24.71 | 1555 | 19.0
brock80Q1 800 23 16 15 17 16 602 237 135 | 62.93 | 44.18 | 28.47 | 151.7
brock80Q2 800 24 16 18 18 16 529 308 281 | 57.22 | 115.07 | 67.96 | 134.7
brock80Q3 800 25 16 18 19 16 794 322 192 | 9595 | 93.99 | 38.51 | 153.7
brock8004 800 26 17 17 16 15 648 224 118 66.19 62.65 25.4 147.1
san2000.7.1 | 200 30 15 15 15 — 1364 | 679 391 8.36 2.68 1.74 —
san2000.7.2 | 200 18 12 12 12 — 1426 925 658 8.47 4.07 2.95 —
san2000.91 | 200 70 45 45 45 42 3518 | 1495 852 20.77 6.04 3.7 2.75
san2000.9.2 | 200 60 40 40 38 — 3520 | 1595 | 781 | 24.66 | 7.03 3.71 —
san2000.9.3 | 200 44 32 30 31 33 1613 | 761 777 | 10.12 | 3.49 4.09 2.76
sanr2000.7 200 18 16 17 18 18 687 279 586 5.07 1.67 6.07 2.75
sanr2000.9 200 42 37 38 41 41 1890 | 737 442 | 10.61 | 3.34 2.61 2.6
sanr4000.5 400 13 11 11 11 — 321 173 84 6.76 9.24 3.2 —
sanr4000.7 400 | >21 17 21 21 — 658 1014 615 14.15 102.2 34.05 —

which arewell-known discretization®f equationg6) and(7),
respectiely. As for the exponentialdynamicsherewe report
resultsobtainedusingk = 3 andk = 7.

For eachgraphconsideredthe algorithmwasrun by using
the two-level annealingscheduledescribedat the end of the
previous section.For eachinternalcycle (step3), theimitation
processesvere iterateduntil the (squared)distancebetween
two successie statesbecamesmaller than 10710, At the
final cycle (step 5), the parametera was setto 1/2, and
the dynamicswere stoppedwhen either a maximal clique
(i.e., a local maximizer of f,,, on A) was found or the
distancebetweentwo successie points was smaller than a
fixedthresholdwhich wassetto n10~1% (n beingthe number
of verticesin the graph). In the latter casethe corverged
vectorwasperturbedandthe algorithmrestartedrom the new
perturbedpoint. Becauseof the one-to-onecorrespondence
betweenlocal maximizersand maximal cliquesthis situation
correspondso corvergenceto a saddlepoint.

In [9], Jagotadevelopedseveral variationsof the Hopfield
model,bothdiscreteandcontinuousto approximatemaximum
cligue. The best results were obtained using a stochastic
steepestiescentdynamicsand a mean-fieldannealing(MFA)
algorithm. His heuristicsrank amongthe most powerful ones
in the neural-netwrk literature. Thesealgorithms, however,
were excessiely slow and this motivated Jagotaet al. [10]
to improve their runningtime. Specifically the MFA heuristic
wasimplementedn a ConnectionMachine,anda crudetwo-
temperatureannealingstratgy wasused.The resultingMFA-
CM algorithm was found to perform nearly as well as the
original version, while being considerablyfaster(on a 400-
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vertex testgraphMFA-CM was about20 timesfaster).

Table 1 shavs the performancefigures obtained by our
annealedimitation heuristics(columns AIH) and by MFA-
CM (datafor the latter algorithm are from [10]). Columns
marked with n and w containthe numberof verticesin the
graphandthe sizeof the maximum clique (or a lower bound),
respectiely. Thelabels“1st” refersto thefirst-orderreplicator
dynamics(13) whereadabels“x = 3" and“x = 7" referto
the exponentialdynamicg(14). Columns*Clique size” contain
the size of the clique found by the competingalgorithms,
and columns“Iterations” list the total number of iterations
performedby AIH (no suchdataare available for MFA-CM).
Computingtimes(columns‘Time”) for our algorithmsreferto
a (non-optimized)C implementationon a machineequipped
with a 200 MHz Pentiumll processarAs for the MFA-CM
thetimeslistedin thetablereferto a 32-processo€onnection
MachineCM-5 implementation.

Several conclusionscan be drawvn from theseexperiments.
Firstly, it is clearthatthe exponentialversionof the algorithm
not only performedtypically less iterations than its linear
counterpart,but it producedquite often better results (and
only once worse). Also, as expected,it is evident that the
parameters governs the speedof the imitation dynamics:
usually thehigherthe  thefasterthe processin discrete-time
simulations however, large valuesof « canleadto oscillatory
behaior [12], [14]. Finally, it is impressve thatour heuristics
performon averageaswell asMFA-CM in termsof quality of
solutionswhile beingdramaticallyfaster Again, notethatour
simulationswere performedon a sequentialmachine,while
MFA-CM was executedon a 32-processoone.



V. CONCLUSIONS

We have introduced a wide class of heuristics for the
maximumclique problem(MCP) whosebasicingredientsare:
(1) a parameterizectontinuousformulation of MCP, (2) an
instability analysisof equilibria of imitation dynamicsfrom
evolutionarygametheory and(3) a principledway of varying
a regularizationparameteduring the evolution processso as
to avoid inefficient local solutions. Experimentson various
benchmarkgraphshave shovn that this “annealedimitation”
classcontainsalgorithmswhich are dramaticallyfasterthan
and as accurateas state-of-the-arineural network heuristics
for maximum clique. More extensve experimental results
that confirm thesefindings can be found in a forthcoming
paper[14].
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