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Summary 

Metabolic Engineering aims at the systematic analysis and targeted manipulation of the 
metabolism in biotechnologically utilized microorganisms [1,2]. Recently, consistent 
stationary  in vivo data sets of intracellular metabolite concentrations, fluxes and specific 
enzyme activities have become available for this purpose [3,4]. For the integrative 
analysis of the metabolic data at hand, a novel multi-scale modeling concept, computer-
algebraic methods and efficient numerical algorithms are proposed. The available 
metabolic data are typically afflicted with comparatively large measurement errors. 
Therefore, reliable comprehensive error estimations are essential for the reasonable 
interpretation of consecutive outcomes, such as simulation results. 

The concepts, methods and algorithms are first presented as universal methods and 
subsequently applied to the anaplerotic regulation in lysine-producing Corynebacterium 
glutamicum. A multi-scale model is set up, fitted to the available experimental data and 
validated by the prediction of further experiments. This model is capable of forecasting 
the quantitative effect of changes in the specific activity of anaplerotic enzymes, namely 
phosphoenolpyruvate carboxylase, pyruvate carboxylase and phosphoenolpyruvate 
carboxykinase, on lysine productivity and yield. 

1 Introduction 

The metabolism of organisms in wildlife is regulated so as to synthesize intracellular 
metabolites mostly in the amounts needed for maintenance and growth, whereas metabolite 
overproduction would clearly be an evolutionary disadvantage. Systems Biology copes with 
the systemic comprehension of the cellular components and their interplay [5]. Here, as well 
as in the context of Metabolic Engineering, modeling and simulation play a major role [6]. In 
basic research, qualitative and quantitative knowledge of the cellular metabolism is gained. 
Industrial research emphasizes the optimization of cellular metabolism in order to improve the 
yield of biotechnological production processes. 

Bacteria are widely used for the production of fine chemicals, such as the essential amino acid 
lysine. Essential amino acids are widely used as food and feed additives, since they cannot be 
produced by mammalian metabolism and therefore need to be supplied with nutrition [7]. 
Today, approximately 500.000 tons of lysine – worth more than 500 million Euros – are 
turned over yearly on the world marked [8]. Nevertheless, the margins are low and even small 
changes in the efficiency of production processes generally have a significant impact on profit 
[9]. 
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1.1 Data Basis 

The bacterium Corynebacterium glutamicum is employed for large scale lysine production 
[10]. The mutant MH20-22B excretes significant amounts of this amino acid into the 
extracellular environment [11]. Several metabolic pathways involved with lysine production 
in this organism, particularly the anaplerotic pathways, were examined experimentally in 
detail (figure 1). For this purpose, the cellular metabolism was adjusted to four different 
stationary states by imposition of definite genetic manipulations and environmental conditions 
in continuous culture. The phosphoenolpyruvate carboxykinase gene was deleted as well as 
overexpressed; and the growth rate was varied for the unmodified strain. 

 
Figure 1: Anaplerosis and lysine synthesis in Corynebacterium glutamicum. Extracellular 
Metabolites: glucose (Glc) and lysine (Lys). Intracellular metabolites: glucose-6-phosphate 
(G6P), phosphoenolpyruvate (PEP), pyruvate (Pyr), oxaloacetate (OAA), aspartate (Asp), acetyl 
coenzyme A (ACA), α-ketoglutarate (aKG) and glutamate (Glu). Enzymes: pyruvate kinase 
(PK), phosphoenolpyruvate carboxylase (PEPCx), phosphoenolpyruvate carboxykinase 
(PEPCk), pyruvate carboxylase (PCx) and aspartate aminotransferase (AAT). Pathways: 
pentose phosphate pathway (PP), tricarboxylic acid cycle (TCA) and lysine synthesis (LS). 

Each of the subsequent measurements was carried out with a sample from one of these cell 
cultures. This way, a data set of unique consistency and extent was created, covering 
intracellular metabolite concentrations, fluxes and specific enzyme activities [3,4]. Namely, 
the intracellular concentrations of α-ketoglutarate, aspartate, glutamate, pyruvate and 
phosphoenolpyruvate, the specific activities of aspartate aminotransferase, pyruvate kinase, 
phosphoenolpyruvate carboxykinase and carboxylase, the corresponding fluxes in vivo as well 
as the pyruvate carboxylase flux were determined (figure 1). The extracellular fluxes were 
derived from the cultivation data. 

The experimental results are supplemented by data taken from literature. Today, the 
intracellular stoichiometry is well known [12]. However, the structure of the regulatory 
network is far from being entirely identified. On the other hand, the precursor metabolite 
demand for biomass synthesis is known with sufficient accuracy, whereas most kinetic 
parameters are only vaguely known. Despite the rapid progress of experimental methods, the 
data basis available today is still relatively small and inaccurate. Therefore, the proper 
integration and analysis of these data is a challenge for modeling and simulation. 

  

http://journal.imbio.de/


Journal of Integrative Bioinformatics 2004                                                    http://journal.imbio.de/ 

1.2 Simulation Task 

Generally, modeling and simulation are powerful tools, but they are pointless unless applied 
to specific questions [13]. Consequently, a typical case, the optimization of lysine production 
with Corynebacterium glutamicum MH20-22B, is worked out exemplarily. Lysine production 
extracts oxaloacetate from the citrate cycle (figure 1). The anaplerotic reactions compensate 
this drain by the conversion of pyruvate and phosphoenolpyruvate. The enzymes pyruvate and 
phosphoenolpyruvate carboxylase operate virtually irreversible in vivo. On the other hand, a 
significant reverse flux is catalyzed by phosphoenolpyruvate carboxykinase [3]. The latter 
lowers the concentration of the precursor oxaloacetate and evokes a so-called energy-
consuming futile cycle. 

The experiments show an increase or decrease in lysine productivity when the phosphoenol-
pyruvate carboxykinase gene is deleted or overexpressed, respectively [3]. This observation 
gives rise to the hypothesis that the positive effect could be intensified by an amplification of 
the pyruvate or phosphoenolpyruvate carboxylase activities (figure 1). In the following, a 
modeling strategy and mathematical methods are presented, which are capable of testing this 
hypothesis quantitatively, based on the available data. The results are compared with the 
outcome of actual experiments. 

2 Methods 

Different concepts have been developed for modeling cellular metabolism, ranging from 
mechanistic (white-box) to phenomenologic (black-box) approaches [14-18]. In principle, 
mechanistic models can explain and predict the function of whole cells. However, one obtains 
complex systems with up to 1.000 rate and balance equations. Furthermore, precise mathe-
matical formulae, including regulatory structures, are known for rather few enzymes [6]. 
Mechanistic models tend to include far too many parameters to be estimable from the 
available data. On the other hand, phenomenological models solely interpolate between 
observations and do not take underlying mechanisms into account. Hence, they are not able to 
explain or predict cellular function at all. 

2.1 Multi-Scale Modeling Concept 

For the integrative analysis of the available data for Corynebacterium glutamicum, we 
combine different modeling approaches [19,20]. The advantages of both mechanistic and 
phenomenologic approaches are merged into a multi-scale modeling concept (gray-box) while 
their disadvantages are avoided. This concept is not restricted to Corynebacterium 
glutamicum or lysine production. Indeed, the proposed approach is universally suitable for 
modeling cellular metabolism in stationary state, including the regulatory system, based on a 
given simulation task. 

The multi-scale approach distinguishes from classical modeling concepts by the choice of a 
focus. Selected enzymes in this center of interest are mechanistically modeled in detail, while 
metabolic pathways outside the focus are simplified. Additionally, the kinetic rate expressions 
are related to each other by stoichiometric balance equations. Furthermore, the model is 
supplemented by phenomenological relations in case the rate and balance equations do not 
suffice to calculate all unknowns. Kinetic and stoichiometric parameters are taken from 
literature, as far as reliable in vitro data is obtainable. Finally, the remaining parameters are 
estimated as the model is fitted to the in vivo measurement data. 

When choosing the model focus, it is crucial to describe the mechanisms responsible for 
effects under investigation as complete and detailed as possible. Moreover, the choice of 
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focus is influenced by data availability, since the model parameters must either be taken from 
literature or identified based on the measurement data at hand. The operation of focused 
enzymes is modeled rather accurately by kinetic expressions, whereas outside the focus, the 
function of metabolic pathways as a whole is described by much simpler formal kinetic 
expressions. Alternatively, terms of Biochemical Systems Theory or Cybernetic Modeling 
may be applied off focus [21,22]. 

Database mining serves to reveal phenomenological relations from experimental data, 
regardless of biological meaning. The relations need not be linear, but should be considered 
meaningful by an experienced biologist, to prevent correlations by chance. Phenomenological 
relations are primarily suited for the interpolation of measurement data. Extrapolation is rarely 
sensible and only if the existence of an appropriate mechanism is at least supposed. On the 
other hand, the multi-scale approach can be applied to study unknown mechanisms. For 
example, the enzyme kinetics may be extended by generic terms to investigate the regulatory 
influence of potential effectors. 

The presented approach includes ranges of scales in many respects: 

1) Rate equations are set up on different scales. Local metabolic functions in the 
focus are described in detail by mechanistic enzyme kinetics, whereas the global 
metabolic context outside the focus is represented by formal kinetic expressions 
and other approximations. 

2) Balance equations are set up on different scales around metabolites, metabolic 
branches and the whole system. They serve to embed the rate equations in the 
global metabolic context and to connect them to the extracellular fluxes. 

3) Generally, the focus of interest is modeled reasonably detailed, while the metabolic 
context is merely approximated or described phenomenologically. This way, local 
regulatory structures are related to global system properties, such as lysine 
productivity. 

In comparison with mechanistic models for whole cells, multi-scale models are less complex 
and include fewer parameters. Nevertheless, for a specific simulation task, all relevant 
metabolic functions are taken into account and, according to significance and data 
availability, modeled in detail, approximated or described phenomenologically. Multi-scale 
models are capable of predicting global effects of local changes in the model focus. 

2.2 Equation Preprocessing 

Multi-scale models consist of linear stoichiometric equations, nonlinear kinetic equations and 
unstructured phenomenological relations. A complete set of model equations defines the 
variables, representing fluxes and metabolite concentrations, uniquely as a typically implicit 
function of the parameters, which are known a priori or to be estimated as described below. 
The specific enzyme activities are handled as known parameters. Throughout parameter 
estimation, the model equations are solved repeatedly, hence, their necessarily numeric 
solution ought to be fast. 

The numerical performance is improved by computer-algebraic processing of the implicit 
nonlinear equation system. Advantage is taken of the equations' known structure. First, we 
eliminate as many explicit variables as possible, such as fluxes defined by kinetic expressions 
from the equation system. Second, the linear stoichiometry is resolved for further fluxes, 
which are then explicit and are as well eliminated from the system. Third, the resulting 
equations are automatically simplified. The remaining variables are implicit and to be 
determined numerically. 
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For given parameters, the implicit equations serve to calculate closing conditions, which are 
zero for the correct implicit variables. The iterative solution of these equations may be carried 
out by optimization, minimizing the absolute closing conditions. For given parameters and 
implicit variables, the explicit equations, which were eliminated on the first hand, serve to 
calculate the remaining variables. Finally, simulated and real measurements are compared in 
order to identify the unknown parameters (figure 2). 

 
Figure 2: Nested iterations are caused by the iterative solution of implicit model equations and 
the estimation of unknown parameters from measurement data. Besides the measurement data, 
known parameters and initial values must be provided. 

2.3 Parameter Identification 

The model is fitted simultaneously to several data sets stemming from different metabolic 
states (figure 3). This way, it is possible to estimate kinetic information from stationary data. 
It is advisable to weight the individual residuals with estimations of the corresponding 
measurement errors, since the experimental data are typically of heterogeneous quality. In 
most cases, least squares estimation is adequate for parameter identification, while 
sophisticated estimators are occasionally helpful to reduce the influence of outliers [23]. 
Alternatively, the data may be tested for outliers by cross validation. 

Nested iterations are caused by straightforward parameter estimation with a subordinated 
numerical model solution. For each step of the optimization process, several instances of the 
model are entirely solved, which is computationally inefficient. The overall performance is 
significantly improved by a fusion of these iterative processes, which is achieved by penalized 
optimization. The absolute closing conditions of all model instances are added to the residual 
for parameter optimization. To speed up convergence, the closing conditions are emphasized 
by a technical factor. The residual's optimal value is essentially not influenced by this method.  

Initial values must be at hand for the implicit variables and unknown parameters. At the 
beginning of the denested procedure, the simulated measurements and consequently, the 
calculated residuals are no more than rough approximations, since the initial values do not 
solve the model equations. Nevertheless, these intermediate results are sufficient for the first 
optimization steps. As the optimization proceeds, all model solutions are approximated with 
substantial accuracy. Thus, the parameters are identified for the numerically solved model. 
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Figure 3: The parameters are identified by simultaneous fit of several model instances to 
different sets of stationary metabolic data. The model instances are adjusted to the metabolic 
states by the known parameters, such as growth rate and specific enzyme activities. For 
Corynebacterium glutamicum MH20-22B, four data sets are at hand. 

Initial values are usually estimated from experimental data or adopted from literature. They 
typically range one order of magnitude around the sought parameters. Accordingly, the 
optimum is first approximated using the gradient method. This approximation is then refined 
with Newton's method [24]. The convergence is considerably enhanced by a transformation of 
the unknowns on a logarithmic scale. This way, the optimizers sensitivity is automatically 
adjusted to the parameters' orders of magnitude. Furthermore, the search space is restricted to 
positive, i.e., biologically meaningful, values. 

2.4 Sensitivity Analysis 

The calculation of sensitivities is a principal tool for system analysis [25]. First, the model 
equations are derived implicitly with respect to the parameters. The resulting sensitivities 
describe the variables response to small parameter changes. They are employed for parameter 
identification, control analysis and the prediction of further experiments. Second, the control 
coefficients are once more derived, with respect to the data and parameters, for the purpose of 
error estimation. Third, again for error estimation, the derivatives of the estimated parameters, 
with respect to the experimental data and known parameters, are calculated by subsequent 
explicit and implicit derivation of the residual for parameter estimation. 

By the aid of computer-algebra, all occurring derivatives are calculated symbolically. This 
approach gets along without discretization and demands less computational power than 
numerical methods, which are equally accurate for suitable step widths. However, the deter-
mination of a suitable step width is computationally expensive and numerical derivation is ill 
posed. Hence, numerical noise is amplified disproportionately for small step widths [26]. 

2.5 Error Estimation 

Metabolic data are typically heterogeneous and commonly afflicted with large errors. In other 
words, data quality is not at its best. The model propagates errors from the experimental data 
and known parameters to the identified parameters and further to the variables and control 
coefficients. Thus, comprehensive error estimation is indispensable for the serious inter-
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pretation of simulation results. Estimated errors are reasonably specified as standard 
deviations. Although the accuracy of measurements is usually known, literature data are 
frequently taken for precise knowledge. However, the data basis should be supplemented by 
realistic error estimations, because neglect of errors leads to unreliable results. 

Errors estimations are computed not only for the identified parameters and matching 
variables, but also for the control coefficients and for the simulations of further experiments. 
The consideration of imprecisely "known" parameters increases computational complexity, 
but helps to avoid overoptimistic results. The errors are estimated by linearization of the 
model equations using symbolic derivatives and by Monte Carlo simulation. Unlike the 
Gaussian law, Monte Carlo methods take account of the nonlinear model structure. Both 
results are compared. 

Monte Carlo simulation is a statistical and computationally expensive method. Both 
experimental data and known parameters are interpreted as samples of normally distributed 
quantities. The mean values are estimated by the data itself, while the standard deviations are 
known from error estimation. According to these distributions, different sets of random data 
are generated. Next, the parameters are identified for each data set and from the distributed 
results, and mean values and standard deviations are computed. 

2.6 Implementation 

The methods and algorithms are implemented prototypically in the computer-algebra system 
Mathematica [27]. Separate modules are created for model solution, sensitivity analysis, 
parameter identification, error estimation and statistical simulation. The experimental and 
literature data, as well as definitions of the variables, parameters and model equations, are 
filed centrally. Thus, changes of the data and model structure are easily realized. 

Computer-algebra systems feature sophisticated algorithms for equation manipulation, 
including symbolic derivation and equation simplification, while common numerical routines 
are provided as well. As interpreted languages, they are particularly well suited for prototype 
design, where the speed of numerical computations is of subordinated priority. Furthermore, a 
wide range of routines is provided for the graphical representation of simulation results. 

3 Results 

A multi-scale model is set up and applied to integrate the data at hand for lysine producing 
Corynebacterium glutamicum. The individual equations, variables, parameters, experimental 
and literature data are exhaustively described in a previous publication [20]. A rephrasal of 
the entire modeling process is not in the scope of this contribution. The differences in 
identified parameters, estimated errors and subsequent results are due to an enlargement of the 
utilized data basis and the supposition of realistic errors for all data from literature. 

3.1 Multi-Scale Model 

The model focus is chosen to embrace pyruvate kinase, phosphoenolpyruvate carboxylase, 
pyruvate carboxylase, phosphoenolpyruvate carboxykinase and aspartate aminotransferase 
(figure 1), which are modeled mechanistically by enzyme kinetics. In Corynebacterium 
glutamicum MH20-22B, lysine synthesis is highly deregulated and hence described en bloc by 
a formal kinetic expression. Balance equations are set up for: phosphoenolpyruvate, pyruvate, 
aspartate, lysine, acetyl coenzyme A and NADPH pools, for the tricarboxylic acid cycle with 
oxaloacetate, the pentose phosphate pathway with upper glycolysis and for the entire cell. 
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Phenomenological relations are established for pyruvate and oxaloacetate, α-ketoglutarate and 
oxaloacetate, as well as glutamate. 

To ensure parameter identifiability, the resulting model is slightly modified. The final model 
interconnects 20 variables by 20 equations, 17 of which are explicitly solved and algebraically 
eliminated prior to numerical model solution. 12 variables are related to intracellular 
metabolite concentrations and fluxes, for which experimental data is available for 4 metabolic 
states. From this data, 15 unknown parameters are estimated (figure 4), while 21 parameters 
are taken from literature. 

Further experimental data are available for the growth rate and 4 specific enzyme activities. 
They are used as known parameters for each of the 4 model instances. Each metabolic state is 
characterized by only four known parameters, namely the growth rate and specific activities 
of phosphoenolpyruvate carboxykinase, pyruvate kinase and aspartate aminotransferase, 
while the specific activity of phosphoenolpyruvate carboxylase does not vary significantly. 

3.2 Parameter Identification 

For the estimation of initial values, isolated model equations are first individually fitted to the 
experimental data. The model parameters are then calculated by optimization and by using the 
Monte Carlo method (figure 4). In the first case, propagated errors are estimated according to 
the Gaussian law. The χ2-test is passed with 84 percent confidence. In the second case, mean 
values and standard deviations are determined statistically. Samples outside a physiologically 
reasonable region in parameter space are rejected. 

 
Figure 4: The model parameters and error estimations as determined by a single parameter 
identification (left bars) and Monte Carlo simulation (right bars). Detailed descriptions of the 
individual parameters are given in a previous publication [20]. 

Figure 4 depicts mean values and standard deviations as estimated by different mathematical 
methods. The variation of most mean values is insignificant against the background of the 
corresponding error estimations. Nevertheless, errors estimated by Monte Carlo simulation, 
with one plain exception, tend to be significantly larger than estimated by the Gaussian law, 
which is in all likelihood due to the nonlinear model structure. 

  

http://journal.imbio.de/


Journal of Integrative Bioinformatics 2004                                                    http://journal.imbio.de/ 

3.3 Control Analysis 

In this section, control coefficients denote derivatives of simulation outcomes with respect to 
model parameters. They are normalized to quote causes and effects as percentages of the 
corresponding absolute values. Productivity refers to the flux of product excretion, whereas 
yield denotes the quotient of product excretion and substrate uptake fluxes. The optimization 
of product yield is a common objective of metabolic engineering, since many manipulations 
afflict the affected organism's ability to grow. Control coefficients provide valuable 
information about regulation in vivo and indicate targets for strain improvement, albeit that 
metabolic regulation is typically distributed over several enzymes [28,29]. 

Control analysis gives first answers to the question of how lysine synthesis is influenced by 
the anaplerotic reactions (table 1). As supposed, lysine productivity and yield can be enhanced 
by increasing the specific activity of phosphoenolpyruvate carboxylase or pyruvate 
carboxylase. Conversely, high specific activities of phosphoenolpyruvate carboxykinase 
diminish lysine production, as already known and reproduced by the corresponding control 
coefficients. The estimated errors are notably small, even though rather large errors are 
assumed for the underlying literature data. 

 

Enzyme Productivity Yield 

PEPCk - 0.17 ± 0.02 - 0.16 ± 0.02 

PEPCx 0.10 ± 0.02 0.07 ± 0.01 

PCx 0.17 ± 0.04 0.12 ± 0.03 

Table 1: Normalized control coefficients for lysine productivity and yield with respect to the 
specific enzyme activities of phosphoenolpyruvate carboxykinase (PEPCk), phosphoenol-
pyruvate carboxylase (PEPCx) and pyruvate carboxylase (PCx). The errors are estimated 
according to the Gaussian law. 

By control analysis, the model is validated qualitatively with regard to its predefined objective 
and focus. However, control coefficients describe local system behavior and infinitesimal 
alterations of cellular metabolism are experimentally not feasible. Hence, the model is 
validated quantitatively by comparison of virtual and real experiments. 

3.4 Virtual Experiments 

Once the known and identified parameters are determined, the model is ready for virtual 
experiments. Real experiments may influence the specific enzyme activities indirectly, e.g., 
by changing gene expression levels, whereas virtual experiments are realized by direct 
alterations of the corresponding activities. Virtual experiments are used to predict global 
effects of finite alterations within the model focus. The comparability of virtual and real 
experiments is guaranteed by experimental determination of the operative factors for specific 
enzyme activity alterations. In literature, data are available for lysine producing 
Corynebacterium glutamicum, featuring overexpressed and deleted phosphoenolpyruvate 
carboxylase and pyruvate carboxylase genes (table 2). 
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Enzyme Factor Productivity Yield Reference 

PEPCx 7.5 + 32 ± 7 + 19 ± 4 + 23 ± 8 

PEPCx 0 - 14 ± 3 - 10 ± 2 ± 0  

PCx 11 + 62 ± 23 + 31 ± 10 + 47 ± 10 

PCx 0 - 42 ± 30 - 35 ± 30 - 59 ± 4 

Table 2: Virtual experiments (productivity and yield) in comparison with real experiments 
(references [30-32]) in which phosphoenolpyruvate carboxylase (PEPCx) and pyruvate 
carboxylase (PCx) encoding genes were deleted and overexpressed. Factor indicates the 
operative alteration of the specific activity for the corresponding enzyme. Simulated and 
measured effects are stated in percentages. The errors are estimated according to the Gaussian 
law. 

The four real experiments described in literature were carried out as batch cultures, which 
were stopped after a predefined time to determine the extracellular lysine concentration. 
Although neither yield nor productivity values are explicitly provided, comparison with 
model predictions is possible. If the carbon source was utterly metabolized, the change in 
extracellular lysine concentration would be equivalent to the change in yield. If the carbon 
source remained partly unmetabolized, the measured lysine concentration would rather be 
correlated with productivity. Consequently, the experimental data are expected to rest 
between the predictions, which is the case for both overexpression experiments. The deletion 
experiment for phosphoenolpyruvate carboxylase showed no determinable effect, but with 
unpublished accuracy. The pyruvate carboxylase deletion experiment is predicted within the 
range of the comparably large error estimations. 

4 Discussion 

We present a novel modeling concept and associated computational methods for the 
integrative analysis of stationary metabolic data. Based on experimental in vivo data for lysine 
producing Corynebacterium glutamicum, the influence of anaplerotic regulation on product 
formation is predicted quantitatively. 

4.1 Modeling Concept 

The multi-scale modeling approach is designed for the integration of metabolic data stemming 
from stationary in vivo experiments and literature. The stipulation of a focus is normally 
consistent with the objectives of modeling and simulation. The focused enzymes are modeled 
mechanistically and embedded in the global metabolic context via the stoichiometry. This 
approach permits parameter identification based on relatively few, inaccurate and hetero-
geneous data sets. Furthermore, it is possible to predict global effects of changes in the model 
focus. The predictive power of multi-scale models is hardly restricted by the limited use of 
phenomenological relations. 

The modeling process is naturally subdivided as follows: Initially, the biological objective and 
a matching focus need to be defined. Next, the mechanistic rate and balance equations are set 
up. Then, the metabolic context is described much less detailed, using formal kinetic and 
other approximate expressions. Finally, the remaining degrees of freedom are eliminated by 
phenomenological relations. 
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4.2 Computational Tools 

The computational effort for a numerical model solution is considerably reduced by the aid of 
computer algebra, condensing the model from 20 to 3 implicit equations for each instance. 
The efficiency of parameter identification is significantly improved by fusion of all iterative 
processes and transformation of all unknowns on logarithmic scale. Optimization methods 
and Monte Carlo simulation are then used for parameter identification and error estimation. 
The Monte Carlo method is computationally expensive, but has the benefit of exploring non-
linear system behavior. 

Many of the presented methods, particularly the symbolic determination of various 
sensitivities, would be unfeasible without the aid of modern computer-algebra. Today, the 
feasibility of computer-algebraic methods, especially implicit derivation, for complex non-
linear equation systems is limited by the available memory rather than by processor 
performance. 

4.3 Predictive Simulation 

A multi-scale model is created specifically to explore the impact of anaplerotic regulation in 
Corynebacterium glutamicum on lysine production. This model is validated qualitatively by 
control analysis and quantitatively by prediction of effects caused by finite changes in the 
specific activities of anaplerotic enzymes, namely phosphoenolpyruvate carboxylase and 
pyruvate carboxylase, on lysine productivity and yield. 

The supplementary data employed for model validation are naturally not considered for 
parameter identification. Besides model validation, virtual experiments are functional for the 
exploration of system behavior and for optimal design of further experiments [6]. By the aid 
of appropriate models, experiments are carried out much faster and are less expensive in silico 
than in vivo. 

4.4 Outlook 

A promising alternative approach for the integration of metabolic data is provided by Bayes 
statistics. In this framework, it is possible to exploit vague a priori knowledge of the 
"unknown" parameters, such as their sign and order of magnitude, in addition to the 
customary data. A posteriori distributions for the parameters are determined by the Markov 
Chain Monte Carlo method, substituting parameter optimization. Furthermore, the nonlinearly 
propagated errors are estimated statistically. 

Another important issue is identifiability: For mathematical reasons, individual parameters 
could possibly be unidentifiable. Hence, it is advisable to analyze parameter identifiability 
prior to and during optimization. Both topics will be addressed in forthcoming publications. 

4.5 Conclusions 

In this contribution, the entire course from the development of a specific biological objective 
over modeling and method design to simulation and model validation is systematically 
worked out. A multi-scale approach is proposed for the integrative analysis of stationary 
metabolic data. Methods and algorithms for the systematic solution of implicit nonlinear 
model equations, symbolic determination of sensitivities, efficient parameter identification 
and error estimation are presented. 

The framework is applied to the anaplerotic regulation in lysine producing Corynebacterium 
glutamicum. The available experimental and literature data are integrated with a multi-scale 

  

http://journal.imbio.de/


Journal of Integrative Bioinformatics 2004                                                    http://journal.imbio.de/ 

model, which is validated by comparison of virtual and real experiments. The specific 
activities of focused anaplerotic enzymes are correlated with lysine productivity and yield. It 
is shown that quantitative simulations are possible even against the background of rather 
defensive error estimations.  
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