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ABSTRACT 

 

Recent advances in multiphoton microscopy have allowed 

the capture of dendritic and T cells on video in a 3D 

volume. This paper reports on an approach for automatically 

detecting and tracking the cells and collecting statistics on 

their characteristics of motion and interaction durations. A 

novel method to extend the track longevity is presented, 

where an adaptive acceptance gate is computed based on the 

local target density. Results are provided that show that the 

total number of track segments was reduced by 22% and the 

percentage of tracks that lasted longer than half the video 

increased from 12% to 17% of the total tracks. 

 

Index Terms— Kalman Filter, Target Tracking, Biological 

Image Analysis 

 

1. INTRODUCTION 

 

Characteristics observed during interactions between 

dendritic cells (DCs) and T cells are relevant to the field of 

inflammation biology. For example, long cell interaction 

times are thought to be productive for antigen presentation. 

The desired post-processed information includes statistics 

on the change in speed, direction of movement, tortuosity, 

confinement ratio, motility, and interaction duration. Novel 

techniques to capture the video depicting the physical 

interactions of these cells are being explored. One such 

method is to image the cells with multiphoton microscopy 

in the presence of antigen. By way of multiphoton 

micoscopy, the DCs and T cells are filtered into two 

separate video streams. The DCs are displayed as green 

masses, and the T cells are displayed as red masses traveling 

across a 3-dimensional cellular space (Figure 1). 

 

 

Figure 1: 3D cellular space containing DCs and T cells. 

With this distinct separation of colors, the tasks of 

detecting and tracking the cells are achievable. This paper 

reports on a process that automatically tracks DCs and T 

cells and provides useful information about their 

characteristics of motion. Previously, our research group has 

examined the problem of tracking cells in sequences of 2D 

images using active contours [1] [2] and particle filters [3]. 

In this paper, we consider the problem of tracking a large 

quantity of cells captured in 3D movies. 

Various methods are utilized to initiate and retain tracks 

for each of the cells that exist during a recorded video. This 

is not straightforward, however, because there are problems 

with cell congregation and arbitrary cell motion. Often, a 

large number of T cells tend to migrate around a single DC, 

making the detection of each individual T cell difficult to 

discern. Additionally, when T cells are not interacting with 

DCs, they tend to travel alone for much longer distances at 

fast and non-linear rates. Because of this, tracks are difficult 

to maintain and are often lost. Adapting the tracking 

function separately to each cell’s local density condition is 

hypothesized to increase total track time performance and is 

a key focus of this paper. 

The number of objects in a covariance volume has been 

shown to be the key parameter for predicting track data 

association performance [4]. This parameter depends on the 

product of covariance volume with target density. Target 

density, however, is not generally computed and exploited 

by multi-target tracking systems. The approach taken in this 

paper is to use a local track density estimate, computed 

separately for each track, to compute an adaptive 

measurement association gate. Performance results utilizing 

an adaptive gate are compared against the results obtained 

utilizing fixed measurement gates.  

Bhattacharyya and Chakrabarti derived a formula for 

computing the mean th nearest neighbor distance of 

objects in a uniform -dimensional Euclidean space as a 

function of target density [5]. Their equation yields a robust 

estimator for density as a function of the th nearest 

neighbor distance. The method proposed in this paper is to 

average the density estimates corresponding to  of the th 

nearest neighbor distances. 

 

2. METHOD AND THEORY 

 

The system that implements the multi-cell tracking (MCT) 

algorithm contains two major components: target detection 



and target tracking as shown in Figure 2. These are 

described in detail in the following sections. 

 

 

Figure 2: Multi-cell tracking system with detection and 

tracking functions. 

 
2.1. Target Detection 

 

For each incoming 3D video frame, the MCT’s detection 

processing creates the new measurements for the DC and T 

cells used by the tracker. This is accomplished by way of 

binary clustering of cell intensities that separates the desired 

moving targets from the unwanted background pixels that 

contribute to the video space. Then spatial morphological 

techniques generate a list of binary connected components 

(BCCs) which further filters out any unwanted noise 

primarily leftover from residual tissue. 3D target centroid 

locations as well as 3D size and shape features are extracted 

for each detected BCC. After this routine is complete, these 

measurements are sent to the MCTs tracking function.  

 
2.2. Propagation and Updating of Tracks  

 

The Kalman filter (KF) is used to provide the target 

estimation portion of the video tracker. The KF sequentially 

propagates and updates the kinematic state , which 

consists of position and velocity, of each moving target that 

travels across the 3D target space spanned by the fixed 

camera. The KF assumes the measurement and motion 

models, (1) and (2), respectively.  

 

 (1) 

 (2) 

 

 is the measurement vector obtained from the target 

detection routine at time . The density functions of the 

measurement noise  and the target process noise  are 

assumed to be Gaussian and zero mean.  is the observation 

matrix that sifts the positional part of the state vector.  is 

the one-step propagation matrix for position and velocity. 

Given a prior predicted state estimate, denoted by , the 

updated state estimate can be calculated as a weighted 

average using a gain matrix . 

 

 (3) 

 

From the definition of the track error covariance matrix 

 

 (4) 

 

the updated covariance can be described by 

 

 (5) 

 

 is the covariance of the measurement noise . The 

Kalman gain matrix  is then derived as a minimum mean-

square error estimator: 

 

 (6) 

 

Finally, the one-step propagation of the discrete state 

estimate and error covariance matrix can be described 

through (7) and (8). 

 

 (7) 

 (8) 

 

The addition of the covariance  to (8) accounts for 

uncertainty due to unpredictable process noise  [6]. 

 

2.3. Data Association 

 

After the tracks are propagated, they are assigned (in a new 

frame) to the measurements provided by the detection 

processor. This is accomplished via the global nearest 

neighbor (GNN) algorithm [7]. The likelihood of the 

association of the measurement  with the track state  

is given by (9). 

 

 (9) 

where   (10) 

 

 is the covariance of the residual , and  is 

the dimension, which in this experiment is set to 3. For each 

track detection pair, a score  is computed that is twice the 

negative log association likelihood , which is related to the 

Mahalanobis distance  via (11). 

 

 (11) 

where   (12) 

 

Starting with promoted tracks, the tracks are scanned 

and the measurement with the smallest (best)  is assigned 

and marked as unavailable for the other tracks. Promoted 

tracks are defined as tracks that have had more than a user 

specified number of updates. This differentiates mature 

tracks from those that have just been started. However, the 

assignment is rejected if the  of the track assignment falls 



outside of a fixed chi-squared measurement gate-threshold, 
 (displayed in Figure 3). Only if the track assignment 

is accepted is the track updated. After all tracks are 

processed, unassigned measurements are used to initiate 

new tracks, while the unassigned tracks have their miss 

counters incremented.  

The manage track function promotes tracks that have 

the required number of updates but also deletes tracks that 

have not had updates for a significant period of time. The 

track deletion count is an adjustable parameter, and was set 

to 2 frames for the T cell and DC tracks. Tracks on cells that 

maneuver outside of the measurement gate are generally lost 

but could have been preserved if the chi-squared threshold 

for the Mahalanobis distance were larger. Larger gates can 

be deployed for targets that are in locally less dense 

environments. In more dense environments, cell tracks can 

be susceptible to swapping with other cell tracks. In this 

inflammatory biology application, track swapping would 

result in unreliable cell interaction characteristics and 

therefore must be minimized. 

 

2.3.1. Local Density Estimation and the Adaptive 

Acceptance Gate Extension to MCT 

 

The likelihood function in (9) can also be thought of as 

a probability density function for the new measurement  

given that it belongs to the same target that has the state 

estimate . An analogous null hypothesis  would 

provide a probability density for the new measurement 

given that it belongs to a different target. The assumption 

that targets can exist anywhere in the 3D space motivates 

the desire for using a uniform density model for this . The 

height of the uniform density function ( ) would be the 

inverse of a 3D volume element corresponding to the typical 

separation of objects. So, the volume element is the inverse 

of the local target density. As shown in [8], we can use this 

density in a ratio hypothesis test. In the context of [8], in 

which the hypothesis test is derived, we also make the 

assumption that all cells are detected (no missed detections), 

and all detections come from real cells (no false detections). 

The goal now is to compute an adaptive acceptance gate 

(AAG) threshold  for  that depends on local target 

density. In other words, we will determine a threshold for 

 that would guarantee that the alternate hypothesis  

likelihood is greater than the  likelihood. For the ratio of 

these likelihoods to be greater than 1, 

 

 (13) 

 

Applying (11) to the ratio in (13), we obtain 

 

 (14) 

 

Solving for , (14) becomes 

 

 (15) 

 

Mori et al. [4] derived a related expression for the 

probability of correctly assigning the correct measurements 

to tracks, , when an acceptance gate is not deployed, i.e. 

when it is infinite. This is described in (16) and (17) as 

follows: 

 

 (16) 

 (17) 

 

Here,  is a constant that depends on the dimension  and 

is defined as the Gamma function. From (15) and (16) we 

see that a key parameter is the product of density and 

covariance volume . The derivation for  assumed 

that targets are located uniformly on a -dimensional sphere 

and that the number of targets follow a discrete Poisson 

density. 

Now, also making the uniform and Poisson statistics 

assumption, Chakrabarti et al. [5] derived a formula for 

mean th nearest neighbor distance  as a function 

of local density  in a -dimensional space given by: 

 

 (18) 

 

Solving (18) for  provides an equation that depends 

on the nearest neighbor, . Here we exploit Bhattacharyya 

and Chakrabarti’s formula by averaging the density 

estimates for each of  th nearest neighbor distances 

which results in the following robust estimator for density: 

 

 (19) 

  

The AAG extension to MCT computes the acceptance 

gate size for each track separately. Here,  is the th 

nearest neighbor distance from track . For each track,  

 are computed to find , and (15) and (19) are used 

to solve for the track’s  threshold. Figure 3 plots the 

correct association probability  and the track miss 

probability  as a function of normalized density 

. , in blue, represents the probability that the 

correct measurement will fall outside the adaptive 

acceptance gate leading to a potential track drop.  reflects 

the probability of associating the correct measurement when 

no gating is employed. Miss-associations can result in track 

swaps which is especially undesirable in this application. 

Therefore, the gating feature of MCT serves to prefer track 

drops to track swaps. The figure also shows that the baseline 

MCT without AAG employs a fixed  threshold set to 

correspond to a  of 0.2. This region displays where the 

AAG extension will reduce track drops and where it will 

reduce track swaps by virtue of its adaptive nature. 



 

Figure 3: The correct association and miss probability is 

plotted against target density. 

 

3. RESULTS AND DISCUSION 

 

The input video used to test the tracking program is 

recorded DCs and T cells traveling through a 3D space 

inside the aortic wall of a mouse. The size of the target 

space is 512 pixels by 512 pixels by 15 pixels, which 

corresponds to a 777µm x 777µm x 225µm box, and the 

video exists for 60 frames, which corresponds to 62.05 

minutes of recorded time. It is estimated that about 400 T 

cells and about 40 DCs exist in the target space for the 

duration of the video.  

Figure 4 provides a reverse cumulative distribution plot 

for tracking longevity results when the data was run with the 

original MCT and when utilizing the AAG extension. The 

data demonstrate the desirable effect of fewer track drops 

via fewer total tracks, fewer short tracks and more long 

tracks. Highly maneuverable cells were tracked when they 

were in relatively low density neighborhoods. Moreover, the 

 

 

Figure 4: The number of tracks that existed for at least a 

number of frames is plotted for 4 cases. 

AAG extension to MCT minimizes track swaps by 

adaptively shrinking the gate in higher density 

neighborhoods. 

With the addition of the AAG, the total number of T 

cell tracks was reduced by 22% when comparing to the trial 

with a fixed  of 20%. Moreover, tracks that lasted for 

more than 30 frames were increased from 12% to 17% of 

the total tracks.  

 

4. CONCLUSION 

 

Adapting the acceptance gate for new measurements based 

on averaging  of the th nearest neighbor distances (i.e. 

target density) improves the longevity of tracks for highly 

maneuverable T cells, and reduces the chance of swapping 

tracks in highly dense areas. There are high density and high 

maneuvering instances in which the T cell track would 

inevitably be lost. These include the cases when T cells 

interact with DCs for a prolonged time where other T cells 

also congregate.  

 

5. FUTURE WORK 

 

The MCT software can be upgraded to include advanced 

data association techniques that will permit feature 

extraction from group tracks that are defined as closely 

spaced cells clustered together. Additionally, an adaptive 

filter such as an interacting multiple model (IMM) can be 

deployed to both smooth the tracks when the cells are 

quiescent and increase the filter agility when the cells are 

maneuvering. 
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