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A DUAL SPLIT BREGMAN METHOD FOR FAST ℓ1

MINIMIZATION

YI YANG, MICHAEL MÖLLER, AND STANLEY OSHER

Abstract. In this paper we propose a new algorithm for fast ℓ1 minimization
as frequently arising in compressed sensing. Our method is based on a split

Bregman algorithm applied to the dual of the problem of minimizing ∥u∥1 +
1
2α

∥u∥2 such that u solves the under determined linear system Au = f , which
was recently investigated in the context of linearized Bregman methods.

Furthermore, we provide a convergence analysis for split Bregman methods
in general and show with our compressed sensing example that a split Bregman

approach to the primal energy can lead to a different type of convergence than
split Bregman applied to the dual, thus making the analysis of different ways
to minimize the same energy interesting for a wide variety of optimization

problems.

1. Introduction

The field of compressed sensing and techniques using sparsity has recently gained
a lot of attention in various areas of research like image processing, inverse problems
and data analysis. Representing the solution to an under determined linear system
in an appropriate basis can mathematically be expressed as finding the sparsest
solution to

(1.1) Au = f,

with a matrix A ∈ Rm×n, data f ∈ Rm and the unknown u ∈ Rn, usually with m
much smaller than n. Sparsity refers to the number of non-zero components in the
solution to (1.1) and is measured by the so called ℓ0-norm, which is not a norm in
the mathematical sense. Minimizing this ℓ0-norm unfortunately leads to a highly
non-convex problem which is extremely computationally expensive to solve exactly.
Therefore, one often uses convex relaxation and minimizes the ℓ1-norm instead,

(1.2) min
u

∥u∥1 subject to Au = f.

Under various conditions or requirements at the matrix A the equivalence between
the ℓ1 and the ℓ0 minimizing solutions can be shown. We refer to [8, 9, 11, 10] and
the references therein.

For some practical applications, e.g., probabilistic, data mining, hyperspectral
imaging, only non-negative solutions u are physically meaningful such that the
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model is changed to minimizing

(1.3) min
u

∥u∥1 subject to Au = f, u ≥ 0.

Although (1.2) and (1.3) are much easier to solve than the ℓ0 minimization
problem, the ℓ1 norm is not differentiable and thus the minimization can still be
challenging particularly in high dimensions. In the next section we will summarize
the most important algorithms for solving (1.2) before presenting our new approach
in Section 3. We will analyze the convergence speed of our method and related split
Bregman methods theoretically in Section 4, before showing numerical results for
both plain ℓ1 minimization and non-negative ℓ1 minimization in Section 5. Finally,
we conclude and suggest future areas of research in Section 6.

2. Numerical methods for ℓ1 minimization

Many methods for ℓ1 minimization have been proposed. In this work we will
focus on the split Bregman method, the adaptive inverse scale space method, the
fixed point continuation method with Bregman iteration as well as the linearized
Bregman method and its generalizations, which we will all summarize in this sec-
tion. For other ℓ1 minimization techniques we refer, for example, to the website
http://nuit-blanche.blogspot.com and the references discussed there.

2.1. Split Bregman method. Bregman iteration [21, 25, 7] has recently gained
a lot of attention due to its efficiency for many ℓ1 related minimization problems.
It is in general formulated for problems of the form

min
u

J(u) such that Au = f,(2.1)

for a convex functional J(u). Bregman iteration constructs a sequence uk of mini-
mizers

(2.2) uk = argmin
u

λ

2
∥Au− f∥2 + J(u)− ⟨pk−1, u⟩,

where pk−1 is an element of the subdifferential of J at uk−1, i.e., pk−1 ∈ ∂J(uk−1) =
{p : J(u)−J(uk−1)−⟨p, u−uk−1⟩ ≥ 0 ∀u}. The resulting update for the subgradient
pk shows the equivalence to the well known augmented Lagrangian method (c.f.
[25, 13]). The update scheme (2.2) can be rewritten into a simple two step procedure
of the form

uk = argmin
u

λ

2
∥Au− f + bk−1∥2 + J(u),(2.3)

bk = bk−1 +Auk − f.(2.4)

In [14] Goldstein and Osher proposed to use the above Bregman iteration to solve
problems of the form

min
u

H(Au) + J(u)(2.5)

with convex H and J by introducing a new variable d (splitting) and enforcing
d = u by Bregman iteration

(uk, dk) = arg min
(u,d)

H(Au) + J(d) + ∥u− d+ bk−1∥2,(2.6)

bk = bk−1 + uk − dk,(2.7)
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where (2.6) is often done in an alternating fashion. Applying this scheme to our
problem (1.2) (i.e. H(Au) being the indicator function of Au = f and J(d) =
α∥d∥1) we obtain Algorithm 1. Notice that α is a parameter that influences the
convergence speed but not the final solution. A† denotes the pseudo inverse which
for a typical compressed sensing matrix can be computed as A† = At(AAt)−1, and
therefore only requires the inversion of the relatively small and well conditioned
matrix AAt. In case we want to solve the non-negative problem (1.3), we simply
replace shrink(uk+bk−1, α) = sign(uk+bk−1)max(|uk+bk−1|−α, 0) by shrink+(uk+
bk−1, α) = max(uk + bk−1 − α, 0) in Algorithm 1.

Algorithm 1 Split Bregman

1. Parameters: A, f, α > 0, threshold > 0
2. Initialization: u0 = 0, d0 = 0, b0 = 0
while ∥Adk − f∥ > threshold do

Compute uk = A†(f +A(bk−1 − dk−1)
)
+ dk−1 − bk−1

Compute dk = shrink(uk + bk−1, α)
Update bk = bk−1 + uk − dk

end while
return dk

2.2. Adaptive inverse scale space method. The so called inverse scale space
(ISS) flow as first analyzed in [2] can be seen as the continuous version of Bregman
iteration. Looking at the optimality condition for problem (2.2) we obtain

0 = λAt(Auk − f) + pk − pk−1,(2.8)

⇔ pk − pk−1

λ
= At(f −Auk).(2.9)

Interpreting λ as a time step of a backward Euler discretization we obtain a con-
tinuous flow of the form

∂tp(t) = At(f −Au(t)), p(t) ∈ ∂∥u(t)∥1.(2.10)

It was found in [3] that the above equation can be solved exactly without any
discretization: The solution stays piecewise constant in time intervals [tk, tk+1],
leading to a piecewise linear behavior of the subgradient p(t). Since the subgradi-
ent has to evolve continuously p(tk+1) can be determined and due to the specific
structure of the subdifferential of the ℓ1-norm, the corresponding u(tk+1) can only
be non-zero at indices i where |pi(tk+1)| = 1. Thus, u(tk+1) is the solution of a
low dimensional non-negative least squares problem. The resulting adaptive inverse
scale space algorithm (aISS) is presented as Algorithm 2 below, where PI denotes
the projection onto the index set I. For more details on the derivation we refer to
[3].
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Algorithm 2 Adaptive Inverse Scale Space Method

1. Parameters: A, f, threshold ≥ 0
2. Initialization: t1 = 1/ ∥Atf∥∞ , p(t1) = t1 Atf, I1 = {i | |pi(t1)| = 1}
while ∥Au(tk)− f∥ > threshold do

Compute u(tk) = argminu
{
∥APIku− f∥2

}
subject to u(tk)p(tk) ≥ 0.

Obtain tk+1 as

tk+1 = min{t | t > tk,∃j : |pj(t)| = 1, uj(tk) = 0, pj(t) ̸= pj(tk)},
Update the dual variable p(t) via (2.11) with t = tk+1.

pj(t) = pj(tk) + (t− tk)ej ·At(f −Au(tk)).(2.11)

Compute Ik+1 = {i | |pi(tk+1)| = 1}.
end while
return u(tk)

2.3. Fixed point continuation with Bregman iteration. As shown above, in
each Bregman iteration (2.3) we need to solve the following unconstrained problem:

min
u

λ

2
∥Au− f + bk−1∥2 + ∥u∥1.(2.12)

Generally, the solution to (2.12) can not be determined explicitly, but requires an
optimization algorithm. A simple iterative method which utilizes operator splitting
was proposed in [15]. This fixed point continuation algorithm (FPC) is also called
proximal gradient method (PGM). To summarize FPC let us briefly introduce the
idea of proximal mappings.

The proximal mapping (prox-operator) of a convex function h is defined as

proxh(u) = argmin
x

h(x) +
1

2
∥x− u∥2.(2.13)

Let us assume we want to minimize a function f(u) of the form

f(u) = g(u) + h(u),(2.14)

for a convex and differentiable g(u), and a convex h(u) with inexpensive prox-
operator. Then the proximal gradient algorithm computes the minimizer of f(u)
iteratively via

uk = proxtkh
(uk−1 − tk∇g(uk−1)),(2.15)

where tk is the step size. A variant of FPC is the so called fast iterative shrinkage-
thresholding algorithm (FISTA) [1],

uk = proxtkh
(yk−1 − tk∇g(yk−1)),(2.16)

yk = uk +
k − 1

k + 2
(uk − uk−1),(2.17)

which uses extrapolation on the FPC results and is usually several times faster
than PGM for solving the unconstrained problem. For our problem where g(u) =
λ
2 ∥Au−f+bk−1∥2, h(u) = ∥u∥1, the prox-operator becomes the shrinkage-operator,

proxth(u) = shrink(u, t),(2.18)

and we arrive at Algorithm 3.
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Algorithm 3 FPC with Bregman iteration

1. Parameters: A, f , 0 < tk < 2
∥AtA∥ , threshold > 0, Number of inner iterations

N
2. Initialization: u0 = 0, b0 = 0,
while ∥Auk − f∥ > threshold do

Set v0 = uk−1.
For i = 1 to N , compute

vi = shrink(vi−1 − tk−1λA
t(Avi−1 − f + bk−1), tk−1).(2.19)

Update uk = vN .
Update bk = bk−1 +Auk − f

end while
return uk

Here the spectral norm ∥AtA∥ is defined as the largest singular value of AtA.
Notice that the above algorithm needs to restrict the step size tk < 2

∥AtA∥ to

guarantee stability. For ill conditioned matrices with large ∥AtA∥ this can become
a severe restriction. Algorithm 3 is formulated using FPC, but we can also replace
FPC with FISTA by using the updates (2.16) and (2.17) instead.

2.4. Linearized Bregman (LB) iteration and its generalization. Another
iterative method for solving the constrained problem (2.1) is linearized Bregman
iteration as introduced in [5, 6, 25]. It uses a first order Taylor expansion of the
quadratic term in (2.2) leading to a minimization

(2.20) uk = argmin
u

λ

2
∥Auk−1−f∥2+λ⟨A(u−uk−1), Auk−1−f⟩+J(u)−⟨pk−1, u⟩,

and hence implying the subgradient update

pk = pk−1 + λAt(f −Auk−1).(2.21)

For our case, i.e. J(u) = ∥u∥1, the energy (2.20) we minimize might become
unbounded from below. Therefore, one uses an elastic net, replacing the ℓ1 norm
by J(u) = ∥u∥1 + 1

2α∥u∥
2, leading to algorithms for the solution of

min
u

∥u∥1 +
1

2α
∥u∥2 such that Au = f(2.22)

It has been shown in [24] that the solution of this elastic net linearized Bregman
iteration (Algorithm 4) coincides with the ℓ1 minimizing solution, if α is chosen
sufficiently large. Recently, the authors in [19] gave a detailed proof that α >
10∥x∥∞ leads to the equivalence of the models with and without the elastic net.
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Algorithm 4 Linearized Bregman

1. Parameters: A, f, α > 0, 0 < δ < 2
∥AtA∥ , threshold > 0

2. Initialization: u0 = 0, v0 = 0,
while ∥Auk − f∥ > threshold do

Compute vk = vk−1 −At(Auk−1 − f)
Compute uk = δ · shrink(vk, α/δ)

end while
return uk

Here the time step again has to meet δ < 2/∥AtA∥ as a stability requirement.
Each iteration of the linearized Bregman algorithm is simple and fast, however the
algorithm can stagnate sometimes. The “kicking” technique introduced in [22] can
remove the stagnation and give faster convergence. However, even with “kicking”
this algorithm can still take a long time for large problems due to the relatively
small time step. It was proposed in [24] to explore the dual problem of (2.22):

min
y,z

−fT y +
α

2
∥Aty − z∥2 such that z ∈ [−1, 1]n.(2.23)

Notice that z can be expressed by Proj[−1,1]n(A
ty). Once the solution (yα, zα) is

achieved, we can get the solution uα of (2.22) simply by setting

uα = α · shrink(Atyα, 1).(2.24)

For nonnegative case we just need to change shrink to shrink+.
The detailed analysis of the dual formulation in [24] allowed Yin to interpret the

linearized Bregman algorithm as a gradient descend algorithm on the dual problem
(2.23). Therefore, the idea in [24] was to use acceleration techniques for gradient-
based optimization methods such as line search, Barzilai-Borwein and limited mem-
ory BFGS to solve the dual problem. Yin proposed two efficient algorithms called
LB-BBLS and LB-BFGS. The numerical experiments in [24] indicate that they are
usually much faster than linearized Bregman with “kicking”. Further acceleration
techniques based on the equivalence between the gradient descend and linearized
Bregman method were recently proposed in [18].

3. LB-SB

The motivation for our approach is directly related to the linearized Bregman
method being equivalent to gradient descend on the dual formulation. Inspired
by [24], we try to find an algorithm which can solve (2.23) efficiently. Over the
last couple of years many researchers found the alternating directions of multipliers
method (ADMM), which is equivalent to the split Bregman method, to often result
in a faster minimization technique than gradient descend based methods. Thus,
the starting point for our algorithm is the above dual formulation, which, after
replacing z by Proj[−1,1]n(A

ty), is

min
y

−fT y +
α

2
∥Aty − Proj[−1,1]n(A

ty)∥2.(3.1)

with the relation

u = α · shrink(Aty, 1)(3.2)
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between the primal and dual variables.
In order to solve (3.1) efficiently our idea is to apply the split Bregman method

to the minimization problem (3.1). We first define d = Aty, and the problem (3.1)
is equivalent to

min
y,d

−fT y +
α

2
∥d− Proj[−1,1]n(d)∥2 such that d = Aty.(3.3)

Then using Bregman iteration, we get
(3.4)

(yk, dk) = argmin
y,d

{λ(−fT y +
α

2
∥d− Proj[−1,1]n(d)∥2) +

1

2
∥d−Aty − bk−1∥2},

bk = bk−1 +Atyk − dk,

and do the minimization for y and d in an alternating fashion

(3.5)
dk = argmin

d
{λα
2
∥d− Proj[−1,1]n(d)∥2 +

1

2
∥d−Atyk−1 − bk−1∥2},

yk = argmin
y,d

{−λfT y +
1

2
∥dk −Aty − bk−1∥2}.

The optimality conditions to the above optimization problems yield

0 = d+ λα · shrink(d, 1)− (Atyk−1 + bk−1),(3.6)

0 = (AAt)yk − (Adk −Abk−1 + λf).(3.7)

In the typical compressed sensing case (AAt) will be relatively small and well con-
ditioned such that we can compute

yk = (AAt)−1(Adk −Abk−1 + λf).(3.8)

The solution of (3.6) can be considered element wise by a distinction of two cases.
If |(Atyk−1 + bk−1)i| ≤ 1 we can simply choose

di = (Atyk−1 + bk−1)i(3.9)

and since for this component shrink(di, 1) = 0 it meets the optimality condition. In
the other case, |(Atyk−1+bk−1)i| > 1, |di| has to be greater than 1. Furthermore, it
is easy to see that the optimality can only be satisfied if sign(di) = sign((Atyk−1 +
bk−1)i). Therefore, shrink(di, 1) = di − sign((Atyk−1 + bk−1)i) and hence

di =
(Atyk−1 + bk−1)i + sign((Atyk−1 + bk−1)i)λα

1 + λα
.(3.10)

Our algorithm becomes

Algorithm 5 LB-SB

1. Parameters: A, f, α > 0, threshold > 0
2. Initialization: y0 = 0, b0 = 0, λ = 10.
while ∥Auk − f∥ > threshold do

Solve d+ λα · shrink(d, 1) = Atyk−1 + bk−1 for dk with (3.9) or (3.10).
Compute yk = (AAt)−1(Adk −Abk−1 + λf).
Update bk = bk−1 +Atyk − dk.
Compute uk = α · shrink(Atyk, 1).

end while
return uk
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A similar algorithm can be derived for the non-negative case. The projection
becomes a projection onto the non-negative part of the unit ball and therefore
shrinkage becomes non-negative shrinkage. Thus, we obtain the update formula

di =

{
max

(
(Atyk−1 + bk−1)i, 0

)
if (Atyk−1 + bk−1)i ≤ 1,

(Atyk−1+bk−1)i+λα
1+λα else.

(3.11)

The rest of the algorithm remains the same and we determine

uk = α · shrink+(Atyk, 1)(3.12)

4. Convergence analysis

As we have seen our algorithm is the split Bregman algorithm applied to the
dual of the constrained minimization of the elastic net regularized energy. One of
the main questions would of course be why we use the elastic net formulation and
why we are looking at the dual instead of the primal energy. Therefore, it is natural
to investigate the type of convergence of each method.

The convergence analysis of Bregman iteration in general can be found in [21]. In
[4] the authors derive an additional error estimate based on the assumption of a so
called source condition, which we will explain in more detail in the next subsection.
For the split Bregman algorithm in particular, it has been shown in [23] that the
algorithm converges based on its equivalence to the Augmented Lagrangian method
and that solving (2.6) in an alternating fashion converges due to an equivalence to
Douglas-Rachford Splitting. However, to the best knowledge of the authors, little
work has been done on analyzing the convergence speed split Bregman schemes
in general. We are particularly interested in developing a framework to analyze
different types of convergence for different types of split Bregman methods - for
instance for minimizing the same energy with the splitting applied to the primal
or to the dual energy. Our analysis will be based on a generalization of the results
from [20]. To analyze the difference between the different split Bregman methods
to determine ℓ1 minimizing solutions, let us first summarize some results of [4] for
Bregman iteration in general.

4.1. Error estimates for Bregman iteration. In [4] Burger, Resmerita and He
derived an error estimate for the Bregman iteration that is used for solving

min
u

J(u) such that Au = f,(4.1)

for a convex functional J(u), i.e. an error estimate for an iteration of the form

uk+1 = argmin
u

J(u) +
λ

2
∥Au− f + bk∥2,

bk+1 = bk + f −Auk.
(4.2)

The requirement for the error estimate is that the true solution to Problem (4.1)
must meet a so called source condition, which is defined as follows.

Definition 4.1. We say that an element ũ meets a source condition (SC) if there
exists an element q such that Atq ∈ ∂J(ũ).

With the definition of a SC Theorem 4.1 in [4] reads as follows:
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Theorem 4.2. [4] Let ũ be a solution to Au = f and assume that ũ meets a SC.
Then the following error estimate holds for the iterative scheme (4.2):

Dpk

J (ũ, uk) ≤
∥q∥2

2λk
,(4.3)

where q is the source element from the SC and pk = λ
∑k

j=1 A
t(f −Auj) ∈ ∂J(uk).

As first shown in [20] we can use this estimate to derive a convergence speed
for Bregman iteration in general. In some cases this allows us to draw conclusions
about the question whether the split Bregman method is more efficient if applied
to the primal problem or to the dual problem. In the next section we will prove
a convergence result for a very general type of energy minimization problem and
then give a recipe on how to apply the convergence results to specific examples.

4.2. A general framework for the convergence analysis of split Bregman
methods. Split Bregman can be applied in various cases of energy minimization.
Typically, we are looking at minimization problems of the form

min
u

H(u) +R(Tu),(4.4)

for convex functionals H(·) and R(·), and a linear operator T . Common examples
are H(u) = α

2 ∥Au− f∥2 and R(Tu) being TV regularization or - with T = I being

the identity - ℓ1 regularization.
The idea of split Bregman is to avoid the difficulty of having to minimize (4.4)

all at once by introducing a new variable d = Tu, leading to the constrained
minimization problem

min
u,d

H(u) +R(d) such that Tu = d,(4.5)

which is solved by Bregman iteration

(uk+1, dk+1) = argmin
u,d

H(u) +R(d) +
λ

2
∥Tu− d+ bk∥2,

bk+1 = bk + Tuk+1 − dk+1.
(4.6)

As we mentioned in section 2.1 already, the above minimization for u and d is
often done in an alternating fashion, which turns the split Bregman (or augmented
Lagrangian) method, into the alternating split Bregman method (or alternating
directions of multipliers method (ADMM)). Our convergence analysis will be con-
cerned with solving the optimization for u and d simultaneously without alternat-
ing minimization. Despite the fact that this leads to a slightly different iteration,
we believe the two approaches to be closely related and have similar convergence
properties. Particularly, factors that influence the convergence speed of the split
Bregman method, will also influence the convergence speed of the alternating split
Bregman method, which is why we believe that the convergence analysis below is
very useful, even when using the alternating minimization approach. After the first
submission of this manuscript, He and Yuan proved an ergodic convergence of the
Douglas-Rachford operator splitting (in a metric similar to the Bregman distance)
in [16] as well as its non-ergodic convergence (in a metric based on how close the
optimality condition is to being met) in [17]. By duality, Douglas-Rachford splitting
is equivalent to the alternating split Bregman method (c.f. Figure 3.1 in [13]), such
that their convergence analysis provide estimates for the alternating minimization
case.
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Continuing our analysis, notice that the above minimization problem (4.5) can
be written as

min
u,d

H(u) +R(d) such that (T − I)

(
u
d

)
= 0,(4.7)

which has exactly the same form as (4.1) and the split Bregman algorithm is just

Bregman iteration on the above problem with the operator Ã = (T − I) and the
right hand side f = 0. Therefore, the convergence estimate of Theorem 4.2 holds, if
we can show that the true solution to the above problem meets a source condition.
We can use the lemma from [20] which we have slightly generalized here:

Lemma 4.3. (generalization of Lemma 3.3 in [20])
The split Bregman algorithm for Problem (4.5) always satisfies a source condition.

Proof. To prove this lemma we have to show that there exists a source element q
such that ÃT q ∈ ∂(u,d)(H(ũ) +R(d̃)) for the true solution (ũ, d̃) to (4.5). With

ÃT =

(
TT

−I

)
we can write the SC as the existence of a q such that

TT q ∈ ∂uH(ũ),(4.8)

−q ∈ ∂dR(d̃).(4.9)

Notice that since (ũ, d̃) is the true solution to (4.5), we have d̃ = T ũ and ũ being
the minimizer of (4.4). The optimality condition to (4.4) tells us that

p1 + p2 = 0

for a p1 ∈ ∂uH(ũ) and p2 ∈ ∂uE(ũ) for E(u) = R(Tu). By subdifferential calculus
(see e.g. [12]) the latter condition can be written as p2 ∈ TT∂TuR(T ũ). Thus,
there exists a q̃ ∈ ∂TuR(T ũ) such that

p1 + TT q̃ = 0,

⇒ p1 = TT (−q̃) ∈ ∂uH(ũ).

Knowing that the true solutions satisfies d̃ = T ũ together with the two implications

q̃ ∈ ∂TuR(T ũ),

TT (−q̃) ∈ ∂uH(ũ).

and comparing to the necessary conditions (4.8), (4.9) for a SC, we can see that by
choosing q = −q̃ a SC is always satisfied for the split Bregman algorithm. �

With Theorem 4.2 and Lemma 4.3 we have seen, that the split Bregman algo-
rithm (4.6) always converges with

D
(pk

u,p
k
d)

J

(
(ũ, d̃), (uk, dk)

)
≤ ∥q∥2

2λk
,(4.10)

where q is the source element such that (4.8) and (4.9) hold. Furthermore, the
Bregman distance to (uk, dk) decomposes into the sum of the two Bregman distances
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with respect to R and H.

D
(pk

u,p
k
d)

J

(
(ũ, d̃), (uk, dk)

)
= H(ũ) +R(d̃)− (H(uk) +R(dk))−

⟨(
ũ

d̃

)
−
(

uk

dk

)
,

(
pku
pkd

)⟩
= D

pk
u

H (ũ, uk) +D
pk
d

R (ũ, dk).

Knowing the estimate for minimizing very general energies with the split Bregman
method, we can now give a recipe for how to obtain more precise estimates for
specific energy minimization problems:

(1) Determine the operator T and the two parts H(u) and R(d) of the
energy after the splitting.

(2) Characterize the subdifferential of H at uk as well as the Bregman

distance D
pk
u

H (ũ, uk).
(3) Characterize the subdifferential of R at dk as well as the Bregman

distance D
pk
d

H (T ũ, dk).
(4) Try to determine the source element q by the conditions

TT q ∈ ∂uH(ũ),(4.11)

−q ∈ ∂dR(d̃).(4.12)

(5) We can conclude the convergence speed

(4.13) D
pk
u

H (ũ, uk) +D
pk
d

R (T ũ, dk) ≤
∥q∥2

2λk
,

to the true solution and by Theorem 2.2 in [4] have the relative con-
vergence of the two variables

(4.14)
λ

2
∥Tuk − dk∥2 ≤ H(ũ) +R(T ũ)

k
.

In the next subsection we will apply this concept to the three split Bregman
methods relevant for solving our problem: The primal split Bregman method
for solving (1.2) as described in Section 2.1, our proposed method, and the split
Bregman method applied to the primal Problem when also using the elastic net
J(u) = ∥u∥1 + 1

2α∥u∥
2.

4.3. Convergence analysis for split Bregman methods determining ℓ1

minimizing solutions.

4.3.1. Constrained model - primal ℓ1 minimizing solutions. Let us first look at the
primal Bregman method for solving (1.2) as described in Section 2.1. Following our
recipe we can see that

(1) T = I is the identity and we split according to the two parts

R(d) =

{
0 if Ad = f ≤ ∞
∞ if Ad ̸= f

,(4.15)

H(u) = ∥u∥1.(4.16)
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(2) The Bregman distance with respect to H, i.e. the ℓ1 norm, measures how
close the subgradient pku is to being a subgradient of ũ.

(3) The Bregman distance with respect to R tells us that every dk satisfies

Adk = f , but does not have much more expressiveness becauseD
pk
d

R (T ũ, dk) =
⟨pkd, dk − ũ⟩ and pkd can be arbitrarily close to zero. We can say that

pkd = λ
∑k

i=1(ui − di) but do not know a-priori what this quantity will
be.

(4) The source element q is difficult to determine more precisely. For the same
reason the Bregman distance with respect to R is hard to classify further the
condition q ∈ ∂R(ũ) does not reveal much about q. The second condition
tells us that q ∈ ∂∥ũ∥1, which bounds q by 1 in the infinity norm. We can
hope that the entries in q corresponding to zero components in ũ are much
smaller in magnitude, but there in no guarantee. Thus, for a vector ũ ∈ Rn

the best estimate we can give is ∥q∥2 ≤ n.
(5) We obtain the convergence speeds

∥ũ∥1 − ⟨pku, ũ⟩ ≤ n

2λk
,(4.17)

∥Auk − f∥2 ≤ 2

λk
∥A∥2∥ũ∥1.(4.18)

4.3.2. The proposed model - dual ℓ1 minimizing solutions with elastic net. Let us
apply the convergence analysis to our proposed method.

(1) Since we now enforce Aty = d by Bregman iteration we have T = At and
we obtain the two parts

R(d) =
α

2
∥shrink(d, 1)∥2,(4.19)

H(y) = −⟨f, y⟩,(4.20)

using Bregman iteration to obtain d̃ = Atỹ.
(2) The Bregman distance with respect to a fully linear functional, in our case

H(u), is always zero.
(3) A short calculation shows that ∂dR(d) = αshrink(d, 1), and the Bregman

distance with respect to R becomes

D
pk
d

R (ũ, dk) =
α

2
∥shrink(dk, 1)− shrink(Atỹ, 1)∥2,(4.21)

=
1

2α
∥uk − ũ∥2,(4.22)

where we used relation (3.2) and denoted the reconstruction at the k-th
iteration by uk = αshrink(dk, 1).

(4) By verifying that ∂AtỹR(Atỹ) = {ũ} and ∂H(ỹ) = {−f} it is easy to see
that q = ũ is our source element satisfying (4.11) and (4.12).

(5) Thus, we obtain the very simple estimate

∥uk − ũ∥2 ≤ α

λk
∥ũ∥2.(4.23)

As we can see we obtain a stronger result here than we did for the primal split
Bregman case, namely the convergence of our iterates to the true solution in the
ℓ2 norm. Notice that by the results of [24] α has to be chosen large enough for the
method to converge to the ℓ1 minimizing solution. However, the above estimate
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shows that a smaller α immediately leads to faster convergence and we obtain
results faster the more accuracy in the computation of the ℓ1 minimizing solution
we are willing to sacrifice. This is of course reasonable because in the limit α → 0
we are determining an ℓ2 minimizing solution, which can be determined in one step.

It is remarkable that the error estimate (4.23) has a pure ℓ2 nature and does not
contain any ℓ1 term, although for α large enough, we determine an ℓ1 minimizer.
Since the ℓ2 norm is rather small for entries close to zero we however have to be
aware that the convergence might not immediately lead to a very sparse signal but
may contain some small oscillations close to zero. If we are willing to sacrifice this
type of accuracy the estimate (4.23) indicates fast convergence.

4.3.3. Constrained model - primal ℓ1 minimizing solutions with elastic net. It is
interesting to see that even the estimate for the primal Bregman method with
elastic net is different from the dual method. For the primal elastic net model we
would have

(1) T = I

R(d) = ∥d∥1,(4.24)

H(u) =

{
1
2α∥u∥

2 if Au = f
∞ else

.(4.25)

(2) The Bregman distance with respect to a H(u) tell us that for each uk we
have Auk = f . The subgradient at uk is 1

αuk + rk for some rk ∈ range(At),
such that

D
pk
u

H (ũ, uk) =
1

α
∥ũ− uk∥2(4.26)

(3) As in the case of the primal split Bregman method without the elastic net,
the Bregman distance with respect to R, i.e. the ℓ1 norm, measures how
close the subgradient pkd is to being a subgradient of ũ.

(4) The negative source element q has to be in the subdifferential of ∥ũ∥1,
which - as discussed before - is difficult to interpret any further. The second
condition for q tells us that q = 1

α ũ+r for some r ∈ range(At). The problem

is that these two conditions do not allow to calculate the norm ∥q∥2 any
further. The elastic net leads to the sum of a quadratic convergence term
and the Bregman distance with respect to the ℓ1 norm, but as for the
other primal method the best estimate for the convergence constant is the
dimension n of ũ, although we can hope to have much better convergence
for sparse ũ.

(5) The final estimate we can give is

1

α
∥uk − ũ∥2 +D

pk
d

∥·∥1
(ũ, dk) ≤

n

2λk
.(4.27)

Notice that the estimates of the primal and dual method are similar in their as-
ymptotic behavior. They share the term with quadratic convergence in the ℓ2 norm
and the dependency on α. However, the constant on the right hand side is quite
different. While the constant is difficult to determine in the primal case it is the
ℓ2 norm of the true solution for the dual case. For the primal method we expect
the constant to improve as ũ becomes more and more sparse while the dual for-
mulation seems to be entirely independent of the sparsity of ũ. The price the dual
method pays for this independence is that the error estimate does not contain a
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term that measures the distance to the solution ũ in a metric that is related to the
sparsity of uk as it is the case for the primal method with the ℓ1 Bregman distance

D
pk
d

∥·∥1
(ũ, dk). From the estimates, we would expect that if an approximate solution

(with the approximation being close to the true solution in an ℓ2 sense - not neces-
sarily in terms of their support) is sufficient, the dual method might converge faster
to a desired solution particularly if the solution to the solution is not very sparse.
Remarks:

• The above estimates are based on solving (4.6) exactly. In practice one
often uses alternating minimization. For the error estimates to hold one
has to do several of such alternating minimizations before updating bk+1.

• The error estimates above are estimates based on worst case scenarios.
Hence, most of the times the convergence will be faster than predicted by
the estimates. However, we believe that the above estimates do reveal some-
thing about the general behavior of each method. For any minimization
problem that is intended to be solved by split Bregman it might be worth-
while to analyze the convergence of both, a primal and a dual approach,
and choose the method which seems to give the more desirable estimate.

5. Numerical results

In this section, we compare our algorithm LB-SB with the methods described in
Section 2, which are primal split Bregman (pSB), aISS, FPC with Bregman iteration
(FPC for short), FISTA with Bregman iteration (FISTA for short), LB-BBLS and
LB-BFGS. As examined in [24], the original linearized Bregman method, even with
“kicking”, is much slower than LB-BBLS and LB-BFGS. Hence the comparison
between our algorithm and these two will suffice.

Here in the first subsection all the sensing matrices A are chosen to be the
following type: Gaussian matrices whose elements are generated from independent
and identically distributed (i.i.d.) normal distributions. In the 2nd subsection, the
rows of A are orthogonalized by QR decompositions. Although different data types
tend to give different algorithm performances, the relative speed and robustness
of these implementations remains roughly the same. We generate the data f via
f = Aureal, where only a small proportion of the original signal ureal is nonzero
and the positions of the nonzero elements of ureal is selected randomly.

For pSB we have two output variables u and d, where u minimizes ∥Au−Aureal∥
and d gives us a smaller ℓ0 and ℓ1 norm. Both outputs are included in the com-
parison, labeled as pSB-u and pSB-d. Denoting the reconstruction result of each
algorithm by u we also compare the relative error defined as ∥u − ureal∥/∥ureal∥.
The threshold is chosen to be 5 · 10−4∥f∥. For each setting, 10 different tests are
conducted and we recorded the average time, ∥Au − Aureal∥, the ℓ0 and ℓ1 norm
of the recovered signal as well as the relative error.

5.1. General Case. In this subsection we focus on solving (1.2), i.e. determining
ℓ1 minimizing solution without a non-negativity constraint and generate the non-
zero entries of ureal by drawing from a standard Gaussian distribution. For all
experiments we used the parameter α = 5 for LB-BBLS, LB-BFGS and LB-SB
algorithms. Since sometimes FPC and FISTA with Bregman may take a very long
time for large problems, we stopped these methods after 400 iterations for matrices
A of the size 900× 3000 and 1000× 5000.
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Table 1. Noise-free case. Size A = 100× 1000, 1% of ureal is nonzero.

Algorithm Time ∥Au−Aureal∥ ∥u∥0 ∥u∥1 relative error

pSB-u 8.01e-02 8.13e-15 1.00e+01 1.29e+01 5.97e-04

pSB-d 8.01e-02 5.87e-04 1.00e+01 1.29e+01 5.77e-04

aISS 4.94e-02 3.78e-16 1.00e+01 1.29e+01 2.96e-16

FPC 2.75e+00 4.21e-04 1.00e+01 1.29e+01 4.10e-04

FISTA 2.81e+00 5.32e-04 1.00e+01 1.28e+01 4.97e-04

LB-BBLS 2.68e-01 2.96e-04 1.03e+01 1.29e+01 2.91e-04

LB-BFGS 2.23e-01 1.64e-04 1.00e+01 1.29e+01 1.10e-04

LB-LBSB 3.95e-02 5.63e-04 1.00e+01 1.28e+01 5.77e-04

Table 2. Noise-free case. Size A = 100× 1000, 3% of ureal is nonzero.

Algorithm Time ∥Au−Aureal∥ ∥u∥0 ∥u∥1 relative error

pSB-u 1.42e-01 1.69e-14 9.37e+01 4.04e+01 4.10e-01

pSB-d 1.42e-01 4.75e-03 9.37e+01 4.03e+01 4.10e-01

aISS 3.01e-01 3.46e-04 9.73e+01 4.03e+01 4.10e-01

FPC 7.17e+00 2.58e-03 9.47e+01 4.03e+01 4.12e-01

FISTA 7.01e+00 2.56e-03 9.43e+01 4.03e+01 4.11e-01

LB-BBLS 4.54e-01 1.14e-03 1.19e+02 4.12e+01 5.72e-01

LB-BFGS 4.19e-01 1.35e-03 1.20e+02 4.12e+01 5.73e-01

LB-LBSB 6.45e-02 1.20e-03 1.20e+02 4.12e+01 5.73e-01

Table 3. Noise-free case. Size A = 900× 3000, 0.9% of ureal is nonzero.

Algorithm Time ∥Au−Aureal∥ ∥u∥0 ∥u∥1 relative error

pSB-u 1.59e+00 1.62e-14 2.70e+01 4.30e+01 5.51e-04

pSB-d 1.59e+00 1.61e-03 2.70e+01 4.29e+01 4.70e-04

aISS 3.85e-01 3.47e-15 2.70e+01 4.29e+01 9.13e-16

FPC 3.56e+01 1.04e-03 2.70e+01 4.29e+01 3.21e-04

FISTA 3.62e+01 7.59e-04 2.70e+01 4.29e+01 2.35e-04

LB-BBLS 3.62e+00 9.23e-04 2.70e+01 4.29e+01 2.53e-04

LB-BFGS 3.28e+00 9.01e-04 2.70e+01 4.29e+01 2.40e-04

LB-LBSB 1.22e+00 1.56e-03 2.70e+01 4.29e+01 4.73e-04

Tables 1 to 5 show the results for clean data, while for the results shown in Tables
6 to 10 we consider the noise-added case. The noise is generated from a standard
Gaussian distribution and then normalized to have norm ϵ. ϵ is set to be 10−3.
For these cases the stopping criteria is changed to ∥Au − f∥ ≤ ϵ. There are other
possible ways to conduct the noise-added experiments, and we refer the readers to
[21, 22].

As general conclusions we can say, that if moderate accuracy in the data fidelity
term is sufficient (which is generic for noisy data), LB-SB beats all the competing
methods when the original signal is not quite sparse. Actually, we can see that for a
fixed size of A, the speed of LB-SB stays almost the same whenever we increase the
density of ureal or add noise to f while for other methods we may expect a sharp
increase in time cost. The speed of pSB is acceptable, but it is not as efficient as our
algorithm. aISS acts pretty well when ureal is quite sparse. But even with a slightly
increase in the density we may expect a sharp increase in time cost. The FPC with
Bregman and FISTA with Bregman always converge quite slowly. Although FISTA



16 YI YANG, MICHAEL MÖLLER, AND STANLEY OSHER

Table 4. Noise-free case. Size A = 900× 3000, 3% of ureal is nonzero.

Algorithm Time ∥Au−Aureal∥ ∥u∥0 ∥u∥1 relative error

pSB-u 3.40e+00 2.99e-14 8.97e+01 1.49e+02 3.48e-04

pSB-d 3.40e+00 1.82e-03 8.97e+01 1.48e+02 3.10e-04

aISS 2.17e+00 1.32e-04 8.97e+01 1.48e+02 2.06e-05

FPC 1.15e+02 3.58e-03 9.03e+01 1.48e+02 6.28e-04

FISTA 1.15e+02 4.35e-03 9.07e+01 1.48e+02 7.60e-04

LB-BBLS 4.14e+00 2.28e-03 8.97e+01 1.48e+02 3.62e-04

LB-BFGS 4.07e+00 1.31e-03 8.97e+01 1.48e+02 2.07e-04

LB-LBSB 1.47e+00 3.04e-03 8.97e+01 1.48e+02 5.44e-04

Table 5. Noise-free case. Size A = 1000× 5000, 3% of ureal is nonzero.

Algorithm Time ∥Au−Aureal∥ ∥u∥0 ∥u∥1 relative error

pSB-u 1.26e+01 5.32e-14 1.53e+02 2.32e+02 5.68e-04

pSB-d 1.26e+01 3.38e-03 1.52e+02 2.31e+02 5.87e-04

aISS 1.53e+01 9.60e-15 1.50e+02 2.31e+02 1.33e-15

FPC 2.44e+02 8.39e-03 1.73e+02 2.31e+02 1.50e-03

FISTA 2.49e+02 8.26e-03 1.75e+02 2.31e+02 1.50e-03

LB-BBLS 2.24e+01 3.44e-03 4.89e+02 2.32e+02 5.93e-03

LB-BFGS 1.35e+01 1.89e-02 3.53e+02 2.32e+02 7.40e-03

LB-LBSB 5.59e+00 3.59e-03 3.89e+02 2.32e+02 4.29e-03

Table 6. Noise-added case. Size A = 100× 1000, 1% of ureal is nonzero.

Algorithm Time ∥Au−Aureal∥ ∥u∥0 ∥u∥1 relative error

pSB-u 9.88e-02 1.00e-03 1.02e+01 7.45e+00 5.75e-03

pSB-d 9.88e-02 2.32e-03 9.80e+00 7.36e+00 5.82e-03

aISS 5.08e-02 3.61e-04 1.00e+01 7.37e+00 6.42e-04

FPC 2.24e+00 3.63e-03 9.40e+00 7.36e+00 8.53e-03

FISTA 2.23e+00 3.64e-03 9.40e+00 7.36e+00 8.51e-03

LB-BBLS 2.57e-01 4.46e-04 1.12e+01 7.37e+00 7.70e-04

LB-BFGS 3.77e-01 3.67e-03 1.62e+01 7.39e+00 7.02e-03

LB-LBSB 4.66e-02 5.70e-04 1.02e+01 7.38e+00 1.10e-03

Table 7. Noise-added case. Size A = 100× 1000, 3% of ureal is nonzero.

Algorithm Time ∥Au−Aureal∥ ∥u∥0 ∥u∥1 relative error

pSB-u 1.40e-01 1.00e-03 9.02e+01 2.01e+01 4.89e-01

pSB-d 1.40e-01 4.30e-03 9.02e+01 2.00e+01 4.89e-01

aISS 2.53e-01 1.30e-03 9.58e+01 2.00e+01 4.86e-01

FPC 3.02e+00 1.17e-02 8.20e+01 1.99e+01 4.75e-01

FISTA 2.80e+00 1.20e-02 8.20e+01 1.99e+01 4.78e-01

LB-BBLS 3.17e-01 1.36e-03 1.07e+02 2.01e+01 5.48e-01

LB-BFGS 3.65e-01 1.88e-03 1.07e+02 2.01e+01 5.48e-01

LB-LBSB 6.80e-02 1.46e-03 1.08e+02 2.01e+01 5.49e-01

is much faster than FPC in solving the unconstrained problem (2.12), we do not
see much difference in the time cost comparison for these two methods. This is
because in our code we only take 5 inner iterations of FPC and FISTA, and the
convergence speed of them can not be reflected by this small number. LB-BBLS
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Table 8. Noise-added case. Size A = 900× 3000, 0.9% of ureal is nonzero.

Algorithm Time ∥Au−Aureal∥ ∥u∥0 ∥u∥1 relative error

pSB-u 1.98e+00 1.00e-03 2.70e+01 4.30e+01 1.92e-04

pSB-d 1.98e+00 2.55e-04 2.70e+01 4.29e+01 7.35e-05

aISS 3.87e-01 1.61e-04 2.70e+01 4.29e+01 2.62e-05

FPC 3.69e+01 1.94e-04 2.70e+01 4.29e+01 5.49e-05

FISTA 3.92e+01 2.44e-04 2.70e+01 4.29e+01 7.32e-05

LB-BBLS 3.56e+00 2.22e-04 2.70e+01 4.29e+01 6.21e-05

LB-BFGS 5.01e+00 1.10e-02 3.20e+01 4.29e+01 3.04e-03

LB-LBSB 1.53e+00 2.39e-04 2.70e+01 4.29e+01 6.76e-05

Table 9. Noise-added case. Size A = 900× 3000, 3% of ureal is nonzero.

Algorithm Time ∥Au−Aureal∥ ∥u∥0 ∥u∥1 relative error

pSB-u 2.46e+00 1.00e-02 9.70e+01 1.49e+02 1.12e-03

pSB-d 2.46e+00 4.23e-03 9.00e+01 1.48e+02 6.48e-04

aISS 2.07e+00 3.18e-03 9.20e+01 1.48e+02 4.81e-04

FPC 1.25e+02 3.01e-03 9.20e+01 1.48e+02 5.18e-04

FISTA 1.25e+02 2.99e-03 9.20e+01 1.48e+02 5.14e-04

LB-BBLS 4.57e+00 3.55e-03 9.20e+01 1.48e+02 5.46e-04

LB-BFGS 5.39e+00 4.78e-02 1.28e+02 1.49e+02 7.57e-03

LB-LBSB 1.43e+00 5.76e-03 1.00e+02 1.48e+02 9.38e-04

Table 10. Noise-added case. Size A = 1000× 5000, 2% of ureal is nonzero.

Algorithm Time ∥Au−Aureal∥ ∥u∥0 ∥u∥1 relative error

pSB-u 8.66e+00 1.00e-02 1.01e+02 1.54e+02 1.15e-03

pSB-d 8.66e+00 4.23e-03 1.01e+02 1.53e+02 7.98e-04

aISS 3.95e+00 3.30e-03 1.04e+02 1.53e+02 5.99e-04

FPC 2.09e+02 6.06e-03 1.07e+01 1.53e+02 7.54e-04

FISTA 2.06e+02 6.06e-03 1.07e+01 1.53e+02 7.52e-04

LB-BBLS 1.33e+01 4.15e-03 1.04e+02 1.53e+02 7.47e-04

LB-BFGS 1.40e+01 3.88e-02 1.79e+02 1.53e+02 7.52e-03

LB-LBSB 3.29e+00 6.45e-03 1.32e+02 1.53e+02 1.27e-03

and LB-BFGS are comparable to our algorithm when A is close to a square matrix.
For the case where m/n < 0.3, LB-SB is significantly faster than LB-BBLS and
LB-BFGS. All the LB based methods tend to give results with acceptable ℓ1 norm
but relative large ℓ0 norm, since there are small oscillations in these results caused
by the ℓ2 term 1

2α∥u∥
2 in (2.22).

Let us comment on each single experiment in a little more detail:

(1) In the first experiment (Table 1), all methods were able to reconstruct
ureal up to small deviations, the largest deviation occurring for pSB with
a relative error of 0.06%. The LB-SB algorithm has the fastest runtime,
and is around 2 times faster than pSB. The aISS takes a little longer than
LB-SB, however, it is (for this low sparsity level of only 10 non-zero entries)
quite fast and by far the most accurate method. The other two LB methods
are slower than pSB. FPC and FISTA based methods follow with 1-2 orders
of magnitude slower runtime.
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(2) As we decreased the sparsity level of ureal in our second experiment (Ta-
ble 2), none of the methods was able to reconstruct ureal anymore, although
they do seem to share some peaks of ureal, since the relative error of the ℓ

1

minimizing techniques is around 41% and the error of the elastic net mini-
mizing techniques is around 57%. Although an experiment with a relative
error of 41% or more does not seem to have much expressiveness at first
glance, we believe that it is still interesting to consider this case. There are
many practical applications for which the coincidence between the ℓ1 and
ℓ0 minimizing solution can not be guaranteed. Therefore, it makes sense to
investigate how the ℓ1 minimization techniques behave in such a case.

We can see a clear advantage of the LB-SB algorithm in terms of the
runtime, outperforming the other LB based methods by more than a factor
of 7. The second fastest method, pSB, is still more than 1.5 times slower
than LB-SB however, leads to a result which has a smaller ℓ1 and ℓ0 norm.
Opposed to the first experiment, the elastic net minimizer did not coincide
with the ℓ1 minimizer, leading to small oscillations in the solutions of the
LB methods and a higher ℓ1 norm as well as a lower sparsity of the solution.

(3) Changing the matrix size to 900 × 3000 and having 27 non-zero entries in
ureal all methods were able to reconstruct ureal exactly again (Table 3).
Due to the very high sparsity of the true solution, aISS outperformed all
other methods in accuracy as well as in algorithm speed. Nevertheless, LB-
SB is the second fastest algorithm being three times as fast as the other
LB based methods and leading to a slightly higher accuracy than the pSB
method.

(4) Increasing the number of non-zero components of ureal to 90, the results
change significantly (Table 4). While all methods still reconstruct ureal

exactly, aISS now takes about 5 times longer than in the previous example
while the runtime of LB-SB increases only slightly, making it the fastest
algorithm in this case. Still the primal Bregman method takes a little bit
longer and is slightly more accurate than LB-SB. The advantage in runtime
of LB-SB over LB-BFGS and LB-BBLS is still more than a factor of 3. The
FPC and FISTA algorithms are much slower than all other methods and
lead to runtimes that are two orders of magnitude slower.

(5) In the last noise free experiment we consider the case where LB based
algorithms give relatively dense results (Table 5). pSB and aISS give very
good recovery results. FPC with Bregman and FISTA with Bregman took
more than 200 seconds to reconstruct the results. In Figure 1 we plot
the original ureal as well as the results by aISS and LB-SB and the error
of LB-SB, which is determined as the absolute value of (ureal − uLBSB).
According to the graph, it is really hard to tell the difference between the
original ureal and LB-SB result. The relative error between the LB-SB
result and ureal is only about 0.4% and as we can see in the bottom right
part of Figure 1, the peak error is on the order of O(10−3) while the signal
is in O(1). Therefore, we can conclude that the oscillations do not affect the
final result much. As for the time cost, we can see that the small sacrifies
in accuracy gave us an LB-SB algorithm speed that is about 3 times faster
than aISS.
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Figure 1. Result comparison for Table 5.

(6) In the noise added case, we have a slightly different situation than before:
While in the noise free case all methods converge either to the ℓ1 minimizing
or the elastic net minimizing solution, there can now be a difference between
the reconstruction results due to the different paths the algorithms take in
approaching a solution to Au = f .

In the first experiment with noisy data (Table 6), we can see that for
high sparsity and the relative low noise level we chose, the reconstruction of
ureal worked well for all methods. All methods stopped at a solution with
10 non-zero entries having a relative error of less than 1%. In terms of the
runtime, LB-SB was the fastest method closely followed by aISS. Among
the LB methods, LB-SB was about 5 times faster than LB-BBLS and 7
times faster than LB-BFGS.

(7) Similar to the noise free case the reconstruction of ureal gets much more
difficult as the sparsity level decreases to 90 non-zero entries (Table 7).
Here the ℓ1 minimizing methods seem to have an advantage in accuracy
over the LB methods. Still LB-SB remains the fastest method with almost
no increase in runtime in comparison to the previous test case.

(8) For a 900 × 3000 matrix, 27 non-zero entries in ureal and small noise all
methods could recover a very good approximation of the true solution (Ta-
ble 8). In this case aISS outperformed all other methods. Still LB-SB is
the second fastest and recovered the support of the true solution exactly.

(9) Again, increasing the number of non-zeros of ureal strongly influences the
runtime of aISS, such that for 90 non-zeros LB-SB is almost 0.6 second
faster than aISS and more than 2.5 seconds faster than the other LB meth-
ods (Table 9). We can see that the support of the LB-SB reconstruction
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Table 11. The α study.

size ∥x∥∞
α = 5 α = 4∥x∥∞ α = 7∥x∥∞ α = 11∥x∥∞

Time rel.err Time rel.err Time rel.err Time rel.err

600× 3000 4.16 1.52 5.61e-5 1.58 6.37e-5 1.63 5.78e-5 1.66 6.13e-5

800× 4000 5.86 2.61 6.05e-5 2.88 6.25e-5 2.88 6.17e-5 2.93 5.68e-5

1000× 5000 4.18 4.37 6.00e-5 4.57 6.29e-5 4.58 6.52e-5 4.64 6.11e-5

1200× 6000 6.21 8.07 7.67e-5 8.75 7.55e-5 8.98 7.56e-5 9.59 7.71e-5

has 100 non zero entries, which however seem to be due to very small oscil-
lations, because the relative error shows a reconstruction of ureal with less
than 0.1% deviation.

(10) In the more computationally expensive case of a 1000 × 5000 matrix and
ureal consisting of 100 non-zero entries (Table 10), the run times vary from
3.29 seconds for LB-SB up to 209 seconds for FPC with Bregman iteration.
The reconstructed support varies between the almost correct 101 entries
for pSB to 179 entries for LB-BFGS. The support of the LB-SB method
again is too large, but the relative error still indicates that the additional
non-zero components are in a negligible order of magnitude.

According to the above comparison, although α = 5 usually is much smaller
than the “equivalence bound” 10∥ureal∥∞ in [19], the results seem acceptable. In
order to study how α affects the performance of our algorithm, we tested LB-SB
with different α on different matrices and recorded the runtime and relative error.
In all these tests only 2% of ureal is nonzero and the nonzero terms are generated
by Gaussian distribution with standard deviation 2. The stopping criteria is set as
∥Au− f∥ < 5 · 10−5∥f∥. The results are shown in Table 11.

We can see that the runtime increases as α increases, which agrees with our
analysis in Section 4 that smaller α tends to give faster convergence. We can also
see that the relative errors always stay in the same level for different α, and this
convinces us that in practice an α much smaller than the theoretical bound often
yields satisfactory results. Usually, α = 5 works well both in our tests and in [24].

5.2. Nonnegative Case. In this section we investigate the algorithms speed on
the non-negative ℓ1 minimization problem (1.3). Furthermore, we will study the
influence of α on our algorithm and on LB-BBLS, LB-BFGS. This time the nonzero
entries of ureal are generated by the absolute value of Gaussian distribution with
variance 2. Noise is generated the same way as in the previous subsection with
ϵ = 10−2. The stopping criteria is set to be ∥Au − f∥ ≤ ϵ. This time the Matlab
function for solving nonnegative least squares (Matlab NNLS), which is based on an
active set method, is also included in the comparison. FPC with Bregman iteration
and FISTA with Bregman iteration are still stopped after 400 iterations if they
have not converged then.
In detail we can conclude the following:

(1) In the first non-negative reconstruction experiment (Table 12), all methods
determined ureal to a good accuracy with typically less than 1% deviation.
The fastest reconstruction result is achieved by LB-SB, where difference
between the choice of the parameter α = 10 and α = 3 is small in terms of
reconstruction accuracy as well as run time. Matlabs NNLS algorithm does
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Table 12. Size A = 100× 1000, 1% of ureal is nonzero.

Algorithm Time ∥Au−Aureal∥ ∥u∥0 ∥u∥1 relative error α

pSB-u 9.52e-02 6.27e-03 1.10e+01 1.30e+01 3.51e-03 -

pSB-d 9.52e-02 4.84e-03 1.03e+01 1.29e+01 3.22e-03 -

aISS 4.03e-02 3.17e-03 1.07e+01 1.29e+01 2.00e-03 -

FPC 4.24e-01 3.74e-03 1.13e+01 1.28e+01 2.67e-03 -

FISTA 3.50e-01 3.43e-03 1.13e+01 1.28e+01 2.62e-03 -

LB-BBLS 1.74e-01 7.13e-03 1.80e+01 1.29e+01 6.15e-03 3

LB-BFGS 1.27e+00 1.00e-02 7.93e+01 1.30e+01 1.38e-02 3

LB-LBSB 2.41e-02 8.55e-03 2.40e+01 1.29e+01 7.97e-03 3

LB-BBLS 1.30e-01 4.62e-03 1.17e+01 1.28e+01 3.16e-03 10

LB-BFGS 1.26e+00 1.00e-02 7.33e+01 1.30e+01 8.98e-03 10

LB-LBSB 3.76e-02 8.54e-03 1.73e+01 1.29e+01 6.74e-03 10

Matlab NNLS 3.85e-02 5.30e-03 9.67e+00 1.28e+01 3.36e-03 -

Table 13. Size A = 900× 3000 case, 0.9% of ureal is nonzero.

Algorithm Time ∥Au−Aureal∥ ∥u∥0 ∥u∥1 relative error α

pSB-u 4.62e+00 5.95e-03 2.70e+01 2.16e+01 1.55e-03 -

pSB-d 4.62e+00 2.04e-03 2.70e+01 2.14e+01 7.42e-04 -

aISS 3.94e-01 1.66e-03 2.70e+01 2.14e+01 5.84e-04 -

FPC 1.50e+01 2.37e-03 2.68e+01 2.14e+01 8.44e-04 -

FISTA 1.44e+01 2.56e-03 2.68e+01 2.14e+01 9.13e-04 -

LB-BBLS 2.22e+00 1.99e-03 2.70e+01 2.14e+01 6.98e-04 3

LB-BFGS 1.63e+01 1.05e-02 2.13e+02 2.19e+01 4.65e-03 3

LB-LBSB 1.46e+00 2.21e-03 2.76e+01 2.14e+01 8.08e-04 3

LB-BBLS 3.28e+00 1.89e-03 2.70e+01 2.14e+01 6.62e-04 10

LB-BFGS 1.63e+01 1.52e-02 2.44e+02 2.19e+01 6.52e-03 10

LB-LBSB 1.40e+00 2.24e-03 2.72e+01 2.14e+01 8.20e-04 10

Matlab NNLS 3.46e-01 3.44e-03 2.66e+01 2.14e+01 1.20e-03 -

Table 14. Size A = 900× 3000 case, 3% of ureal is nonzero.

Algorithm Time ∥Au−Aureal∥ ∥u∥0 ∥u∥1 relative error α

pSB-u 2.60e+00 6.60e-03 9.00e+01 1.41e+02 6.21e-04 -

pSB-d 2.60e+00 4.32e-03 9.00e+01 1.41e+02 4.82e-04 -

aISS 1.56e+00 3.14e-03 9.00e+01 1.41e+02 3.21e-04 -

FPC 8.82e+00 3.50e-03 9.02e+01 1.41e+02 3.76e-04 -

FISTA 8.64e+00 3.59e-03 9.00e+01 1.41e+02 3.85e-04 -

LB-BBLS 2.12e+00 4.00e-03 9.16e+01 1.41e+02 3.97e-04 3

LB-BFGS 1.44e+01 1.04e-02 2.84e+02 1.41e+02 1.50e-03 3

LB-LBSB 1.37e+00 4.64e-03 9.18e+01 1.41e+02 5.37e-04 3

LB-BBLS 2.65e+00 3.56e-03 9.00e+01 1.41e+02 3.60e-04 10

LB-BFGS 1.54e+01 1.43e-02 2.95e+02 1.41e+02 1.84e-03 10

LB-LBSB 1.45e+00 4.63e-03 9.00e+01 1.41e+02 4.33e-04 10

Matlab NNLS 1.55e+00 4.22e-03 8.98e+01 1.41e+02 4.28e-04 -

not determine the ℓ1 minimizing solution, but still was able to determine
ureal fast an accurate.

(2) In our second test (Table 13), all methods gave good approximations for
ureal, however, with significantly higher computational afford. We can see
that aISS is the fastest method for determining non-negative solutions. As
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Table 15. Size A = 1000× 5000 case, 2% of ureal is nonzero.

Algorithm Time ∥Au−Aureal∥ ∥u∥0 ∥u∥1 relative error α

pSB-u 7.73e+00 6.29e-03 1.00e+02 1.53e+02 6.51e-04 -

pSB-d 7.73e+00 4.13e-03 1.00e+02 1.53e+02 5.37e-04 -

aISS 4.00e+00 3.18e-03 1.01e+02 1.53e+02 3.84e-04 -

FPC 2.91e+01 3.89e-03 1.00e+02 1.53e+02 4.89e-04 -

FISTA 2.90e+01 3.79e-03 1.01e+02 1.53e+02 4.81e-04 -

LB-BBLS 6.47e+00 4.19e-03 1.06e+02 1.53e+02 5.21e-04 3

LB-BFGS 2.62e+01 1.01e-02 3.38e+02 1.53e+02 1.94e-03 3

LB-LBSB 3.10e+00 5.57e-03 1.17e+02 1.53e+02 7.74e-04 3

LB-BBLS 6.95e+00 3.67e-03 1.01e+02 1.53e+02 4.27e-04 10

LB-BFGS 2.78e+01 1.17e-02 3.55e+02 1.53e+02 1.83e-03 10

LB-LBSB 3.21e+00 4.96e-03 1.05e+02 1.53e+02 6.74e-04 10

Matlab NNLS 3.67e+00 4.91e-03 9.97e+01 1.53e+02 6.12e-04 -

Table 16. Size A = 1000× 5000 case, 3% of ureal is nonzero.

Algorithm Time ∥Au−Aureal∥ ∥u∥0 ∥u∥1 relative error α

pSB-u 1.57e+01 6.71e-03 1.55e+02 2.32e+02 6.75e-04 -

pSB-d 1.57e+01 5.37e-03 1.55e+02 2.31e+02 6.07e-04 -

aISS 8.42e+00 3.95e-03 1.54e+02 2.31e+02 4.11e-04 -

FPC 5.58e+01 8.24e-03 1.55e+02 2.31e+02 8.98e-04 -

FISTA 5.38e+01 8.13e-03 1.55e+02 2.31e+02 8.87e-04 -

LB-BBLS 9.10e+00 8.72e-03 2.87e+02 2.32e+02 1.51e-03 3

LB-BFGS 2.78e+01 1.00e-02 5.30e+02 2.32e+02 2.57e-03 3

LB-LBSB 3.12e+00 9.14e-03 2.45e+02 2.32e+02 1.31e-03 3

LB-BBLS 1.17e+01 5.83e-03 1.63e+02 2.31e+02 7.15e-04 10

LB-BFGS 2.96e+01 1.10e-02 4.34e+02 2.32e+02 1.67e-03 10

LB-LBSB 3.70e+00 6.38e-03 1.68e+02 2.31e+02 7.71e-04 10

Matlab NNLS 5.24e+00 9.46e-03 1.48e+02 2.31e+02 1.03e-03 -

for the influence of α it is interesting to see that this time the smaller choice
of α required more running time for LB-SB.

(3) Even for 180 positive values in ureal the reconstruction worked well (Ta-
ble 14). In this experiment LB-SB is significantly faster than any other
method. The results we get for the LB methods also illustrate the behavior
for changing the parameter α nicely: While the relative errors to ureal in-
crease only a little bit for the smaller value of α the support of the solutions
increases significantly. For α = 10 LB-BBLS gives a result similar to the ℓ1

minimizing methods, while for α = 3 the solutions support is much larger.
However, due to the good relative errors we can conclude that again the
increased support is based on very small, negligible oscillations.

(4) For a matrix size of 1000 × 5000 and 100 positive entries in ureal LB-SB
beats the other LB methods by almost a factor of 3 in run time (Table 15).
Otherwise we can observe similar effects as in the previous cases about the
support of the LB solutions in comparison to the ℓ1 minimizing methods.

(5) Finally, for an increased number of non-zeros in ureal, LB-SB remains the
fastest method beating all other elastic net or ℓ1 minimizing methods by
at least a factor of 3 (Table 16). In this case the choice of α had very little
influence on the runtime of LB-SB, while the larger α gave a sparser result.
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Once more LB based methods have a larger support, but only a slightly
increased relative error.

In conclusion we can say that on average a larger α tends to give sparser results
with the sacrifice in speed, which is to be expected considering the error estimates
we derived in Section 4. Considering the little gain in relative error and sparsity
and great loss in speed, we need to choose a reasonable α. Usually in application,
α = 5 will be a simple and good choice.

In comparison to the ℓ1 minimizing methods, the LB methods result in a larger
support, but only very small differences in relative error. Thus, for applications
that do not require very high precision solutions, the LB-SB method will be a very
good choice due to its advantages in run time and its independence of the sparsity
level of the reconstructed solution.

6. Conclusion

We proposed a new method for finding a J(u) = ∥u∥1 + 1
2α∥u∥

2 minimizing

solution to Au = f , which for large α coincide with ℓ1 minimizing solutions. Our
idea is based off of the dual formulation to the constrained problem similar to
the linearized Bregman approach, but solves the resulting problem using the split
Bregman method instead of gradient descent.

We presented a framework for the convergence analysis for split Bregman meth-
ods in general and derived particular estimates for the split Bregman methods
applied to the primal and dual formulation of our problem. Our analysis leads us
to the conclusion, that the split Bregman algorithm can yield different convergence
properties on the primal and dual problem in general. Thus, for any minimization
problem the choice of the formulation could and should depend on the question
which formulation has the more desirable convergence properties. For our spe-
cific example, we were able to derive an ℓ2-type error estimate although we are
determining the ℓ1 minimizing solution.

In an extensive numerical experiment we compared our proposed model to state-
of-the-art methods like primal split Bregman, aISS, FPC with Bregman iteration,
FISTA with Bregman iteration, LB-BBLS and LB-BFGS. The comparison included
ℓ1 minimization on data with and without noise as well as non-negative ℓ1 mini-
mization. We can conclude from our experiments that our algorithm is faster than
the gradient descent based algorithms LB-BBLS and LB-BFGS, particularly for
very under determined matrices. aISS is generally more accurate (particularly in
the noise free case) and very fast if the solution is very sparse, but its runtime
heavily depends on the sparsity of the true solution while LB-SB does not. The
primal split Bregman algorithm pSB is slightly more accurate than LB-SB, but
also converges slower. In our experiments, LB-SB on average was by far the fastest
method. While there might be some small oscillations in the final solution they are
small enough to almost not affect the relative error at all.
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