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Abstract

This thesis considers several instances of abstraction that arose in the design and implemen-

tation of the web programming language Links. The first concerns user interfaces, specified

using HTML forms. We wish to construct forms from existing form fragments without in-

troducing dependencies on the implementation details of those fragments. Surprisingly, many

existing web systems do not support this simple scenario. We present a library which captures

the essence of form abstraction, and extend it with more practical facilities, such as validation

of the HTML a program produces and of the input a user submits.

An important part of our library is a simple semantics, given as the composition of three

primitive “idioms”, an interface to computation introduced by McBride and Paterson. In order

to justify this approach we present a comparison of idioms with the related notions of monads

and arrows, refining the informal claims in the literature.

Our library forms part of the Links framework for stateless web interactions. We describe a

related aspect of this system, a preprocessor that derives generic instances of functions, which

we use to serialise server state between client requests. The abstraction in this case involves

the shape of datatypes: the serialisation operation is specified independently of the particular

types involved.

Our final instance of abstraction involves abstract types. Functional programming lan-

guages typically offer one of two styles of abstract type: the abstraction boundary may be

drawn using a private data constructor, or using a type signature. We show that there is a pair

of semantics-preserving translations between these two styles. In the light of this, we revisit

the decision of the Haskell designers to offer the constructor style, and define a library that

supports signature-style definitions in Haskell by translation into the constructor style.
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Chapter 1

Introduction

1.1 Abstraction

Abstraction makes programs more flexible by imposing a rigid separation between use and

definition. At the value level, lambda abstraction separates out the values used in an expression.

At the type level, an abstract type definition separates the parts of a program that make use of

a type from the definition of the representation of that type.

In each case we bind a concept (such as “a date”, or “the type of dates”) to a name (such

as d, or Date), and then use that name, rather than the definition of the concept, within the

remainder of the program. Abstraction isolates each definition within a single portion of the

program; if we later change our mind about the details of the definition then the changes to our

program will be confined to that portion.

Form abstraction

Can we apply these principles of abstraction to web programming? Let us briefly review the

interface for interaction on the web. A web page specified using the HTML markup language

may contain one or more forms. Each of these forms contains various controls (buttons, menus,

text input boxes, and so on), each of which has a name that is unique within the form. For

example, here is the HTML for a form that allows the user to enter arrival and departure dates

for booking a hotel:

1
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<form action="book" method="post">
<div>
Arrival:<br/>
<div>Month: <input name="m1"/>Day: <input name="d1"/></div>
Departure:<br/>
<div>Month: <input name="m2"/>Day: <input name="d2"/></div>
<button type="submit">Book</button>
</div>

</form>

A browser might render the form like this:

The user edits the values in the form, then submits the form to a server for processing;

the values of the controls are sent as a sequence of pairs of names and values. If the user

wishes to book a room for the first week of December then the body submission will contain

the following lines:

m1=12
d1=1
m2=12
d2=8

Web programs, then, have to deal with each form on two occasions: when constructing

HTML, and when processing the submitted values. There is therefore a need to ensure that

the names used for controls when constructing the form correspond to the names expected

by the part of the program that processes the submission, and indeed a number of existing

web frameworks ensure that this need is met (Christensen, Møller, and Schwartzbach, 2003,

Thiemann, 2005, Plasmeijer and Achten, 2006).

Proper abstraction of form controls requires more than this simple guarantee of correspon-

dence: we must be able to separate the parts of the program which combine controls from the

descriptions of any particular controls. Perhaps surprisingly, most existing web frameworks do

not address this need.

To demonstrate, let us suppose that we have added a syntax for HTML literals to the Stan-

dard ML programming language; we will use braces within a literal to enclose an expression

whose value should be inserted at that point. The control for entering a date contains two input

fields, for the month and day components. The date control appears twice within the booking
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form, but with distinct names for the fields in each case. We therefore define the date control

as a function which accepts field names as arguments and returns the HTML for the control.

fun date m d =
<div>

Month: <input name="{m}"/> Day:<input name="{d}"/>
</div>

The date control can now be used multiple times within a larger control, so long as fresh

names are supplied as arguments each time. Of course, to make the larger control reusable in

the same way we must abstract these names again. Here is part of our booking control again,

built from two instances of the date control above:

fun date_range m1 d1 m2 d2 =
<div>

Arrival:<br/> {date m1 d1}
Departure:<br/> {date m2 d2}
<button type="submit">Book</button>

</div>

This passing around of names is rather inconvenient, not least since it is the responsibility

of the caller to avoid name clashes. However, there is a more serious problem. Suppose that

we wish to change the definition of the booking control to contain a single field for entering a

free form date.

fun date d =
<div>

<input name="{d}"/>
</div>

We now have to change the definition not only of date, but of date_range, and every other

place in the program where the date control is used. We call this breakdown in modularity the

form abstraction problem: the “clients” of a definition are written in a way that depends upon

the internal details of that definition. The abstraction leaks.

1.2 Effects

Our solution to the form abstraction problem involves a domain-specific language for describ-

ing forms; we embed this language into a “host” functional programming language. The func-

tional programming style discourages the use of side effects, but form processing naturally

involves certain effects: for example, we must generate unique names for fields during form

generation and look up values in the environment during processing of a submission. As we
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have seen, it is possible to avoid these effects by threading state (such as the names needed by

a component) throughout the program, but this can lead to an awkward programming style and

a loss of abstraction.

There are several approaches to resolving the tension between the convenience of effects

and the benefits of purity. An approach that has proven fruitful in Haskell (Peyton Jones and

Hughes, 1999) is to shift the focus from executing effectful computations to constructing com-

putations that can be executed later. Using this approach, computations are reified as regular

values, and sequencing of computations is simply composition of values. It is this approach

that we shall use in developing a solution to the form abstraction problem.

Monads (Moggi, 1989, Wadler, 1990) are the most popular and most powerful example

of the computations-as-values approach. The monad interface is used for the standard I/O

interface in Haskell, besides many other “notions of computation” ranging from parsers (Hutton

and Meijer, 1998) to database queries (Leijen and Meijer, 1999). The interface provides great

flexibility in constructing and sequencing computations; in particular, it enables higher-order

programming, in which computations can be constructed and executed “on-the-fly”. However,

the power comes with a price: every implementation of the monad interface must offer the

same flexibility. When the underlying notion of computation does not support the required

degree of flexibility the monad interface cannot be used.

Two alternatives to the monad interface have been suggested. Hughes (2000) introduced

arrows as a kind of first-order variant of monads. McBride and Paterson (2008) introduced

idioms (also known as applicative functors) as an interface for writing effectful computations

in an applicative style; as with arrows, the idiomatic interface is less powerful than the monadic.

In order to choose the most suitable interface for defining composable form fragments we will

make a careful investigation and comparison of idioms, monads and arrows.

1.3 Serialising continuations

Let us return to the HTML form example of Section 1.1:

<form action="book" method="post">
...

</form>

The action attribute of the form element is a URL indicating the program that will

process the form submission. In our example the URL is relative, and specifies a program

called book.

Indicating the program that will process the form submission in this way leads to a dis-
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GET booking.html

<form action="book">
 <div>
   ...

POST book
m1=12
d1=1
...
   

Client Server

Figure 1.1: Constructing and processing a form

tinctive structure for web programs that is similar to the continuation-passing style familiar

to functional programmers. Programs written in continuation-passing style pass an extra pa-

rameter, the continuation, to each function. When the function’s work is finished, rather than

returning a result to the calling context (as a program written in the regular, direct style does),

it calls this continuation, passing the result as an argument. Similarly, a web program con-

structs a form, passing the name of a “continuation” program as the action attribute, then

relinquishes control to the user. The user edits the fields, then “calls” the continuation program

by submitting the form (Figure 1.1).

A significant difference between the continuation-passing style used in functional programs

and the structure of web programs is that in the former continuations are often denoted by

nested function expressions, whereas the latter requires that every “continuation” to a form is a

program named at top level. This constraint is similar to the distinguishing feature of a second

class of programs, those in lambda-lifted form (Johnsson, 1985). The lambda-lifting transfor-

mation replaces each nested function expression with a top-level function, and each free vari-



6 Chapter 1. Introduction

fun book env =
let () = register_booking

(read_date "m1" "d1" env) (read_date "m2" "d2" env)
in send_page <div>Booking confirmed!</div>

val entry_points = [ ("book", book), . . .]

send_page
(<form action="book">

<div>Month: <input name="m1"/>
Day: <input name="d1"/></div>

<div>Month: <input name="m2"/>
Day: <input name="d2"/></div>

<button type="submit">Book</button>
</form>)

Figure 1.2: A program in “web style”

able in the original expression with a parameter to the function. We refer to the continuation-

passing lambda-lifted style used in web programs as “web style”.

Both the continuation-passing style and the lambda-lifted style have interesting theoreti-

cal properties, but they are inconvenient for programming; they are more suitable for use in

the internals of compilers than as source languages (Peyton Jones, 1986, Appel, 2007). Con-

sequently, Queinnec (2000) and Graunke, Krishnamurthi, Hoeven, and Felleisen (2001b) ad-

vocate using a language with first-class continuations, such as Scheme (R. Kelsey, 1998), for

writing web programs in a more direct style. A program written using Graunke et al.’s system

uses a special procedure during form construction, send/suspend, which generates a string

referring to its own continuation; this string is used as the action attribute of the form. When

the form is submitted this reference is resolved, and the continuation is invoked with the form

values entered by the user. To the programmer it appears that the form values are “returned”

from send/suspend, in contrast to the regular style of web program, where they are passed as

arguments to the entry point named in the action attribute.

Figures 1.2 and 1.3 illustrate the two styles (using Standard ML rather than Scheme, for

continuity with the other examples in this chapter). The first program (Figure 1.2) is written

in “web style”. It creates and displays a form which names the function book as the action;

we assume a function send_page that wraps the form in suitable boilerplate HTML to form

a complete page, sends the page the client and exits the program. The book function ac-

cepts an environment containing the submitted field values, which it extracts using a function

read_date. After registering the booking (in a database, say), it sends a confirmation page
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let env =
(send_suspend

(fn k_url ⇒
(make_page

<form action="{k_url}">
<div>Month: <input name="m1"/>

Day: <input name="d1"/></div>
<div>Month: <input name="m2"/>

Day: <input name="d2"/></div>
<button type="submit">Book</button>

</form>)))
in
let () = register_booking

(read_date "m1" "d1" env) (read_date "m2" "d2" env)
in send_page <div>Booking confirmed!</div>

end

Figure 1.3: A “direct style” version of Figure 1.2

to the client. The entry_points variable is bound to a table which maps each name used

as the action of a form to the corresponding continuation function. (We do not show the

code which performs this resolution.) The second program (Figure 1.3) uses send_suspend

to generate a value for the action of the form and binds it to k_url. (We assume a func-

tion make_page which wraps the form in boilerplate HTML to form a complete page.) When

the form is submitted this action is resolved to the continuation of the call to send_suspend,

which is invoked with the submitted environment. This environment is bound to env, and the

program resumes execution at the point where the call to send_suspend returns; at this point

the program behaves like the book function of Figure 1.2, extracting the dates and passing the

results the register_booking.

The direct style of Figure 1.3 uses the continuation of the program that generates a response

as the entry point to the program that generates the next response. The question therefore arises

as to where to store this continuation between requests. One approach, taken by Graunke et al.

(2001b), Graham (1997), and others, is to store the continuation in a persistent table on the

server between requests, treating the string used as the action as an index into this table.

This implementation has the advantages of simplicity and efficiency: the index is small and

simple compared to the continuation, and multiple continuations involving the same data can

share structure, since they are stored in the same server. However, there are also serious short-

comings, most notably the difficulty in reclaiming the storage used by continuations. There are

two potential strategies for reclaiming storage: either the continuations in the table are stored
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indefinitely, in which case storage requirements on the server increase with every form sent to

the client, or the continuations are removed from the table, invalidating forms previously sent

to the client (which may be still open, or bookmarked for later use). Neither of these options is

acceptable for a scalable, reliable web application.

Graunke, Findler, Krishnamurthi, and Felleisen (2001a) describe an alternative approach to

writing direct-style web programs which requires neither first-class continuations in the source

language, nor arbitrarily large storage capacity on the server. Starting with a source program

written in the direct style of Figure 1.3, Graunke et al.’s (2001a) system applies a sequence of

three transformations to obtain a program in web style, as in Figure 1.2. The first transforma-

tion, into continuation-passing style, reifies each resumption point in the program as a function.

The second transformation, lambda-lifting, moves these continuations to top-level. The final

transformation, defunctionalisation (Reynolds, 1972), gives higher-order values a first-order

representation; it performs a function roughly analogous to that of the entry_points table

in Figure 1.2. The purpose of the defunctionalisation step is to make it possible to serialise

continuations — that is, to translate them into a format that can be stored outside the pro-

gram, from which they can be recovered at a future point. Now the serialised continuations

can be incorporated into forms — either as the action, or as hidden fields — and stored on

the client, avoiding the problems with lifetime management which arise when continuations

are stored on the server. Halls (1997) was perhaps the earliest proponent of this approach.

As Halls notes, passing continuations between server and client in this way requires additional

measures to avoid security problems; a naive approach risks inadvertently exposing secret data,

or executing continuations constructed by a malicious client.

1.4 Abstract types

Up to this point we have been concerned with a proper separation between definition and use at

the value level. Abstract type definitions enforce a similar separation at the type level, dividing

a program into the region that defines an abstract type in terms of some existing representation

type, and the region that uses the abstract type through an interface without making use the of

its representation.

There are two common styles of abstract type. The first hides the definition behind an

interface, using type signatures to conceal the representation. In Standard ML this is achieved

using a module signature, as in the following simple definition for an abstract date type:
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structure Date =
struct

type date = { month : int, day : int }
fun mkDate m d = { month = m, day = d }
fun toString (d : date) = Int.toString (#day d) ^ "/"

^ Int.toString (#month d)
end :>
sig
type date

val mkDate : int → int → date

val toString : date → string

end

Now the functions mkDate and toString and the type constructor date are available for use

in the remainder of the program, but the module signature conceals the representation of date

from code outside the module, so that attempts to access the month and day fields are rejected.

As a result, we can be sure that it is safe to change the type used as the representation of date

without affecting the rest of the program.

With the second style of abstract type definition there is no need to write type signatures.

Instead, a private data constructor conceals the representation from the rest of the program. This

style exploits the scoping of identifiers to delimit that the constructor is only available within

the code that defines the abstract type, and so cannot be used to access the representation type

elsewhere in the program. Here is a definition of the date type in this style.

abstype
date = Date of { month : int, day : int }

with
fun mkDate m d = Date { month = m, day = d }
fun toString (Date d) = Int.toString (#day d) ^ "/"

^ Int.toString (#month d)
end

As before, the functions mkDate and toString are visible to the rest of the program. However,

the data constructor Date is not: there is no way to access values of type date elsewhere in the

program except via the two functions in the interface.

1.5 Links

The ideas presented in this dissertation were developed in the context of Links.

Links (Cooper et al., 2006) is a programming language for web applications that generates

code for all three tiers of a web application from a single source, compiling into JavaScript

to run on the client and into SQL to run on the database. Links supports rich clients running
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in what has been dubbed ‘Ajax’ style, and supports concurrent processes with statically-typed

message passing. Links follows the scalable approach to form continuations, preserving session

state in the client rather than the server. Client-side concurrency in JavaScript and transfer of

computation between client and server are both supported by translation into continuation-

passing style.

However, the contributions of this dissertation are not tied to Links. We will use a vari-

ety of functional programming languages to present our ideas, taking advantage of particular

features of those languages. The investigation of idioms, arrows and monads in Chapter 2

benefits from Haskell’s type classes (Hall, Hammond, Peyton Jones, and Wadler, 1996), and

particularly from Jones’s (1993) constructor classes. The metaprogramming facilities pro-

vided by Template Haskell (Sheard and Peyton Jones, 2002) are helpful in implementing a

translation between the two styles of abstract type definition (Section 5.5). We necessarily

use OCaml (Leroy, 2008), the language used for the Links implementation, in describing the

techniques used in Links for serialising continuations in Chapter 4. OCaml’s advanced module

system and facility for syntactic extension are also helpful for presenting our new constructs

for programming with form fragments in Chapter 3. Finally, for our more formal investigations

in Chapters 2 and 5 we use variants of the lambda calculus and polymorphic lambda calculus.

1.6 Contributions

The key contributions of this dissertation are:

• A study of the idiom, arrow, and monad interfaces, including

– A proof of completeness for a variant of Paterson’s arrow notation

– Presentation of the three interfaces as variations on a single calculus

– An ordering of the three interfaces by expressive power

– Transformers for each interface that convert computations to normal form

• A distilling of the form abstraction problem to its essence using composition of three

primitive idioms, an argument that the idiom interface is a good match for our solution,

and an exploration of various extensions.

• An approach to generating generic function instances in OCaml using the Camlp4 pre-

processor and the correspondence between ML modules and Haskell type classes.
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idioms

��

monads

��
static arrows

(A B ' 1 (A→ B))

II

� � // arrows � � //
higher-order arrows

(A B ' A→ (1 B))

II

Figure 1.4: Idioms, arrows and monads

• A proof that the two common styles of abstract type definition are equivalent and inter-

convertible; a library that uses the equivalence to extend Haskell with signature-based

abstract type definitions.

1.7 Roadmap

Chapter 2 (Three models for the description of computation) sets up the theoretical background

for the investigation of form abstraction in Chapter 3.

We explore the connection between Wadler’s (1990) monads, Hughes’s (2000) arrows and

McBride and Paterson’s (2008) idioms (also known as applicative functors). Existing work

shows how arrows and monads are related, but there has been some confusion over the rela-

tion of idioms to the other two interfaces. McBride and Paterson (2008), introducing idioms,

describe them informally as

an abstract notion of effectful computation lying between Arrow and Monad
in strength

but we will show that idioms should actually be ranked as the least powerful of the three

interfaces.

Our approach is to use the arrow calculus, a variation on a notation introduced by Paterson

(2001) that we show to be complete. We show that idioms and monads correspond to static

and higher-order variations on this calculus and show that static arrows embed into arrows and

that arrows embed into higher-order arrows, thus establishing the correct ordering of expressive

power (Figure 1.4).

Each interface is accompanied by laws which equate certain computations; we show how

to use these laws to construct normalizing transformers for idioms, arrows and monads in

Haskell.
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Chapter 3 (Abstracting controls) describes formlets, a solution to the form abstraction

problem introduced in Section 1.1. Formlets allow true abstraction over form components,

freeing the programmer from the need to worry about name collisions or type mismatch prob-

lems.

We argue that formlets are most naturally viewed as an idiom (rather than as an arrow

or monad) and give a semantics based on the composition of the three standard idioms that

capture the effects necessary for programming with forms. We also give a formal definition of

the formlet syntactic sugar and an implementation in OCaml.

Although formlets capture only the essence of form abstraction it is easy to extend the basic

definition with additional features. We describe extensions for statically checking the validity

of generated XHTML and dynamically checking that user input meets specified constraints.

We briefly discuss a more efficient desugaring translation.

Chapter 4 (Serialising continuations) describes deriving, an extension to OCaml for de-

riving generic function instances that we use to provide an essential part of the formlets imple-

mentation in Links: the serialisation of continuations.

The design of deriving is inspired by the Haskell keyword of the same name. As in Haskell,

the programmer may list the names of classes after a type declaration to request that the imple-

mentation generate instances of those classes for the declared type. OCaml does not have type

classes, but there is a well-known correspondence between modules and type classes that we

use to guide the design of deriving.

One advantage of our approach is that, in contrast to the more common approach based

on combinators, almost no effort is required on the part of the programmer in the common

case where the generated instance is adequate; however, it is also straightforward to provide

customised instances for particular types which integrate smoothly with the generated code.

Chapter 5 (Signed and Sealed) formally compares the two styles of abstract type definition,

as introduced in Section 1.4, in which the representation type is concealed from the rest of the

program using either a type signature or a private data constructor. We add constructs for

both styles to a partial polymorphic lambda calculus introduced by Pitts (2000) and give a

parametricity-based proof that the two are equivalent, together with an automatic translation

from each style into the other.

In part, our motivation comes from addressing a problem encountered by the designers

of Haskell: it was unclear how to combine the signing style of abstract type definition with

unambiguous overloading (Hudak, Hughes, Peyton Jones, and Wadler, 2007). We show that

this is possible by translating the signing style into the sealing style used by Haskell, and
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describe a Template Haskell library that performs this translation. We demonstrate by examples

that the signing style can lead to more elegant Haskell programs, removing the clutter of the

constructors and destructors introduced by sealing.

Chapter 6 concludes.





Chapter 2

Three models for the description

of computation

2.1 Introduction

The Internet Robustness Principle (RFC 793) states

Be conservative in what you do; be liberal in what you accept from others.

In other words, robust systems make the weakest possible assumptions about input and

give the strongest possible guarantees about output. Programs that accept only integers are less

flexible than programs that accept all kinds of number. Contrariwise, programs that may output

any kind of number are less flexible than programs that are guaranteed to output only integers.

To follow the principle we need to know which sets of values generalise which other sets.

While there are certainly more numbers than integers, the ordering is not so obvious at higher-

order types, such as function and computation types. Can a program that manipulates arrow

computations be made more flexible by specifying that the input must be an idiom rather than

an arrow? Can a library that exposes an idiom instance be made more flexible by exposing

an arrow instance instead? In his original work on arrows, Hughes shows how each monad

gives rise to an arrow, and gives an extended arrow interface, ArrowApp, that is equivalent

to the monad interface1 (Hughes, 2000). In their later work introducing idioms, McBride and

Paterson show how to obtain an idiom from either a monad or an arrow, and how to combine an

idiom and an arrow to yield another arrow (McBride and Paterson, 2008). However, the precise

1 The title is a nod to Chomsky’s seminal work on the relative power of three classes of formal language
(Chomsky, 1956), but we shall use “interface” rather than “model” to refer to the concepts “monad”, “arrow” and
“idiom” in the remainder of this chapter.

15
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idioms

��

monads

��
static arrows

(A B ' 1 (A→ B))

II

� � // arrows � � //
higher-order arrows

(A B ' A→ (1 B))

II

Figure 2.1: Relating idioms, arrows and monads.

relationship between the three notions of computation has remained obscure. In particular,

McBride and Paterson informally describe idioms as

an abstract notion of effectful computation lying between Arrow and Monad in
strength

whereas we show in the following pages that idioms are, in fact, weaker than both arrows and

monads. The diagram in Figure 2.1 gives a high-level view of the situation: idioms correspond

to a language which may be extended to obtain arrows; a further extension yields a language

corresponding to monads. (As we shall see, the second of these extensions is based on a

straightforward syntax inclusion, while the first involves a more subtle translation.)

In this chapter we provide first an informal and then a formal comparison between the three

interfaces. This will serve as a solid basis both for the design of formlets (Chapter 3), and for

resolving the similar questions that arise every time one wishes to embed a language which

involves effects.

In Section 2.2 we begin our investigation with an informal comparison of the interfaces for

programming with idioms, arrows and monads in Haskell. These interfaces take the form of

mutually unrelated type classes whose methods are governed by somewhat ad-hoc laws. We

give a number of examples that reveal the relative flexibility of the various type classes, and

transformers for each class that put computations into normal form. These normal forms show

clear differences in the expressive power of each interface.

Section 2.3 introduces a new presentation in which idioms, arrows and monads are simple

variations on a common calculus, the first step on the road to formally establishing the order

of the strength. This calculus, which we call arrow calculus, is closely related to a notation

introduced by Paterson (2001). However, while Paterson’s notation is a convenient abbreviation

for arrow computations, we show that the arrow calculus is in fact complete: we are justified

in using it as a full substitute for the classic formulation. The isomorphism between the two

formulation takes the form of an equational correspondence (Sabry and Felleisen, 1993), in

which the composition of the translations between the two is the identity, and in which the
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laws of each follow from the laws of the other. The proof of the correspondence reveals that

one of the laws in the standard presentation of arrows is redundant.

Section 2.4 extends the arrow calculus in two ways: first, by introducing either an addi-

tional operator or a type isomorphism to bring it into correspondence with idioms; next, by

introducing either an additional operator or a type isomorphism to bring it into correspondence

with monads. (These correspondences are weaker than the equational correspondence between

arrow calculus and classic arrows; in order to characterise them we introduce the notion of

equational equivalence.) The relationships that emerge invalidate the claim by McBride and

Paterson quoted above. The extension of arrow calculus to support higher-order (i.e. monadic)

computation also reveals that one of the laws in the standard presentation of higher-order ar-

rows is redundant.

2.2 Arrows, idioms and monads

We begin by introducing monads, arrows and idioms as they are used in Haskell. Each interface

makes computations available as first-class values within the language and provides operators

for constructing and composing computations. Haskell provides a principled form of overload-

ing, the type class (Hall et al., 1996), which is a good fit for programming with monads, arrows

and idioms.

2.2.1 Monads

Wadler (1990) introduced monads to the functional programming community, drawing on work

by Moggi (1991) on the semantics of effectful programs. Using monads, computations are

presented as first-class values, with combinators for constructing and composing computations.

Monads have proved remarkably successful as a program structuring technique: they are used,

for example, as the sole means of constructing programs which perform I/O in Haskell (Peyton

Jones and Hughes, 1999).

2.2.1.1 Monad operators

The Monad type class provides a common interface for various notions of effectful computation.

Each instance of the class consists of a unary type constructor, m, for representing computa-

tions, and two computation-forming operations, return and >>= (pronounced “bind”). The
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concrete definition of the Monad class is as follows2 3:

class Monad (m :: * → *) where
return :: α → m α

(>>=) :: m α → (α → m β) → m β

A value of typem τ, wherem is a monad, represents a computation that performs some effects

and then returns a result of type τ. The first operation of the class, return, accepts a value,

v , and creates a trivial computation that simply returns v , performing no effects. The second

operation, >>=, creates a computation from two values: an existing computation, m and a

continuation that accepts the result of m and creates a new computation.

2.2.1.2 Monad examples

The Monad type class defines an abstract interface to computation. In order to write programs

which involve monadic computations we must provide instances, or implementations of the

class; that is, we must instantiate the parameter m with a type constructor and supply corre-

sponding definitions for the return and >>= functions.

The monad interface encompasses a wide variety of notions of computation (Moggi, 1991).

We will focus here on a single representative example: the addition of state to a pure language.

(Further examples will arise in the development of formlets in Chapter 3.) We model com-

putations involving updatable state as functions from an initial state to a result and an output

state.

newtype State σ α = State { runState :: σ → (α, σ) }

Here σ is the type of the state in a computation, and α is the result type. Then State σ is an

instance of the Monad class for any particular type σ:

instance Monad (State σ) where
return v = State (λs→ (v, s))
State m >>= k = State (λs→ let (a, s’) = m s

in runState (k a) s’)

The return function creates a computation which uses the unmodified input state as the output

state. The >>= function creates a computation whose input is passed to the computation m; the

result and output state of m are passed to the continuation k to give the result and output state
2 The Haskell 98 definition of Monad includes two further operators. The first, >>, may be defined in terms

of the >>= operator. The second, fail, determines the action to take when pattern matching fails, and does not
concern us here.

3 In Haskell type expressions are classified by kinds, which are either of the form *, the kind of types, or
κ1 → κ2, the kind of type-level functions from kind κ1 to kind κ2. As an aid to comprehension we will include
kind signatures for all type parameters that denote kinds other than*. (Kind signatures are an extension of the GHC
Haskell implementation.) The use of Roman letters also distinguishes these higher-kinded type variables from type
variables of kind *, for which we use Greek letters.
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of the whole computation.

Most instances of Monad come with extra functions for creating computations of a partic-

ular type. For stateful computations it is useful to have computations that retrieve and set the

state:

get :: () → State σ σ

get () = State (λs→ (s,s))

put :: σ → State σ ()
put s = State (λ_→ ((), s))

Using these constants and the operations of the Monad interface it is possible to express a wide

range of computations.

Example 1 (sequencing). We can sequence computations and process the results. For ex-

ample, we can construct a computation that executes two computations m and n in order and

returns the results as a pair4:

m >>= λx →
n >>= λy →
return (x,y)

Example 2 (dataflow). We can use the result of a computation to influence dataflow in

subsequent computations, using the result of one computation to compute the input to another.

For example, we can construct a computation of type State Bool () that negates the current

state, setting a True state to False and a False state to True:

get () >>= λs→
put (not s)

Example 3 (control flow). We can also use the result of a computation to determine control

flow in subsequent computations. For example, we can write a second computation of type

State Bool () that decides whether to execute a computation m depending on whether the

current state is True or False (i.e., depending on the result of running the computation get):

get () >>= λs→
if s then m else return ()

Example 4 (higher-order). It is also possible to write higher-order computations. For

example, we might use computations themselves as the result type, treating computation types
4The unconventional layout is intended to evoke assignment and sequencing in an imperative language: first set

x to the result of m, then execute the next action with x in scope, and so on.
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of the form

State σ (State σ τ)

Given a computation m of this type we can write a computation of type State σ τ that executes

the result of m:

m >>= λn→
n

(This computation corresponds to the multiplication of the monad.)

As we shall see in Sections 2.2.2 and 2.2.3, the other computational interfaces — Arrow

and Idiom — are only sufficiently flexible to encode some, not all, of these computations.

2.2.1.3 Monad laws

We saw in 2.2.1.1 that the Monad class contains a type constructor and two operations. This

is not the whole story, however: a further aspect of monads is that each instance must satisfy

certain laws. These laws are not part of the Haskell specification of the class, and it is not

possible in general for a Haskell implementation to check that they are satisfied; instead, they

are left to a “gentlemen’s agreement” wherein the author of an instance of Monad promises to

check that the laws are satisfied for that instance.

The three monad laws say that return is a kind of left and right unit for >>= and that >>=

is associative.

return v >>= f ≡ f v
m >>= return ≡ m

(m >>= j) >>= k ≡ m >>= (λa→ j a >>= k)

It is easy to check that the State instance satisfies these laws. For example, we can demon-

strate that the first law holds as follows:

return v >>= f

= (definition of return, >>=)

State (λs→ let (a,s’) = (λs→ (v,s)) s

in runState (f a) s’)

= (β)

State (λs→ runState (f v) s)

= (η)

State (runState (f v))

= (State (runState v) ≡ v )

f v
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It is similarly straightforward to demonstrate that the other monad laws hold for State.

2.2.2 Arrows

The examples in Section 2.2.1.2 illustrate the flexibility offered by the Monad interface. This

flexibility is a boon when writing programs which use the Monad interface, but can become a

burden when writing instances of the class.

Hughes (2000) gives a striking example of this phenomenon. Parser combinators embed

parsers in functional languages as regular values (Wadler, 1985), commonly casting them as

monads (Hutton and Meijer, 1998). Swierstra and Duponcheel (1996) present a variant of the

parser combinator technique in which matching a string against a grammar is split into two

phases. The first phase analyses the grammar specification to construct an efficient parser; the

second phase uses this parser to convert the input string into a structured value. However, this

two-phase implementation approach cannot be used for computations constructed using the

Monad interface, since the >>= operator allows the user to delay construction of the grammar

specification until part of the input string has been processed.

Hughes’ response is to introduce arrows, an interface to first-order computation. The

Arrow type class offers an interface to users that is more restrictive than Monad: in particular,

arrows provide no way to construct a computation based on the result of an earlier computa-

tion. The benefit of relinquishing flexibility in the interface is that there is more freedom when

writing Arrow instances: for example, Swierstra and Duponcheel’s parsers, which cannot be

implemented as monads, can be implemented as arrows.

2.2.2.1 Arrow operators

The Arrow type class, like Monad, provides an interface to effectful computation. Each instance

of Arrow consists of a binary type constructor,  , for representing computations, and three

computation-forming operations, arr, >>> (pronounced “compose”) and first. The concrete

definition of the Arrow class is as follows:

class Arrow (( ) :: * → * → *) where
arr :: (α→β) → (α β)
(>>>) :: (α β) → (β γ) → (α γ)
first :: (α β) → ((α,γ) (β,γ))

For each instance of Arrow, a value of type σ τ represents a computation that expects an

input of type σ and, after performing some effects, returns a result of type τ. The fact that arrow

computations have both an input and an output leads to an appealing graphical presentation,

used in work by Paterson (2001) and others. The first operation of the Arrow class, arr, is
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analogous to the monadic return: arr creates an arrow computation from a pure function. In

the graphical presentation pure computations are denoted using circles:

f

arr f

The second operation of the Arrow class, >>>, constructs a new computation from two

existing computations, using the result of the first as the input of the second.

>>>

f g

f >>> g

The final operation of the Arrow class makes it possible to pass values from one computa-

tion to another, besides those values which are used as input to the computation.

first

f

first f

It is instructive to compare the >>> operator for arrows with the >>= operator for monads.

In both cases the result of the left operand is passed as input to the right, but whereas the right

operand of >>= constructs a computation, the right operand of >>> is a computation. Thus>>>

is (for the user of the Arrow class) less flexible than >>=, because the result of the left operand

cannot play a role in constructing the computation passed as the right operand.

The first operator for arrows fulfils a need that for monads is also met by >>=: passing

through values that are not used by intermediate computations. For example, the computation

m in Example 1 (sequencing) returns a value that is not used by the next computation, n , but

is used in the final computation. The value is bound to the variable x by the λ-abstraction

used as the continuation to m , and so the normal rules of lexical scoping bring x into scope in

the remainder of the computation. In contrast, inputs to arrow computation are not λ-bound,

so an additional operator is needed to explicitly pass through values that are needed in subse-

quent computations. (Example 5 on page 25 shows how to create an analogue of Example 1

(sequencing) using the arrow combinators.)

Several additional arrow combinators will be useful in what follows. These functions are

not part of the Arrow class since it is possible to express them in terms of the three class
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operations. The first is second, a cognate to first, but with the difference that the additional

value is passed using the first element of the pairs in the input and output, not the second.

second

f
def
=

>>>
>>>

first

f

second f arr swap >>> first f >>> arr swap

Here swap is defined as the function that exchanges the elements of a pair:

swap (x,y) = (y,x)

The second combinator, ∗∗∗, builds a computation that transforms pairs from two computa-

tions, passing the first element of the pair to the first computation and the second element of

the pair to the second computation.

***

g

f

def
=

>>>
first

f

second

g

f ∗∗∗ g first f >>> second g

Note that the sequencing of effects places f before g . This ordering is reflected in the rela-

tive horizontal placement of the boxes in the diagram; we use the same convention throughout

this chapter.

The final combinator, &&&, is similar to the ∗∗∗ combinator, but passes the same value as

input to both computations:

&&&

g

f

def
=

>>>
***

g

f

f &&& g arr dup >>> (f ∗∗∗ g)

Here dup is defined as the function that takes a single value into the two elements of a pair:

dup x = (x,x)
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2.2.2.2 Arrow examples

The Arrow interface has been used for a wide range of applications, including parsers and

printers (Jansson and Jeuring, 1999), web interaction (Hughes, 2000), circuits (Paterson, 2001),

graphic user interfaces (Courtney and Elliott, 2001), and robotics (Hudak, Courtney, Nilsson,

and Peterson, 2003). We restrict our attention here to three simple instances. The first instance

is the “identity” arrow of pure functions, where arr is the identity function, >>> is reverse

function composition, and first applies its argument to the first element of a pair.

instance Arrow → where
arr = id

f >>> g = g · f
first f = f × id

(We write f × g for the function λ(x,y)→ (f x,g y).)

The second instance generalises Swierstra and Duponcheel’s two-phase parsers to arbitrary

two-phase computations. We introduce a new type with four parameters: monads m and n for

the “static” and “dynamic” parts of a computation, and input and result types α and β.

newtype TwoPhase (m :: * → *) (n : * → *) α β
= TwoPhase { runTwoPhase :: m (α→ n β) }

We can then write an Arrow instance for TwoPhase. A computation of type TwoPhase m n α β

accepts an input of type α and returns a result of type β. All of the effects in the “static” monad

m are performed before any of the effects in the “dynamic” monad n, and only computations

in n, not computations inm, may depend on the arrow input.

instance (Monad m, Monad n) ⇒ Arrow (TwoPhase m n) where
arr f = TwoPhase (return (return · f))
TwoPhase f >>> TwoPhase g = TwoPhase (f >>= λh →

g >>= λk →
return (λa → h a >>= k))

first (TwoPhase f) = TwoPhase (f >>= λh →
return (λ(a,c) →

h a >>= λb →
return (b,c)))

The implementation of the arr operator is a straightforward combination of the return oper-

ators of the monadsm and n. A computation of the form f >>> g uses the >>= operator ofm

to extract the dynamic portions h and k from f and g, then sequences those dynamic portions

using the>>= operator of n, passing the arrow input a as input to h and the result of h a as input

to k. Similarly, a computation of the form first f uses the >>= operator of m to extract the

dynamic portion h of f, then applies h to the first element of the arrow input (a,c), passing
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the second element through using the strength of n5.

The third instance is a specialisation of TwoPhase, where m is the identity monad. For

each instance n of Monad, this specialisation gives us the type of Kleisli arrows of the monad

— that is, functions of the form α→ n β. We will use this instance in translating the example

computations, so it is helpful to write out the specialisation explicitly. We introduce a new

type to represent Kleisli arrows, writing Kleisli and runKleisli for the constructor and

destructor:

newtype Kleisli (n :: * → *) α β
= Kleisli { runKleisli :: α → n β }

To obtain the Kleisli instance of the Arrow class we start with the TwoPhase instance and

replace the >>= and return operations of them monad with the identity operations:

instance Monad n ⇒ Arrow (Kleisli n) where
arr f = Kleisli (return · f)
Kleisli f >>> Kleisli g = Kleisli (λa→ f a >>= g)
first (Kleisli f) = Kleisli (λ(a,c)→ f a >>= λb→ return (b,c))

Now we can write Arrow computations using any instance of Monad. We must also con-

vert any primitive computations of the monad to arrow computations. For the monad from

Section 2.2.1.2 we must convert get and put:

get :: Kleisli (State σ) () σ
get = Kleisli get

put :: Kleisli (State σ) σ ()
put = Kleisli put

We can now write Examples 1 (sequencing) and 2 (dataflow) as arrow computations.

Example 5 (sequencing with arrows). Sequencing computations and collecting results is

the purpose of the &&& operator. Given arrow computations m of type ()→ σ and n of type

()→ τ, the analogue of Example 1 (sequencing) may be written m &&& n .

Example 6 (dataflow with arrows). The arrow analogue of Example 2 (dataflow) may be

written as a composition of three arrow computations as follows.

5The “strength” refers to an operator of type α ×m β → m (α × β), i.e. a function that combines a value of
type α with a computation returning a result of type β to form a computation that returns a pair of α and β. Every
Haskell monad offers this functionality, but there is generally no need for an explicit operator: the combination of
lexical scoping and the >>= operator make it straightforward to collect values that are in scope into the result of a
monadic computation.
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>>>
>>>

get not put

get >>> arr not >>> put 

However, it is not possible to write Examples 3 (control flow) or 4 (higher-order) using the

arrow combinators. Using the arrow combinators we can use the output of one computation to

determine what the next computation should write, but not whether it should perform a write

at all. The particular set of computations that should be performed is determined before any

of the outputs is available. We might characterise this property as follows: using the arrow

combinators, dataflow is dynamic, but control flow is static. This limited expressive power

is, of course, a burden for users of arrows, but it is a boon for implementors; for example,

it is precisely what is needed to implement the efficient parser combinators described at the

beginning of Section 2.2.2.

In Section 2.2.2.4 we will extend the arrow operations with operations for choice and

higher-order programming, (making it possible to write arrow versions of Examples 3 and 4)

and show that not all arrow instances can support these new operations.

2.2.2.3 Arrow laws

Instances of Arrow, like instances of Monad, are subject to certain laws. Hughes (2000) gives

nine laws which all instances of the Arrow class must satisfy.

The first, second and third laws say that a lifted identity function is a left and right unit for

>>> and that composition is associative:

>>>

id f ≡ f

arr id >>> f f

>>>

idf ≡ f

f >>> arr id f
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>>>
>>>

f g h ≡

>>>
>>>

f g h

(f >>> g) >>> h f >>> (g >>> h)

The fourth, fifth and sixth laws say that arr is a homomorphism for composition and first

and that first is a homomorphism for composition:

 g  .   f ≡
>>>

f g

arr (g · f ) arr f >>> arr g

f ≡

first

f

arr (f × id) first (arr f )

first
>>>

f g ≡

>>>
firstfirst

f g

first (f >>> g) first f >>> first g

The last three laws allow pure computations to be moved to the left or right in the compu-

tational pipeline. The seventh law says that two computations which act independently on the

elements of a pair may be interchanged if one of them is pure:

>>>
second first

f

g
≡

>>>
first

f

second

g

second (arr g) >>> first f first f >>> second (arr g)

The eighth law says that projection of the first element of a pair may be equivalently performed

either before or after a computation which acts only on that element:
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>>>

f ≡

>>>
first

f

arr fst >>> f first f >>> arr fst

The ninth law says that values threaded alongside a computation may be grouped either before

or after threading:

first

fassoc ≡

first
first

f assoc

arr assoc >>> first f first (first f ) >>> arr assoc

Here assoc is defined as the function that rearranges the three elements of a nested pair:

assoc ((x,y),z) = (x,(y,z))

It is easy to verify that these nine laws hold for pure functions and that they hold for

Kleisli m whenever the monad laws hold form.

2.2.2.4 Arrow variants

In Section 2.2.2.2 we stated that the arrow combinators are not sufficient to encode dynamic

control flow — i.e., using the result of a computation to choose which of two computations

to run next. In using an instance of Monad through the Arrow interface we lose the ability

to express certain computations. If the underlying structure is sufficiently powerful then we

can define additional combinators that provide the lost functionality. The operator left, a

dual to first, is a general mechanism for selecting computations based on dynamic input.

The input to the arrow left a has the type Either α γ, which is the type of binary sums in

Haskell. If the input is a left injection, Left v, then a is run with input v; otherwise, the input

is passed through unchanged. Since there are useful instances of Arrow (such as Swierstra and

Duponcheel’s parsers) that do not support runtime branching, left is placed in a new class,

ArrowChoice (Hughes, 2000).

class Arrow ( ) ⇒ ArrowChoice ( ) where
left :: (α  β) → (Either α γ  Either β γ)

Now Kleisli is an instance of ArrowChoice.
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instance Monad m ⇒ ArrowChoice (Kleisli m) where
left (Kleisli m) = Kleisli branch

where branch (Left l) = m l >>= λv→ return (Left v)
branch (Right r) = return (Right r)

Example 7 (control-flow with arrows). With ArrowChoice, Example 3 (control flow) can

be written as a composition of three arrow values. The first is get , the arrow analogue of the

monadic get; the second encodes a boolean as a value of Either () (); the third optionally

runs the computation m using left.

get >>> arr (λv→ if v then Left () else Right ()) >>> left m

We can bring the expressive power of arrows closer to the expressive power of monads by

lifting further monadic operations into the world of arrows. The final extension we describe

closes the gap entirely. The app operator enables higher-order programming with arrows. As

before, app is placed in a new class, ArrowApply, for arrow instances that support the full

power of monadic programming.

class Arrow ( ) ⇒ ArrowApply ( ) where
app :: (α β, α)  β

The app operator is an arrow computation that accepts as input an arrow computation a and a

value v , and returns the result of running a with v as input. Hughes (2000) gives the three laws

which app must satisfy:

first (arr (λx→ arr (λy→ (x,y)))) >>> app ≡ arr id

first (arr (g >>>)) >>> app ≡ second g >>> app

first (arr (>>> h)) >>> app ≡ app >>> h

Now we can make Kleisli an instance of ArrowApply:

instance Monad m ⇒ ArrowApply (Kleislim) where
app = Kleisli (λ(Kleisli k, v) → k v)

As with the other instances we have seen, it can be shown that the nine arrow laws and the

laws for app hold for Kleislim whenever the monad laws hold form.

Example 8 (higher-order with arrows).

Using ArrowApply we can write an analogue of Example 4 (higher-order). From any

computation m of type () (() τ) we can form a computation of type () τ which

performs the result of m .

(m &&& arr id) >>> app
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In fact, given an instance of ArrowApply we can write an instance of Monad.

newtype Monadic ( ) α = Monadic{ unMonadic :: () → α}

instance ArrowApply ( ) ⇒ Monad (Monadic ( )) where
return v = Monadic (arr (λ_→ v))
Monadic m >>= k =

Monadic (((m>>> arr (unMonadic · k)) &&& arr id)>>> app)

As before, it can be shown that the three monad laws hold for Monadic ( ) whenever the

laws for Arrow and ArrowApply hold for . Further, we can combine the Monadic instance

of Monad and the Kleisli instance of ArrowChoice to obtain an instance of ArrowChoice

from any instance of ArrowApply. We will investigate the connection between arrows and

monads more formally in Section 2.4.

We claimed in Section 2.2.2.2 that it is not possible to write Example 4 (higher-order) using

the arrow combinators. Example 8 (higher-order with arrows) shows that, given an additional

operator, app, we can write an arrow version of Example 4. We now support our earlier claim

by showing that not all instances of Arrow can support app. Accy is a type constructor whose

second and third arguments are phantom, i.e. not used in the definition of the type.

newtype Accy µ α β = Acc {acc :: µ }

Then, for any monoid µ, we can make Accy µ an instance of Arrow by defining arr and (>>>)

of the arrow to be the unit e and multiplication � of the monoid, respectively, and making

first a no-op.

instance Monoid µ ⇒ Arrow (Accy µ) where
arr _ = Acc e
Acc m >>> Acc n = Acc (m ⊗ n)
first (Acc m) = Acc m

Since a value of type Accy µ α β does not contain a value whose type involves α or β, a com-

putation in the Accy arrow returns no result: it is executed purely for its effect, accumulation.

From the monoid laws for µ it is easy to show both that the arrow laws hold for Accy µ,

and that Accy µ cannot support an app operation. To prove this second fact, suppose that we

did have an app operation for Accy µ. Substituting the definitions of arr, first, and (>>>)

into the second app law, then applying the monoid laws, gives the following equation for app:

acc app ≡ acc g ⊗ acc app

This is clearly unsatisfiable in general. For example, let µ be the monoid of integers under

addition: there is no integer app such that app = g + app for every integer g.
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2.2.3 Idioms

We now turn to an examination of idioms6, the third and final computational interface in our

taxonomy.

2.2.3.1 Idiom operators

The Idiom type class, like Arrow and Monad, provides an interface to effectful computation.

Each instance of Idiom consists of a unary type constructor i, for representing computations,

and two computation-forming operations, pure and � (pronounced “apply”). The concrete

definition of the Idiom class is as follows:

class Idiom (i :: * → *) where
pure :: α → i α

(�) :: i (α→ β) → i α → i β

A value of type i τ, where i is an idiom, represents a computation that performs some

effects and then returns a result of type τ. The first operation of the Idiom class, pure, lifts

a value to a computation that returns the value; it is analogous to the monadic return. The

second operation, �, constructs a new computation from two existing computations, applying

the result of the first to the result of the second. (We present the laws associated with these

operators in Section 2.2.3.3.)

It is worthwhile comparing the idiomatic operation for composing computations, �, to

the corresponding operations in the Monad and Arrow classes. The Monad interface offers

>>=, which passes the result of a computation as input to a computation-creating function

(Section 2.2.1.1). The Arrow interface offers the less-powerful >>>, which passes the result of

a computation as input to another computation (Section 2.2.2.1). The � operator of the Idiom

interface is less powerful still: it does not pass the result of the first computation as input either

to a computation-creating function or a computation. Instead, it combines the results of the two

computations passed as operands; that is, the computations are first executed, then their results

combined. There is thus no facility for one idiomatic computation to make use of the result of

another.

6The interface described here was introduced by McBride (2004) under the name Idiom to capture a common
pattern in functional programming. Subsequently McBride and Paterson (2008) changed the name to applicative
functor to emphasise the view of idioms as an “abstract characterisation of an applicative style of effectful program-
ming”. We prefer the original name for a number of reasons, not least (as Gibbons and d. S. Oliveira (2009) point
out) that it comes equipped with the convenient adjectival cognate “idiomatic”.
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2.2.3.2 Idiom examples

The Idiom interface has been used for a range of applications. The interface used by Swierstra

and Duponcheel (1996) for parsers, some years before idioms were proposed as a general

interface, is an extension of the Idiom class. Elliott (2008) has proposed the use of idioms for

functional reactive programming, which is more typically implemented using arrows. Gibbons

and d. S. Oliveira (2009) have shown that a traversal operator parameterised by an idiom is

the essence of the iterator “design pattern” for object-oriented programs. Bringert and Ranta

(2006) use a variant of the Idiom interface to define a class of “almost compositional functions”

on syntax trees.

McBride and Paterson (2008) give a number of instances of Idiom that are of particular

relevance to this chapter. The first connects arrows and idioms: if is an instance of Arrow

then (τ ) (the partial application of the type constructor) is an idiom for any type τ. As

usual, we must use a newtype declaration, WrappedArrow7, to distinguish the particular set

of arrow values that we wish to use with the Idiom interface.

newtype WrappedArrow (( ):: * → * → *) α β
= WrapArrow {unwrapArrow :: α β}

Then we can make WrappedArrow ( ) τ an instance of the Idiom class for any Arrow in-

stance and any type τ. The pure function is built from a pure, constant arrow. The arrow

created by f � v passes its input to the arrows f and v ; the result is obtained by applying the

result of f to the result of v .

instance Arrow ( ) ⇒ Idiom (WrappedArrow ( ) τ) where
pure x = WrapArrow (arr (const x))
WrapArrow f � WrapArrow v = WrapArrow ((f &&& v) >>>

arr (λ(g,w)→ g w))

The second instance of interest connects the classes Idiom and Monad. From every instance

of Monad we can obtain an instance of Idiom. The following newtype declaration wraps

monadic computations.

newtype WrappedMonad (m :: * → *) α
= WrapMonad { unwrapMonad :: m α }

Then every instance of Monad gives an instance of Idiom for which pure is the monadic

return and � is a function that sequences its operands and applies the result of the first to the

result of the second.

7 McBride and Paterson (2008) call this type EnvArrow since, for each arrow type  and type η,
WrappedArrow ( ) η α is the type of arrow computations that read from an “environment” of type η and re-
turn a value of type α. The names WrappedArrow and WrappedMonad come from Paterson’s proposed addition to
the Haskell library (Paterson, 2008).
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instance Monad m ⇒ Idiom (WrappedMonad m) where
pure v = WrapMonad (return v)
WrapMonad f � WrapMonad v = WrapMonad (f >>= λg→

v >>= λw→
return (g w))

The third instance of interest makes it possible to build new instances of Idiom from exist-

ing instances by straightforward functor composition. The type constructor Compose composes

two functors.

newtype Compose (i :: * → *) (j :: * → *) α
= Compose { deCompose :: i (j α) }

The definition of the Idiom instance for Compose simply lifts the pure and � of the inner

idiom to the outer idiom.

instance (Idiom i, Idiom j) ⇒ Idiom (Compose i j) where
pure v = Compose (pure (pure v))
Compose f � Compose v = Compose (pure (�) � f � v)

A further instance of Idiom will be useful in exploring the connections with Arrow and

Monad. The environment idiom captures the effect of reading from (constant) input. We can

define the environment idiom in Haskell using the pure function arrow, partially applied to any

input type τ.

instance Idiom ((→) τ) where
pure v = λe→ v

f � v = λe→ f e (v e)

This instance is isomorphic to the instance obtained by instantiating the arrow parameter of

WrappedArrow to→, the type of pure functions, and to the instance obtained by instantiating

the monad parameter of WrappedMonad to the environment monad (which is called Reader in

the Haskell standard library).

We now have two ways to obtain an instance of Idiom from an instance m of Monad. The

first way is direct: simply apply WrappedMonad. The second way is indirect: apply Kleisli

to obtain an instance of Arrow and then apply WrappedArrow to obtain an instance of Idiom.

Ignoring the isomorphisms introduced by the various newtype declarations, this latter method

results in the type τ→ m α (for the result type α), which is not equivalent to the type m α

obtained using the direct method. We can therefore obtain at least two distinct instances of

Idiom from any instance of Monad. However, it is easy to convert either instance into the

other. The instance obtained with WrappedMonad may be converted into the instance obtained

with WrappedArrow by composition with the environment idiom. The instance obtained with

WrappedArrow may be converted into an instance isomorphic to the instance obtained with
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WrappedMonad by instantiating τ to the unit type.

McBride and Paterson (2008) give one final instance that connects Arrow and Idiom. For

any Idiom instance i, StaticArrow i is an arrow transformer that uses an idiomatic compu-

tation to construct an arrow computation.

newtype StaticArrow (i :: * → *) (( ) :: * → * → *) α β
= Static { exStatic :: i (α  β) }

The arrangement of the type constructors dictates that all of the effects of the idiom occur before

any of the effects of the arrow. The definitions of the Arrow methods for StaticArrow i ( )

are then the simply operations of the arrow  lifted into the idiom i: arr creates a pure id-

iomatic computation that returns a pure arrow computation; f >>> g runs the idiomatic com-

putations f and g , passing the results to the >>> operator of the underlying arrow; first f

runs the idiomatic computation f and applies the first operator of the underlying arrow to

the result.

instance (Idiom i,Arrow ( ))⇒ Arrow (StaticArrow i ( )) where
arr f = Static (pure (arr f))
Static f >>> Static g = Static (pure (>>>) � f � g)
first (Static f) = Static (pure first � f)

We now have two ways to obtain an instance of Arrow from an instance m of Monad. The

first way is direct: simply apply Kleisli. The second way is indirect: apply WrappedMonad

to obtain an instance of Idiom and then apply StaticArrow (with the arrow parameter in-

stantiated to the pure function arrow, →) to obtain an instance of Arrow. Ignoring the iso-

morphisms introduced by the various newtype declarations, this latter method results in the

type m (α→ β) (for input type α and result type β), which is generally not equivalent to

the type α→ m β obtained using the direct method. We can therefore obtain at least two dis-

tinct instances of Arrow from any instance of Monad. This time there is no general conversion

procedure between the two. However, two approaches do yield equivalent results for certain

monads. For the environment monad (where m α ' τ → α), the two approaches result in

arrows that are isomorphic.

Using the idiom operators we can write a program analogous to Example 1 (sequencing)

for sequencing two computations.

Example 9 (sequencing with idioms).

Suppose m and n are idiomatic computations with the types i σ and i τ respectively. Then

the following computation of type i (σ, τ) executes m and n in order and returns the results

as a pair.
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pure (λx y→ (x,y)) � m � n

However, there is no way to write idiomatic analogues of any of the programs in Examples 2

(dataflow), 3 (control flow) or 4 (higher-order).

In Section 2.2.2.2 we characterised arrow computations as having dynamic dataflow, but

static control flow. This is manifested in our examples of state-passing as the ability to decide

what to write based on the result of a prior computation, but not whether to write. The expres-

sive power offered by the Idiom interface is even more limited: there is no way at all to pass

the result of one computation as input to another computation. With idioms, therefore, there is

no means to construct a state-passing computation that uses a prior result either to determine

whether to perform a write or to determine what to write. We might characterise this property

as follows: using the idiom combinators, both dataflow and control flow are static.

In Section 2.2.2.4 we used the Accy phantom monoid accumulator instance of Arrow to

show that not all arrows supported app. We will use a similar instance for Idioms (first intro-

duced by McBride and Paterson) to show that the Idiom operations alone cannot support the

operation needed to implement Example 4.

The AccI type constructor takes two arguments, using only the first in its definition.

newtype AccI µ α = AccI {acci :: µ }

The Idiom instance for AccI µ is constructed by defining pure and � to be the unit e and

multiplication ⊗ of the monoid µ, respectively. (We could obtain an equivalent instance by

combining the WrappedArrow instance given earlier with the Accy instance of Arrow.)

instance Monoid µ ⇒ Idiom (AccI µ) where
pure _ = AccI e
AccI m � AccI n = AccI (m ⊗ n)

Now, if AccI supported the monad multiplication operator (commonly called join), then it

would necessarily satisfy the following law, which holds for all monads:

join (pure x) ≡ x

However, since the AccI definition of pure discards its argument, this law cannot be satisfied.

2.2.3.3 Idiom laws

The Idiom interface, like Monad and Arrow, comes with a number of laws which must be

satisfied by every instance.

The first law says that pure is a homomorphism for application.
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pure (f v) ≡ pure f � pure v

The second law says that a lifted identity function is a left unit for idiomatic application.

u ≡ pure id � u

The third law says that nested applications can be flattened using a lifted composition operation.

u � (v � w) ≡ pure (·) � u � v � w

The fourth law says that pure computations can be moved to the left or right of other computa-

tions.

v � pure x ≡ pure (λf→ f x) � v

(We observe that the latter three laws correspond to three combinators — I, B, and C — that

form a basis for linear combinatory logic. The fourth law does not contain the C combinator

directly, but is equivalent to a (less elegant) law which does:

f � u � pure x ≡ pure flip � f � pure x � u

(Here flip is the Haskell name for the C combinator: flip f x y = f y x.) This law follows

from the four idiom laws; conversely, the fourth idiom law follows from the first three idiom

laws and this law.)

It is straightforward to show that for each of the instances in Section 2.2.3.2 these four

laws follow from the laws on the underlying structures — for example, that the idiom laws

for WrappedMonad m follow from the monad laws hold for m and that the idiom laws for

WrappedArrow ( ) follow from the arrow laws for .

2.2.3.4 Sundries

We have seen that an idiom computation is composed of independent sub-computations whose

results are combined to give the final output (Section 2.2.5.3). In particular, no sub-computation

may make use of the result of another sub-computation. This independence leads to consider-

able freedom in writing idiom instances, exemplified in the following idiom transformer. The

Mirror transformer converts any idiom i to an idiom Mirror i which reverses the sequence of

effects of i. At the type level, Mirror is the identity:

newtype Mirror (i :: * → *) α = Mirror (i α)

The definition of pure is similarly trivial. The � operator for Mirror exchanges the order of

the operands, and applies the result of the second to the result of the first.

instance Idiom i ⇒ Idiom (Mirror i) where
pure f = Mirror (pure f)
Mirror f � Mirror p = Mirror (pure (flip ($)) � p � f)
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(Here $ denotes the identity function at function type.)

It is straightforward to check that the idiom laws for Mirror i follow from the idiom laws

for i.

2.2.4 Monoids

The reader might also wonder whether there are any further computational interfaces in the

progression. Monadic computations may be dynamic both in dataflow and control flow. Arrows

fix control flow statically, but retain dynamic dataflow; idioms introduce the restriction that

dataflow must also be statically fixed. A natural question to ask is whether the fourth point in

this matrix has any interesting occupants: that is, whether we might usefully define a class for

capturing computations where control flow is dynamic, but dataflow is static. We will not give

a definitive answer to this question, but note that it appears to be difficult to introduce operators

for dynamic control flow without making dataflow dynamic also. For example we can define

a new class DynamicIdiom which adds a facility to the Idiom interface for branching on the

result of a computation:

class Idiom i ⇒ DynamicIdiom i where
branch :: i Bool → i α → i α → i α

Now the branch operation makes it possible to write both Example 3 (control flow):

branch (WrapMonad (get ())) m (pure ())

and Example 2 (dataflow):

branch (WrapMonad (get ()))
(WrapMonad (put False))
(WrapMonad (put True))

Rather than pursue this question further we will consider what further restrictions we could

introduce. One possibility is to remove the capacity for a computation to yield a result; this

takes us from idioms to monoids. A monoidal effectful computation is simply a sequence of

effectful subcomputations with fixed control flow, fixed dataflow, and no result. We saw in

Section 2.2.3.2 that fixing the input parameter of an arrow yields an idiom. Similarly, fixing

the output parameter of an idiom yields a monoid. In Haskell the Monoid type class is defined

as follows:

class Monoid µ where
e :: µ

(⊗) :: µ → µ → µ

We can construct a monoid from an idiom i by applying i to the unit type.



38 Chapter 2. Three models for the description of computation

newtype Muffled :: (i :: * → *) = Muffle (i ())

The e value is obtained by lifting the unit value, (). The implementation of ⊗ combines its

operands using � and uses a lifted constant function to discard the result.

instance Idiom i ⇒ Monoid (Muffled i) where
e = Muffle (pure ())
Muffle f ⊗ Muffle p = Muffle (pure (λ_ _→ ()) � f � p)

It is straightforward to check that the monoid laws for Muffled i (i.e. that ⊗ is associative

with e as left and right unit) follow from the idiom laws for i.

An auxiliary function, muffle, replaces the result of any idiomatic computation with the

unit value, making the computation available for use in the monoid:

muffle :: Idiom i ⇒ i α → Muffled i

muffle i = pure (λ_→ ()) � i

Section 2.2.3.2 showed how to obtain an instance AccI µ of Idiom for any Monoid instance

µ. Using Muffled we can recover the original Monoid instance from AccI. That is, the

Monoid instance for Muffled (AccI µ) is equivalent to the Monoid instance for µ.

Example 10 (sequencing with monoids).

If m and n are computations of type i σ and i τ respectively (for some Idiom instance i)

then the following monoidal computation executes m and n in order, discarding their results.

muffle m ⊗ muffle n

2.2.5 Normal forms

The laws which accompany the idiom, arrow and monad interfaces group computations into

equivalence classes. Any particular computation can be expressed equivalently using any mem-

ber of its class. For example, if we wish to nest occurrences of the >>> operator in an arrow

computation, the third arrow law gives us the choice whether to group to the left (writing

(f >>> g) >>> h) or to the right (writing f >>> (g >>> h)). On occasion we may wish to

check whether two computations belong to the same equivalence class. One way to answer this

question is to attempt to find some way to rewrite one of the computations into the other by

repeatedly applying laws.

Determining equivalence is much more convenient if we choose a canonical member of

each equivalence class and define a normalisation procedure for obtaining the canonical mem-

ber from any computation. Determining whether two computations are equivalent then be-
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comes a matter of comparing their canonical forms.

2.2.5.1 Arrow normal forms

We begin by considering normal forms for arrows. Under the arrow laws, every arrow com-

putation is equivalent to a term of the form shown in Figure 2.2, for some terms f1, . . . fn, g

and free variables of computation type c1 . . . cn. The normal form is characterised by a lack

of nesting (there is a single pipeline of computations), a maximisation of dataflow (the result

of every computation is made available to every subsequent computation), and the alternation

of pure computations and constants.

Example 11 (dataflow normal form). The normal form for Example 6 (dataflow with arrows)

is as follows:
&&&

>>>

get

&&&
>>>

not   fst. put

((arr id >>> get )
&&& arr id) >>>

((arr (not · fst) >>> put )
&&& arr id) >>>

arr fst

We can capture the normal form for Arrow in a Haskell datatype. Monad transformers —

type constructors of kind (*→ *)→ (*→ *) that construct monads from monads — are a

mechanism used to modularise effectful functional programs (Liang, Hudak, and Jones, 1995).

There is an analogous notion, arrow transformers, for constructing arrows from arrows. The

particular arrow transformer in which we are interested does not introduce new effects, but

rearranges arrow computations into normal form.

Our arrow transformer uses a technique introduced by Hughes (1995) and used to derive

monad transformers by Hinze (2000): we represent operations as terms, and use the laws

governing the operations to guide implementation. Hughes (2004) uses this technique to reduce

occurrences of the composition operation for stream arrows, where composition is expensive,

and notes that

One can go on to build optimising arrow transformers that implement more
and more algebraic laws[.]
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The normalising arrow transformer given below is a kind of culmination of this idea (al-

though we do not claim that the normal form given here is especially efficient).

Hughes (2004) further notes that the generalised algebraic data types (GHC User’s Guide,

Section 7.4.6) supported by the Glasgow Haskell Compiler are “invaluable” for constructing

optimising arrow transformers. In fact, we can make do with a simpler and much more widely

supported extension, namely existential datatypes: datatypes whose specification may contain

type variables other than the parameters to the type. We will, however, make use of GHC’s

notation for generalised algebraic data types (which is, in our opinion, significantly clearer

than the standard notation) giving a kind signature for the type constructor and a type signature

for each data constructor.

The NormA datatype defines an arrow transformer that captures the normal form for arrows.

The type constructor NormA takes a binary type operator denoting arrow computations to a

binary type operator denoting normalised arrow computations.

data NormA :: (* → * → *) → (* → * → *) where
Arr :: (α→β) → NormA( ) α β
Seq :: (a→ δ) → (δ γ) → NormA( ) (γ,α) β → NormA( ) α β

A normalised arrow computation is either of the form arr g (for some function g), which we

represent using the first constructor:

Arr g

or of the form ((arr f >>> c) &&& arr id)>>> n , (for some function f , computation con-

stant c and normalised computation n), which we represent using the second constructor

Seq f c n

We can then give a compositional translation from the three operators of the Arrow class into

the NormA datatype — that is, give an instance of Arrow for NormA ( ).

instance Arrow ( ) ⇒ Arrow (NormA ( )) where
arr = Arr

Arr f >>> Arr g = Arr (g · f)
Arr f >>> Seq g c h = Seq (g · f) c (Arr (id × f) >>> h)
Seq g c h >>> s = Seq g c (h >>> s)
first (Arr f) = Arr (f × id)
first (Seq g c h) = Seq (g · fst) c (Arr assoc−1 >>> first h)

where assoc−1 (x,(y,z)) = ((x,y),z)

Each line in the definition of >>> corresponds to an equation which follows from the arrow

laws. The first case for >>> corresponds to the fifth law (that arr is a homomorphism for

composition). The second case for >>> corresponds to the following equation:
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arr f >>> ((arr g >>> c) &&& arr id) >>> h

≡
((arr (g · f) >>> c) &&& arr id) >>> (arr (id × f) >>> h)

which is an easy consequence of six laws: the left unit and associativity laws, the three homo-

morphism laws, and the seventh law. (See Appendix A.1 for the details.) The final case for

>>> corresponds to an instantiation of the third law (that composition is associative).

The definition of first is similar. The first case corresponds to the fourth law (that arr is

a homomorphism for first) and the second case corresponds to the following equation:

first (((arr g >>> c) &&& arr id) >>> h)
≡
((arr (g · fst) >>> c) &&& arr id) >>> arr assoc−1 >>> first h

which is a straightforward consequence of six laws (Appendix A.1): the left unit and associa-

tivity laws, the three homomorphism laws, and the ninth law.

Before we can make practical use of the NormA transformer we require two further oper-

ations. The first, promote, lifts computations in the arrow  to computations in the arrow

NormA ( ). Computations lifted with promote behave as constants during normalisation. We

will use promote to lift primitive computations such as get and put .

promote :: Arrow ( ) ⇒ (α β) → NormA ( ) α β
promote f = Seq id f (Arr fst)

The second operation, observe, converts a value of type NormA ( ) α β back to a value of

type α β:

observe :: Arrow ( ) ⇒ NormA ( ) α β → (α β)
observe (Arr a) = arr a

observe (Seq f c h) = (arr id &&& (arr f>>> c))>>> observe h

It is easy to show that these definitions are correct: the definition of promote follows easily

from six laws (Appendix A.1): the left identity and associativity laws, the three homomorphism

laws, and the eighth law, while the definition of observe is simply the intended semantics for

Seq that we gave earlier.

The types of the constructors of NormA enforce the constraint that only normalised compu-

tations can be represented. We have shown that the equations defining the translation to normal

form are justified by the arrow laws. The final step in showing that the normalisation transla-

tion is correct is to check that it terminates on every finite input. This follows easily from an

examination of the sizes of the values of type NormA passed to the Arrow operators on the left

and right of each equation. We omit the details.

Example 12 (normalisation). We can trace the normalisation of the state-negating compu-
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tation of Example 6 (dataflow with arrows) by successively unfolding the definitions of the

operations of NormA.

promote get >>> arr not >>> promote put 

= (unfolding promote)

Seq id get (Arr fst) >>> arr not >>> Seq id put (Arr fst)

= (unfolding arr for NormA)

Seq id get (Arr fst) >>> Arr not >>> Seq id put (Arr fst)

= (unfolding >>> for NormA)

Seq id get 

(Seq ((fst >>> not) >>> id) put 

(Arr (second (fst >>> not) >>> fst)))

= (unfolding >>> for pure functions)

Seq id get 

(Seq (not · fst) put 

(Arr (second (fst >>> not) >>> fst)))

= (unfolding second for pure functions)

Seq id get (Seq (not · fst) put (Arr fst))

The application of observe to this final term reduces to the normalised state-negating

computation given in Example 11:

((arr id >>> get ) &&& arr id) >>>

((arr (not · fst) >>> put ) &&& arr id) >>>

arr fst

An unusually meticulous reader might notice that we have used only eight of the nine

arrow laws in the definition of the normalising arrow transformer. The second law — that a

lifted identity function is a right unit for composition — did not make an appearance in either

the definition of the arrow combinators or the definition of promote. We shall have more to

say about this curiosity in Section 2.3.5.

2.2.5.2 Monad normal forms

Under the monad laws every monadic computation is equivalent to a term of the form repre-

sented by the following existential datatype8.

8 Infix constructors, such as :>>=, are a GHC extension.
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data NormM :: (* → *) → (* → *) where
Return :: α → NormM m α

(:>>=) :: m β → (β → NormM m α) → NormM m α

That is, a normalised monadic computation is either of the form return v (for some value v ),

which we represent using the first constructor:

Return v

or of the form c v >>= k (where c is a parameterised computation constant, v its argument,

and k an expression denoting a function that returns a normalised computation), which we

represent using the second constructor:

c v :>>= k

Compared to the normal form for arrow computations in Section 2.2.5.1, the normal form for

monads permits considerable flexibility. The normal form for arrows consists of a sequence

of predetermined computational constants interspersed with pure functions; the result of each

computation may determine the input to subsequent computations, but cannot affect the choice

of constants. In contrast, each computation in the normal form for monads passes the result

to a continuation which may use it (together with the results of any previous computations) in

determining both the argument to the next computation and the next computational constant.

As we did with the arrow normaliser, we give an instance of Monad for our datatype; this

serves as a translation from the operations of the monad class into NormM. The Monad instance

for NormM replaces Return on the left of >>= with application, using the left unit law, and

replaces left nesting of :>>= with right nesting using the associativity law.

instance Monad m ⇒ Monad (NormM m) where
return = Return

Return x >>= f = f x

(m :>>= f) >>= g = m :>>= (λx → f x >>= g)

(As with the normaliser for Arrow in Section 2.2.5.1, it is easy to see that the translation

terminates on finite input.) As before, we give functions for converting monadic computations

to and from normal form. The promoteM function lifts a computation constant to normal form

using the right unit law.

promoteM :: Monad m ⇒ m α → NormM m α

promoteM m = m :>>= Return

The inverse operation, observeM, simply maps the constructors of the NormM datatype back to

their counterparts in the Monad class.
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c1 cnc2

g

Figure 2.3: Canonical form for idiom computations.

observeM :: Monad m ⇒ NormM m α → m α

observeM (Return x) = return x

observeM (m :>>= f) = m >>= observeM · f

2.2.5.3 Idiom normal forms

Under the idiom laws every idiomatic computation is equivalent to a term of the form

pure g � c1 � . . . � cn

where c1 . . . cn are free variables of computation type and g is a pure term. Figure 2.3 il-

lustrates the normal form using a graphical notation analogous to the arrow notation of Sec-

tion 2.2.2.

As Figures 2.2 and 2.3 illustrate, idiom computations correspond approximately to arrow

computations without input. This significantly simplifies things: the “plumbing” for piping

results from one computation to another in the arrow diagram disappears when we move to

idioms. Instead, the normal form for idioms represents a simple sequence of effects (indicated

by the left-to-right ordering of c1 . . . cn) and a final pure function g that combines the results.

We can capture the normal form for idioms using a Haskell datatype, as we did for arrows

in Section 2.2.5.1 and monads in Section 2.2.5.2. The existential datatype NormI is an idiom

transformer that represents normal forms of idiomatic computations.

data NormI :: (* → *) → (* → *) where
Pure :: α → NormI i α

(: �) :: NormI i (α→ β) → i α → NormI i β

A normalised idiomatic computation is either of the form pure g (for some function g), which

we represent using the first constructor:

Pure g

or of the form n � c (for some normalised computation n , and computation constant c),
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which we represent using the second constructor:

n : � c

We can then give an instance of Idiom for NormI i, which serves as a translation from the two

operators of the Idiom class into the NormI datatype.

instance Idiom i ⇒ Idiom (NormI i) where
pure = Pure

Pure f � Pure x = Pure (f x)
u � v : � w = (Pure (·) � u � v) : � w

u � Pure x = Pure (λf→ f x) � u

It is particularly easy to see that our definition is justified by the idiom laws. The three lines of

the definition of � correspond directly to the first, third and fourth laws of Section 2.2.3.3.

As with Arrow and Monad, we need two further operations. The first, promoteI, lifts a

constant to a normalised computation.

promoteI :: Idiom i ⇒ i α → NormI i α

promoteI i = Pure id : � i

The definition of promoteI corresponds directly to the second law of Section 2.2.3.3. The

second operation, observeI, directly encodes the desired semantics of the normal form.

observeI :: Idiom i ⇒ NormI i α → i α

observeI (Pure v) = pure v

observeI (f : � v) = observeI f � v

As with the normalising arrow transformer of Section 2.2.5.1, it remains only to check that

the idiomatic normalisation translation given above terminates on all finite input. As before,

this is easy to show by tracking the sizes of the values of type NormI passed to � on the left

and right of each equation, and we omit the details.

2.2.5.4 Monoid normal forms

Under the monoid laws every monoidal computation is equivalent to a term of the form

c1 ⊗ (c2 ⊗ . . . (cn ⊗ e))

where c1 . . . cn are free variables of computation type.

We can capture the normal form for monoids using a datatype, as we did for arrows, idioms

and monads. The datatype NormMon is a monoid transformer that represents normal forms of

monoidal computations. We do not need an existential type on this occasion, since monoid

computations are not parameterised; nevertheless, we retain the GADT notation for consistency

with the other examples.
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data NormMon :: * → * where
E :: NormMon m

(:⊗) :: m → NormMon m → NormMon m

The Monoid instance for NormMon translates the two monoid operators into the NormMon

datatype, removing occurrences of E on the left using the left-unit law and replacing left nesting

with right nesting using the associativity law.

instance Monoid m ⇒ Monoid (NormMon m) where
e = E

E ⊗ m = m

(m :⊗ n) ⊗ o = m :⊗ (n ⊗ o)

The promoteMon lifts a computation constant to normal form, using the right-unit law.

promoteMon :: Monoid m ⇒ m → NormMon m

promoteMon m = m ⊗ E

The inverse operation, observeMon, simply maps the constructors of NormMon back to their

counterparts in the Monoid class.

observeMon :: Monoid m ⇒ NormMon m → m

observeMon E = e
observeMon (m :⊗ n) = m ⊗ observeMon n

2.3 Two views of arrows9

Section 2.2 presented three interfaces to computation in decreasing order of strength: mon-

ads embed higher-order effectful computation in a functional language; arrows are restricted

to computation in which control flow is statically determined; idioms introduce the further

restriction that one computation may not make use of the result of another.

The examples of Section 2.2 illustrate the relative strength of Haskell manifestations of

monads, arrows and idioms. The normal forms of Section 2.2.5 reveal the types of computa-

tions expressible using those interfaces. Haskell is a convenient vehicle with which to explore

the various interfaces: it is the language in which each was first introduced as a program struc-

turing technique. Further, the type class system makes it convenient to give a common interface

to several notions of computation within a single program. The Haskell presentation, however,

has the unfortunate property that the interfaces differ not only semantically (which is crucial)

but notationally (which is irrelevant). For instance, the Arrow class enforces a point-free style

of programming based on composition rather than application (this is the notation), which is

limited to expressing computations for which, to repeat the slogan of Section 2.2.2.2, “dataflow

9This section is a revision of Lindley et al. (2008a).
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is dynamic, but control flow is static” (this is the semantics). These aspects are essentially in-

dependent: there is nothing inherently point-free about static control flow. Likewise for Idiom:

the notation is applicative, but this is hardly essential. (Indeed, McBride and Paterson (2008)

give an alternative presentation of idioms as lax monoidal functors.) A more semantic charac-

terisation of idioms is that “both dataflow and control flow are static”; this has little or nothing

to do with the applicative style.

In the following pages we will use an alternative formulation which avoids irrelevant dif-

ferences of notation, making it easier to compare expressive power directly. Our approach is

to show that idioms and monads correspond to static and higher-order variations on a metalan-

guage for arrow computations, the arrow calculus. We will use this metalanguage to reveal the

formal relationships between the three interfaces, justifying the informal claims of Section 2.2.

2.3.1 Classic arrows

We refer to the presentation of arrows given in Section 2.2.2 as classic arrows.

We present both classic arrows and arrow calculus as equational theories, which are defined

as follows.

Definition 1. A typed equational theory T consists of the following

• variables x, y, z

• types A,B,C

• terms L,M,N

• type environments Γ ::= · | x : A, Γ

• typing judgments Γ `T M : A

• equational judgments Γ `T M = N : A

Equational judgments must be well-formed: if Γ `T M = N : A then Γ `T M : A and

Γ `T N : A. We present the equational judgments via laws relating terms, writing M = N as

shorthand for Γ `T M = N : A for all Γ ,A in T such that Γ `T M : A and Γ `T N : A. The

equational theory is defined as the contextual and equivalence closure of the laws.

Figure 2.4 (page 50) gives a standard definition of the theory of typed lambda calculus

extended with pairs and unit, λ→×1. A type judgment Γ `M : A indicates that in environment

Γ term M has type A. We use a Curry formulation, eliding types from terms. Products and

functions satisfy beta and eta laws; the unit type satisfies an eta law. We use this definition as
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a starting point for each of the theories which follow. For convenience we define a number of

functions, such as id.

Figure 2.5 defines the theory of classic arrows, C, together with various auxiliary functions.

The theory is a straightforward recapitulation of the informal presentation of Section 2.2.2,

without the conveniences such as pattern matching and type classes afforded by Haskell. The

theory of classic arrows extends the core lambda calculus with a binary type constructor,  ,

and three constants (arr, first, >>>) satisfying nine laws. These laws, together with the laws

of the lambda calculus, define the equivalence relation of the theory.

2.3.2 Arrow calculus

Figure 2.6 (page 52) defines the theory of arrow calculus, A. Arrow calculus extends the

core lambda calculus with four constructs satisfying five laws. As before, the type A  B

denotes a computation that accepts a value of type A and returns a value of type B, possibly

performing some side effects. We now have two syntactic categories. Terms, as before, are

ranged over by L,M,N, and commands are ranged over by P,Q,R. In addition to the terms

of the core lambda calculus, there is one new term form: arrow abstraction λ•x.Q. There are

three command forms: arrow application L •M, arrow unit [M] (which resembles unit in a

monad), and arrow bind let x⇐ P in Q (which resembles bind in a monad).

In addition to the term typing judgment

Γ `M : A.

we now also have a command typing judgment

Γ ; ∆ ` P ! A.

An important feature of the arrow calculus is that the command type judgment has two envi-

ronments, Γ and ∆, where variables in Γ come from ordinary lambda abstractions λx.N, while

variables in ∆ come from arrow abstractions λ•x.Q and let bindings let x ⇐ P in Q.

There is no variable rule for the ∆ environment: instead, the rules for arrow unit [M] and arrow

application L •M move variables from ∆ into Γ .

We will give a translation of commands to classic arrows, such that a command P satisfying

the judgment

Γ ; ∆ ` P ! A

translates to a term JPK∆ satisfying the judgment

Γ ` JPK∆ : ∆ A.
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Syntax:

Types A,B,C ::= B | 1 | A×B | A→ B

Terms L,M,N ::= x | 〈〉 | 〈M,N〉 | fst L | snd L | λx.N | L M

Environments Γ ::= x1 : A1, . . . , xn : An

Types:

(x : A) ∈ Γ

Γ ` x : A

Γ ` 〈〉 : 1

Γ `M : A Γ ` N : B

Γ ` 〈M,N〉 : A×B

Γ ` L : A×B

Γ ` fst L : A

Γ ` L : A×B

Γ ` snd L : B

Γ , x : A ` N : B

Γ ` λx.N : A→ B

Γ ` L : A→ B Γ `M : A

Γ ` L M : B

Definitions:

id : A→ A

id = λx. x

dup : A→ A×A
dup = λx. 〈x, x〉

fst : A×B→ A

fst = λz.fst z

snd : A×B→ B

snd = λz.snd z

swap : A×B→ B×A
swap = λz. 〈snd z,fst z〉

(·) : (B→ C)→ (A→ B)→ (A→ C)

(·) = λf. λg. λx. f (g x)

assoc : (A×B)×C→ A×(B×C)
assoc = λz. 〈fst (fst z), 〈snd (fst z),snd z〉〉

apply : (A→ B)×A→ B

apply = λz. (fst z (snd z))

(×) : (A→ C)→ (B→ D)→ (A×B→ C×D)

(×) = λf. λg. λz. 〈f (fst z), g (snd z)〉
Laws:

(β×1 ) fst 〈M,N〉 = M

(β×2 ) snd 〈M,N〉 = N

(η×) 〈fst L,snd L〉 = L

(β→) (λx.N)M = N[x :=M]

(η→) λx. (L x) = L

(η1) 〈〉 = M

Figure 2.4: Lambda calculus, λ→×1.
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Syntax:
Types A,B,C ::= · · · | A B

Terms L,M,N ::= · · · | arr | (>>>) | first

Constants:
arr : (A→ B)→ (A B)

(>>>) : (A B)→ (B C)→ (A C)

first : (A B)→ (A×C B×C)

Definitions:

second : (A B)→ (C×A C×B)
second = λf. arr swap>>> first f>>> arr swap

(&&&) : (C A)→ (C B)→ (C A×B)
(&&&) = λf. λg. arr dup>>> first f>>> second g

Laws:

( 1) arr id>>> L = L

( 2) L >>> arr id = L

( 3) (L >>>M)>>>N = L >>> (M>>>N)

( 4) arr (M · L) = arr L >>> arrM

( 5) first (arr L) = arr (L×id)
( 6) first (L >>>M) = first L >>> firstM

( 7) first L >>> arr (id×M) = arr (id×M)>>> first L

( 8) first L >>> arr fst = arr fst>>> L

( 9) first (first L)>>> arr assoc = arr assoc>>> first L

Figure 2.5: Classic arrows, C (extends λ→×1, Figure 2.4).
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Syntax:
Types A,B,C ::= · · · | A B

Terms L,M,N ::= · · · | λ•x.Q

Commands P,Q,R ::= L •M | [M] | let x⇐ P in Q

Types:

Γ ; x : A ` Q ! B

Γ ` λ•x.Q : A B

Γ ` L : A B Γ ,∆ `M : A

Γ ; ∆ ` L •M ! B

Γ , ∆ `M : A

Γ ; ∆ ` [M] ! A

Γ ; ∆ ` P ! A Γ ; ∆, x : A ` Q ! B

Γ ; ∆ ` let x⇐ P in Q ! B

Laws:

(β ) (λ•x.Q) •M = Q[x :=M]

(η ) λ•x. (L • x) = L

(left) let x⇐ [M] in Q = Q[x :=M]

(right) let x⇐ P in [x] = P

(assoc) let y⇐ let x⇐P in Q in R = let x⇐P in let y⇐Q in R

Figure 2.6: The arrow calculus, A (extends λ→×1, Figure 2.4).
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That is, the command P denotes an arrow, taking argument of type ∆ and returning a result of

type A. We explain this translation further in Section 2.3.3.

Here are the type rules for the four constructs. Arrow abstraction converts a command into

a term.
Γ ; x : A ` Q ! B

Γ ` λ•x.Q : A B

Arrow abstraction closely resembles function abstraction, save that the body Q is a command

(rather than a term) and the bound variable x goes into the second environment (separated from

the first by a semicolon).

Conversely, arrow application builds a command from two terms.

Γ ` L : A B

Γ ,∆ `M : A

Γ ; ∆ ` L •M ! B

Arrow application closely resembles function application. The argument term may contain

variables from ∆, but the term denoting the arrow to be applied may not; this is because there

is no way to apply an arrow that is itself yielded by another arrow. It is for this reason that we

distinguish two environments, Γ and ∆: only variables in Γ , not variables in ∆, may be used to

compute arrows that are applied to arguments.

Arrow unit promotes a term to a command.

Γ , ∆ `M : A

Γ ; ∆ ` [M] ! A

Note that in the hypothesis we have a term judgment with one environment (there is a comma

between Γ and ∆), while in the conclusion we have a command judgment with two environ-

ments (there is a semicolon between Γ and ∆). This is the analogue of promotion of a function

to an arrow in the classic formulation. It also resembles the unit of a monad.

Lastly, the value returned by a command may be bound.

Γ ; ∆ ` P ! A

Γ ; ∆, x : A ` Q ! B

Γ ; ∆ ` let x⇐ P in Q ! B

This resembles a traditional let term, save that the bound variable goes into the second envi-

ronment, not the first. This is the analogue of arrow composition in the classic formulation; it

also embodies the operation first. It also resembles the bind of a monad.
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Arrow abstraction and application satisfy beta and eta laws, (β ) and (η ), while arrow

unit and bind satisfy left unit, right unit, and associativity laws, (left), (right), and (assoc).

Similar laws appear in the computational metalanguage of Moggi (1991).

Our notation is closely related to that of Paterson (2001). Here is a translation table, with

our notation on the left and his on the right.

λ•x.Q proc x→ Q

L •M L −≺ M

[M] arrowA −≺ M

let x⇐ P in Q do {x← P;Q}

In essence, each is a minor syntactic variant of the other. The only difference of note is that

we introduce arrow unit as an explicit construct, [M], while Paterson uses the equivalent form

arrowA −≺ M where arrowA is arr id. Our introduction of a separate construct for arrow

unit is slightly neater, and avoids the need to introduce arrowA as a constant in the arrow

calculus.

2.3.3 Translations

We now consider translations between the two formulations of arrows, and show they are equiv-

alent. This goes further than Paterson (2001). Paterson provides a notation for arrows that is

easier to read and to write and shows how to translate it into the classic formulation. Naturally,

this requires that the five laws governing the notation follow from the nine laws governing

classic arrows. We wish to use the arrow calculus not merely as a convenient notation, but as

a complete replacement for the classic formulation. To justify replacing the classic formula-

tion we show that it can be translated into the arrow calculus and that the nine laws governing

classic arrows follow from the five laws governing the arrow calculus.

We begin by defining various notions of equivalence between theories. The strongest notion

we shall need is Sabry and Felleisen’s (1993) equational correspondence, which we present as

a special case of a weaker notion, equational equivalence.

Definition 2. Let T be an equational theory with typing judgments x : A `T f : B and

x : B `T f−1 : A. (These typing judgments can be viewed as translations on terms: f from

A to B and f−1 from B to A. For convenience, we write f(M) for f[x := M] and f−1(N)

for f−1[x := N].) We say that A is isomorphic to B and f, f−1 witness the isomorphism

(f : A ' B) if

• Translating from A to B and back is the identity,

Γ `T M : A implies Γ `T f−1(f(M)) =M : A
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for all Γ ,M,A in T .

• Translating from B to A and back is the identity,

Γ `T N : B implies Γ `T f(f−1(N)) = N : B

for all Γ ,N,B in T .

As all of the theories we consider include function types and lambda abstractions, we

choose to express the isomorphisms more concisely as pairs of closed terms f : A → B and

f−1 : B→ A rather than typing judgments x : A `T f : B and x : B `T f−1 : A.

Definition 3. Let S, T be equational theories, with a translation on types and terms J−K from

S to T . We say that J−K preserves typing if

Γ `S M : A implies JΓK `T JMK : JAK

for all Γ ,M,A in S.

Definition 4. Let S, T be equational theories, with a translation on types and terms J−K from

S to T that preserves typing. We say that J−K is compositional if

Γ `S N : A and Γ , x : A `S M : B

implies

JΓK `T JM[x :=N]K = JMK[x := JNK] : JBK

for all Γ ,M,N,A,B in S.

Definition 5. Let S, T be equational theories, with a compositional translation on terms and

types J−K from S to T that preserves typing, and with a compositional inverse translation 〈[−]〉
from T to S that also preserves typing. Further, translating a type from S to T and back yields

a type isomorphic to the original type,

fA : A ' 〈[JAK]〉

for all A in S. Similarly, translating a type from T to S and back yields a type isomorphic to

the original type,

gA : A ' J〈[A]〉K

for all A in T . We say these translations form an equational equivalence (S ∼ T ) if
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• The translation from S to T preserves equations,

Γ `S M = N : A implies JΓK `T JMK = JNK : JAK

for all Γ ,M,N,A in S.

• The translation from T to S preserves equations,

Γ `T M = N : A implies 〈[Γ ]〉 `S 〈[M]〉 = 〈[N]〉 : 〈[A]〉

for all Γ ,M,N,A in T .

• Translating from S to T and back yields a term isomorphic to the original term,

Γ `S M : A implies Γ `S 〈[JMK]〉[Γ := f(Γ)] = fA(M) : 〈[JAK]〉

for all Γ ,M,A in S (writing N[Γ := f(Γ)] for N[x1 := fA1(x1), . . . , xn := fAn(xn)],

given Γ = x1 : A1, . . . , xn : An).

• Translating from T to S and back yields a term isomorphic to the original term,

Γ `T M : A implies Γ `T J〈[M]〉K[Γ := g(Γ)] = gA(M) : J〈[A]〉K

for all Γ ,M,A in T .

(This definition is analogous to saying that we have an equivalence of categories (Mac Lane,

1998), where J−K is left adjoint to 〈[−]〉 with unit fA and counit g−1
A .)

The special case of an equational equivalence where both isomorphisms are the identity is

an equational correspondence.

Definition 6. An equational correspondence between theories S and T (S ∼= T ) is an equa-

tional equivalence with translations J−K : S → T , 〈[−]〉 : T → S where both fA and gA
are the identity at each type A. (This is analogous to saying that we have an isomorphism of

categories (Mac Lane, 1998) given by the translations J−K : S→ T and 〈[−]〉 : T → S.)

We also introduce the notion of equational embedding, a map from a weaker into a stronger

theory. An equational embedding of a theory S into a theory T may be defined as an equational

equivalence between S and a subtheory of T . We instead use the following more direct defini-

tion, which is more convenient in practice.

Definition 7. Let S, T be equational theories with a compositional translation on terms and

types J−K from S to T that preserves typing, and with a compositional inverse translation 〈[−]〉
from the image of J−K (written JSK) to S that also preserves typing,

JΓK `T JMK : JAK implies 〈[JΓK]〉 `S 〈[JMK]〉 : 〈[JAK]〉
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for all Γ ,M,A in S. Further, translating a type from S to T and back yields a type isomorphic

to the original type,

fA : A ' 〈[JAK]〉

for all A in S. We say these translations form an equational embedding of S into T (S ↪→ T ) if

• The translation from S to T preserves equations,

Γ `S M = N : A implies JΓK `T JMK = JNK : JAK

for all Γ ,M,N,A in S.

• The translation from JSK to S preserves equations,

JΓK `T JMK = JNK : JAK implies 〈[JΓK]〉 `S 〈[JMK]〉 = 〈[JNK]〉 : 〈[JAK]〉

for all Γ ,M,N,A in S.

• Translating from S to JSK and back yields a term isomorphic to the original term,

Γ `S M : A implies Γ `S 〈[JMK]〉[Γ := f(Γ)] = fA(M) : 〈[JAK]〉

for all Γ ,M,A in S.

Figure 2.7 shows the translation from the arrow calculus into classic arrows. An arrow

calculus term judgment

Γ `M : A

maps into a classic arrow judgment

Γ ` JMK : A

while an arrow calculus command judgment

Γ ; ∆ ` P ! A

maps into a classic arrow judgment

Γ ` JPK∆ : ∆ A.

In JPK∆, we take∆ to stand for the sequence of variables in the environment, and in∆ A

we take ∆ to stand for the product of the types in the environment. Hence, the denotation of a

command is an arrow, with arguments corresponding to the environment ∆ and result of type

A.

The translation of the constructs of the core lambda calculus are straightforward homomor-

phisms. The translations of the remaining four constructs are shown twice, in the top half of

the figure as equations on syntax, and in the bottom half in the context of type derivations; the

latter are longer, but may be clearer to read. We comment briefly on each of the four:



58 Chapter 2. Three models for the description of computation

Translation of terms:
JxK = x

J(M,N)K = (JMK, JNK)

Jfst LK = fst JLK

Jsnd LK = snd JLK

Jλx.NK = λx. JNK

JL MK = JLK JMK

Jλ•x.QK = JQKx

Translation of commands:

JL •MK∆ = arr (λ∆. JMK)>>> JLK

J[M]K∆ = arr (λ∆. JMK)

Jlet x⇐ P in QK∆ = (arr id &&& JPK∆)>>> JQK∆,x

Translation preserves types:

u

vΓ ; x : A ` Q ! B

Γ ` λ•x.Q : A B

}

~ =
Γ ` JQKx : A B

Γ ` JQKx : A B

u

ww
v

Γ ` L : A B

Γ ,∆ `M : A

Γ ; ∆ ` L •M ! B

}

��
~ =

Γ ` JLK : A B

Γ ,∆ ` JMK : A

Γ ` arr (λ∆. JMK)>>> JLK : ∆ B

u

vΓ , ∆ `M : A

Γ ; ∆ ` [M] ! A

}

~ =
Γ , ∆ ` JMK : A

Γ ` arr (λ∆. JMK) : ∆ A

u

ww
v

Γ ; ∆ ` P ! A

Γ ; ∆, x : A ` Q ! B

Γ ; ∆ ` let x⇐ P in Q ! B

}

��
~ =

Γ ` JPK∆ : ∆ A

Γ ` JQK∆,x : ∆×A B

Γ ` (arr id &&& JPK∆)>>> JQK∆,x : ∆ B

Figure 2.7: Translating A into C.
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Translation:

〈[x]〉 = x

〈[(M,N)]〉 = (〈[M]〉, 〈[N]〉)
〈[fst L]〉 = fst 〈[L]〉
〈[snd L]〉 = snd 〈[L]〉
〈[λx.N]〉 = λx. 〈[N]〉
〈[L M]〉 = 〈[L]〉 〈[M]〉
〈[arr]〉 = λf. λ•x. [f x]

〈[(>>>)]〉 = λf. λg. λ•x.let y⇐ (f • x) in g • y
〈[first]〉 = λf. λ•z.let x⇐ f • fst z in [〈x,snd z〉]

Figure 2.8: Translating C into A.

• λ•x.N translates straightforwardly; it is a no-op.

• L •M translates to >>>.

• [M] translates to arr.

• let x ⇐ P in Q translates to pairing &&& (to extend the environment with P) and

composition >>> (to then apply Q).

The translation uses the notation λ∆.N, which is given the obvious meaning: λx.N stands for

itself, and λx1, x2.N stands for λz.N[x1 :=fst z, x2 :=snd z], and λx1, x2, x3.N stands for

λz.N[x1 :=fst (fst z), x2 :=snd (fst z), x3 :=snd z], and so on. (This definition assumes

a non-empty environment, and in fact ∆ is always non-empty in this translation. However, it is

not always non-empty in the related translations in Section 2.4. It is straightforward to adjust

the definitions here to support the empty-environment case: for example, we might take the

empty environment · to stand for the unit type when used as a type, and take λx1, x2.N to

stand for λz.N[x1 := snd (fst z), x2 := snd z], and so on. A second possibility is to define

the translation differently for empty and non-empty environments, retaining the translation we

have given for the case where the environment is non-empty. A third possibility is to ensure via

weakening (which we will define in Lemma 9) that the environment is never actually empty.

Rather than obscure the presentation with these details we will retain our existing definitions,

on the understanding that they can be easily adjusted to support the empty-environment case

where necessary.)
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The inverse translation, from classic arrows to the arrow calculus, is given in Figure 2.8.

Again, the translation of the constructs of the core lambda calculus are straightforward homo-

morphisms. Each of the three constants translates to an appropriate term in the arrow calculus.

Demonstrating the equivalence of the two formulations of arrows requires that we translate

the laws. In order to translate the (β ) and (left) laws we must determine the meaning of

translation on a substitution, which we do with the following lemma.

Lemma 8. [Translating substitution from A to C]

The translations of substitution on terms and commands from A to C satisfy the following

equations.

JM[x :=N]K = JMK[x := JNK]

JP[x :=N]K∆ = arr (λ∆.(∆, JNK))>>> JPK∆,x

Proof. By mutual induction on the derivations of P and M. There is one case for each term

form and each command form. Appendix A.2 gives the full proof.

Now consider the translation of the (assoc) law. The left side translates as follows:

Jlet y⇐ (let x⇐ P in Q) in RK∆
= (arr id &&& ((arr id &&& JPK∆)>>> JQK∆,x))>>> JRK∆,x

and the right side translates as follows:

Jlet x⇐ P in (let y⇐ Q in R)K∆
= (arr id &&& JPK∆)>>> ((arr id &&& JQK∆,x)>>> JRK∆,x,y)

Notice that the left side contains the term JRK∆,x — the translation of the command R in the

environment ∆, x — while the right side contains the term JRK∆,x,y — the translation of R in

the environment ∆, x, y. The following two lemmas define weakening in the arrow calculus

and its effects of the translation, allowing us to establish the equivalence of the two sides.

Lemma 9 (Weakening). Suppose type environments Γ , ∆, Γ ′, ∆ ′, such that Γ ⊆ Γ ′ and Γ ,∆ ⊆
Γ ′,∆ ′. Then if

Γ `M : A

is derivable for some type A then

Γ ′ `M : A

is also derivable, and if

Γ ; ∆ ` P ! B
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is derivable for some type B then

Γ ′; ∆ ′ ` P ! B

is also derivable.

Proof. By a straightforward mutual induction on the derivations of P andM.

Weakening allows us to move variables from ∆ into Γ , and to increase both Γ and ∆, but

not to move variables from Γ into ∆. The ⊆ relation used to define weakening ignores variable

order, so our definition also permits us to permute the environment.

Lemma 10. [Translating weakening from A to C]

The translation of weakening from A to C for commands is as follows.

u

vΓ ; ∆ ` Q ! B

Γ ′; ∆ ′ ` Q ! B

}

~ =
Γ ` JQK∆ : ∆ B

Γ ′ ` arr (λ∆ ′.∆)>>> JQK∆ : ∆ ′  B

Proof. By induction on the derivation of Q. There is one case for each command form. Ap-

pendix A.2 gives the full proof.

Proposition 11. The theory of classic arrows and the theory of the arrow calculus are in

equational correspondence: A ∼= C.

Proof. In order to show the equational correspondence between A and C we must show that

the translations between them satisfy the following four properties.

• The five laws of the arrow calculus follow from the nine laws of classic arrows. That is,

M = N implies JMK = JNK

and

P = Q implies JPK∆ = JQK∆

for all arrow calculus termsM, N and commands P, Q.

The proof requires five calculations, one for each law of the arrow calculus. Figure 2.9

shows one of these, the calculation to derive (right) from the classic arrow laws.

• The nine laws of classic arrows follow from the five laws of the arrow calculus. That is,

M = N implies 〈[M]〉 = 〈[N]〉

for all classic arrow termsM, N.

The proof requires nine calculations, one for each classic arrow law. Figure 2.10 shows

one of these, the calculation to derive ( 2) from the laws of the arrow calculus.
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Jlet x⇐M in [x]K∆
= (def J−K)

(arr id &&& JMK∆)>>> arr snd

= (def &&&)

arr dup>>> first (arr id)>>> second JMK∆ >>> arr snd

= ( 5)

arr dup>>> arr (id×id)>>> second JMK∆ >>> arr snd

= (id×id = id)

arr dup>>> arr id>>> second JMK∆ >>> arr snd

= ( 1)

arr dup>>> second JMK∆ >>> arr snd

= def second

arr dup>>> arr swap>>> first JMK∆ >>> arr swap>>> arr snd

= ( 4)

arr (swap · dup)>>> first JMK∆ >>> arr (snd · swap)
= (swap · dup = dup, snd · swap = fst)

arr dup>>> first JMK∆ >>> arr fst

= ( 8)

arr dup>>> arr fst>>> JMK∆
= ( 4)

arr (fst · dup)>>> JMK∆
= (fst · dup = id)

arr id>>> JMK∆
= ( 1)

JMK∆

Figure 2.9: Proof of (right) in C.

• Translating a term from the arrow calculus into classic arrows and back again is the

identity (up to equivalence). That is,

〈[ JMK ]〉 =M

for all arrow calculus termsM. Translating a command of the arrow calculus into classic
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〈[f >>> arr id]〉
= (def 〈[−]〉)

λ•x. (let y⇐ 〈[f]〉 • x in (λ•z. [id z]) • y)
= (β→)

λ•x. (let y⇐ 〈[f]〉 • x in (λ•z. [z]) • y)
= (β )

λ•x. (let y⇐ 〈[f]〉 • x in [y])

= (right)

λ•x. (〈[f]〉 • x)
= (η )

〈[f]〉

Figure 2.10: Proof of ( 2) in A.

arrows and back again is the identity (up to equivalence). That is,

〈[ JPK∆ ]〉 = λ•∆.P

for all arrow calculus commands P.

The proof requires four calculations, one for each construct of the arrow calculus. Fig-

ure 2.11 shows one of these, the calculation for arrow application.

• Translating from classic arrows into the arrow calculus and back again is the identity (up

to equivalence). That is,

J 〈[M]〉 K =M

for all classic arrow termsM.

The proof requires three calculations, one for each classic arrow constant. Figure 2.12

shows one of these, the calculation for >>>.

The remaining cases of the proofs for each of these properties are given in Appendix A.2.

The soundness of Paterson’s notation depends only on the first of these properties.

2.3.4 Normal forms

Under the laws of the arrow calculus (including the lambda calculus laws), every arrow calculus

command is equivalent to a command of the form
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〈[ JL •MK∆ ]〉 • ∆
= (def J−K∆)

〈[ arr (λ∆. JMK)>>> JLK ]〉 • ∆
= (def 〈[−]〉)

λ•∆. (let y⇐ (λ•z. [(λ∆. 〈[JMK]〉) z]) • ∆ in 〈[JLK]〉 • y) • ∆
= (induction hypothesis)

λ•∆. (let y⇐ (λ•z. [(λ∆.M) z]) • ∆ in L • y) • ∆
= (β )

let y⇐ [(λ∆.M) ∆] in L • y
= (β→)

let y⇐ [M] in L • y
= (left)

L •M

Figure 2.11: Translating L •M to C and back.

let x1 ⇐ c1 • M1 in
. . .
let xn ⇐ cn • Mn in
[N]

where c1, . . . , cn are constants of arrow type and M1, . . . ,Mn,N are in normal form. There

is a connection to the normal form for classic arrows given in Section 2.2.5.1: the result of

translating an arrow calculus command in normal form is a classic arrow term in normal form,

except for the order of the operands to &&& (which is a matter of mere convenience).

The technical report on arrows (Lindley et al., 2008a) explains how to obtain a rewriting

theory for arrow calculus from the equational theory by orienting the rules appropriately. Proofs

of confluence and strong normalisation follow from a translation of arrow calculus into Moggi’s

metalanguage for monads, which is known to be strongly normalising (Lindley and Stark,

2005).

2.3.5 Redundancy of the second law

In Section 2.2.5.1 we saw that classic arrow terms can be normalised using eight of the nine

laws: the right unit law ( 2) is not needed. The proof of the equational correspondence
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J 〈[(>>>)]〉 K
= (def 〈[−]〉,β→)

Jλf. λg. λ•x. (let y⇐ f • x in g • y) K
= (def J−K, ( 1))

λf. λg. (arr id &&& f)>>> (arr snd>>> g)

= (def &&&)

λf. λg. arr dup>>> first (arr id)>>> arr swap>>> first f>>>

arr swap>>> (arr snd>>> g)

= ( 5)

λf. λg. arr dup>>> arr (id×id)>>> arr swap>>> first f>>>

arr swap>>> (arr snd>>> g)

= (id×id = id)

λf. λg. arr dup>>> arr id>>> arr swap>>> first f>>>

arr swap>>> (arr snd>>> g)

= ( 2)

λf. λg. arr dup>>> arr swap>>> first f>>>

arr swap>>> (arr snd>>> g)

= ( 4, swap · dup = dup)

λf. λg. arr dup>>> first f>>> arr swap>>> (arr snd>>> g)

= ( 3)

λf. λg. arr dup>>> first f>>> arr swap>>> arr snd>>> g

= ( 4, snd · swap = fst)

λf. λg. arr dup>>> first f>>> arr fst>>> g

= ( 8)

λf. λg. arr dup>>> arr fst>>> f>>> g

= ( 4, fst · dup = id)

λf. λg. arr id>>> f>>> g

= ( 1,η→(×2))

(>>>)

Figure 2.12: Translating >>> to A and back.
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f >>> arr id

= ( 1)

arr id>>> f >>> arr id

= (fst · dup = id)

arr (fst · dup)>>> f >>> arr id

= ( 4)

arr dup>>> arr fst>>> f >>> arr id

= ( 8)

arr dup>>> first f >>> arr fst>>> arr id

= ( 4)

arr dup>>> first f >>> arr (id · fst)
= (id · fst = fst)

arr dup>>> first f >>> arr fst

= ( 8)

arr dup>>> arr fst>>> f

= ( 4)

arr (fst · dup)>>> f
= (fst · dup = id)

arr id>>> f

= ( 1)

f

Figure 2.13: The ( 2) law is redundant.
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Syntax:

Types A,B,C ::= · · · | IA

Constants:
pure : A→ IA

(�) : I (A→ B)→ IA→ I B

Laws:
(I1) M = pure id�M

(I2) pureM� pure N = pure (MN)

(I3) L� (M�N) = pure (·)� L�M�N

(I4) M� pure N = pure (λf. f N)�M

Figure 2.14: Idioms, I (extends λ→×1, Figure 2.4).

between arrow calculus and classic arrows contains a similar curiosity. From the five laws of

the arrow calculus we can prove the nine classic laws, and from eight of the nine classic laws

we can prove the five laws of the arrow calculus. The missing law is again ( 2), the right unit

law for classic arrows. We now have two indirect proofs that this law is redundant. Still, a

direct proof is more satisfactory; we give one in Figure 2.13.

2.4 Formal comparison of strength10

Having introduced the arrow calculus and shown that it is strictly equivalent to the classic

presentation of arrows, we are ready to embark upon the formal comparison with idioms and

monads. As we saw in Section 2.3, McBride and Paterson claimed that monads are the strongest

of the three interfaces and arrows the weakest. In fact, as illustrated by the normal forms and

examples in Sections 2.2.2 and 2.2.3, this is not the case: idioms are weaker than both arrows

and monads. In this section we present variations of the arrow calculus that correspond to

idioms and to monads and formally establish the correct ordering via a pair of embeddings.

2.4.1 Idioms and arrows

Figure 2.14 defines the theory of idioms, I, a straightforward recapitulation of the Haskell

interface presented in Section 2.2.3. Idioms extend λ→×1 with a unary type constructor I

10This section is a revision of Lindley et al. (2008b)
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Constants:

delay : (A B)→ (1 (A→ B))

Definitions:

force : (1 (A→ B))→ (A B)

force = λf. arr (λx. 〈〈〉, x〉)>>> first f>>> arr (apply)

Laws:

( S1) force (delay (M)) =M

( S2) delay (force (M)) =M

Figure 2.15: Classic arrows with delay, CS (extends C, Figure 2.5).

for computations of type IA which return a value of type A and two constants, pure and

(�). There are four laws which, together with the laws of the lambda calculus, define the

equivalence relation of the theory. For idioms to serve as a useful programming language

we would additionally need constants for constructing basic computations. These play no

significant role in the theory, so we omit them here.

In order to compare idioms and arrows we formalise static arrow computations, an analogue

of the StaticArrow class in Section 2.2.3.2.

Figure 2.15 defines the theory of classic arrows with delay CS, a variant of classic arrows

that supports static computation CS by adding an extra constant, delay, which allows the input

to a computation be delayed until after the side-effects have taken place. The inverse to delay,

force, can be defined within the calculus.

Figure 2.16 defines the theory of static arrows S, a variant of the arrow calculus in which

the semantics of a computation is independent of input. The new command form run L is

a restricted form of arrow application which runs an arrow computation without supplying it

with an input, producing a value of function type. Note that variables from the ∆ environment

cannot occur in L. There are three new laws. The first law, run1, states that arrow applications

can be eliminated via decomposition into two parts. The first part runs the computation without

using the input, returning a pure function. The second part applies this function to the input.

The second law, run2, states that running a pure computation is equivalent to lifting a pure

function. The third law, run3, allows run to be pushed into the body of a let binding. By
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Syntax:

Commands P,Q,R ::= · · · | run L

Types:

Γ ` L : A B

Γ ; ∆ ` run L ! A→ B

Laws:

(run1) L •M = let f⇐ run L in [fM]

(run2) run (λ•x. [M]) = [λx.M]

(run3) run (λ•x.let y⇐ P in Q) = let y⇐ P in

let f⇐ run (λ•〈x, y〉.Q) in

[λx. f 〈x, y〉]

Figure 2.16: Static arrows, S (extends A, Figure 2.6).

Static arrows to classic arrows with delay:

Jrun LK∆ = arr (λ∆. 〈〉)>>> delay JLK

Classic arrows with delay to static arrows:

〈[delay]〉 = λx. λ•〈〉.run x

Figure 2.17: Translating between S and CS.

repeated application of these laws in conjunction with the other arrow calculus laws we can

reduce all run commands in a term to the canonical form run (f x1 . . . xn).

Figure 2.17 gives the translations between static arrows S and classic arrows with delay CS,

which extend the translations of Figures 2.7 and 2.8. We write λ〈〉.M and λ•〈〉.Q for function

and arrow abstractions with input type 1.

Proposition 12. The theories of static arrows and classic arrows with delay are in equational

correspondence: S ∼= CS.

Proof. The proof requires an extension of Lemmas 8 and 10 to cover the construct run L

(Appendix A.3.1).
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The equational correspondence extends the correspondence of Proposition 11. We must

show that the three new laws of S follow from the nine laws of C plus the two additional laws

of CS, and that the two laws of CS follow from the five laws of A plus the three additional laws

of S. We must also show that translating a term from each theory to the other and back is the

identity. There is one case for the command form run L of S and one for the term delay of

CS.

Appendix A.3 gives the full proof.

Figure 2.18 gives the translations between idioms I and static arrows S. (Here and through-

out we elide the definition of the homomorphic translations on types and the corresponding

type isomorphisms.)

As with the translation from A to C, we must determine the meaning of translation from S

to I on a substitution and on weakening, which we do with the following two lemmas.

Lemma 13. [Translating substitution from S to I]

The translations of substitution on terms and commands from S to I satisfy the following

equations.

〈[M[x :=N]]〉 = 〈[M]〉[x := 〈[N]〉]

〈[Q[x :=N]]〉∆ = pure (λg.λ∆.g (∆, 〈[N]〉))� 〈[Q]〉∆,x

Proof. By mutual induction on the derivations of P and M. There is one case for each term

form and each command form. Appendix A.4.1 gives the full proof.

Lemma 14. [Translating weakening from S to I]

The translation of weakening from S to I for commands is as follows.

〈Γ ; ∆ ` Q ! B

Γ ′; ∆ ′ ` Q ! B

〉 =
〈[Γ ]〉 ` 〈[Q]〉∆ : I(〈[∆]〉 → 〈[B]〉)
〈[Γ ′]〉 ` pure (λg. λ∆ ′.g ∆)� 〈[Q]〉∆ : I(〈[∆ ′]〉 → 〈[B]〉)

Proof. By induction on the derivation of Q. There is one case for each command form. Ap-

pendix A.4.1 gives the full proof.

Proposition 15. The theories of idioms and static arrows are equationally equivalent: I ∼ S.

Proof. The equational equivalence has four components:

• The four laws of I follow from the eight laws of S (i.e. the five laws of A plus the three

additional laws of S). The proof requires four calculations, one for each law of I.
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Idioms to static arrows:

JIAK = 1 JAK

JpureK = λx. λ•〈〉. [x]

J(�)K = λh. λa. λ•〈〉.let k⇐ h • 〈〉 in let x⇐ a • 〈〉 in [k x]

Static arrows to idioms:

〈[A B]〉 = I (〈[A]〉 → 〈[B]〉)

〈[λ•x.P]〉 = 〈[P]〉x

where

〈[Γ ; ∆ ` P ! A]〉 = 〈[Γ ]〉 ` 〈[P]〉∆ : I (〈[∆]〉 → 〈[A]〉)

〈[L •M]〉∆ = pure (λl. λ∆. l 〈[M]〉)� 〈[L]〉

〈[run L]〉∆ = pure (λl. λ∆. l)� 〈[L]〉

〈[[M]]〉∆ = pure (λ∆. 〈[M]〉)

〈[let x⇐ P in Q]〉∆ = pure (λp. λq. λ∆. q 〈∆, p ∆〉)� 〈[P]〉∆ � 〈[Q]〉∆,x

Type isomorphism on idioms:

fI(A) : IA ' I (1→ 〈[JAK]〉)

fI(A) = λa. pure (λx. λ〈〉. fA(x))� a

f−1
I(A) = λa. pure (λx. f−1

A (x 〈〉))� a

Type isomorphism on static arrows:

gA B : A B ' 1 (J〈[A]〉K→ J〈[B]〉K)

gA B = λa. λ•〈〉.let f⇐ run a in [λx.gB(f (g
−1
A (x)))]

g−1
A B = λa. λ•x.let h⇐ a • 〈〉 in [g−1

B (h (gA(x)))]

Figure 2.18: Translating between I and S.
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• The eight laws of S follow from the four laws of I. The proof requires eight calculations,

one for each law of S. The cases for (β ) and (left) require Lemma 13 and the cases

for (β ), (assoc) and (run3) require Lemma 14.

• Translating a termM from I into S and back back gives a term isomorphic toM:

〈[JMK]〉 = fA(M)

There are two cases, one for pure and one for �. Figure 2.18 defines the isomorphism

we need at the type I(A); it is straightforward to construct isomorphisms at the types

of pure and � from this. We need the definition of fA→B, which is the same for each

isomorphism:

fA→B : A→ B ' 〈[JAK]〉 → 〈[JBK]〉

fA→B = λh. λx. fB (h (f−1
A (x)))

f−1
A→B = λh. λx. f−1

B (h (fA(x)))

Combining this with fI(A) gives the following isomorphism at A → I(A), the type of

pure:

fA→I(A) = λh. λx. (pure (λx. λ〈〉. fA(x))� (h (f−1
A (x))))

The other isomorphisms we need, both here and in the propositions that follow, are

similarly straightforward to construct.

• Translating a termM from S into I and back gives a term isomorphic toM:

J〈[M]〉K = gA(M)

There is one case, for λ•x.Q. The proof involves showing a corresponding property for

commands. Translating a command P from S into I and back gives a term isomorphic to

λ•∆.P:

J〈[P]〉∆K = g∆ A(λ•∆.P)

There are four cases, one for each command form of S.

Appendix A.4 gives the proof in full.

Remark The type isomorphism gA B : A B ' 1 (J〈[A]〉K→ J〈[B]〉K) gives an alternative

characterisation of static arrows. One half of the isomorphism can be defined in the arrow
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calculus, A:

g−1
A B : (1 (J〈[A]〉K→ J〈[B]〉K))→ (A B)

g−1
A B = λa. λ•x.let h⇐ a • 〈〉 in [g−1

B (h (gA(x)))]

The inverse of g−1
A B can be defined in static arrows, S, using run :

gA B : (A B)→ (1 (J〈[A]〉K→ J〈[B]〉K))

gA B = λa. λ•〈〉.let f⇐ run a in [λx.gB(f (g
−1
A (x)))]

The function gA B and run L are inter-definable. The definition of run L in terms of gA B
is as follows:

run L ≡ (gA B(L)) • 〈〉

Figure 2.19 gives a translation J−K from S into A and a translation 〈[−]〉 from the image of

J−K into S.

Lemma 16. [Translating substitution from S to A]

The translations of substitution on terms and commands from S to A satisfy the following

equations.

JM[x :=N]K = JMK[x := JNK]

JQ[x :=N]K = let q⇐ JQK∆,x in [λ∆.q (∆, JNK)]

Proof. By mutual induction on the derivations of P and M. There is one case for each term

form and each command form. Appendix A.5.1 gives the proof in full.

Lemma 17. [Translating substitution from the image of J−K to S]

The translations of substitution on terms and commands from the image of J−K to S satisfy

the following equations.

〈[M[x :=N]]〉 = 〈[M]〉[x := 〈[N]〉]

〈[Q[x :=N]]〉 = 〈[Q]〉[x := 〈[N]〉]

Lemma 18. [Translating weakening from S to A]

The translation of weakening from S to A for commands is as follows.

u

vΓ ; ∆ ` Q ! B

Γ ′; ∆ ′ ` Q ! B

}

~ =
JΓK; · ` JQK∆ ! J∆K→ JBK

JΓ ′K; · ` let q⇐ JQK∆ in [λ∆ ′.q ∆] ! J∆ ′K→ JBK
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Static arrows to arrows:

JA BK = 1 (JAK→ JBK)

Jλ•x.PK = λ•〈〉. JPKx

where

JΓ ; ∆ ` P ! AK = JΓK; · ` JPK∆ ! J∆K→ JAK

JL •MK∆ = let l⇐ JLK • 〈〉 in [λ∆. l JMK]

Jrun LK∆ = let h⇐ JLK • 〈〉 in [λ∆. h]

J[M]K∆ = [λ∆. JMK]

Jlet x⇐ P in QK∆ = let p⇐ JPK∆ in

let q⇐ JQK∆,x in [λ∆. q 〈∆, p ∆〉]

JSK to static arrows:

〈[1 (A→ B)]〉 = 〈[A]〉 〈[B]〉

〈[λ•〈〉.P]〉 = λ•x.let h⇐ 〈[P]〉 in [h x]

where

〈[Γ ; ∆ ` P ! A]〉 = 〈[Γ ]〉; 〈[∆]〉 ` 〈[P]〉 ! 〈[A]〉

〈[L •M]〉 = run 〈[L]〉

〈[[M]]〉 = [〈[M]〉]

〈[let x⇐ P in Q]〉 = let x⇐ 〈[P]〉 in 〈[Q]〉

Type isomorphism on static arrows:

f : A ' A is the identity isomorphism.

Figure 2.19: Embedding S into A.



2.4. Formal comparison of strength 75

Proof. By induction on the derivation of Q. There is one case for each command form. Ap-

pendix A.5.1 gives the proof in full.

Proposition 19. The translations J−K and 〈[−]〉 define an equational embedding of static arrows

into arrow calculus: S ↪→ A.

Proof. The equational embedding has three components:

• The eight laws of S follow from the five laws of A. The proof requires eight calculations,

one for each law of S. The cases for (β ) and (left) depend on Lemma 16, and the cases

for (assoc) and (run3) depend on Lemma 18.

• For terms in the image of the translation J−K, the five laws of A follow from the eight

laws of S. The proof requires five calculations, one for each law of A. The cases for

(β ) and (left) depend on Lemma 17

• Translating a termM from S into A and back is the identity:

〈[JMK]〉 =M

There is one case, for λ•x.Q. The proof involves showing a corresponding property for

commands. Translating a command P from S into A and back gives a term isomorphic

to λ•∆.P:

〈[JPK∆]〉 = run (λ•∆.P)

or, equivalently,

let d⇐ 〈[JPK∆]〉 in [d ∆] = P

There are four cases, one for each command form of S.

Appendix A.5 gives the proof in full.

In summary: idioms are equationally equivalent to static arrows, which embed into arrow

calculus (Figure 2.20).

2.4.2 Arrows and monads

Figure 2.21 defines the theory of monads, M, a straightforward recapitulation of the Haskell

interface presented in Section 2.2.1. Like I, M extends λ→×1 with a unary type constructor

M for computations of type MA which return a value of type A and two constants, return

and (>>=). There are three laws which, together with the laws of the lambda calculus, define
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idioms I

∼

		
static arrows S

HH

��

� � // arrow calculus A

∼=

		classic arrows

with delay CS

∼=

II

classic arrows C

II

Figure 2.20: Relating idioms to arrows.

Syntax:

Types A,B,C ::= · · · |MA

Constants:
return : A→MA

(>>=) : MA→ (A→MB)→MB

Laws:
(M1) return N>>=M = MN

(M2) M>>= return = M

(M3) (L >>=M)>>=N = L >>= (λx.M x>>=N)

Figure 2.21: Monads, M (extends λ→×1, Figure 2.4).

the equivalence relation of the theory. As before, we do not consider the additional constants

needed for constructing basic computations.

In order to compare arrows and monads we consider arrows extended with application.

We briefly recall the theory of classic arrows with apply and then introduce a higher-order

extension of the arrow calculus that is in equational correspondence with Capp.

Figure 2.22 defines the theory of classic arrows with apply Capp, a recapitulation of the

ArrowApply class described in Section 2.2.2.4 (and in more detail by Hughes (2000)).

Figure 2.23 defines the theory of higher-order arrows H, an extension of the arrow calculus

to support the application of an arrow that is itself yielded by another arrow. The new command

form L ?M lifts the central restriction on arrow application. Now the arrow to apply may be

the result of a command, and the command denoting the arrow may contain free variables in

both Γ and ∆. The additional laws are simply the beta and eta laws for ?.
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Constants:

app : (A B)×A B

Laws:

( H1) first (arr (λx. arr (λy. 〈x, y〉)))>>> app = arr id

( H2) first (arr (L>>>))>>> app = second L >>> app

( H3) first (arr (>>>L))>>> app = app>>> L

Figure 2.22: Classic arrows with apply, Capp (extends C, Figure 2.5).

Syntax:

Commands P,Q,R ::= · · · | L ?M

Types:

Γ ,∆ ` L : A B Γ ,∆ `M : A

Γ ; ∆ ` L ?M ! B

Laws:
(βapp) (λ•x.Q) ?M = Q[x :=M]

(ηapp) λ•x. (L ? x) = L

Figure 2.23: Higher-order arrows, H (extends A, Figure 2.6).

In fact, the ηapp law is redundant:

λ•x.L ? x

= (η )

λ•x. (λ•y.L • y) ? x
= (βapp)

λ•x.L • x
= (η )

L

We retain it for convenience.

Figure 2.24 gives the translations between the higher-order arrows H and classic arrows

with apply Capp, which extend the translations of Figures 2.7 and 2.8.
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Higher-order arrows to classic arrows with apply:

JL ?MK∆ = arr (λ∆. (JLK, JMK))>>> app

Classic arrows with apply to higher-order arrows:

〈[app]〉 = λ•p. (fst p) ? (snd p)

Figure 2.24: Translating between H and Capp.

Proposition 20. The theories of higher-order arrows and classic arrows with apply are in

equational correspondence: H ∼= Capp.

Proof. The proof requires an extension of Lemmas 8 and 10, to cover the L ?M construct

(Appendix A.6.1).

The proof of equational correspondence extends the proof of Proposition 11. We must

show that the laws of each theory follow from the laws of the other. There is one calculation

to show that the (βapp) law follows from the laws of Capp and there are three calculations to

show that laws ( H1), ( Hs) and ( H3) follow from the laws of H. We must also show

that translating terms from each theory to the other and back is the identity. There is one

calculation to show that translating the command L ?M to Capp and back gives λ•∆. (L ?M)

and one calculation to show that translating app to H and back is the identity.

The full proof is given in Appendix A.6.

Figure 2.25 gives the translations between higher-order arrows H and monads M.

Lemma 21. [Translating substitution from H to M]

The translations of substitution on terms and commands from H to M satisfy the following

equations.

〈[M[x :=N]]〉 = 〈[M]〉[x := 〈[N]〉]

〈[Q[x :=N]]〉 = 〈[Q]〉[x := 〈[N]〉]

Proposition 22. The theories of monads and higher-order arrows are equationally equivalent:

M ∼ H.

Proof. In order to demonstrate the equational equivalence, we must show that the three laws

of M follow from the seven laws of H, and vice versa. We must also show that translating
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Monads to higher-order arrows:

JMAK = 1 JAK

JreturnK = λx. λ•〈〉. [x]

J(>>=)K = λa. λh. λ•〈〉.let x⇐ a ? 〈〉 in (h x) ? 〈〉

Higher-order arrows to monads:

〈[A B]〉 = 〈[A]〉 →M 〈[B]〉

〈[λ•x.P]〉 = λx. 〈[P]〉

where

〈[Γ ; ∆ ` P ! A]〉 = 〈[Γ ,∆]〉 ` 〈[P]〉 :M 〈[A]〉

〈[L •M]〉 = 〈[L]〉 〈[M]〉

〈[L ?M]〉 = 〈[L]〉 〈[M]〉

〈[[M]]〉 = return 〈[M]〉

〈[let x⇐ P in Q]〉 = 〈[P]〉>>= λx. 〈[Q]〉

Type isomorphism on monads:

fM(A) :MA ' 1→M 〈[JAK]〉

fM(A) = λa. λu. a>>= (λx. return (fA(x)))

f−1
M(A) = λh. h 〈〉>>= (λx. return (f−1

A (x)))

Type isomorphism on higher-order arrows:

gA B : A B ' J〈[A]〉K→ (1 J〈[B]〉K)

gA B = λa. λx. λ•〈〉.let v⇐ a • (g−1
A (x)) in [gB(v)]

g−1
A B = λh. λ•x.let v⇐ (h (gA(x))) ? 〈〉 in [g−1

B (v)]

Figure 2.25: Translating between M and H.
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a term from each theory to the other and back gives a term that is isomorphic to the original.

This involves showing a corresponding property for commands: for each command P of H we

show that the following holds:

J〈[P]〉K = λ•〈〉.let z⇐ P in [gA(z)]

We highlight one additional point of interest. Both L •M and L ?M translate to regu-

lar function application in M. How can translating the results back to H give terms that are

isomorphic to both L •M and L ?M? Once again, we must pay careful attention to the type

environments. When L does not use variables from ∆, the two forms of arrow application are

equivalent, as the following shows:

L •M
= (ηapp)

(λ•x.L ? x) •M
= (β )

L ?M

Translating from H to M and back changes all ∆-variables into Γ -variables, so we are free

to make use of this equivalence in the case for L ?M.

Appendix A.7 gives the proof of equational equivalence in full.

Proposition 23. There is an equational embedding of arrow calculus into higher-order arrows:

A ↪→ H.

The translation J−K is the inclusion map from A to H, the translation 〈[−]〉 is the identity

on A, and f is the identity isomorphism.

Remark The type isomorphism gA B : A B ' J〈[A]〉K→ (1 J〈[B]〉K) gives an alternative

characterisation of higher-order arrows. One half of the isomorphism can be defined in the

arrow calculus, A:

gA B : (A B)→ (J〈[A]〉K→ (1 J〈[B]〉K))

gA B = λa. λx. λ•〈〉.let v⇐ a • (g−1
A (x)) in [gB(v)]

The inverse of gA B can be defined in higher-order arrows, H, using ?:

g−1
A B : (J〈[A]〉K→ (1 J〈[B]〉K))→ (A B)

g−1
A B = λh. λ•x.let v⇐ (h (gA(x))) ? 〈〉 in [g−1

B (v)]
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monads M

		
arrow calculus A

∼=

		

� � // higher-order arrows H
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classic arrows C
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application Capp
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II

Figure 2.26: Relating arrows to monads.

The function g−1
A B and L ?M are inter-definable. The definition of L ?M in terms of g−1

A B

is as follows:

L ?M ≡ g−1
(A B)×A B(λp. λ•〈〉. (fst p)(snd p)) • 〈L,M〉

In summary: monads are equationally equivalent to higher-order arrows, and there is an

equational embedding of arrow calculus into higher-order arrows (Figure 2.26).

2.4.2.1 Redundancy of the second higher-order arrows law

A look at the proof of (βapp) (Appendix A.6.2) reveals another redundancy: ( H2) is not

required to prove (βapp). From the classic laws—with apply but excluding ( H2)—we can

prove the laws of higher-order arrows, and from these we can in turn prove the classic laws—

including ( H2). It follows that ( H2) must be redundant. Appendix A.8 gives a direct proof

of the redundancy, deriving ( H2) from ( H1), ( H3), and the classic arrow laws.

2.4.3 Closing remarks on expressive power

Our work in Section 2.4 establishes an order of expressive power between three calculi using

equational embeddings. In one respect the ordering that emerges appears surprising: both the

syntax of the least expressive language, S, and the syntax of the most expressive language, H,

are extensions of the language that is intermediate in expressiveness, A. The syntax of H is the

syntax of A with the addition of ?, so it is not surprising that there is an embedding of A into

H. However, the syntax of S is the syntax of A with the addition of run L, and yet there the

embedding is the other way around: A is embedded into S! How can a adding new constructs

to a language make it less powerful?

In order to answer to this question we must first note that we are not here dealing with

concrete programming languages, but with a more abstract flavour of calculus. Our calculi are
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not furnished with concrete value domains, or evaluation relations: each calculus admits many

possible interpretations, just as the various type classes in Section 2.2 have many instances.

Just as the laws associated with the type classes restrict the possible instances of the class,

so the equational theory of each calculus restricts which interpretations we can give to the

calculus. S extends not only the syntax, but also the equational theory of A, and it thereby

introduces further restrictions on the set of possible interpretations, so rendering the language

less powerful.

We can illustrate the principle using a more familiar calculus, and a rather extreme example.

In Figure 2.4 we gave the equational theory of a simply-typed lambda calculus λ→×1. Suppose

that we extend this calculus to obtain λ→×1
⊥ , which has an additional constant ⊥A, and a law

(⊥) which equates every other term with this constant:

L,M,N ::= · · · | ⊥A

(⊥) ⊥A = L

Clearly only one-point value domains will be suitable for interpreting λ→×1
⊥ : we have extended

the syntax of the language, but severely curtailed its expressive power.

Turning back to the relationship between arrow calculus, A, and static arrows, S, we can

show that there is no equational embedding corresponding to the syntax inclusion of A in S

by exhibiting terms that are equal in S but not in A, a circumstance which is forbidden by the

second criterion in our definition of equational embedding (Definition 7).

Lemma 24. Suppose b1 and b2 are distinct constants of base type B, and c is a constant of

type B 1. Let U and V be the following terms:

U = let x⇐ c • b1 in [〈〉]

V = let x⇐ c • b2 in [〈〉]

It can be shown that U = V in S.

Proof.
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let x⇐ c • b1 in [〈〉]
= (run1)

let x⇐ let f⇐ run c in [f b1] in [〈〉]
= (assoc)

let f⇐ run c in let x⇐ [f b1] in [〈〉]
= (left)

let f⇐ run c in [〈〉]
= (left)

let f⇐ run c in let x⇐ [f b2] in [〈〉]
= (assoc)

let x⇐ let f⇐ run c in [f b2] in [〈〉]
= (run1)

let x⇐ c • b2 in [〈〉]

Lemma 25. Let U and V be defined as in Lemma 24. It cannot be shown that U = V in A.

Proof. We will show that U and V cannot be equated in A by interpreting A in the more

familiar setting of lambda calculus and showing that the interpretations of U and V are not

equal. Using the boolean state arrow to interpret , we set:

A B = Bool×A→ Bool× B

B = Bool

b1 = True

b2 = False

c3 = put (i.e. λp. 〈snd p, 〈〉〉)

and interpret the constructs of the arrow calculus using the translations of A into C (Figure 2.7)

and the standard definition of the state arrow (Section 2.2.2.2). Then U is interpreted as fol-

lows:

Jlet x⇐ put • True in [〈〉]K∆
= (def J−K)

(arr id &&& (arr (λ∆. True)>>> put ))>>> arr (λ∆, x. 〈〉)
= (def arr,>>>, &&&, etc.)

λ_. 〈True, 〈〉〉

and by an identical process V is interpreted as the term λ_. 〈False, 〈〉〉, which can evidently

not be equated with the interpretation of U.
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Proposition 26. The syntax inclusion of arrow calculus A into static arrows S does not form

an equational embedding.

Proof. If the syntax inclusion of A into S were an equational embedding then the equality

relations of A and S would coincide on terms that do not contain run L. However, Lemmas 24

and 25 show that the equality relation of S is strictly larger.

2.5 Future work

We have characterised idioms, monads and arrows as variations on a single calculus, establish-

ing the relative order of strength as idiom, arrow, monad in contrast to the putative order of

arrow, idiom, monad. The variations that bring the arrow calculus into correspondence with

idioms and with monads may be characterised either by type isomorphisms or by extensions to

the equational theory.

While the beta and eta laws of arrow calculus are more straightforward to work with than

the somewhat ad-hoc laws of classic arrows, relating the three interfaces by bringing each into

correspondence with a variant of arrow calculus is a somewhat circuitous route. It appears to

be possible to establish the relationships more directly, by presenting idioms and monads as

variants of classic arrows, in which the operators and laws of classic arrows are augmented

with the isomorphisms given above.

However, the arrow calculus has already proved useful independently of our investigations

here. Atkey (2008) draws inspiration from the arrow calculus to give a categorical semantics

for arrows; Vizzotto, Bois, and Sabry (2009) use the arrow calculus as the basis for a quantum

programming language.

Atkey has suggested an alternative formulation of static arrows in which the run construct

is replaced with a command-level lambda abstraction:

Γ ; ∆, x : A ` P ! B

Γ ; ∆ ` λ?x.P ! A→ B

together with beta and eta laws.

(βrun) let f⇐ λ?x.P in [fM] = P[x :=M]

(ηrun) λ?x.let f⇐ P in [f x] = P

This new form of abstraction and run are inter-definable.

λ?x.P = run (λ•x.P)

run L = λ?x.L • x
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The duality of this approach is particularly appealing: static arrows add a new form of abstrac-

tion, while higher-order arrows add a new form of application. The laws of this new form of

abstraction also fit the standard pattern. However, there are apparent disadvantages to the pro-

posed laws: they appear less convenient to use, and it is not clear how to obtain rewrite rules

from them.

The arrow calculus is the analogue for arrows of Moggi’s computational metalanguage

(Moggi, 1991). A further direction for possible future investigation is an analogue for arrows

of Moggi’s (1989) computational lambda calculus.

Another unresolved question, raised in Section 2.2.3.2, is whether there are monads m

other than the environment monad for which α → m β ' m (α → β). For such instances

the idiom, arrow and monad interfaces are equivalently powerful (Proposition 15, Proposi-

tion 22).





Chapter 3

Abstracting controls 1

3.1 Introduction

Suppose we want to present users with an HTML form for entering a pair of dates (such as an

arrival and departure date for booking a hotel). In our initial design, we represent a date using

a single text field. Later, we choose to replace each date by a pair of pulldown menus, one to

select a month and one to select a day.

In typical web frameworks, such a change will require widespread modifications to the

code. Under the first design, the HTML form will contain two text fields, and the code that

handles the response will need to extract and parse the text entered in each field to yield a pair

of values of appropriate type, perhaps an abstract date type. Under the second design, however,

the HTML will contain four menus, and the code that handles the response will need to extract

the choices for each menu and combine them in pairs to yield each date.

How can we structure a program so that it is isolated from this choice? We want to capture

the notion of a part of a form, specifically a part for collecting values of a given type or purpose;

we call such an abstraction a formlet. The designer of the formlet should choose the HTML

presentation, and decide how to process the input into a date value. Clients of the formlet

should be insulated from the choice of HTML presentation, and also from the calculation that

yields the abstract value. And, of course, we should be able to compose formlets to build larger

formlets.

Once described, this sort of abstraction seems obvious and necessary. But remarkably

few web frameworks support it. Three existing web programming frameworks that do support

some degree of abstraction over form components are WASH (Thiemann, 2005), iData (Plas-

meijer and Achten, 2006) and WUI (Hanus, 2006, 2007), each having distinctive features and

1This chapter is a revision of Cooper et al. (2008a).
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limitations. (We discuss these further in Section 3.8.)

Our contribution is to reduce form abstraction to its essence. We show that a semantics

of formlets can be obtained by the composition of the three standard idioms that capture the

effects needed for form abstraction. We will further argue that while idioms are a good fit

for capturing form abstraction, monads and arrows are not. Furthermore, we illustrate how

the semantics can be extended to support additional features (such as checking form input for

validity), either by composing with additional standard idioms or by generalising to indexed

and parameterised idioms.

We will begin with an example, showing how formlets might appear to the programmer

(Section 3.2). Subsequent sections give a semantics in terms of idioms (Section 3.3), define

the syntactic sugar used throughout the chapter (Section 3.4), show how formlets fit into a web

programming environment (Section 3.5), and show how to extend the basic abstraction with

static XHTML validation and user-input validation (Section 3.6). We conclude by describing

a number of implementations of formlets in various languages (Section 3.7) and discussing

related work (Section 3.8).

Formlets can be implemented in any functional programming language; we present them

here in OCaml. OCaml is a particularly good fit for our exposition: we can give the semantics

in terms of idiom composition using functors and define the new syntactic forms using Camlp4,

the standard tool for extending OCaml syntax.

3.2 Formlets by example

Now we illustrate formlets, as they might appear to the programmer, with an example (Fig-

ure 3.1). We assume familiarity with HTML and OCaml. This section covers our OCaml

implementation, and so has features that may vary in another implementation of formlets. We

use a special syntax for programming with formlets, which is defined formally in Section 3.4;

this syntax is part of the implementation, and makes formlets easier to use, but is not an essen-

tial part of the abstraction.

The formlet date_formlet has two text input fields, labelled “Month” and “Day.” Upon

submission, this formlet will yield a date value representing the date entered. The user-defined

make_date function translates the day and month into a suitable representation.

A formlet expression consists of a body and a yields clause. The formlet expression

date_formlet has the body



3.2. Formlets by example 89

l
e
t

d
a
t
e
_
f
o
r
m
l
e
t
:

d
a
t
e

f
o
r
m
l
e
t
=

f
o
r
m
l
e
t

<
d
i
v
>

M
o
n
t
h
:
{
i
n
p
u
t
_
i
n
t
⇒

m
o
n
t
h
}

D
a
y
:

{
i
n
p
u
t
_
i
n
t
⇒

d
a
y
}

<
/
d
i
v
>

y
i
e
l
d
s

m
a
k
e
_
d
a
t
e

m
o
n
t
h

d
a
y

l
e
t

t
r
a
v
e
l
_
f
o
r
m
l
e
t
:
(
s
t
r
i
n
g
×

d
a
t
e
×

d
a
t
e
)

f
o
r
m
l
e
t
=

f
o
r
m
l
e
t

<
#
>

N
a
m
e
:
{
i
n
p
u
t
⇒

n
a
m
e
}

<
d
i
v
>

A
r
r
i
v
e
:
{
d
a
t
e
_
f
o
r
m
l
e
t
⇒

a
r
r
i
v
e
}

D
e
p
a
r
t
:
{
d
a
t
e
_
f
o
r
m
l
e
t
⇒

d
e
p
a
r
t
}

<
/
d
i
v
>

{
s
u
b
m
i
t
"
S
u
b
m
i
t
"
}

<
/
#
>

y
i
e
l
d
s
(
n
a
m
e
,

a
r
r
i
v
e
,

d
e
p
a
r
t
)

l
e
t

d
i
s
p
l
a
y
_
i
t
i
n
e
r
a
r
y
:

s
t
r
i
n
g
×

d
a
t
e
×

d
a
t
e
→

x
m
l
=

f
u
n
(
n
a
m
e
,

a
r
r
i
v
e
,

d
e
p
a
r
t
)
→

<
h
t
m
l
>

<
h
e
a
d
>
<
t
i
t
l
e
>
I
t
i
n
e
r
a
r
y
<
/
t
i
t
l
e
>
<
/
h
e
a
d
>

<
b
o
d
y
>

I
t
i
n
e
r
a
r
y
f
o
r
:
{
x
m
l
_
t
e
x
t

n
a
m
e
}

A
r
r
i
v
i
n
g
:
{
x
m
l
_
o
f
_
d
a
t
e

a
r
r
i
v
e
}

D
e
p
a
r
t
i
n
g
:
{
x
m
l
_
o
f
_
d
a
t
e

d
e
p
a
r
t
}

<
/
b
o
d
y
>

<
/
h
t
m
l
>

h
a
n
d
l
e

t
r
a
v
e
l
_
f
o
r
m
l
e
t

d
i
s
p
l
a
y
_
i
t
i
n
e
r
a
r
y

Fi
gu

re
3.

1:
D

at
e

ex
am

pl
e

l
e
t

d
a
t
e
_
f
o
r
m
l
e
t
:

d
a
t
e

f
o
r
m
l
e
t
=

p
u
r
e
(
f
u
n
(
m
o
n
t
h
,
d
a
y
)
→

m
a
k
e
_
d
a
t
e

m
o
n
t
h

d
a
y
)

�
(
t
a
g
"
d
i
v
"
[
]

(
p
u
r
e
(
f
u
n
(
)
m
o
n
t
h
(
)
d
a
y
(
)
→

(
m
o
n
t
h
,
d
a
y
)
)

�
x
m
l
(
x
m
l
_
t
e
x
t
"
M
o
n
t
h
:
"
)

�
i
n
p
u
t
_
i
n
t

�
x
m
l
(
x
m
l
_
t
e
x
t
"
D
a
y
:

"
)

�
i
n
p
u
t
_
i
n
t

�
x
m
l
(
x
m
l
_
t
e
x
t
"
\
n

"
)
)
)

l
e
t

t
r
a
v
e
l
_
f
o
r
m
l
e
t
:
(
s
t
r
i
n
g
×

d
a
t
e
×

d
a
t
e
)

f
o
r
m
l
e
t
=

p
u
r
e
(
f
u
n
(
n
a
m
e
,
(
a
r
r
i
v
e
,
d
e
p
a
r
t
)
)
→

(
n
a
m
e
,

a
r
r
i
v
e
,

d
e
p
a
r
t
)
)

�
(
p
u
r
e
(
f
u
n
(
)

n
a
m
e
(
a
r
r
i
v
e
,
d
e
p
a
r
t
)
(
)
→

(
n
a
m
e
,
(
a
r
r
i
v
e
,
d
e
p
a
r
t
)
)
)

�
x
m
l
(
x
m
l
_
t
e
x
t
"
N
a
m
e
:
"
)

�
i
n
p
u
t

�
(
t
a
g
"
d
i
v
"
[
]

(
p
u
r
e
(
f
u
n
(
)
a
r
r
i
v
e
(
)
d
e
p
a
r
t
→

(
a
r
r
i
v
e
,
d
e
p
a
r
t
)
)

�
x
m
l
(
x
m
l
_
t
e
x
t
"
A
r
r
i
v
e
:
"
)

�
d
a
t
e
_
f
o
r
m
l
e
t

�
x
m
l
(
x
m
l
_
t
e
x
t
"
D
e
p
a
r
t
:
"
)

�
d
a
t
e
_
f
o
r
m
l
e
t
)
)

�
x
m
l
(
s
u
b
m
i
t
"
S
u
b
m
i
t
"
)
)

l
e
t

d
i
s
p
l
a
y
_
i
t
i
n
e
r
a
r
y
:

s
t
r
i
n
g
×

d
a
t
e
×

d
a
t
e
→

x
m
l
=

f
u
n

(
n
a
m
e
,

a
r
r
i
v
e
,

d
e
p
a
r
t
)
→

x
m
l
_
t
a
g
"
h
t
m
l
"
[
]

(
x
m
l
_
t
a
g
"
h
e
a
d
"
[
]

(
x
m
l
_
t
a
g
"
t
i
t
l
e
"
[
]
(
x
m
l
_
t
e
x
t
"
I
t
i
n
e
r
a
r
y
"
)
)
@

(
x
m
l
_
t
a
g
"
b
o
d
y
"
[
]

(
x
m
l
_
t
e
x
t
"
I
t
i
n
e
r
a
r
y
f
o
r
:
"
@

x
m
l
_
t
e
x
t

n
a
m
e
@

x
m
l
_
t
e
x
t
"
A
r
r
i
v
i
n
g
:
"
@

x
m
l
_
o
f
_
d
a
t
e

a
r
r
i
v
e
@

x
m
l
_
t
e
x
t
"
D
e
p
a
r
t
i
n
g
:
"
@

x
m
l
_
o
f
_
d
a
t
e

d
e
p
a
r
t
)
)
)

h
a
n
d
l
e

t
r
a
v
e
l
_
f
o
r
m
l
e
t

d
i
s
p
l
a
y
_
i
t
i
n
e
r
a
r
y

Fi
gu

re
3.

2:
D

at
e

ex
am

pl
e

(d
es

ug
ar

ed
an

d
si

m
pl

ifi
ed

)



90 Chapter 3. Abstracting controls

<div>
Month: {input_int ⇒ month}
Day: {input_int ⇒ day}
</div>

and its yields clause is

make_date month day

The body of a formlet expression is a formlet quasiquote. This is like an XML literal

expression but with embedded formlet bindings. A formlet binding {f ⇒ p} binds the result

yielded by f to the pattern p within the scope of the yields clause. Here f is an expression that

evaluates to a formlet and the type yielded by the formlet must be the same as the type accepted

by the pattern. Thus the variables month and day will be bound to the values yielded by the

two instances of the input_int formlet. The bound formlet f will render some HTML which

will take the place of the formlet binding when the outer formlet is rendered.

The value input_int is a formlet of type int formlet that renders as an HTML text

input element and parses the submission as type int. It is built from the primitive formlet

input which presents an input element and yields the entered string. Although input_int is

used here twice, the system prevents any field name clashes.

It is important to realise that any given formlet defines behavior at two distinct points in the

program’s execution: first when the form structure is built up, and much later (if at all) when

the form is submitted by the user, when the outcome is processed. The behaviour at the first

point is determined by the body of the formlet and the behaviour at the second point by the

yields clause.

Next we illustrate how user-defined formlets can be usefully combined to create larger

formlets. Continuing Figure 3.1, travel_formlet asks for a name, an arrival date, and a

departure date. The library function submit returns the HTML for a submit button; its string

argument provides the label for the button.

(The syntax <#> · · · </#> enters the XML parsing mode without introducing a root XML

node; its result is an XML forest, with the same type as XML values introduced by a proper

XML tag. The syntax <#/> denotes an empty XML forest. We borrow this notation from

WASH.)

Having created a formlet, how do we use it? For a formlet to become a form, we need to

connect it with a handler, which will consume the form input and perform the rest of the user

interaction. The function handle attaches a handler to a formlet; we describe it in more detail

in Section 3.5.

Continuing the above example, we render travel_formlet onto a full web page, and
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type xml = xml_item list

and tag = string

and attrs = (string × string) list

and xml_item (* abstract *)

val xml_tag : tag → attrs → xml → xml

val xml_text : string → xml

Figure 3.3: The xml abstract type.

attach a handler, display_itinerary, that displays the chosen itinerary back to the user.

(The abstract type xml is given in Figure 3.3; we construct XML using special syntax, which is

defined in terms of the xml_tag and xml_text functions, as shown formally in Section 3.4.)

This is a simple example; a more interesting application might render another form on the

display_itinerary page, one which allows the user to confirm the itinerary and purchase

tickets; it might then take actions such as recording the purchase in a database, and so on.

This example demonstrates the key characteristics of the formlet abstraction: static binding

(we cannot fetch the value of a form field that is not in scope), structured results (the month

and day fields are packaged into an abstract date type, which is all the formlet consumer

sees), and composition (we reuse the date formlet twice in travel_formlet, with no danger

of field-name clashes).

3.2.1 Syntactic sugar

Figure 3.2 shows the desugared version of the date example.

XML values are constructed using the xml_tag and xml_text functions and the standard

list concatenation operator, @. Formlet values are only slightly more complicated. The xml

function lifts an XML value into the formlet; the tag function is a counterpart to xml_tag

for formlets (Figure 3.5); composition of formlets makes use of the standard idiom operations

pure and � (Figure 3.4). Section 3.3 covers the formlet primitives in detail.

The sugar makes it easier to freely mix static XML with formlets. Without the sugar,

dummy bindings are needed to bind formlets consisting just of XML (see the unit arguments

to the pure functions in Figure 3.2), and formlets nested inside XML have to be rebound (see

the second call to pure in the body of travel_formlet in Figure 3.2). Section 3.4 gives a

desugaring algorithm and shows how to simplify the generated code.
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3.2.2 Life without formlets

Now consider implementing the above example using the standard HTML/CGI interface. We

would face the following difficulties with the standard interface:

• There is no static association between a form definition and the code that handles it,

so the interface is fragile. This means the form and the handling code need to be kept

manually in sync.

• Field values are always received individually and always as strings: the interface pro-

vides no facility for processing data or giving it structure.

• Given two forms, there is generally no easy way to combine them into a new form with-

out danger of name clashes amongst the fields—thus it is not easy to write a form that

abstractly uses subcomponents. In particular, using a form twice within a larger form is

difficult.

Conventional web programming frameworks such as PHP (PHP) and Ruby on Rails (Hans-

son, 2008) enable abstraction only through templating or textual substitution, hence there is

no automatic way to generate fresh field names, and any form “abstraction” (such as a tem-

plate) still exposes the programmer to the concrete field names used in the form. Even ad-

vanced systems such as PLT Scheme (Graunke et al., 2001b), JWIG (Christensen et al., 2003),

scriptlets (Elsman and Larsen, 2004), Ocsigen (Balat, 2006), Lift (lif, 2008) and the original

design for Links (Cooper et al., 2006) all fall short in the same way.

Formlets address all of the above problems: they provide a static association between a

form and its handler (ensuring that fields referenced actually exist and are of the right type),

they allow processing raw form data into structured values, and they allow composition, in part

by generating fresh field names at runtime.

3.3 Semantics

We wish to give a semantics of formlets using a well-understood formalism. We shall show

that formlets conform to the idiom interface described in Section 2.2.3. We begin with a con-

crete implementation in OCaml, which we then factor using standard idioms to give a formal

semantics.

Figure 3.4 gives the idiom interface in OCaml.
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module type IDIOM =
sig
type α t

val pure : α → α t

val (�) : (α → β) t → α t → β t

end

Figure 3.4: The idiom interface

type env = (string × string) list

module type FORMLET =
sig

include IDIOM

val xml : xml → unit t

val tag : tag → attrs → α t → α t

val input : string t

val run : α t → xml × (env → α)
end

Figure 3.5: The formlet interface

3.3.1 A concrete implementation

Figures 3.5 and 3.6 give a concrete implementation of formlets in OCaml.

The type αt is the type of formlets that return values of type α (the library exposes this type

at the top-level as αformlet). Concretely αt is defined as a function that takes a name source

(integer) and returns a triple of an XML rendering, a collector function of type env → α

and an updated name source. The formlet operations ensure that the names generated in the

rendering are the names expected (in the environment) by the collector.

The pure operation is used to create constant formlets whose renderings are empty and

whose collector always returns the same value irrespective of the environment. The � oper-

ation applies an (α→ β) formlet to an α formlet. The name source is threaded through

each formlet in turn. The resulting renderings are concatenated and the collectors composed.

Together pure and � constitute the fundamental idiom operations. (To constitute an idiom

they must, of course, satisfy the four laws given in Section 2.2.3.3. It is straightforward to

verify these laws for Formlet.)

The xml operation creates a formlet whose rendering is the argument; the tag operation

wraps the given formlet’s rendering in a new element with the specified tag name and attributes.

The primitive formlet input generates HTML input elements. A single name is generated
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module Formlet : FORMLET = struct
type α t = int → (xml × (env → α) × int)

let pure x i0 = ([], const x, i0)
let (�) f p i0 = let (x, g, i1) = f i0 in

let (y, q, i2) = p i1 in
(x @ y, (fun env → g env (q env)), i2)

let xml x i0 = (x, const (), i0)
let tag t attrs fmlt i0 = let (x, f, i1) = fmlt i0 in

(xml_tag t attrs x, f, i1)

let next_name i0 = ("input_" ^ string_of_int i, i0 + 1)
let input i0 = let (w, i1) = next_name i0 in

(xml_tag "input" [("name", w)] [],
List.assoc w, i1)

let run c = let (x, f, _) = c 0 in (x, f)
end

Figure 3.6: The formlet idiom

from the name source, and this name is used both in the rendering and the collector. The full

implementation includes a range of other primitive formlets for generating the other HTML

form elements such as <textarea> and <option>.

The run operation “runs” a formlet by supplying it with an initial name source (we use 0);

this produces a rendering and a collector function.

3.3.2 Idioms

We saw in Chapter 2 that idioms capture the idea of oblivious computation. Using idioms, the

result of each subcomputation is not available to other subcomputations; rather, all computa-

tions are executed before their results are collated as a final step. Formlets fit this pattern: the

sub-formlets cannot depend on one another’s results, and the final result yielded by a formlet

is a pure function of the results of the sub-formlets.

3.3.3 Factoring formlets

Now we introduce the three basic idioms into which the formlet idiom factors. (Figures 3.7, 3.8,

and 3.9). Besides the standard idiom operations in the interface, each idiom comes with

operations corresponding to primitive effects and a run operation for executing the effects
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module Namer :
sig
include IDIOM

val next_name : string t

val run : α t → α

end =
struct

type α t = int → α × int

let pure v i0 = (v, i0)
let (�) f p i0 = let (g,i1) = f i0 in

let (q,i2) = p i1 in
(g q,i2)

let next_name i0 = ("input_" ^ string_of_int i0, i0+1)
let run v = fst (v 0)

end

Figure 3.7: The name generation idiom

module Environment :
sig
include IDIOM

val lookup : string → string t

val run : α t → env → α

end =
struct
type α t = env → α

and env = (string × string) list

let pure v e = v

let (�) f p e = f e (p e)
let lookup = List.assoc
let run v = v

end

Figure 3.8: The environment idiom

and extracting the final result. A computation in the Namer idiom (Figure 3.7) has type

int → α × int; it is a function from a counter to a result and a possibly-updated counter.

The next_name operation uses this counter to construct a fresh name, updating the counter.

The Namer idiom may be obtained from the standard state monad (Section 2.2.1.2); however,

whereas in the monad the next_name can be defined in terms of get and put, in the idiom

obliviousness requires that we provide it as a primitive. A computation in the Environment

idiom (which we defined in Haskell in Section 2.2.3.2) has type env→ α; it receives an envi-

ronment and returns a result. The lookup operation retrieves values from the environment by
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module XmlWriter :
sig
include IDIOM

val xml : xml → unit t

val tag : tag → attrs → α t → α t

val run : α t → xml × α
end =
struct

type α t = xml × α
let pure v = ([], v)
let (�) (x, f) (y, p) = (x @ y, f p)
let xml x = (x,())
let tag t a (x,v) = (xml_tag t a x, v)
let run v = v

end

Figure 3.9: The XML accumulation idiom

module Compose (F : Idiom) (G : Idiom) :
sig

include IDIOM with type α t = (α G.t) F.t
val refine : α F.t → (α G.t) F.t

end =
struct

type α t = (α G.t) F.t
let pure x = F.pure (G.pure x)
let (�) f x = F.pure (�G) �F f �F x

let refine v = F.pure G.pure �F v

end

Figure 3.10: Idiom composition

name. As we saw in Section 2.2.3.2, the environment idiom may be obtained directly from the

standard environment monad. A computation in the XmlWriter idiom has type xml × α and

so produces both XML and a result; the XML is generated by the primitive xml and tag oper-

ations and concatenated using �. As with Namer and Environment, XmlWriter corresponds

directly to a standard monad, the monoid accumulator. The monoid is the free monoid on the

set of XML nodes, and pure and � correspond to its unit and multiplication.

Idioms can be combined in a variety of ways to form new idioms: for example, the product

of two idioms is also an idiom. We have chosen to obtain XmlWriter from the accumulator

monad, but it can also be obtained as the product of the AccI phantom monoid idiom (Sec-

tion 2.2.3.2) and the identity idiom.



3.3. Semantics 97

module Formlet : FORMLET = struct
module N = Namer

module A = XmlWriter

module E = Environment

module AE = Compose (A) (E)
include Compose (N) (AE)
let xml x = N.pure (AE.refine (A.xml x))
let tag t ats f = N.pure (A.tag t ats) �N f

let input = N.pure (fun n→ A.tag "input" [("name",n)]
(A.pure (E.lookup n)))

�N N.next_name
let run v = let (xml, collector) = A.run (N.run v) in

(xml, E.run collector)
end

Figure 3.11: The formlet idiom (factored)

We define idiom composition in OCaml using a functor, Compose (Figure 3.10), the OCaml

analogue of the Idiom instance for the Compose type in Section 2.2.3.2. The formlet idiom

is just the composition of the three primitive idioms Namer, XmlWriter, and Environment

(Figure 3.11).

To work with a composed idiom, we need to be able to lift the primitive operations from the

component idioms into the composed idiom. Given idioms F and G, we can lift any idiomatic

computation of type α G.t to an idiomatic computation of type (α G.t) F.t using F.pure,

and lift one of type α F.t to one of type (α G.t) F.t using Compose(F)(G).refine.

In defining the composed formlet idiom, a combination of N.pure and AE.refine is used

to lift the result of the A.xml operation. The tag operation is lifted differently as its third

argument is a formlet: here we apply the A.tag t ats operation to it. The run operation

simply runs each of the primitive run operations in turn. The input operation is the most

interesting. It generates a fresh name and uses it both to name an input element and, in the

collector, for lookup in the environment.

3.3.4 A note on monads and arrows

We saw in Chapter 2 that the idiom interface is the least powerful of three alternatives. Could

we use the more powerful (and more widely used) monad interface instead to offer additional

power to users of formlets? In fact, it is not difficult to see that there is no monad corresponding

to the formlet type.

Intuitively, the problem is that a >>= operation for formlets
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(>>=) :: α formlet → (α→ β formlet) → β formlet

would involve passing the result of the left operand to the right operand, a function which

constructs a formlet. However, none of the results of the various formlets on a page can be

made available until all of the formlets have been fully constructed and presented to the user,

since the results are only obtained after the form has been submitted. Thus, although each

of the primitive idioms used to construct formlets is also a monad, their composition is not a

monad.

Our focus in this chapter is on the composition of formlets within a single page. However,

a typical web interaction involves a sequence of such pages, each containing forms. It may be

that monads are more suited than idioms to structuring interactions, where the result of each

page is typically used in constructing the next page in the sequence, and indeed WASH uses

monads in this way (Thiemann, 2005). (Hughes (2000) suggests that arrows, which also favour

sequential composition, are even more suitable for this task.)

As we saw in Chapter 2, every idiom yields an arrow, so we could also use the arrow

interface for formlets. However, since the arrow thus obtained is static, we would not gain

any additional power by doing so; since arrows are also more cumbersome to use in practice

(at least without the special notation described in Section 2.3.2), we choose not to follow this

route.

3.4 Syntax

The syntax presented in Section 3.2 can be defined as syntactic sugar, which desugars into uses

of the basic formlet operations. Here we formally define the syntax and its translation. We add

two new kinds of expression: XML quasiquotes, (or XML literals with embedded evaluable

expressions), and formlet expressions, denoting formlet values. Figure 3.12 gives the grammar

for these expressions. Using Camlp4 it is easy to extend OCaml with new syntactic forms in

this way and our implementation closely follows the formal description given in this section.

The desugaring transformations are shown in Figure 3.13. The operation J·K desugars the

formlet expressions in a program; it is a homomorphism on all syntactic forms except XML

quasiquotes and formlet expressions. The operation (·)∗ desugars XML quasiquotes and nodes.

The operation z † denotes a pattern aggregating the sub-patterns of z where z ranges over

formlet quasiquotes and nodes. In an abuse of notation, we also let z † denote the expression

that reconstructs the value matched by the pattern. (Of course, we need to be somewhat careful

in the OCaml implementation to properly reconstruct the value from the matched pattern.)

Finally, z◦ is a formlet that tuples the outcomes of sub-formlets of z .
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Expressions

e ::= · · · | r (XML)

| formlet q yields e (formlet)

XML quasiquotes

m ::= s | {e} | <t ats>m1 . . . mk</t> node

r ::= <t ats>m1 . . . mk<t> | <#>m1 . . . mk</#> quasiquote

Formlet quasiquotes

n ::= s | {e} | {f ⇒ p} | <t ats>n1 . . . nk</t> node

q ::= <t ats>n1 . . . nk</t> | <#>n1 . . . nk</#> quasiquote

Meta variables

e expression f formlet-type expression t tag

p pattern s string ats attribute list

Figure 3.12: Quasiquote syntax.

As a simple example of desugaring, consider the input_int formlet used earlier. We can

define it as follows using the formlet syntax:

let input_int : int formlet =
formlet <#>{input ⇒ i}</#>
yields int_of_string i

Under the translation given in Figure 3.13, the body becomes

pure (fun i→ int_of_string i) � (pure (fun i→ i) � input)

We can use the idiom laws (and η-reduction) to simplify the output a little, giving the following

semantically-equivalent code:

pure int_of_string � input

As a richer example, recall date_formlet from Figure 3.1, reproduced below:

let date_formlet : date formlet = formlet
<div>
Month: {input_int ⇒ month}
Day: {input_int ⇒ day}
</div>

yields make_date month day
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JrK = r∗

Jformlet q yields eK = pure (fun q† → JeK) � q◦

s∗ = xml_text s

{e}∗ = JeK

(<t ats>m1 . . . mk</t>)∗ = xml_tag t ats (<#>m1 . . . mk</#>)∗

(<#>m1 . . . mk</#>)∗ = m∗1 @ · · · @ m∗k

s◦ = xml (xml_text s)

{e}◦ = xml JeK

{f ⇒ p}◦ = Jf K

(<t ats>n1 . . . nk</t>)◦ = tag t ats (<#>n1 . . . nk</#>)◦

(<#>n1 . . . nk</#>)◦ = pure (fun n†1 . . . n†k → (n†
1
, . . . ,n†k))

�n◦1 . . . � n◦k

s† = ()

{e}† = ()

{f ⇒ p}† = p

(<t ats>n1 . . . nk</t>)† = (n†1 , . . . , n†k)

(<#>n1 . . . nk</#>)† = (n†1 , . . . , n†k)

Figure 3.13: Desugaring XML and formlets.

In this case the desugaring algorithm produces the following output:

let date_formlet : date formlet =
pure (fun ((),month,(),day,()) → make_date month day)
� (tag "div" []

(pure (fun () month () day ()→ ((),month,(),day,()))
� xml (xml_text "Month: ") � input_int
� xml (xml_text "Day: ") � input_int
� xml (xml_text "\n ")))

It is easy to optimise this code by removing the extra units from the body of the inner pure and

from the arguments to the function in the outer pure, and we have applied this minor optimi-

sation in the simplified version given in Figure 3.2. However, the code is still rather inefficient:

in particular, the variables month and day are rebound in each pure function. Similarly, in

the travel_formlet of Figure 3.2 the variables arrive and depart are bound three times.
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Section 3.6.3 outlines an alternate desugaring that obviates this rebinding.

3.4.1 Completeness

The formlet syntax is complete: everything expressible with the formlet operations can be

expressed directly in the syntax. For example, the � operator of the formlet idiom may be

written as a function ap using syntactic sugar:

let ap : (α → β) formlet → α formlet → β formlet =
fun f p → formlet <#>{f ⇒ g}{p ⇒ q}</#> yields g q

Under the desugaring transformation, the body becomes

(pure (fun (g,q)→ g q)) � (pure (fun g q→ (g,q)) � f � p)

which, under the idiom laws, is equivalent to f � p. And pure, too, can be defined in the

sugar:

let pure : α → α formlet =
fun x→ formlet <#/> yields x

In this case desugaring produces the following code for the body:

pure (fun ()→ x) � pure ()

which is equal to pure x under the homomorphism law for idioms.

3.5 Pragmatics

We now consider the practicalities of using formlets in a typical web programming environ-

ment. We assume that the runtime system provides the following functions:

val pickle_cont : (α → β) → string

val unpickle_cont : string → (α → β)
val cgi_args : unit → env

val send_document : xml → unit

The first two, pickle_cont, and unpickle_cont, convert a function to and from a tex-

tual representation. We leave the details of the operation of these functions unspecified: for

example, pickle_cont might serialise the code underlying the function to a string, or store

the function in a table and return a string that acts as a key into the table. (We describe the

approach taken in Links in the next chapter.) We will use pickle_cont and unpickle_cont

to persist continuation functions for formlets across requests. The types are inherently unsafe:

there is nothing in the types of the functions to prevent the caller from pickling a function at

one type and unpickling it at another.
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The third function, cgi_args, retrieves the CGI arguments submitted with the cur-

rent request: these correspond to the values entered into a form by the user. The fourth,

send_document, sends an XML document to the client, completing the response.

Rather than use these functions directly in programming with formlets, we provide the

following interface, which is both safer and more convenient.

val handle : α formlet → (α → xml) → xml

val interact : (unit → xml) → unit

We have already used the handle function in the opening example (Figure 3.1): it attaches a

continuation function to a formlet. It may be implemented as follows:

let handle formlet handler =
let xml, collector = Formlet.run formlet in
let continuation env = handler (collector env) in
<form>

<input type="hidden" name="_k"
value="{pickle_cont continuation}"/>

{xml}
</form>

The handle function extracts rendering and collector from the formlet, and inserts the render-

ing it into a form together with the serialised continuation, which it stores as a hidden field.

The continuation uses the value returned by the collector as the argument to the handler, which

constructs the next page.

The interact function is intended for use at top-level; it accepts a function which con-

structs the initial page. Recall that a CGI program is invoked either to generate a page or to

process a form submission. We assume here that the same program is run on each occasion to

perform one of these tasks. The first time that the program is invoked in a sequence of interac-

tions, interact calls this function to construct the initial page. On subsequent invocations of

the program, interact extracts the CGI arguments, and rebuilds and runs the continuation of

the last request. The interact function may be implemented as follows:

let interact make_page =
send_document
(match cgi_args with

| [] → make_page ()
| args → unpickle_cont (List.assoc "_k" args) args)

Note that the only time that there are no CGI arguments is when the program is initially run;

on subsequent invocations there is always at least one CGI argument, namely the continuation,

"_k".
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module type XIDIOM =
sig
type (ψ, α) t

val pure : α → (ψ, α) t

val (�) : (ψ, α → β) t → (ψ, α) t → (ψ, β) t

end

Figure 3.14: The indexed idiom interface

3.6 Extensions

The formlet abstraction is robust, as we proceed to demonstrate by extending it in a number of

ways.

3.6.1 XHTML validation

The problem of statically enforcing validity of HTML (and indeed, XML) is well-studied

(Brabrand, Møller, and Schwartzbach, 2001, Thiemann, 2002, Hosoya and Pierce, 2003, Møller

and Schwartzbach, 2005). Such schemes are essentially orthogonal to the work presented here:

we can incorporate a type system for XML with little disturbance to the core formlet abstrac-

tion.

Of course, building static validity into the type system requires that we have a whole family

of types for HTML rather than just one. For instance, we might have separate types for block

and inline entities (as in Elsman and Larsen’s (2004) SMLserver), or even a different type

for every tag (as in Hosoya and Pierce’s (2003) XDuce).

Fortunately, it is easy to push the extra type parameters through our formlet construction.

The key component that needs to change is the XmlWriter idiom, to which we must add

an extra parameter denoting the XML type. The construction we need is what we call an

indexed idiom; it is roughly analogous to Wadler and Thiemann’s (2003) effect-indexed monad.

Figure 3.14 gives the definition of an indexed idiom, XIDIOM, in OCaml. Like idioms, indexed

idioms satisfy the four laws given in Section 3.3. They can be pre- and post-composed with

other idioms to form new indexed idioms. Pre-composing the name generation idiom with

the indexed XML writer idiom pre-composed with the environment idiom gives us an indexed

formlet idiom.

As a proof of concept, we have implemented a prototype of formlets with XML typing

in OCaml using a minor variant of Elsman and Larsen’s (2004) encoding of MiniXHTML, a

fragment of XHTML 1.0.

Figure 3.15 gives a partial definition of MiniXHTML in OCaml. XML values are repre-
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type (+β, +ι) flw

type blk

type inl

type no

type inpre

. . .
module MiniXHTML :
sig
type +ψ t

val text : string → ψ t

val p : ((no,inl) flw × γ) t → ((blk,ι) flw × γ) t

val pre : ((no,inl) flw × inpre) t → ((blk,ι) flw × γ) t

. . .
val empty : ψ t

val concat : ψ t → ψ t → ψ t

end =
struct
type +ψ t = xml

. . .
end

Figure 3.15: MiniXHTML fragment

sented using the type +ψ MiniXHTML.t, with the parameterψ encoding information about the

contexts in which those values are permitted to appear2. The type parameter ψ is a phantom

type: it does not appear in the definition of t (which is simply the xml type used throughout

this chapter), but is used only to enforce constraints on the contexts in which values of t may

be used. In MiniXHTML, ψ is always instantiated with a pair of types, the first of which

represents the “entity type” of the element and the second whether the element contains pre

elements as descendents. (Elsman and Larsen use a pair of type parameters instead of a single

parameter instantiated with a pair.) The entity type is constructed from the uninhabited types

flw, blk, inl and no, which indicate whether an element is a flow entity, whether it contains

block entities, and so on. For example, the type of p specifies that the entity type of its ar-

gument is (no,inl) flw, an inline entity which does not contain block entities, and that the

entity type of the result is (blk,ι) flw, a block entity. (Further details of the typing scheme

may be found in Elsman and Larsen (2004).)

Figure 3.16 gives a definition of the XML-indexed formlet interface, which extends the

formlet interface of Figure 3.5, to support static XHTML validation. There are now two type

2The covariance annotation + on the parameterised MiniXHTML.t and flw types increases the opportunities
for polymorphism under OCaml’s relaxed value restriction (Garrigue, 2002).
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module type XFORMLET =
sig
include XIDIOM

val text : string → (ψ,unit) t

val p : ((no,inl) flw × γ,α) t → ((blk,ι) flw × γ,α) t

val pre : ((no,inl) flw × inpre,α) t→ ((blk,ι) flw × γ,α) t

. . .
val input : ((no,inl) flw × γ,unit) t

→ ((β,inl) flw × γ,string) t

val run : (ψ,α) t → ψ MiniXHTML.t × (env → α)
end

Figure 3.16: The XML-indexed formlet interface

type α perhaps = Value of α | Error of string

module type VFORMLET = sig
include IDIOM

val xml : xml → unit t

val tag : tag → attrs → α t → α t

val input : string t

val run : α t → (xml × (env→ (xml, α) either))
val extract : (α → β perhaps) → α formlet → β formlet

end

Figure 3.17: The input-validating formlet interface

parameters, which denote the type of XML emitted when the formlet is rendered and the type

of the result yielded when the resulting form is submitted. In place of a single operation for

lifting XML into the formlet we now have one operation for each element: p, pre, input, and

so on. The desugaring given in Figure 3.13 must be altered accordingly, so that the rule for

desugaring XML literals is replaced with a family of rules, one for each tag.

It is straightforward to extend the definitions here to include the full set of entities given by

Elsman and Larsen and to handle XML attributes.

3.6.2 Input validation

Validation of user input is a common need in form processing: on submission, the program

should check whether the data is ill-formed, and if so, repeatedly re-display the form to the

user (with error messages) as long as ill-formed data is submitted.

Formlets extend to this need if we make two changes to the interface. The first is the
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let int (s : string) : int perhaps =
try Value (int_of_string s)
with Failure → Error (s ^ " isn’t an integer")

let checked_int : int formlet =
formlet <#>{extract int input ⇒ v}</#>
yields v

Figure 3.18: The input-validating formlet checked_int.

let positive_int : int formlet =
extract

(fun i→
if i > 0 then Value i

else Error (string_of_int s ^ " isn’t positive"))
checked_int

Figure 3.19: The input-checking formlet positive_int.

addition of a new function, extract, for attempting to extract a value from a submitted formlet

(Figure 3.17). The extract function takes two arguments: a “partial” function which attempts

to convert a value of type α to a value of type β, and an input-validating formlet which attempts

to return a result of type α; it returns a new input-validating formlet that attempts to return a

result of type β. The second change to the interface is an adjustment to the type of the collector

function returned by run. This now returns either a value (if the input is valid) or an error page

(if it is not).

The input_int formlet presented earlier inherits its error checking behaviour from the

int_of_string function: it simply aborts execution with a Failure exception if parsing

fails. Using extract we can write a new formlet, checked_int, which intercepts the ex-

ception and adds a suitable error message to the page, which is then redisplayed to the user

(Figure 3.18).

The extract function can be used to add validation to any formlet, regardless of whether

the formlet already includes validation. For example, we can write a formlet, positive_int,

based on checked_int, that accepts only positive numbers (Figure 3.19). Similarly, building

on positive_int, we could write a new version of the date formlet that checked that the

numbers denoted a valid date, and a new version of the travel formlet that checked for the

correct ordering of arrival and departure.

In order to support the new behaviour we compose the formlet implementation from Fig-

ure 3.11 with two further idioms. The first is simply the XmlWriter idiom presented in Fig-
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module Failure :
sig
include IDIOM

val fail : α t

val run : α t → α option

end = struct

type α t = α option

let pure v = Some v

let (�) f a = match f, a with
| Some f, Some a → Some (f a)
| _ → None

let fail = None

let run = id

end

Figure 3.20: The failure idiom

ure 3.9, which is used to construct the error page to be presented when the submitted input is

invalid. The second idiom, Failure, captures partial computations, i.e. computations which

either return a value or fail. There is a single primitive effect, fail, which causes the whole

computation to fail. As before, Failure may be obtained from a standard monad.

The implementation of the input-validating formlet is shown in Figure 3.21. We base the

implementation on the factored Formlet of Figure 3.11, but we must expose the idioms from

which Formlet is constructed in order to write the updated input operation.

The idiom operations pure and � are obtained by idiom composition; xml and tag are ob-

tained by simply lifting the original implementations into the new idiom. The input function

is a little more involved than the original: as before, we allocate a name to be used by both the

rendering and the collector, but now we must insert it into the <input> element of the error

page as well. The extract function passes the value returned by the collector to the supplied

extractor function. There are then three possibilities: either extraction succeeds with a value;

or it fails with an error message, which is incorporated into the error page; or the collector

function fails before the extractor can be run, in which case the error is propagated. The run

function simply runs the component idioms and puts the result into a slightly more convenient

form. No change is needed to the desugaring algorithm.

Input-validating formlets may be constructed and composed in precisely the same way as

the standard formlets presented previously. However, the behaviour differs significantly. The

control flow of a program using standard formlets is simple: the program constructs a page to

be sent to the user; the page is submitted; a handler function receives the result and constructs

a new page, and so on. The control flow of a program using formlets with input validation
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module Formlet : FORMLET

with type α t = α Environment.t XmlWriter.t Namer.t =
struct

(* as Figure 3.11 *)
end

module VFormlet : VFORMLET =
struct
module A = XmlWriter

module O = Failure

module F = Formlet

module AO = Compose(A)(O)
include Compose(F)(AO)
let xml x = F.pure (const (AO.refine (A.xml x))) �F F.xml x

let tag t ats f = F.tag t ats (F.pure (A.tag t ats) �F f)
let input =

N.pure (fun n→
(A.tag "input" ["name",n]
(A.pure

(E.pure (fun s→ A.tag "input" ["name",n]
(A.pure (O.pure s)))

�E E.lookup n))))
�N N.next_name)

let extract extractor f =
(F.pure
(fun v→ let (x, v’) = A.run v in
match opt_map extractor (O.run v’) with
| Some (Value v)→ A.pure (const (O.pure v)) �A A.xml x

| Some (Error e)→ A.pure (const O.fail)
�A A.xml (x_text e @ x)

| None → A.pure (const O.fail) �A A.xml x))
�F formlet

let run f =
let (x, c) = F.run f in

(x, (fun env →
let v = c env in
let (error_xml, failed) = A.run v in
match O.run failed with

| None → Left error_xml
| Some a → Right a))

end

Figure 3.21: The input-validating formlet implementation
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let date_formlet : (_, date) NFormlet.t =
plug (tag "div" []

(text "Month: " @ hole @ text "Day: " @ hole))
(pure (fun month day → make_date month day)

� input_int � input_int)

Figure 3.22: Date example, desugared using multi-holed contexts

is more involved: the program constructs a page to be sent to the user; this page is displayed

repeatedly (with error messages, as appropriate) until the submitted input is valid; only then is

the result passed to a handler, which constructs a new page. In particular, submission of invalid

input causes the whole page to be redisplayed; it is therefore necessary for the input-validating

formlet to capture the page context in which the form appears. To support this behaviour the

Links implementation of formlets introduces a page construct for associating formlets with

page contexts. We give the details in Appendix B.1.

3.6.3 Multi-holed contexts

The presentation of formlets we have given in this chapter relies on lifting the tag constructor

from the XmlWriter idiom into the Formlet idiom. As illustrated by the desugaring of the

date example in Section 3.4 this makes it difficult to separate the raw XML from the semantic

content of formlets and requires nested formlet values to be rebound.

Besides obfuscating the code, this rebinding is inefficient. We can obtain a more efficient

formlet implementation that does separate raw XML from semantic content by adapting the

formlet datatype to accumulate a list of XML values rather than a single XML value, and re-

placing tagwith a general operation, plug, for plugging the accumulated list into a multi-holed

context. Further, this leads to a much more direct desugaring transformation. For example, the

desugared version of the date example is shown in Figure 3.22.

Statically typing plug in OCaml requires some ingenuity. Using phantom types, we encode

the number of holes in a context, or the number of elements in a list, as the difference between

two type-level Peano numbers (Lindley, 2008). As with XHTML typing the key component

that needs to change is the XmlWriter idiom. This now needs to be parameterised over the

number of XML values in the list it accumulates. The construction we need is what we call a

parameterised idiom, the idiom analogue of a parameterised monad (Atkey, 2009). Recall that

the indexed idioms introduced in Section 3.6.1 have an additional type parameter, leading to a

family of computation types in place of the single type of computations that is available in a

standard idiom. Parameterised idioms allow even more flexibility, using two type parameters
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module type PIDIOM = sig
type (µ,ν,α) t

val pure : α → (µ,µ,α) t

val (�) : (µ,ν,α → β) t → (σ,µ,α) t → (σ,ν,β) t

end

Figure 3.23: The parameterised idiom interface

for the index; this allows the type of the index to change as a computation progresses.

The OCaml definition of a parameterised idiom as shown in Figure 3.23. Besides the

type parameter for the result type there are two additional type parameters µ and ν. For the

parameterised XML writer idiom these encode the length of the list of XML values as ν− µ.

Like idioms, and indexed idioms, parameterised idioms satisfy the four laws given in Sec-

tion 3.3. They can be pre- and post-composed with other idioms to form new parameterised

idioms. Pre-composing the name generation idiom with the parameterised XML writer idiom

pre-composed with the environment idiom gives a parameterised formlet idiom.

We have implemented a prototype of formlets with a multi-holed plugging operation in

OCaml based on parameterised idioms (Appendix B.2).

Statically-typed multi-holed contexts can be combined with statically-typed XHTML (Lind-

ley, 2008). Lifting the result to idioms gives either an indexed parameterised idiom—that is,

an idiom with an extra type parameter for the XML type and two extra type parameters for the

number of XML values in the accumulated list—or, by attaching the XML type to both of the

other type parameters, a parameterised idiom.

3.6.4 Other extensions

These are by no means the only useful extensions to the basic formlet abstraction. For example,

we might wish to translate validation code to JavaScript to run on the client (Hanus, 2007),

or enforce separation between those portions of the program that deal with presentation and

those that treat application-specific computation, a common requirement in large web projects.

Either of these may be combined with the formlet abstraction without injury to the core design

presented here.

3.7 Implementations

Besides the OCaml implementation of formlets used in this chapter there are currently imple-

mentations of formlets for three other languages.



3.8. Related work 111

Formlets were initially implemented in Links (Cooper et al., 2008b), which provides the

syntax presented here. The Links implementation includes many features, such as a full suite

of HTML controls (textareas, pop-up menus, radio buttons, etc.), which are not described here.

Strugnell has ported a commercial web-based project-management application originally im-

plemented in PHP to the Links version of formlets (Strugnell, 2008). He gives an in-depth

comparison between Links formlets and forms implemented in PHP.

Eidhof has released a Haskell implementation of formlets (Eidhof, 2008), based on the de-

scription in Cooper et al. (2008b). The current revision contains a number of useful extensions.

For example, validation functions include support for monadic actions, making it possible to

perform IO (such as reading from a database) while checking the validity of user input.

McCarthy has added formlets to PLT Scheme based on the description in Cooper et al.

(2008a); they are available from version 4.1.1 onwards. Support for a variant of the formlet

syntax is provided using macros.

3.8 Related work

The WASH, iData and WUI frameworks all support aspects of the form abstraction we have

presented. Underlying all these systems is the essential mode of form abstraction we describe,

although they vary significantly in their feature sets and limitations.

WASH The WASH/CGI Haskell framework (Thiemann, 2005) supports a variety of web

application needs, including forms with some abstraction. WASH supports user-defined types

as the result of an individual form field, through defining a Read instance, which parses the

type from a string. It also supports aggregating data from multiple fields using a suite of tupling

constructors, but it does not allow arbitrary calculations from these multiple fields into other

data types, such as our abstract date type. In particular, the tupling constructors still expose

the structure of the form fields, preventing true abstraction. For example, given a one-field

component, a programmer cannot modify it to consist of two fields without also changing all

the uses of the component.

iData The iData framework (Plasmeijer and Achten, 2006) supports a high degree of form

abstraction, calling its abstractions iData. Underlying iData is an abstraction much like form-

lets. Unlike formlets, where form abstraction is separated from control flow (the function

handle attaches a handler to a formlet), iData integrate control flow and form composition into

a single abstraction. An iData program defines a single web page consisting of a collection of

interdependent iData. Whenever a form element is edited by the user, the form is submitted and
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then re-displayed to the user with any dependencies resolved. The iTasks library (Plasmeijer,

Achten, and Koopman, 2007) builds on top of iData by enabling or disabling iData according

to the state of the program.

WUI The WUI (Web User Interface) library (Hanus, 2006, 2007) implements form abstrac-

tions for the functional logic programming language Curry. The basic units are called WUIs,

defined by the type WuiSpec. Like iData, WUIs are designed around the idea of editing; the

WUI library provides particular support for presenting application data to the user for modifi-

cation. Consequently, each WUI of type WuiSpec α both consumes and generates a value of

type α; the consumed value models the default or current value for the component. WUIs are

similar in spirit to formlets: there is a library of basic WUIs for primitive types and a set of

combinators for constructing WUIs for user-defined types, such as transformWSpec, which

is an analogue of the mapFormlet function definable in the formlet idiom:

transformWSpec :: (α→ β,β→ α) → WuiSpec α → WuiSpec β

val mapFormlet : (α→ β) → α formlet → β formlet

let mapFormlet g f = formlet <#>{f ⇒ x}</#> yields g x

WUIs also support user-input validation through an interface that is similar to our extension of

formlets in Section 3.6.2 .

WUIs cannot be characterised as idioms, due to the negative occurrence of the type pa-

rameter in the definition of WuiSpec; for the same reason, it appears that WUIs cannot strictly

implement formlets. However, formlets can implement WUIs: a WUI is equivalent to a value

of type α→ α formlet.

The implementation of WUIs is rather different from the approach presented here. Whereas

formlets are based on functional abstraction (and so can be adapted to any functional program-

ming language), the WUI library takes advantage of the distinctive features of Curry; for exam-

ple, it uses logic variables to generate the equivalent of fresh names for input fields, avoiding

the need to use a monad or idiom to generate fresh names, as with formlets.

3.9 Conclusions

We have described formlets, a construct for composable HTML form fragments that capture the

essence of form abstraction. We have argued that formlets are best modelled as idioms (rather

than monads or arrows), and shown how to extend the core abstraction in several orthogonal

directions, such as static validation of generated XHTML and dynamic validation of user-

input, while remaining within the idiom framework. Formlets can be implemented within any
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functional language, and there are currently formlet libraries for Haskell, OCaml, Links and

PLT Scheme. The latter three implementations also support the syntactic sugar described here,

which makes formlets more pleasant to use in practice.





Chapter 4

Serialising continuations1

4.1 Introduction

The Formlet library described in Chapter 3 depends on a small number of primitive functions.

One of these primitives, pickle_cont, serialises a function into an externalisable represen-

tation which can be sent to a client. Links functions are represented as values of OCaml, the

host language for the Links prototype implementation; serialising a Links function involves

converting between its OCaml representation and a string encoding the same structure. This

chapter describes the approach to serialisation used in the Links implementation.

4.1.1 Requirements

We apply several criteria in the search for a suitable approach to serialisation for Links.

1. Efficiency. Space efficiency is of primary importance to keep network traffic low and

avoid imposing too great a burden on clients.

2. Type-safety. Applying a deserialisation function to invalid data should never cause a

program crash.

3. Extensibility. Most of the time an out-of-the-box serialiser is sufficient, but there is

sometimes a need for a user to supply a specialised implementation of serialisation at a

particular type.

4. Maintainability. A solution which requires the user to write and maintain large amounts

of code to perform basic serialisation is not acceptable.

1This chapter is a revision of Yallop (2007)
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We must emphasise that these are the requirements for the Links prototype, not for seri-

alisation in general. Other systems may well require further properties, such as adherence to

an externally-specified format (such as ASN.1), forwards and backward compatibility, and so

on. We also choose not to address security considerations (notably maintaining the secrecy and

integrity of serialised data) in what follows, taking the view that these may be addressed ex-

ternally, for example by encrypting serialised functions before passing them to the client (Bal-

topoulos and Gordon, 2009).

4.1.2 Existing approaches

We will first consider two existing approaches to serialisation: the standard OCaml module

Marshal, and pickler combinators.

4.1.2.1 Marshal

The OCaml standard library includes a module, Marshal, with functions

val to_string : ∀α.α → extern_flags list → string

val from_string : ∀α.string → int → α

that allow almost any value to be serialised and reconstructed. While Marshal is certainly

easy to use, its design is problematic when judged for flexibility and safety. The encoding of

values is unspecified and fixed, leaving no way to specialise the encoding at a particular type.

The type of the to_string function places no restrictions on its input, delaying detection of

attempts to serialise unserialisable values until runtime.

# Marshal.to_string (lazy 0) [];;
Exception: Invalid_argument

"output_value: abstract value (outside heap)".

Most seriously of all, it is easy to use Marshal to write programs that crash by interpreting a

reconstructed value at a wrong type.

# (Marshal.from_string (Marshal.to_string 0 []) 0 : float);;
Segmentation fault

These flaws make Marshal most suitable for use as a basis for a safe implementation that

includes some independent means of verifying the integrity and suitability of marshalled data.

4.1.2.2 Pickler combinators

Compositionality is perhaps the greatest benefit of functional programming (Hughes, 1989), so

it is natural to seek a combinator approach to the serialisation problem. There is a natural way to
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structure a combinator library for serialisation, as evinced by the similarity of proposed designs

by Kennedy (2004) for Haskell and Elsman (2005) for SML. Starting with a parameterised type

of serialisers

type α pu

together with serialisers for primitive types

val int : int pu

val unit : unit pu

val bool : bool pu

and combinators for parameterised types that take serialisers to serialisers

val list : ∀α.α pu → α list pu

val pair : ∀α,β.(α pu) × (β pu) → (α × β) pu

and a function which takes conversions between types to conversions between serialisers

val wrap : ∀α,β.(α→ β) → (β→ α) → (α pu→ β pu)

we can encode a wide variety of datatypes. To serialise user-defined algebraic types we need

some way of discriminating between the constructors. The typical solution is to provide a

combinator (called data in Elsman (2005), alt in Kennedy (2004)) whose argument maps

constructors to integers:

val alt : ∀α.(α → int) → α pu list → α pu

We might then write a pu for OCaml’s option type as follows:

let option : ∀α.α pu → α option pu =
fun a →

alt

(function None → 0 | (Some _) → 1)
[wrap (fun () → None) (fun None → ()) unit;
wrap (fun v → Some v) (fun (Some v) → v) a];

The combinator approach has none of the problems seen with Marshal: the user can choose

the encoding at each type, and there is no lack of type-safety. There are, however, serious

drawbacks particular to this approach. First, it requires recapitulating the structure of each

user-defined type to obtain a serialiser: this is a prime example of the “boilerplate” which

much recent research has sought ways to “scrap” (Lämmel and Peyton Jones, 2003). Secondly,

the requirement for the user to supply a mapping from constructors to integers can lead to errors

that are hard to track down. Finally, there are difficulties in handling both cyclic values, which

can arise in ML through the use of references, and mutually recursive datatypes. The refCyc

combinator described by Elsman (2005) supports cyclic values, but requires the user to supply

a “dummy” value to start off the cycle:
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val refCyc : ∀α.α → α pu → α ref pu

Not only is this a rather unpleasant imposition, but it is not apparent whether it can be readily

generalised to the OCaml situation, where mutability is introduced not by the ref type, but

by records with arbitrary numbers of mutable fields. Karvonen (2007) notes that the need

for a dummy value can be eliminated by using an additional generic function that constructs

witnesses for types.

4.2 Generic functions

The operations provided by pickler combinators are examples of generic functions. Generic

functions are based on a form of polymorphism which lies between the extremes of parametric

and ad-hoc. The behaviour of a parametrically polymorphic function, such as length, is the

same at every type. The behaviour of an ad-hoc polymorphic function, such as sum, is different

at each type at which it is defined. The behaviour of a generic function, such as pickle or eq,

also varies at each type, but in a way that is related to the type structure.

Put another way, parametric polymorphic functions are parameterised by type, ad-hoc poly-

morphic functions by instance, and generic functions by the shape of types. For example, eq

is defined in the same way for every (immutable) record type: two values of a record type are

equal if the values of corresponding fields are equal. The definition of eq varies with the shape

of its argument type: in the case of records it is a function of the set of fields in the type.

The definition of a generic function at a particular type typically follows the definition of

the type exactly. There is therefore no real reason to require a programmer to write out the

definitions of such functions for each new type he defines. The Haskell definition specifies a

means by which a programmer can request the implementation to derive suitable definitions

automatically (for a fixed set of standard type classes) (Peyton Jones and Hughes, 1999). In the

following pages we describe an analogous facility for OCaml, which relieves the programmer

of the need to write out serialisation functions when defining new types. Like Haskell’s facility,

our system can be applied to any suitable type. However, the Links prototype only needs to

apply it at a fixed set of types, namely those types which are used to represent Links syntax and

Links values within the OCaml code that forms the Links implementation.

4.2.1 Example: generic equality

We begin with a simple example. Figure 4.1 gives the definitions of two datatypes which

support equality. The code is all standard OCaml, except for the clause

deriving (Eq)
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type point = { mutable x : int; mutable y : int }
deriving (Eq)

type α seq = Nil | Cons of α × (α seq)
deriving (Eq)

Figure 4.1: Deriving equality functions for types

let v = Eq.eq<point seq>
(Cons ({x = 10; y = 20 }, Nil))
(Cons ({x = 10; y = 20 }, Nil))

Figure 4.2: Using generic equality

at the end of each definition, which requests the generation of equality functions at the types

point and seq.

Figure 4.2 shows how we might use the generated functions. The notation

Eq.eq<t>

calls the generic equality function at the type t. Here t must be either a type for which equality

has been derived, such as point, or some combination of derived types and builtin types such

as point seq or point× int.

Like the new keyword, the program which generates definitions from types is called deriv-

ing. The syntax extensions supported by deriving are implemented using the Camlp4 frame-

work which we used to implement the formlets syntax of Section 3.4; the output is standard

OCaml code. For Figure 4.1, the output is shown in Figure 4.32. Each identifier in the

deriving clause in the original program generates a module which matches a particular sig-

nature of the same name; in this example the signature is EQ (Figure 4.5), which contains a type

component a and a value component eq specifying a function of type a → a → bool. The

structure of the types involved is, naturally, reflected in the structure of the modules generated:

the seq type is recursive, so a recursive module, Eq_seq, is generated; it is parameterised, so

the output includes a parameterised module (or functor), Eqs. We will describe the scheme in

detail in the sections that follow.

Figure 4.4 shows the output of deriving for Figure 4.2. Figure 4.2 involved the use of

the equality function at type point seq, so the generated code involves the application of the

module generated for seq to the module generated for point.

2Here and elsewhere we have taken the liberty of increasing legibility a little by shortening generated names and
removing trivial bindings. The code is operationally identical to the actual code generated by deriving.
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type point = { mutable x : int; mutable y : int }

module rec Eq_point : EQ with type a = point =
struct

type a = point

let eq = (==)
end

type α seq = Nil | Cons of α × (α seq)

module Eqs (Eq_α : EQ) =
struct

module rec Eq_seq : EQ with type a = Eq_α.a seq =
struct

type a = Eq_α.a seq

let eq l r = match l, r with
| Nil, Nil → true
| Cons (x1, x2), Cons (y1, y2) →

Eq_α.eq x1 y1 && Eq_seq.eq x2 y2 && true
| _ → false

end
end

module Eq_seq (Eq_α : EQ) =
struct

module P = Eqs(Eq_α)
include P.Eq_seq

end

Figure 4.3: Output of deriving for Figure 4.1

let v = let module Eq

: EQ with type a = point seq

= Eq_seq(Eq_point)
in Eq.eq

(Cons ({x = 10; y = 20}, Nil))
(Cons ({x = 10; y = 20}, Nil))

Figure 4.4: Output of deriving for Figure 4.2

Finally, deriving extends the syntax of signatures. Figure 4.6 shows how to export derived

functions in module signatures. Adding the phrase deriving (Eq) to a type in the signa-

ture specifies that the generated equality function for that type should be exported along with
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module type EQ =
sig

type a

val eq : a → a → bool

end

Figure 4.5: Signature of the Eq class

module type Points = sig
type point deriving (Eq)
type α seq deriving (Eq)

end

Figure 4.6: Deriving signatures for equality

module type Points = sig
type point

module Eq_point : EQ with type a = point

type α seq

module Eq_seq (Eq_α : EQ) : EQ with type a = Eq_α.a seq

end

Figure 4.7: Output of deriving for Figure 4.6

the type. The derived function may then be invoked in the usual way.

Figure 4.7 shows the output of deriving for Figure 4.6. Each deriving clause adds a module

binding to the signature, giving the name and type of the corresponding generated module in

the implementation.

Generic equality may appear a relatively useless addition to OCaml, since OCaml already

boasts two polymorphic equality predicates, = and ==, which test for structural and physical

equality respectively. However, there are situations in which neither of the built-in functions

is suitable. The structure-sharing serialiser described in Section 4.3 requires a predicate that

equates structurally-equal immutable values (unlike ==) and distinguishes physically equal

mutable values (unlike =). Without the first it will share too little; without the second it would

share too much, since conflating distinct mutable values changes the semantics of programs. (In

OCaml sharing of immutable values is detectable as well, using ==, but the precise behaviour

is not specified; we are therefore unconcerned about changing the semantics of programs that

depend on its use.) In short, we need a predicate corresponding to the equality operator of

Standard ML, which behaves like OCaml’s = on immutable values, and like OCaml’s == on
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(a) Classes

class Eq a module type EQ = sig
where type a

eq :: a → a → Bool val eq : a → a → bool

end

(b) Superclasses

class (Show a, Eq a) ⇒ Num a module type NUM = sig
where type a

(+) :: a → a → a val (+) : a → a → a

(-) :: a → a → a val (-) : a → a → a

module Show : SHOW

with type a = a

module Eq : EQ

with type a = a

end

(c) Instances

instance Eq Int module EqInt : EQ

where with type a = int =
eq = eqInt struct

type a = int

let eq = eqInt

end

(d) Instances for parameterised types

instance Eq a ⇒ Eq [a] module EqList (A : EQ) : EQ

where with type a = A.a list =
eq l r = struct

and (zipWith eq l r) type a = A.a list

let eq l r =
and (zipWith A.eq l r)

end

Figure 4.8: Correspondence between type classes and modules

mutable values.

4.2.2 Modules and type classes

As we have said, the design of deriving is inspired by the construct of the same name in Haskell.

Haskell’s deriving is tied to type classes, which have no direct parallel in OCaml. However,
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there is a well-known correspondence between ML’s modules and Haskell’s type classes (Kise-

lyov, 2004, Dreyer, Harper, Chakravarti, and Keller, 2007, Wehr and Chakravarty, 2008), which

we use to guide our design. The relevant facets of the correspondence are illustrated in Fig-

ure 4.8:

(a) A class in Haskell maps to a signature in OCaml with a type component to specify the

overloaded type and a set of value components to specify the methods.

(b) A superclass maps to a signature which contains the superclass module type as a compo-

nent.

(c) An instance of the class maps to a structure implementing the signature, with sharing con-

straints to expose the representation of the overloaded type.

(d) An instance for a parameterised type maps to a functor which takes for each type parameter

a structure satisfying the class signature and yields another such structure.

We will use the language of type classes to describe our design in this chapter, referring to

the signatures used by deriving as “classes”, to generated structures as “instances”, and so on.

4.2.3 Types in OCaml

Figure 4.9 shows a subset of the OCaml grammar for type definitions that is accepted by deriv-

ing. Some of the constructs not listed here are accepted by deriving in certain circumstances:

for instance, private types (which expose constructors that can appear in patterns, but not ex-

pressions) are permitted for classes such as Eq which do not construct values. For simplicity

we assume that all polymorphic variant tags are unary; the full implementation supports nullary

tags as well.

Figure 4.10 shows a simplified form for types. This is the form used internally by deriving.

The principal feature of the simplified form is that every non-trivial type expression is named at

top-level; only “atomic” type expressions can occur as subexpressions. The as binder, which

can be used to name subexpressions in the full type language, is not permitted. For reasons that

will appear shortly we also distinguish type names bound locally (i.e. in the same declaration

group as the type expression in which they occur) from type names bound elsewhere. Only

local type names, rather than arbitrary type constructors, are permitted in nested positions; for

example, in the following standard OCaml definitions the body of sum3 is not valid in the

normalised type language.

type (α,β) sum2 = [‘One of α | ‘Two of β ]
type (α,β,γ) sum3 = [ Three of γ | (α,β) sum2 ]
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Type declarations

d ::= type (α1,. . .,αn) c = r . . . and (α1,. . .,αn) c = r

Type representations

r ::= { 〈mutable〉 l : e; . . .; 〈mutable〉 l : e } record
C 〈of e,. . .,e〉 | . . . |C 〈of e,. . .,e〉 variant
e type expression

Type expressions

e ::= α type variable
e × . . . × e tuple
[‘T of e | . . .|‘T of e | e | . . .| e ] polymorphic variant
(e, . . ., e) c application
e as α named expression

Type names c Type variables α

Data constructors C Polymorphic variant tags ‘T Record labels l

Figure 4.9: OCaml type language

To normalise the definition we must bind the application of sum2 to a top-level name within

the same group.

type (α,β) sum2 = [‘One of α | ‘Two of β ]
type (α,β,γ) s = (α, β) sum2

and (α,β,γ) sum3 = [ Three of γ | s ]

Note also that, in contrast to the type language of Figure 4.9, the normalised type language

does not allow type constructors to be applied to type arguments within their own definitions.

For example, in the code above, s is not applied to type arguments in the definition of sum3.

To obtain standard OCaml code from this definition we must replace this occurrence of s by

(α,β,γ) s. The intention is to disallow non-regular recursion. We explain the reasons for

this restriction in the following section.

4.2.4 Recursive functors

Mutually-recursive types often present an obstacle to generic programming schemes (Ro-

driguez, Löh, and Jeuring, 2009). In our case it is the use of modules to encode generic

functions that introduces a difficulty. Under the correspondence described in Section 4.2.2,

the natural encoding of a parameterised mutually-recursive type
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Type declarations

d ::= type (α1,. . .,αn) t = r . . . and (α1,. . .,αn) t = r

Type representations

r ::= { 〈mutable〉 l : a; . . .; 〈mutable〉 l : a } record
a × . . . × a tuple
C 〈of a,. . .,a〉 | . . . |C 〈of a,. . .,a〉 variant
[‘T of a | . . .|‘T of a | t | . . .| t ] polymorphic variant
(a, . . ., a) c application
a atomic type

Atomic type expressions

a ::= α type variable
t locally bound name

Local type names t Non-local type names c Type variables α

Data constructors C Polymorphic variant tags ‘T Record labels l

Figure 4.10: OCaml type language, normalised

type α tree =
EmptyT

| Branch of α × (α forest)
and α forest =

EmptyF

| Trees of (α tree) × (α forest)

is a group of mutually-recursive functors

module rec Eq_tree(Eq_α : EQ)
: EQ with type a = Eq_α.a tree =

struct
...

end
and Eq_forest(Eq_α : EQ)

: EQ with type a = Eq_α.a forest =
struct

...
end

However, OCaml does not permit recursive functors, so an alternative encoding is needed.

While recursive functors are prohibited, there is no problem with functors whose bodies contain

recursive modules as components; we can therefore encode the recursive group as a single

functor whose body is a group of recursive modules, then project out the modules separately.
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module Eqs(Eq_α : EQ) =
struct
module rec Eq_tree : EQ with type a = Eq_α.a tree =
struct

...
end
and Eq_forest : EQ with type a = Eq_α.a forest =
struct

...
end

end
module Eq_tree(Eq_α : EQ) = struct
module P = Eqs(Eq_α)
include P.Eq_tree

end
module Eq_forest(Eq_α : EQ) = struct

module P = Eqs(Eq_α)
include P.Eq_forest

end

This solution requires that all types in the group have the same parameters and that every

occurrence of the type constructors on the right hand side of the definition is applied to exactly

those parameters in the same order. We therefore adopt this restriction for types to be processed

by deriving. (Elsman (1998), investigating an encoding of generic equality in Standard ML, is

obliged to adopt a similar restriction due to the lack of support for polymorphic recursion.)

Using this encoding of recursive functors, applications of type names bound elsewhere gen-

erate applications of functors to module arguments, while applications of type names bound

locally generate unapplied module names: references to α forest generate references to the

module Eq_forest, for example, not to Eq_forest Eq_α. It is for this reason that we dis-

tinguish local from non-local names in the internal type representation used by deriving (Fig-

ure 4.10).

4.2.5 Implementation of generic equality

Figures 4.11 and 4.12 give an implementation of Eq. The << . . .>> notation is a quotation

for code; antiquotations are written between dollar signs $ . . .$ or, for antiquoted names, as

italicised variables such as t . To improve readability, we use an ellipsis notation in the figures

to indicate sequences of syntactic elements, such as identifiers; these represent standard list-

processing techniques, such as folds, in the actual OCaml implementation.

The notation Eq.eq<e>, for invoking the generic equality function at type e, is defined in

terms of the deriving notation: first, the type expression e is bound to a type constructor, t;



4.2. Generic functions 127

an instance of Eq for t, Eq_t, is derived ; the result is bound to a local module identifier, Eq,

from which the eq field is projected.

The deriving notation applies the meta-function def to the preceding type definition. A

type definition with parameters α1 . . .αn generates a functor, Eqs, which abstracts n instances

of EQ named Eq_α1 . . . Eq_αn. For the m type constructors in the definition the body of

the functor contains a set of recursive modules, Eq_r1 . . .Eq_rm, each of which is also an

instance of EQ. Both the functor arguments and the recursive module names are in scope

throughout the body of the functor; it is therefore possible to refer to any atomic type definition

by name (either Eq_αi or Eq_ri) at any point in the generated code. The body of each recursive

module is generated by the meta-function rep, which we describe next. For convenience each

type constructor ti also generates a top-level functor Eq_ri which simply applies Eqs to its

arguments and projects the corresponding component.

The rep meta-function constructs a structure matching the signature EQ from a type repre-

sentation r, ensuring that the type component a matches r. An application of a type constructor

generates structures matching EQ for each of the arguments and a functor that is applied to those

arguments for the type constructor in function position. A type variable generates a reference

to the corresponding functor argument (of Eqs); a locally-bound name generates a reference

to the corresponding member of the recursive module group generated by def . Other types

generate a fresh structure whose eq member is generated by the meta-function fun .

The fun meta-function constructs an equality function of type t→ t→ bool from a type

expression t. For mutable record types the function is simply (==), the physical equality

predicate. Two values of product type (immutable records or tuples) are considered equal if

corresponding components in each value are equal. Two values of variant or polymorphic

variant type are considered equal if they have matching constructors or tags and matching ar-

guments. The notation #t in the generated equality function for polymorphic variants matches

a value of type t, which must be a polymorphic variant type.

We note in passing that the normal form used for types (Figure 4.10), which names every

subexpression, results in code that does not construct “dictionaries” (i.e. evaluate module-

level terms) during traversal of a value. This contrasts with the earlier version of deriving

(Yallop, 2007), whose output constructed a fresh dictionary for each subvalue encountered

during traversal.

4.2.6 Specializing generic equality

One of our complaints about OCaml’s Marshal was the lack of a facility for specialisation:

providing behaviour at a particular type that differs from the default. This is accomplished us-
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Translation of <> notation

Eq.eq<e> = let module Eq =
struct
type t = e deriving (Eq)
include Eq_t
end in Eq.eq

Module bindings from type definitions

def <<type (α1,. . .αn) t1 = r1 . . . and (α1,. . .αn) tm = rm >> =
<<module Eqs (Eq_α1 : EQ) . . . (Eq_αn : EQ) = struct

module rec Eq_r1 : EQ with type a = r1[Eq_αi.a/αi]
= $rep r1$

. . .
and Eq_rm : EQ with type a = rm[Eq_αi.a/αi]

= $rep rm$
end
module Eq_r1(Eq_α1 : EQ). . .(Eq_αn : EQ) = struct

module P = Eqs(Eq_α1). . .(Eq_αn)
include P.Eq_r1

end
module Eq_rm(Eq_α1 : EQ). . .(Eq_αn : EQ) = struct

module P = Eqs(Eq_α1). . .(Eq_αn)
include P.Eq_rm

end

Module implementations from type representations

Constructor applications

rep <<(a1, . . ., an) c >> = << Eq_c(Eq_a1) . . . (Eq_an)>>

Type variables

rep <<α>> = << Eq_α>>

Locally bound names

rep << t>> = << Eq_t>>

Other types

rep r = <<struct
type a = r[Eq_αi.a/αi]
let eq = $fun r$

end>>

Figure 4.11: Generation of the eq function (1)
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Equality functions from type representations

Records with mutable fields

fun <<{ . . .; mutable lj : t; . . . }>> =
<<(==)>>

Records without mutable fields

fun <<{ l1 : a1; . . . ; ln : an }>> =
<<fun { l1 = x1; . . .; ln = xn } { l1 = y1; . . .; ln = yn } →

Eq_a1 x1 y1 && . . . && Eq_an xn yn && true>>

Tuples

fun << a1 × . . . × an >> =
<<fun (x1, . . . xn) (y1, . . . yn) →

Eq_a1 x1 y1 && . . . && Eq_an xn yn && true>>

Variants

fun <<C 1 〈of a1
1, . . ., a1

m〉 | . . . | Cn 〈of an1 , . . . ,anm〉>> =
<<fun l r → match l, r with

| C 1 (x1, . . ., xm), C 1 (y1, . . ., ym) →
Eq_a1

1 x1 y1 && . . . && Eq_a1
m xm ym && true

. . .
| Cn (x1, . . ., xm), Cn (y1, . . ., ym) →

Eq_an1 x1 y1 && . . . && Eq_anm xm ym && true
| _ → false>>

Polymorphic variants

fun <<[ ‘T1 of a1 |. . .| ‘Tn of an | t1 | . . . | tm ]>> =
<< fun l r → match l, r with

| ‘T1 x, ‘T1 y → Eq_a1 x y

. . .
| ‘Tn x, ‘Tn y → Eq_an x y

| (#t1 as x), (#t1 as y) → Eq_t1 x y

. . .
| (#tm as x), (#tm as y)→ Eq.tm x y

| _ → false >>

Figure 4.12: Generation of the eq function (2)



130 Chapter 4. Serialising continuations

module IntSet : sig
type t deriving (Eq)
val empty : t

val add : int → t → t

val mem : int → t → bool

end =
struct
type t = int list

let empty = []
let add i l = i :: l

let mem = List.mem
module Eq_t : EQ with type a = t =
struct

type a = t

let eq l r = Eq.eq<int list> (sort l) (sort r)
end

end

Figure 4.13: Integer sets using integer lists

ing deriving by writing a module definition with a particular name and type instead of adding

the deriving (. . .) annotation to the type. For example, consider the implementation of

integer sets given in Figure 4.13, in which unordered lists of integers are used as the repre-

sentation type. Using deriving we can define equality on IntSet to consider two sets equal if

the results of sorting their representing lists are equal. The builtin equality operator regards

such sets as unequal, exposing the fact that there are various representations for values that the

abstraction considers equivalent:

let onetwo = IntSet.add 1 (IntSet.add 2 (IntSet.empty))
let twoone = IntSet.add 2 (IntSet.add 1 (IntSet.empty))

Eq.eq<IntSet.t> onetwo twoone =⇒ true
onetwo = twoone =⇒ false

(Precisely the same problem arises with the set implementation provided in the OCaml standard

library: sets considered equal under the set equality predicate do not always satisfy =.) Using

deriving’s Eq, our abstraction-respecting definition of equality will be used wherever Eq is used

to compare values of IntSet.t; in particular, it will be used where such values occur within a

larger data structure:

Eq.eq<IntSet.t list> [onetwo; twoone] [twoone; onetwo]
=⇒ true
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4.2.7 Related work

There is a significant body of literature on generic programming. A common approach (Cheney

and Hinze, 2002, Hinze, Löh, and d. S. Oliveira, 2006b, Weirich, 2006) is to reflect types as

values. Generic functions can then be written by case analysis on the structure of these values.

An alternative view (Jansson and Jeuring, 1997, Gibbons, 2006) treats datatypes as fixed points

of regular functors, exposing the recursive structure in a way that allows a variety of traversals

to be expressed generically. A third approach (Lämmel and Peyton Jones, 2003), particularly

suited to generic transformations, uses a type-safe cast operator to locate nodes of particular

types within larger values. Hinze, Jeuring, and Löh (2006a) give a useful comparison of designs

based on these and other approaches.

The preprocessor-based approach to deriving instances of generic functions is used in

the Haskell tools DrIfT (Winstanley, 1997) and Derive (Mitchell and O’Rear, 2006); several

Camlp4 extensions involve the generation of functions from type declarations, including Mar-

tin Jambon’s json-static (Jambon, 2007), Martin Sandin’s Tywith (Sandin, 2004), Daniel de

Rauglaudre’s IoXML (de Rauglaudre, 2002), and Markus Mottl’s bin-prot and sexplib (Mottl,

2007, 2008).

The pickler combinators described in Section 4.1.2.2 are an example of type-indexed val-

ues (Yang, 1998). A type indexed value follows the shape of a type — for example, the

pickler combinator value denoted by list (pair bool bool) corresponds to the ML type

(bool × bool) list — and encodes a function over that type. A similar approach can be

used to encode a wide variety of generic functions in ML. Fernandez, Fisher, Foster, Greenberg,

and Mandelbaum (2008) describe a framework for generic programming based on type-indexed

values in the PADS/ML language, using serialisation to and from XML as the main example.

The main problem in using type-indexed values for generic programming in ML is the

difficulty of combining generic functions. Ideally, we would like to use each type indexed value

to denote not only a pickler at the corresponding type, but also an equality predicate, a printing

function, and any other generic function we might think of. We can, of course, use a distinct

type-indexed value for each generic function, but this rapidly becomes clumsy. The root of

the problem is the lack of higher-kinded polymorphism (i.e. abstraction over non-nullary type

constructors) in ML; given such a facility we could separate the type structure encoded by a

type-indexed value from the particular generic function encoded. Karvonen (2007) describes a

workaround in which generic functions (i.e. type-indexed values) are coded open-recursively

and later combined using the module system. Unfortunately, this only postpones the problem:

before the values can be used there is a “knot-tying” step at which the recursion is closed, at

which point it is no longer possible to incorporate additional generic functions.



132 Chapter 4. Serialising continuations

For the moment, then, the approaches to generic programming that have been used suc-

cessfully in Haskell cannot be ported to OCaml, since they all appear to require advanced

type system features such as generalised algebraic datatypes or higher-kinded polymorphism

that are currently unavailable there. This may change in future if the OCaml team’s plans

for supporting first-class modules come to fruition. First-class modules (Russo, 2000) allow

the encoding of certain types of higher-kinded polymorphism (albeit with a relatively high de-

gree of syntactic overhead), which should make it possible to support fully-combinable generic

functions. At that point it will be time to revisit the design of deriving.

4.3 Generic serialisation

We now return to the subject of serialisation introduced in Section 4.1.

As we indicated earlier, our aim is to construct a serialiser that is suitable as a basis for

implementing the primitive Formlet function pickle_cont. Before we move on to the design

of our serialiser, it may be helpful to note the various “levels” involved in the implementation.

At the outermost level, pickle_cont is a primitive Links function that is used to implement the

Links library for constructing HTML forms. At the next level down, the serialisation functions

on which pickle_cont is built are written in OCaml; they consequently operate on OCaml

values (in the case under consideration, on the first-order representation of Links functions

that is used within the Links prototype). Finally, these serialisation functions are generated

during the compilation of an OCaml program (in our case, during the compilation of the Links

prototype) by the Camlp4 preprocessor. We should perhaps also note that, while implementing

serialisation for Links was the motivation for deriving, there is nothing Links-specific in any

of the generic functions described in this chapter, including the generic serialisers which we

describe in this section.

There are two serialisation schemes provided as standard with deriving: Dump, a simple

value-oriented serialiser, and Pickle, a more realistic serialiser based on Dump, which supports

features such as compression, structure-sharing and serialisation of cyclic values. We restrict

our attention here to the Pickle class.

The essential idea behind Pickle is to build a graph representing a value which is writ-

ten out (using Dump) when complete. Pickle endeavours to maximise sharing, using a single

representation for multiple values, by commencing the serialisation of each value with a com-

parison to values of the same type which have been serialised already. This strategy results

in compact output, but a relatively slower serialiser; however, it is straightforward to obtain

a faster serialisation algorithm which only preserves (rather than introduces) sharing from the
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module type PICKLE =
sig
type a

module Hash : HASH with type a = a

module Typeable : TYPEABLE with type a = a

val pickle : a → pstate → id × pstate

val unpickle : id → pstate → a × pstate

val to_buffer : Buffer.t → a → unit

val to_string : a → string

val to_channel : out_channel → a → unit

val from_stream : char Stream.t → a

val from_string : string → a

val from_channel : in_channel → a

end

Figure 4.14: Signature of the Pickle class

algorithm given here.

Figure 4.14 gives the signature for Pickle. The Pickle class has two direct superclasses,

Hash, and Typeable, and one further superclass, Eq, which is a direct superclass of Hash.

The facilities offered by the Hash and Typeable classes — hashing for arbitrary values, and

conversion to and from a universal type — will prove useful in the implementation of sharing-

maximising serialisation (Section 4.3.1). We describe Hash and Typeable in detail in Sec-

tions 4.3.3 and 4.3.4. .

The Pickle class contains eight functions. The first two of these, pickle and unpickle,

provide an interface that is suitable for constructing further instances of Pickle. We describe

them in detail in Sections 4.3.1–4.3.2. The other six functions, whose names take the form

to_X and from_X, provide a more user-friendly interface comparable to Marshal, and have

straightforward definitions in terms of pickle and unpickle.

4.3.1 The pickling algorithm

The pickling algorithm requires three pieces of state, which we represent as a record and thread

through the computation.

type id = int

type pstate = {
nextid : id;
ids : id DynMap.t;
graph : node IdMap.t;

}
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The nextid field is a source of fresh identifiers, ids maps values (converted to universal type)

to identifiers, and graph stores the partially-constructed graph of a value, mapping identifiers

to nodes. The state is persistent, not mutable: functions “update” the state by returning a new

value.

The work is performed by two functions: allocate, which allocates identifiers for values,

and store_node, which records the association between an identifier and the node in the graph

which represents the corresponding value.

Underlying the allocate function is the DynMap module, which provides a type of finite

maps with heterogeneously-typed keys.

module DynMap :
sig
type α t

val empty : α t

module Ops (H : HASH) (T : TYPEABLE with type a = H.a) =
struct
val add : H.a → α → α t → α t

val find : H.a → α t → α option

end
end

The type component α t is the type of finite maps whose value type is α. There are three

value components, two of which depend on classes defined elsewhere. The empty value has

no dependencies; it is bound to an empty map. The add and find functions depend on the

Hash and Typeable classes. The find function first searches for all keys whose hash and

type match the key supplied as argument, then compares any such keys found for equality with

the argument key; if there is a match, the corresponding value is returned. The add function

converts the key supplied as argument to universal type and inserts it into the map, using the

hash and type representation as an index.

We can now define the allocate function at each type a which is an instance of Hash and

Typeable.

module DynOps = DynMap.Ops(Hash_a)(Typeable_a)

let allocate : a→ (id→ pstate→ pstate)→ pstate→ id × pstate

= fun v store ({nextid = id; ids = ids} as t) →
match DynOps.find v ids with
| Some id → (id, t)
| None → (id, store id {t with

ids = DynOps.add v id ids;
nextid = id + 1})

The allocate function begins by searching the map ids to determine to determine whether
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the value has been previously serialised. If it finds a match it returns the identifier already

allocated; if there is no match then a fresh identifier is allocated, the association between iden-

tifier and value is recorded using add and the function store is called to serialise the value.

This strategy of allocating identifiers before serialising subvalues is sufficient for serialisation

of cyclic values: the next time a reference to this node is encountered there will be an identifier

in the map, so serialisation will not loop.

The store_node function simply records the association between an identifier and a node.

let store_node : node → id → pstate → pstate

= fun node id state →
{state with graph = IdMap.add id node state.graph}

Nodes of the graph are represented as values of the node type. A node is either a sequence

of bytes (representing a primitive value such as an integer or a string), or a value of algebraic

type, which is represented as an optional index for the constructor and a sequence of identifiers

for the subvalues.

type node = Bytes of string

| Appl of int option × id list

deriving (Dump)

Once the graph has been fully constructed we discard the other components of the state

record. In order to reduce the size of the serialised data we first change the representation of

the graph. As we have seen, during construction the graph takes the form of a finite map from

identifiers to node values. Serialising this directly takes up an unnecessarily large amount of

space, since we must serialise an identifier and a constructor (representing either Bytes or

Appl) alongside every node. We eliminate the need to serialise constructors by changing the

representation to use three maps, one for each of the three constructor configurations (Bytes,

Appl with a constructor index, and Appl without a constructor index). For example, pickling

might construct the following graph:

{1 ⇒ Appl (Some 2, [4;3]),
2 ⇒ Appl (None, [1;4]),
3 ⇒ Bytes "p",
4 ⇒ Bytes "k"}

This is replaced with three maps, eliminating the need to store constructors:

{3 ⇒ "p",
4 ⇒ "k"}
{1 ⇒ (2, [4;3])}
{2 ⇒ [1;4]}

Listing the pairs of keys and values sequentially gives the following:
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Pickle at record types

pickle << { l1 : a1; . . .; ln : an } >> =
<< fun ({ l1 = x1; . . .; ln = xn } as v) →

allocate v

(fun id s →
let x1, s = Pickle_a1.pickle x1 s in
. . .
let xn, s = Pickle_an.pickle xn s in
store_node (Appl (None, [x1; . . .; xn])) id s)>>

Pickle at polymorphic variant types

pickle <<[‘T1 of a1 |. . .| ‘Tn of an | t1 | . . . | tm]>> =
<< fun v → match v with

‘T1 x → tag (Pickle_a1.pickle x) $taghash T1$ v

. . .
| ‘Tn x → tag (Pickle_an.pickle x) $taghash Tn$ v

| #t1 as x → tag (Pickle_t1.pickle x) s1 v

. . .
| #tm as x → tag (Pickle_tm.pickle x) sm v >>

(Where si 6= taghash Tj for all i in 1 . . .n and j in 1 . . .m).

Figure 4.15: Generation of the pickle function

(3, "p"), (4, "k"), (1, (2, [4;3])), (2, [1;4])

We then eliminate the need to serialise identifiers alongside each node by replacing the iden-

tifiers used during construction of the graph with the offsets of the corresponding nodes. In

our example the values contain the identifier references 1, 3 and 4, which refer respectively to

the third, first and second nodes in the sequence. Substituting these, we arrive at the following

sequence of unlabelled nodes, which we serialise using Dump:

"p", "k", (2,[2;1]) [3;2]

Figure 4.15 gives the implementation of pickle for record and polymorphic variant types.

Other cases are similar in the essential details and so omitted. Pickling a value of record type

involves passing to allocate a function that pickles each field value and then stores a node in

the graph which points to the nodes for the fields. Pickling a value of polymorphic variant type

involves an auxiliary function, tag, which is defined in terms of allocate and store_node.

let tag : (pstate→ id × pstate)→ int→ a→ pstate→ id × pstate

= fun pickler t v state →
let id, pstate = pickler state in

allocate v (store_node (Appl (Some t, [id]))) state
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The tag function takes as argument an function, pickler, which stores a value v; it returns

a function which stores a tagged value ‘T v. The second parameter, t, denotes the tag T; the

third parameter is the complete value to be stored, ‘T v.

A polymorphic variant type can be declared in any of a number of compatible ways. In

particular, the order of tags does not affect the denotation of the type: [‘A | ‘B] is compat-

ible with [‘B | ‘A], and both may be used to denote the same type within a single program

(Section 4.3.3). In assigning numbers to tags, therefore, we cannot simply use the order in

which the tags appear in the declaration. Instead we use a hash of each tag name, ensuring that

the mapping from tags to integers is globally consistent. The hash function we use is the same

function used by the OCaml compiler to represent polymorphic variant tags (Garrigue, 1998).

The type checker rejects types containing tags, such as ‘squigglier and ‘premiums, whose

hash numbers collide. Using the same hash function as OCaml therefore ensures that we will

not be troubled by collisions. In the case where a polymorphic variant type t extends some

other type s we assign a tag number to s that does not collide with the hashes of the other tags

of t.

4.3.2 The unpickling algorithm

Detecting cycles is straightforward; reconstructing cycles is trickier. Values in OCaml are

constructed from subvalues: the subvalues must exist first, but this breaks down if the value

is among its own subvalues (either directly or as a more distant descendent). As we saw in

Section 4.1.2.2, Elsman solves this problem by requiring the user to supply an initial value to

start the recursion going. Our solution is to use low-level primitives to allocate an uninitialised

value whose address can be used in constructing subvalues. In generated code the risk of a

mistake in such memory manipulation is low, whilst the advantages — increased abstraction

and ease of use — are great.

Like the pickling algorithm, the unpickling algorithm threads a piece of state throughout

the computation. The state we need is a finite map whose keys are identifiers and whose values

are either node representations of values or fully deserialised values, represented using the

universal type, dynamic.

type ustate = ((node, dynamic) either) IdMap.t

At the start of unpickling, every value in the map is a node. The unpickling process replaces

each of these with fully reconstructed values.

The unpickling algorithm is based on two combinators, variant and record, which per-

form unpickling for particular types and update the state.
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let variant : (int × id × ustate→ a × ustate)→ id→ ustate

→ a × ustate =
fun load id s → match IdMap.find id s with
| Left (Appl (Some c, [id])) →

let v, s = load (c, id, s) in
let s = IdMap.add id (Right (Typeable.mk<a> v)) s in
(v, s)

| Right v →
(Typeable.cast v, s)

| _ → raise UnpicklingError

The variant combinator handles unpickling for a variant type a. It takes three arguments: a

function, load, which reconstructs a value from a node, an identifier, id, and the unpickling

state, s. The behaviour depends on whether id resolves to a node or a reconstructed value. If

it resolves to a node, then the integer representing the tag and the identifiers representing the

subvalues are passed to load, which constructs and returns the value; this value is upcast to

dynamic and stored in the map. If, instead, id resolves to a value then this value is downcast

to the appropriate type and returned. The wildcard branch handles the case where the node

found in the map has the wrong shape for a variant value.

The record function is similar, but the order of operations is adapted to handle recursive

values, since recursion arises from mutability, and mutability is introduced in OCaml at record

types.

let record : int→ (a × id list × ustate→ ustate)→ id→ ustate

→ a × ustate =
fun size load id s → match IdMap.find id s with
| Left (Appl (None, ids)) →

let v = Obj.magic (Obj.new_block record_tag size) in
let s = IdMap.add id (Right (Typeable.mk<a> v)) s in
let s = load (v, ids, s) in

(v, s)
| Right v →

(Typeable.cast v, s)
| _ → raise UnpicklingError

The record combinator takes the same arguments as the variant type, plus an additional argu-

ment, size, indicating the number of fields in the record. If the state resolves the identifier to a

node then low-level primitives are used to allocate memory for a record with size fields. This

uninitialised memory is stored in the map (at type dynamic) and the function load is called to

populate it with the values of the deserialised record fields. Storing the value in the map before

calling load ensures that within load the identifier will resolve to this same value, allowing

the construction of recursive objects. Of course, it is vital that load treat the uninitialised
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Unpickle at record types

unpickle << { l1 : a1; . . .; ln : an } >> =
<< let module Mutable =

struct type t = { mutable l1 : a1;
. . . ;
mutable ln : an }

end in
record n
(fun (self, ids, s) → match ids with
| [ x1; . . .; xn ] →

let mself : Mutable.t = Obj.magic self in
let x1, s = Pickle_a1.unpickle x1 s in

. . .
let xn, s = Pickle_an.unpickle xn s in
let () = mself.Mutable.l1 <- x1 in

. . .
let () = mself.Mutable.ln <- xn in

s)
| _ → raise UnpicklingError) >>

Unpickle at polymorphic variant types

unpickle <<[‘T1 of a1 |. . .| ‘Tn of an | t1 | . . . | tm]>> =
<< variant

(fun (tag, x, s → match tag with
$taghash T1$ →
let x, s = Pickle_a1.unpickle x s in ‘T1 x, s,

. . .
| $taghash Tn$ →

let x, s = Pickle_an.unpickle x s in ‘Tn x, s
| s1 →

let x, s = Pickle_t1.unpickle x s in (x :> a), s
. . .

| sm →
let x, s = Pickle_tm.unpickle x s in (x :> a), s

| _ →
raise UnpicklingError) >>

(Where si 6= taghash Tj for all i in 1 . . .n and j in 1 . . .m).

Figure 4.16: Generation of the unpickle function



140 Chapter 4. Serialising continuations

value as “write-only”; this is guaranteed by the unpickling algorithm, which does not inspect

deserialised values.

Figure 4.16 gives the implementation of unpickle for record and polymorphic variant

types. The generated function for a record type r includes the declaration of a type structurally

similar to r, but with every field declared mutable. The function passed to record receives an

uninitialised value of sufficient size, together with identifiers for the fields, and the state. The

function casts the uninitialised value, self, to the mutable type, which makes it possible to

first reconstruct subvalues which may contain references to self, then assign the subvalues to

the fields of self.

The unpickle function for polymorphic variants is straightforward: first the argument of

each tag is reconstructed, then the tag is applied to the reconstructed value. The tag numbers

s1 . . . sm used for the types t1 . . . tm must, of course, match those generated for use in the

pickle function (Figure 4.15).

4.3.2.1 Immutable cycles

The approach we describe here is sufficient to handle all cycles based on mutability; there is no

attempt to handle the immutable cycles which arise from OCaml’s value recursion extension.

This extension permits non-function values on the right-hand-side of let rec bindings, so

long as they meet certain syntactic restrictions which prevent reading partially constructed

values. For example, the declaration

let rec x = 1 :: 2 :: x

binds x to a cyclic list of integers whose values alternate between 1 and 2. Values of this form

cause unpickling to loop.

However, as a side effect of the implementation, unpickling will successfully reconstruct

immutable cyclic objects where the cycles pass through records. For example, given the type

declaration

type α cons = { car : α ; cdr : α seq }
and α seq = Cons of α cons

deriving (Eq, Hash, Typeable, Pickle)

the following declaration for y creates a cyclic value that can be pickled and unpickled without

problems.

let rec y = Cons { car = 1; cdr = Cons { car = 2; cdr = y}}
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module type TYPEABLE =
sig

type a

val mk : a → dynamic

val cast : dynamic → a

val has_type : dynamic → bool

val type_rep : typerep

end

Figure 4.17: Signature of the Typeable class

module TagMap = Map.Make(Interned)
type t = [‘Generative of Interned.t × typerep list

|‘Variant of (typerep option TagMap.t)]
× int

and typerep = t lazy_t

Figure 4.18: The typerep type

4.3.3 Dynamic typing

The ids map used in the algorithm in Section 4.3.1 is used to store values of arbitrary type.

To achieve this, deriving includes support for a form of dynamic typing. The Typeable class

(Figure 4.17) provides an upcast, mk, to a universal type, dynamic, and a safe downcast oper-

ation, cast, from dynamic to each instance type, which raises an exception on failure. The

has_type predicate tests whether a value of universal type can be cast to the instance type.

Typeable.cast<int>
(List.hd [Typeable.mk<int> 3; Typeable.mk<unit> ()])

=⇒ Some 3
Typeable.cast<int>

(List.hd [Typeable.mk<unit> (); Typeable.mk<int> 3])
=⇒ CastFailure

There are well-known techniques for implementing dynamic typing in pure SML (see p105-

106 of Filinski (1996), for example), but these deal only with generative types, not the struc-

tural types found in OCaml. Following Lämmel and Peyton Jones (2003), we use instead an

implementation based on pairs of values and representations of their types together with an

unsafe cast that is performed only if type representations match, which allows us to test types

for structural equality where appropriate. (The type_rep operation of the Typeable class

retrieves this type representation for a particular instance.) Our implementation divides types

into nominal (or “generative”) types — i.e. variants and records — which are represented as



142 Chapter 4. Serialising continuations

a string for the type constructor and a sequence of argument types, and structural types —

i.e. polymorphic variants— which are represented as lazy infinite trees. Tuples are treated as

nominal, using the arity as the type constructor. The concrete definition of typerep is given

in Figure 4.18. We use interned strings, with constant-time equality testing, to represent gener-

ative types and polymorphic variant tags. A final point to note is that type representations are

lazy. Laziness allows us to construct recursive type representations for recursive types; without

laziness our attempts to construct such representations are rejected as unsafe, since they do

not meet the syntactic restrictions mentioned in Section 4.3.2.1. Syme (2006) gives a general

account of using laziness to introduce recursion in this way.

The definition of equality on type representations corresponds closely to the OCaml defini-

tion of equality on types. Nominal types are considered equal if they have the same constructors

and equal arguments. Polymorphic variant types are considered equal if they have the same set

of labels and if the arguments to corresponding labels are equal. Recursive polymorphic variant

types have cyclic representations; termination of the equality test is assured by associating an

identifier with each node — the int component of the type representation — which is used to

record which nodes have been visited, i.e. to detect cycles. Since polymorphic variant types

are always regular all recursion eventually passes through an already visited node.

Polymorphic variant types which are considered equivalent in the OCaml type system are

treated as equivalent by deriving regardless of how they are declared, so the following cast will

succeed:

type α seq = [‘Nil | ‘Cons of α × α seq]
deriving (Typeable)

type nil = [‘Nil]
deriving (Typeable)

type intlist = [ nil | ‘Cons of int × α ] as α

deriving (Typeable)

Typeable.cast<intlist>
(Typeable.mk<int seq>

(‘Cons (1, ‘Cons (2, ‘Cons (3, ‘Nil)))))
=⇒ Some (‘Cons (1, ‘Cons (2, ‘Cons (3, ‘Nil))))

Similarly, the type representation used by Typeable does not respect module abstraction bound-

aries, so the following cast also succeeds:
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module M : sig
type t deriving (Typeable)
val v : t

val make : int → t

end =
struct

type t = int deriving (Typeable)
let v = 0
let make = id

end

Typeable.cast<int> (Typeable.mk<t> M.v)
=⇒ Some 0

This is a deliberate design decision: Typeable’s raison-d’être is to maximise sharing, which

is best achieved by identifying types which can easily be determined to have the same repre-

sentation. For example, the following code only serialises a single copy of the integer s, since

Typeable (and hence Pickle) treats the types int and M.t as the same.

Pickle.to_string<int × M.t> (s, M.make s)

However, casts between distinct nominal types never succeed, even if they are likely to have

the same memory layout; the following cast fails:

type cartesian = { x : float ; y : float }
type polar = { r : float ; t : float }
Typeable.cast<polar>

(Typeable.mk<cartesian> { x = 1.0; y = 3.0 })
=⇒ CastFailure

This difference reflects the fact that a programmer can cause a single value to have different

types using module abstraction, but there is no way for a value to receive more than one variant

or record type in a program that does not use unsafe operations.

Extension of equality on the type representation to a total ordering makes typerep values

suitable for use as keys in finite maps.

module TypeRep :
sig
type t = typerep

val compare : t → t → int

val eq : t → t → bool

. . .
end

With the addition of the compare function, the TypeRep module matches the signature re-

quired by the various functors that construct collection types. The compare function returns
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a negative, zero or positive number to indicate that the first argument is respectively less than,

equal to or greater than the second.

To distinguish nominal types at runtime, deriving constructs a unique string for each type

constructor:

type α r = R of α deriving (Typeable)
=⇒
module Typeable_r (Typeable_α : TYPEABLE)

: TYPEABLE with type a = Typeable_α.a r =
Typeable.Defaults
(struct

type a = Typeable_α.a r

let type_rep =
let t =

(‘Generative (intern "t.ml_2_1381210804.8705_r",
[V_a.type_rep]),

fresh_id ()) in
lazy t

end)
end

The string is constructed from the source file name, the type name and a timestamp. A sig-

nificant shortcoming in the current implementation is the lack of any guarantee that the same

string will be emitted by different runs of the program (in fact, it is guaranteed that this will

not happen!). The inclusion of the timestamp is intended to compensate for the fact that the

file name and type name are not alone sufficient to guarantee global uniqueness; there is only

limited information about the context available to deriving when the definition is seen. A solu-

tion to this problem is given in Billings, Sewell, Shinwell, and Strniša (2006) in the context of

a modification to the OCaml compiler, but a solution based on local syntactic transformations

remains elusive.

4.3.4 Sharing

One component of the state used by the pickling algorithm is a map from values to identifiers.

The pickling of each value v commences (in the allocate function) by examining the map

to discover whether we have already assigned an identifier to some value equal to v. The map

makes use of two classes. The Typeable class, described in Section 4.3.3, allows us to convert

each value to a universal type, and so use a single map to store elements of many types. The

Hash class, which we shall describe now, computes a hash of each value; this enables us to

give a fast implementation of the search for duplicates.

Figure 4.19 gives the interface to the Hash class. There are two functions: hash, which
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module type HASH =
sig
type a

module Eq : EQ with type a = a

val merge : a → hstate → hstate

val hash : ?depth:int → a → int

end

Figure 4.19: Signature of the Hash class

type hstate = {
code : int ;
nodes : int

}
exception Done of int

let hash ?(depth=5) v =
try (merge v { code = 0; nodes = depth}).code
with Done code → code

let merge_int : int → hstate → hstate =
fun i s →

if s.nodes > 0
then { code = s.code × 65599 + i; nodes = s.nodes - 1}
else raise (Done s.code)

Figure 4.20: Implementation of hash

computes a hash of a value, examining a number of nodes bounded above by the optional depth

argument, and merge, a lower-level function for combining intermediate results obtained from

hashing subvalues. There is one superclass, Eq: we require each hashable type to support

equality, and impose the constraint that the hashes of two values must be the same whenever

the values are equal:

Hash.hash<a> l = Hash.hash<a> r whenever Eq.eq<a> l r

Figure 4.20 gives the types and functions used in the implementation of Hash. The hstate

record tracks the hash code and the number of nodes examined in its computation, so that

traversal can be halted (by raising the exception Done) when sufficiently many nodes have

been examined. The hash function in the interface has a common implementation at every

type, given here: merge is called with an initial state, and computation ends with a result either

when merge returns, or when Done is raised with the hash code as argument. The merge_int



146 Chapter 4. Serialising continuations

Merge at record types

merge << { l1 : a1; . . .; ln : an } >> =
<< fun { l1 = x1; . . .; ln = xn } s →

Hash_a1.merge x1 (. . . (Hash_an.merge xn s))>>

Merge at polymorphic variant types

merge <<[‘T1 of a1 |. . .| ‘Tn of an | t1 | . . . | tm]>> =
<< fun v s → match v with
‘T1 x → Hash_a1.merge x (merge_int $taghash T1$ s)

. . .
| ‘Tn x → Hash_an.merge x (merge_int $taghash Tn$ s)
| #t1 as x → Hash_t1.merge x s

. . .
| #tm as x → Hash_tn.merge x s >>

Figure 4.21: Generation of the Hash.merge function

function gives the implementation of merge at type int; this forms the basis of the hashing

function at every other type. The hashing function, based on the magic number 65599, is a

common one, and matches the function used in the OCaml standard library.

Figure 4.21 gives the implementation of Hash.merge at record and variant types. There are

no surprises: at record types the hash is computed by merging the hash of each field; at variant

types the hash is computed by merging the hash of the tag and the hash of the argument.

4.3.5 Specialisation example: alpha-equivalence

The equality predicate specified in Section 4.2 enables the Pickle serialiser to introduce shar-

ing between immutable values that have identical structure, potentially shrinking the serialised

representation. Since equality can, like all operations provided by deriving, be customised at a

particular type, there is room for even greater compression if we can specialise the definition

of equality to a more inclusive predicate. For example, if we have a representation of lambda

terms we might wish to consider all α-equivalent terms equal (although this will not always

be a sensible choice, since there are many programs that can distinguish between α-equivalent

terms!). If we introduce an instance of Eq which is visible to the Pickle instance for lambda

terms then when terms are serialised only one member of each α-equivalence class will be

written out. (We may also need to specialise Hash to maintain the correct relationship between

Hash and Eq.)

Here we encounter a small technical difficulty with the current design of deriving. The

preprocessor inserts generated instance definitions immediately following the definition of the
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associated type. Further, since Eq is a superclass of Pickle, the Eq instance for a type must be

visible within its Pickle instance. Our definition of Eq must follow the type definition for the

constructors to be visible, but the preprocessor will insert the Pickle definition between the

definition of the type and our definition of Eq (which the preprocessor ignores). We can dodge

the difficulty using a recursive module, which allows us to bring a definition of Eq into scope

within the preceding Pickle definition, but this is a rather distasteful necessity. We plan to

address the difficulty in future versions of deriving.

Figure 4.22 defines a datatype, exp, for representing lambda terms, together with spe-

cialised instances for Eq and Hash that are visible to the generated instance for Pickle. The

Eq instance uses α-equivalence, rather than structural equality; the Hash instance correspond-

ingly ignores variable names, computing a hash based on constructors only. Parts (a) and (b)

of Figure 4.23 show the sharing introduced by Pickle for a particular lambda term (a call-by-

value fixpoint combinator) represented as a value of exp.

There is one further opportunity to increase the potential for sharing. OCaml strings are

mutable, so the default definition of equality compares their physical addresses rather than their

contents. A value-oriented instance of Eq for strings (taking OCaml’s = for eq) leads to further

sharing under Pickle, as seen in Figure 4.23 (c). In order to change the predicate used to

compare strings we can define a type alias for string, istring, and a module Eq_istring,

and replace the references to string in the definition of exp with references to istring.

type istring = string

module Eq_istring = struct
type a = istring

let eq = (=)
end
. . .
type exp = Var of istring

| App of exp× exp

| Lam of istring× exp

deriving (Eq)

This definition allows Eq.eq<exp> to use structural equality for string comparisons, but has

no effect on the rest of the program. Our notation for overloaded operations is generally more

cumbersome than in a language such as Haskell where there is no need to specify the type at

each call. In this case the burden becomes an advantage: deriving selects instances according to

the declared name of a type, so we can use different instances for a given type at various points

in the program by introducing a type alias for each instance. (A similar point is made in Dreyer

et al. (2007), which couples Haskell-style overloading with an operation for explicitly making

a particular instance “canonical” in a certain scope.)
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module Env = Env.Make(String)
module rec Exp :
sig
type exp = Var of string

| App of exp × exp

| Lam of string × exp

deriving (Eq, Hash, Typeable, Pickle)
end =
struct
module Eq_exp = struct
open Exp

type a = exp

let eq l r

= let rec alpha_eq (lenv, renv as envs) n = function
| Var l, Var r →

(match Env.mem l lenv, Env.mem r renv with
| true, true → Env.find l lenv = Env.find r renv

| false, false → l = r

| _ → false)
| App (fl,pl), App (fr,pr) →

alpha_eq envs n (fl, fr) && alpha_eq envs n (pl, pr)
| Lam (vl,bl), Lam (vr,br) →

alpha_eq
(Env.add vl n lenv, Env.add vr n renv)
(n+1)
(bl, br)

| _ → false
in alpha_eq (Env.empty, Env.empty) 0 (l,r)

end
module Hash_exp = Hash.Defaults(struct

module Eq = Eq_exp
type a = exp

let rec merge v s = match v with
| Var _ → merge_int 1 s

| App (f, p) → merge f (merge p (merge_int 2 s))
| Abs (_, body) → merge body (merge_int 3 s)

end)
type exp = Var of string

| App of exp × exp

| Lam of string × exp

deriving (Typeable, Pickle)
end

Figure 4.22: Using α-equivalence as equality to increase sharing
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Figure 4.23: Sharing lambda terms

4.3.6 Compactness of serialised data

We have measured the spacewise performance of the Pickle serialiser described in Sec-

tions 4.3.1–4.3.2 in two simple applications. First, we used Camlp4 to parse a selection of

variously-sized OCaml files (path.ml (1.8k), predef.ml (7.6k) and includemod.ml

(15k)) from the OCaml distribution, passed the resulting syntax trees to the Marshal and

Pickle serialisers, and compared the size of the output. Next, we compared the sizes of

the representations generated for lambda terms by each serialiser on lambda terms, using the

α-equivalence-aware serialiser developed in Section 4.3.5 and three collections of randomly-

generated open lambda terms published by Liang and Nadathur (2002)3. The results of both

tests are shown in Figure 4.24.

While Pickle can save space by introducing sharing we have made only modest attempts

to make the format in which values are stored compact. It is therefore little surprise that,

in the “OCaml” test, the default output of Pickle is shown to be significantly (although not

3 These terms are available at http://cs.hofstra.edu/~cscccl/lambda-examples/.

http://cs.hofstra.edu/~cscccl/lambda-examples/
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Marshal
Pickle

(×Marshal)

Pickle

(specialised)

(×Marshal)
OCaml (path.ml) 5752 9178 (1.59) -

OCaml (predef.ml) 27890 39596 (1.42) -

OCaml (includemod.ml) 53292 75839 (1.42) -

Lambda (reg.) 8732 21948 (2.51) 5233 (0.60)

Lambda (med.) 34993 89990 (2.57) 10045 (0.29)

Lambda (big.) 63513 176811 (2.78) 15259 (0.24)

Figure 4.24: Comparative size (bytes) of the output of Pickle and Marshal serialisers

disastrously) less compact than the default output of Marshal. In the results of the Lambda test,

where the Pickle serialiser is enhanced using domain knowledge, the performance of Pickle

is much more impressive, yielding output between two and four times smaller than Marshal

(and up to eleven times smaller than the uncustomised Pickle serialiser). These results suggest

that it is worthwhile exploring domain-specific solutions to serialisation problems, and that

extensibility to incorporate domain knowledge is a valuable facet of the design of a serialiser.

4.3.7 Safety

We saw in Section 4.1.2.1 the disastrous effects of passing invalid data to the Marshal func-

tions. Since Pickle is type-aware, no such problems arise. If the string that we pass to

Pickle.from_string is a valid representation of the declared return type then it will be

interpreted at that type; if it is not, an exception will be raised.

Pickle.from_string<float> (Pickle.to_string<int> 0)
=⇒ 0.0
Pickle.from_string<Exp.Exp.exp>

(Pickle.to_string<int> 0)
=⇒ Exception: Pickle.Pickle.UnpicklingError

"Error unpickling constructor".

Although this behaviour is “safe” in the sense that it will not cause a program crash, it may

be that it is not quite what is desired. For some applications it might be more appropriate to

ignore representation compatibility, and raise an exception whenever there is a mismatch be-

tween serialisation and deserialisation types. It would be straightforward to add this behaviour

by serialising a representation of the type along with the value, but until the difficulty with
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mapping type constructors to unique names described in Section 4.3.3 is resolved it would

only be possible to check equality of serialised types within the same compiled instance of the

program which produced them.

4.3.8 Related work

The serialisation problem has received considerable attention in the ML community. The Hash-

Caml (Billings et al., 2006) project extends the OCaml bytecode compiler with type-passing to

make the standard Marshal operation type-safe. Cohen and Herrmann (Cohen and Herrmann,

2005) discuss the implementation of a staged serialiser in MetaOCaml which bears some sim-

ilarity to our preprocessor-based approach, with even more reliance on unsafe low-level op-

erations, used by the serialiser to break through abstraction barriers. Tack, Kornstaedt, and

Smolka (2005) describe the addition of serialisation as a primitive service to Alice ML, giving

an elegant account of their serialisation algorithm in terms of a domain-specific instruction set.

A number of existing Camlp4 extensions construct serialisation functions from types.

Markus Mottl’s sexplib (Mottl, 2008) and bin-prot (Mottl, 2007) support textual and binary

serialisation protocols, but do not currently handle sharing or cyclic data. Daniel de Rauglau-

dre’s IoXML (de Rauglaudre, 2002) supports conversions between OCaml values and XML.

Martin Jambon’s json-static (Jambon, 2007) supports serialisation to and from JavaScript Ob-

ject Notation.

We discussed two libraries of serialisation combinators (Elsman, 2005, Kennedy, 2004)

in Section 4.1.2.2. Karvonen (2007) discusses ways to address some of the deficiencies in

Elsman’s library. Finally, serialisation has been a common example program in the generic

programming community: see, for example, Hinze (2004).

One disadvantage suffered by our approach in comparison to almost all alternatives is a

certain lack of type-safety: it is easy to use Camlp4 to generate code that is ill-typed. The fact

that all Camlp4-generated code is subsequently type-checked by the OCaml compiler makes

this less serious a problem than it might otherwise be: it is not possible to actually execute an

ill-typed program. Nevertheless, it would certainly be preferable to eliminate the possibility of

generating ill-typed code altogether.

4.4 Conclusions and future work

We have described the design and implementation of deriving, the system used in the prototype

implementation of Links for constructing generic functions from type definitions, and its par-

ticular application to the serialisation problem. The deriving encoding of serialisation places
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a much lower burden on the user and much greater coverage than the combinator approach; it

offers greater safety and flexibility than standard OCaml marshalling. Perhaps most enticingly,

the specialisation property, which allows a user to supply an alternative implementation for a

derived function at a particular type, makes it possible to improve serialisation using domain

knowledge without writing any serialisation code, leading to a considerable reduction in the

size of serialised data. Generated instances produce acceptably compact output compared to

Marshal, even without specialisation.

We have also shown how an understanding of the correspondence between modules and

type-classes can guide software design and described techniques to make it viable in the ab-

sence of a full system of recursive modules.

While the correspondence between type classes and modules is a useful guiding principle in

the design of our deriving framework, using modules to represent the “dictionaries” containing

overloaded function implementations has a number of drawbacks related to the distinction in

OCaml between the module and expression languages. Any functions that are parameterised

over instances (such as a print function which displays values of any type that is a member

of the Show class) must be wrapped in functors. For similar reasons, overloaded functions are

not first-class citizens in our current design: they are tied to the module language, and cannot

be passed around freely as values. Representing dictionaries using value-level products such

as objects or records would address these limitations, but would limit the flexibility of deriving

in other ways, most notably in the encoding of “constructor classes” (Jones, 1993). While

functors permit abstraction over type constructors, OCaml does not support the higher-kinded

type variables that are necessary to encode dictionaries for constructor classes at the value level.

However, objects offer additional advantages: they are easier to compose than modules, since

there are no problems with name clashes between type components, and overriding of virtual

functions offers a convenient analogue to the default method facility of Haskell type classes. It

is not yet clear which encoding of dictionaries — modules, records or objects — provides the

set of features that is most convenient in practice.

Finally, deriving currently provides more support for using the generic functions supplied

with the implementation than for writing new generic functions; adding generic functions to

deriving currently requires a certain degree of Camlp4 expertise. It is obviously desirable

to eliminate this bias. The deriving implementation provides a fairly convenient framework

for expressing generic functions in a Camlp4 extension, but it would be preferable to write

generic functions directly in OCaml. One possible approach is to use deriving to generate

general value-level representations of datatypes which can then be used by generic functions to

traverse values of those types. As we said in Section 4.2.7, the planned addition of first-class
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modules to OCaml will make it easier to separate type representations from generic function

implementations in this way.





Chapter 5

Signed and sealed

5.1 Introduction

An abstract type definition divides a program into two parts. The first part defines the type, and

acts on its representation. The second part uses the type, and acts on its interface. Language

features for creating this abstraction boundary may be classified into two styles. The first uses

a type signature to distinguish values of the abstract type from values of the type with which

it is implemented. For example, in Standard ML we might choose to define a type of complex

numbers as follows.

structure Complex =
struct

type complex = real × real

fun make (x,y) = (x,y)
fun real (x,y) = x

fun imag (x,y) = y

fun conj (x,y) = (x, ~y)
fun plus ((u,v), (x,y)) = (u+x, v+y)

end :>
sig
type complex

val make : real × real → complex

val real : complex → real

val imag : complex → real

val conj : complex → complex

val plus : complex × complex → complex

end

The type system enforces the distinction between the abstract type complex and its representa-

tion type real × real, rejecting attempts to conflate the one with the other outside the region

of code between struct and end where the complex type is defined. We dub this style of

155
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abstraction signing.

The second style of abstraction involves tagging values of the type as they cross from the

section where the abstract type is defined to the section where it is used. Again, in Standard

ML we might define a type of complex numbers in terms of a pair of reals as follows.

abstype
complex = MkComplex of real × real

with
fun make (x,y) = MkComplex (x,y)
fun real (MkComplex (x,y)) = x

fun imag (MkComplex (x,y)) = y

fun conj (MkComplex (x,y)) = MkComplex (x, ~y)
fun plus (MkComplex (u,v), MkComplex (x,y))

= MkComplex (u+x, v+y)
end

The MkComplex data constructor can be used to construct and deconstruct values of the new

type, but the abstype keyword delimits the scope of MkComplex to the section of the program

between with and end; in other parts of the program such values cannot be deconstructed.

We dub this style of abstraction sealing1.

Both signing and sealing appear in modern functional languages as the preferred means of

defining abstract types. In Standard ML both mechanisms are available, as illustrated above.

Since signing involves drawing the abstraction boundary in the types and sealing involves draw-

ing the abstraction boundary in the terms, it is no surprise that abstract types in Scheme are

typically based on sealing (Matthews and Ahmed, 2008). While languages related to Haskell

— Gofer/Hugs (Jones and Peterson, 1999) and Miranda (Turner, 1985) — use signing, abstract

types in Haskell itself use sealing, albeit a variant in which the abstraction is enforced statically.

Figure 5.1 summarises.

We have said that we might choose either of two notations — type-based or term-based —

for defining abstract types. A second consideration is how the values of an abstract type are

represented: is a value of type complex represented identically, or merely isomorphically, to a

value of type real × real? In some circumstances a distinct representation for each abstract

type might be preferable. For example, overloading may, for some languages, be implemented

by runtime inspection of the representation of a value in order to pick the appropriate imple-

mentation of an overloaded function; it is obviously undesirable for complex numbers to be

displayed identically to pairs of reals, even if we use the same overloaded function name for

printing both. Conversely, if there is no need to distinguish values at runtime then it may be

1The “signing” and “sealing” terminology, while evocative, is not entirely standard. “Sealing” is sometimes
used in the ML literature for the operation of creating abstract types through signature ascription. However, the use
of “sealing” for creating abstract types through data constructors can be traced at least as far back as Morris (1973).
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SML sig SML abstype Scheme Haskell newtype

Notation Types Terms Terms Terms

Checking Static Static/Dynamic Dynamic Static

Figure 5.1: Abstraction schemes

more efficient to use identical representations, eliminating a layer of indirection and enabling

space-saving optimisations such as flattening nested pairs. Thus we find, for example, that

the data constructor introduced by Haskell’s newtype has no runtime representation (Peyton

Jones and Hughes, 1999). (Overloading in Haskell is resolved via static generation of implicit

“dictionary” arguments to overloaded functions, not by runtime inspection of values.) Simi-

larly, constructors of unary sums in Standard ML may be erased, since there is no way for a

program to detect the erasure (although such issues are not considered in the Definition).

Comparing the two alternatives for representing values of abstract type with the two styles

of abstract type definition, we find that there is apparently a close correspondence. It is not

difficult to see that a sealing constructor can be used to give a distinct representation to values

of an abstract type. It is likewise clear that the signing style need not introduce any represen-

tational overhead. It is easy to reach the conclusion that the signing style fits particularly well

with a statically-typed language in which values of abstract type are represented identically to

values of the representation type, whereas sealing fits well with a dynamic language in which

each abstract type has a distinct representation.

For the language designer, then, there may be ostensible reasons to prefer either the signing

or the sealing style of abstraction. In this vein, the designers of Haskell write (of an example

program written in the sealing style)

"The Show instance for Stack can be different from the Show instance for lists,
and there is no ambiguity about whether a given subexpression is a Stack or a list.
It was unclear to us how to achieve this effect with abstype." (Hudak et al., 2007)

Likewise, the designer of Miranda claimed (of the signing style provided in that language):

"Note that the mechanism for data type abstraction which is presented here
is inextricably bound up with strong [. . . ] typing. There would seem to be no
equivalent mechanism available in a language which delays its type checking until
run time. By contrast, the traditional account of data type abstraction as an act of
encapsulation would appear to be equally applicable to both strongly and weakly
typed languages." (Turner, 1985)

In fact, as we demonstrate in this chapter, the styles are interconvertible: there is an auto-

matic translation between them preserving operational equivalence with respect to a standard
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semantics. That is, we may define abstract types using either the signing or the sealing style

without constraining the runtime representation of values. For example, as we show in Sec-

tion 5.5, it is possible to extend Haskell with a construct for signing by translation into the

built-in constructs, thus avoiding the need for the user to write tags; we could equally well add

such a mechanism to Scheme. While it appeared to the Haskell designers that newtype was

necessary to avoid ambiguity in overloaded functions, it would, in fact, have been possible to

use a construct based on signing without any such ambiguity.

Early plans for this dissertation connected the discussion above more closely with the work

in Chapter 4. Generic functions, as discussed in that chapter, are closely connected to overload-

ing; functions such as eq and pickle (Sections 4.2.1 and 4.3) are overloaded for all algebraic

types (although the behaviour at each type is determined by the structure of the type rather than

specified in an ad-hoc fashion). As discussed above, overloading is, in turn, connected to ab-

stract types: an approach to overloading that depends on runtime inspection of values can only

offer different behaviour at an abstract type and its representation if the two are represented

differently at runtime. In this chapter we show that the representation of a value of abstract

type is not tied to the notation used for the definition of the type; we had hoped to build upon

this foundation to show that similar freedoms exist when designing systems of overloading and

generic programming, but time constraints ultimately prevented such an investigation.

Our evidence that the two styles of abstract type are interconvertible is based on relational

parametricity (Reynolds, 1983, Wadler, 1989). Pitts (2000) gives an appealing presentation

of parametricity in the presence of polymorphism and partial functions, in which the usual

denotational characterisation of admissible relations is replaced by a purely syntactic approach.

Our evidence is an application of the central result in a minor extension to Pitts’ system.

This chapter makes the following contributions:

1. A characterisation of the two essential styles of abstract type, signing and sealing (Sec-

tions 5.1 and 5.2.1).

2. Evidence that the two styles are interconvertible (Section 5.4) via a type-indexed function

(Section 5.3) in a higher-order language with polymorphism and recursion, based on an

extension of Pitts’ PolyPCF (Section 5.2).

3. An application of the result: a robust implementation of abstract types using signing to

Haskell (Section 5.5), by translation into Haskell’s sealing-style construct, newtype.
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5.2 PolyPCF with tags

In order to demonstrate the equivalence of the two styles of defining abstract types we begin

by defining a programming language in which both styles can be expressed. Our language of

choice is an extension of Pitts’ PolyPCF (Pitts, 2000), which was designed to investigate the

operational behaviour of programs built from partial polymorphic functions. The signing style

of abstract type definition can be reduced to a use case of polymorphic types, already present

in PolyPCF. In order to capture the sealing style we extend PolyPCF with tags, a sort of unary

variant type with a constructor inT , destructor outT and type constructor T(−), for each T of

an infinite set of tag names Tag.

It is convenient to establish the necessary results in terms of polymorphic types and tag

types. The language constructs which we will ultimately use to compare signing and sealing

— signtype and sealtype — may be reduced to particular uses of these more primi-

tive constructs. Starting with polymorphism and tags simplifies both the initial presentation

of PolyPCF and the proofs. (One less desirable feature of this approach is that our simpler

language does not capture certain aspects of the signing and sealing styles, most notably the

scoping of tags that is essential to the sealing style. For the moment we emulate this scop-

ing by side conditions on the programs in which our abstract types are used, leaving a closer

emulation of the two styles to future work.)

We will first illustrate by example how abstract types may be defined in PolyPCF (Sec-

tion 5.2.1), then proceed to the formal development of the core language (Sections 5.2.2–

5.2.10). Section 5.4 gives the formal definition of the derived forms signtype and

sealtype.

5.2.1 Example

The four programs in Figure 5.2 illustrate the encoding of the two styles of type abstraction.

Our examples make use of types for pairs and numbers which are not directly supported by

PolyPCF, but which can be Church-encoded in the usual way (Girard, Taylor, and Lafont,

1989). We will use pairs and numbers as though PolyPCF supported them directly.

The program on the upper left gives a signing-style definition of a complex number type

using signtype. The program on the lower left gives the same definition written in plain

PolyPCF without signtype.

The program on the upper right gives a sealing-style definition of a complex number type

using sealtype. Since PolyPCF is explicitly typed — unlike, say, Standard ML — we must

give a type signature for each exported value. The program on the lower right gives the same
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definition written in plain PolyPCF without sealtype.

The remainder of this section is a straightforward recapitulation of Pitts (2000). Most

figures and definitions are adapted from this work, the key difference being the addition of

tags. Adding tags is straightforward: no new insight or style of proof is required. The bracketed

numbers accompanying each definition and figure refer to the corresponding definition or figure

in Pitts’ work.

5.2.2 Syntax

Fig. 5.3 defines the syntax of our extension of PolyPCF. We follow standard conventions: for

example, application is left associative and we omit parentheses where possible.

PolyPCF augments the familiar polymorphic lambda calculus with fixpoint recursion and

polymorphic lists, which serve the role of a ground type. We add a type constructor, T(−), for

tagged types, and corresponding term constructors, inT - for tagging and outT - for untagging.

5.2.3 Typing

Figure 5.4 gives the typing relation Γ ` M : τ between typing environments Γ , terms M

and types τ. As the rules are entirely standard we refrain from commenting further.

5.2.4 Evaluation

Definition 27. (Values). The set V of values is drawn from the set of closed terms of closed

type generated by the following grammar:

V ::= λx : τ(M)

Λα(M)

nilτ

M ::M

inT M

Figure 5.5 gives the evaluation relation for extended PolyPCF. The rules are mostly deter-

mined by the definition of values. Function application is call-by-name.

5.2.5 Equivalence

In order to show that the two styles of creating abstract types are equivalent we must first make

clear what we mean by “equivalence” of terms. A common approach is to base equivalence on

the notion of context: two terms are considered equivalent if they may be interchanged in any

program context without effect on the observable behaviour of the program. This raises the
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τ ::= (Types)

α type variable

τ→ τ function type

∀α(τ) ∀− type

τ list list type

T(τ) tagged type

M ::= (Terms)

x variable

λx : τ(M) function abstraction

MM function application

Λα(M) type generalisation

Mτ type specialisation

fix(M) fixpoint recursion

nilτ empty list

M ::M non-empty list

caseM of {nil⇒M | x :: x⇒M} case expression

inT M tagging expression

outT M untagging expression

Notes

(i) α and x range over disjoint countably infinite sets TyVar and Var of type variables and

variables respectively.

(ii) The constructions ∀α(−), λx : τ(−),Λα(−), and caseMof {nil⇒M ′ | x :: x ′ ⇒
−} are binders. We will identify types and terms up to renaming of bound variables and

bound type variables.

(iii) We write ftv(e) for the finite set of free type variables of an expression e (be it a type

or a term) and fv(M) for the finite set of free variables of a termM.

(iv) We write e[τ/α] for the capture-avoiding substitution of a type τ for all free occur-

rences of a type variable α in a type or term e and M[M ′/x] for the capture-avoiding

substitution of a termM ′ for all free occurrences of a variable x inM.

Figure 5.3: Syntax of the PolyPCF language extended with tags [Pitts’ Figure 1]
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Γ , x : τ ` x : τ

Γ , x : τ1 `M : τ2

Γ ` λx : τ1(M) : τ1 → τ2

Γ ` F : τ1 → τ2 Γ ` A : τ1

Γ ` F A : τ2

Γ ,α `M : τ

Γ ` Λα(M) : ∀α(τ)

Γ ` G : ∀α(τ1)

Γ ` G τ2 : τ1[τ2/α]

Γ ` F : τ→ τ

Γ ` fix(F) : τ

Γ ` nilτ : τ list Γ ` H : τ Γ ` T : τ list

Γ ` H :: T : τ list

Γ ` L : τ1 list Γ `M1 : τ2 Γ ,h : τ1, t : τ1 list `M2 : τ2

Γ ` case L of {nil⇒M1 | h :: t⇒M2} : τ2

Γ `M : τ

Γ ` inT M : T(τ)

Γ `M : T(τ)

Γ ` outT M : τ

Notes

(i) Typing judgments take the form Γ `M : τ where

(a) the typing environment Γ is a pair A,∆ with A a finite subset of TyVar and ∆ a

function defined on a finite subset dom(∆) of Var and mapping each x ∈ dom(∆)

to a type with free type variables in A;

(b) M is a term with ftv(M) ⊆ A and fv(M) ⊆ dom(∆);

(c) τ is a type with ftv(τ) ⊆ A.

(ii) The notation Γ , x : τ indicates the typing environment obtained from the typing envi-

ronment Γ = A,∆ by properly extending the function ∆ by mapping x /∈ dom(∆) to

τ. Similarly, Γ ,α is the typing environment obtained by properly extending A with an

α /∈ A.

(iii) The explicit type information included in the syntax of function abstractions and empty

lists ensures that, given Γ andM, there is at most one τ for which Γ `M : τ holds.

Figure 5.4: Typing assignment relation for PolyPCF with tags [Pitts’ Figure 2]
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V ⇓ V

F ⇓ λx : τ(M) M[A/x] ⇓ V

F A ⇓ V

G ⇓ Λα(M) M[τ/α] ⇓ V

G τ ⇓ V

F fix(F) ⇓ V

fix(F) ⇓ V

L ⇓ nilτ M1 ⇓ V

case L of {nil⇒M1 | h :: t⇒M2} ⇓ V

L ⇓ H :: T M2[H/h, T/t] ⇓ V

case L of {nil⇒M1 | h :: t⇒M2} ⇓ V

M ′ ⇓ inT M M ⇓ V

outT M ′ ⇓ V

Figure 5.5: PolyPCF evaluation relation [Pitts’ Figure 3]

question of what is meant by “program” and “observable behaviour”; the standard answers are

that a program is a closed term of ground type (such as boolean) and its observable behaviour

the constant (if any) to which it evaluates. PolyPCF uses lists in place of ground type, so it is

reasonable to take “program” to mean a closed term of list type and “observable behaviour” to

mean whether the program evaluates to nil.

While this notion of contextual equivalence is pleasingly simple, it is in certain respects

too concrete for our purposes. For example, it is not possible to identify program contexts up

to change of bound variables, since the result of plugging an open term into a context depends

on whether the names of the binders in the context match the names of the free variables in

the term. It is more convenient to work with a more abstract notion of observational congru-

ence (Theorem 29), defined as the largest relation satisfying certain desirable properties (Sec-

tion 5.2.6). Pitts (2000) shows that for PolyPCF this notion coincides with the more intuitive

concept of contextual equivalence.

Our plan, then, is to reason in terms of observational congruence instead of the equivalent,

but lower-level notion of contextual equivalence. We will first define (in Section 5.2.9) a logical

relation, ∆, parameterised by a tuple of binary term relations, which, under certain conditions,

coincides with observational congruence (Sections 5.2.7–5.2.10). By instantiating ∆ with the
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relation between signtype-bound terms and sealtype-bound terms we will be able to

show that the construct used to define an abstract type makes no difference to the outcome of a

program (Section 5.4.5).

5.2.6 Relations

Definition 28. (Properties of relations). [Pitts’ Definition 2.2] Suppose E is a set of 4-tuples

(Γ ,M,M ′, τ) satisfying

Γ `M EM ′ : τ⇒ (Γ `M : τ& Γ `M ′ : τ)

where we write Γ `M EM ′ : τ instead of (Γ ,M,M ′, τ) ∈E.

(i) E is compatible if it is closed under the axioms and rules in Fig. 5.6. It is substitutive if it

is closed under the rules in Fig. 5.7.

(ii) Compatible relations are automatically reflexive. A PolyPCF precongruence is a com-

patible, substitutive relation which is also transitive. A PolyPCF congruence is a pre-

congruence which is also symmetric. (Symmetry and transitivity here refer to the term

components of the 4-tuple).

(iii) We write Typ for the set of closed types τ, i.e. those for which ftv(τ) = ∅. Given τ ∈ Typ,

we write Term(τ) for the set of closed terms M, i.e. those for which ∅ ` M : τ. The

relation E is adequate if for all types τ ∈ Typ and closed termsM,M ′ ∈ Term(τ list)

∅ `M E M ′ : τ list⇒ (M ⇓ nilτ ⇔M ′ ⇓ nilτ)

Theorem 29. (PolyPCF observational congruence). [Pitts’ Theorem 2.3] There is a largest

adequate, compatible and substitutive relation. It is an equivalence relation and hence is the

largest adequate PolyPCF congruence relation. We call it PolyPCF observational congruence

and write it as =obs.

5.2.7 Frame stacks

Definition 30. (Frame Stacks). [Pitts’ Definition 3.2] Frame stacks provide a way to denote

evaluation contexts. The grammar for PolyPCF frame stacks is

S ::= Id | S ◦ F

where F ranges over frames:
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Γ , x : τ ` x E x : τ

Γ , x : τ1 `M E M ′ : τ2

Γ ` λx : τ1(M) E λx : τ1(M
′) : τ1 → τ2

Γ ` F E F ′ : τ1 → τ2 Γ ` A E A ′ : τ1

Γ ` (F A) E (F ′ A ′) : τ2

α, Γ `M E M ′ : τ

Γ ` Λα(M) E Λα(M ′) : ∀α(τ)

Γ ` G E G : ∀α(τ1)

Γ ` (G τ2) E (G ′ τ2) : τ1[τ2/α]

Γ ` F E F ′ : τ→ τ

Γ ` fix(F) E fix(F ′) : τ

Γ ` nilτ E nilτ : τ list

Γ ` H E H ′ : τ Γ ` T E T ′ : τ list

Γ ` (H :: T) E (H ′ :: T ′) : τ list

Γ ` L E L ′ : τ1 list Γ `M1 E M ′1 : τ2

Γ ,h : τ1, t : τ1 list `M2 E M ′2 ` τ2

Γ ` (case L of {nil⇒M1 | h :: t⇒M2})

E (case L ′ of {nil⇒M ′1 | h :: t⇒M ′2}) : τ2

Γ `M E M ′ : τ

Γ ` inT M E inT M ′ : T(τ)

Γ `M E M ′ : T(τ)

Γ ` outT M E outT M ′ : τ

Figure 5.6: Compatibility properties [Pitts’ Figure 4]

α, Γ `M E M ′ : τ1

Γ [τ2/α] `M[τ2/α] E M ′[τ2/α] : τ1[τ2/α]

Γ , x : τ1 `M E M ′ : τ2 Γ ` N E N ′ : τ1

Γ `M[N/x] E M ′[N ′/x] : τ2

Figure 5.7: Substitutivity properties [Pitts’ Figure 5]
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F ::= (−M)

(− τ)

(outT −)

(case − of {nil⇒M | x :: x⇒M})

Figure 5.8 gives the typing rules for frame stacks. The judgment Γ ` S : τ ◦→ τ ′ holds for

a frame stack S which, under the assumptions in the typing environment Γ , has argument type

τ and result type τ ′. Given τ, τ ′ ∈ Typ, we write Stack(τ, τ ′) for the set of frame stacks S for

which ∅ ` S : τ ◦→ τ ′. We are particularly interested in the case in which τ ′ is a list type, and

so define the following shorthand:

Stack(τ)
def
=

⋃
τ ′∈Typ

Stack(τ, τ ′ list)

Definition 31. (Applying a frame stack to a term). [Pitts’ Definition 3.4] The analogue for

frame stacks of the operation of filling the hole of an evaluation context with a term is given by

the operation S,M 7→ SM, of applying a frame stack to a term. It is defined by induction on

the length of the stack: IdM
def
= M

(S ◦ F)M def
= S(F[M])

where F[M] is the term which results from replacing ‘−’ by M in the frame F. Note that if

S ∈ Stack(τ, τ ′) andM ∈ Term(τ), then SM ∈ Term(τ ′).

Theorem 32. (A structural induction principle for PolyPCF termination). [Pitts’ Theorem

3.6]

For all closed types τ, τ ′ ∈ Typ, for all frame stacks S ∈ Stack(τ, τ ′ list), and for all

closed termsM ∈ Term(τ), we have

SM ⇓ nilτ ′ ⇔ S >M

where the relation (−) > (−) is inductively defined by the rules in Figure 5.9.

The new rules for tagged types straightforwardly follow the pattern for other type construc-

tors: there is one rule that pairs the introduction form inT − with a stack whose top frame

is the corresponding elimination form outT −, and one rule that moves the elimination form

outT − from the top of the stack to the term.
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Γ ` Id : τ ◦→ τ

Γ ` S : τ ′ ◦→ τ ′′ Γ ` A : τ

Γ ` S ◦ (−A) : (τ→ τ ′) ◦→ τ ′′

Γ ` S : τ ′[τ/α] ◦→ τ ′′ α not free in Γ

Γ ` S ◦ (−τ) : ∀α(τ ′) ◦→ τ ′′

Γ ` S : τ ′ ◦→ τ ′′ Γ `M1 : τ ′ Γ ,h : τ, t : τ list `M2 : τ ′

Γ ` S ◦ (case − of {nil⇒M1 | h :: t⇒M2}) : τ list ◦→ τ ′′

Γ ` S : τ ◦→ τ ′

Γ ` S ◦ outT − : T(τ) ◦→ τ ′

Figure 5.8: Typing frame stacks [Pitts’ Figure 6]

5.2.8 Term and stack relations

Definition 33. (Term- and stack-relations). [Pitts’ Definition 3.8] A PolyPCF term-relation is

a binary relation between (typeable) closed terms. Given closed PolyPCF types τ, τ ′ ∈ Typ,

we write

Rel(τ, τ ′)

for the set of term-relations that are subsets of Term(τ)×Term(τ ′). A PolyPCF stack-relation

is a binary relation between (typeable) frame stacks whose result types are list types. We write

StRel(τ, τ ′)

for the set of stack-relations that are subsets of Stack(τ)× Stack(τ ′).

Using the (−) > (−) relation (Figure 5.9) we can manufacture a stack-relation from a

term-relation and vice versa, as follows:

Definition 34. (The (−)> operation on relations). [Pitts’ Definition 3.9] Given any τ, τ ′ ∈
Typ and r ∈ Rel(τ, τ ′), define r> ∈ StRel(τ, τ ′) by

(S,S ′) ∈ r> def⇔ ∀(M,M ′) ∈ r (S >M⇔ S ′ >M ′);

and given any s ∈ StRel(τ, τ ′) define s> ∈ Rel(τ, τ ′) by

(M,M ′) ∈ s> def⇔ ∀(S,S ′) ∈ s(S >M⇔ S ′ >M ′)
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S = S ′ ◦ (−A) S ′ >M[A/x]

S > λx : τ(M)

S ◦ (−A) > F

S > F A

S = S ′ ◦ (− τ) S ′ >M[τ/α]

S > Λα(M)

S ◦ (− τ) > G

S > G τ

S ◦ (− fix(F)) > F

S > fix(F)

S = Id

S > nilτ

S = S ′ ◦ (case − of {nil⇒M1 | h :: t⇒M2})

S ′ >M1

S > nilτ

S = S ′ ◦ (case − of {nil⇒M1 | h :: t⇒M2})

S ′ >M2[H/h, T/t]})

S > H :: T

S ◦ (case − of {nil⇒M1 | h :: t⇒M2}) >M

S > caseM of {nil⇒M1 | h :: t⇒M2}

S = S ′ ◦ (outT −) S ′ >M

S > inT M

S ◦ (outT −) >M

S > outT M

Figure 5.9: Structural termination relation [Pitts’ Figure 7]

Definition 35. (>>-Closed term-relations). [Pitts’ Definition 3.10] A term-relation r is >>-

closed if r = r>>, or equivalently if r>> ⊆ r, or equivalently if r = s> for some stack-relation

s, or equivalently if r = (r ′)>> for some term-relation r ′.

5.2.9 Action of type constructors on term relations

We are now ready to define the central logical relation ∆. Each type constructor in PolyPCF

has an associated “action” on term relations. The combination of these actions defines a logical

relation, parameterised by a tuple of term-relations.
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Definition 36. (Action of→ on term-relations). [Pitts’ Definition 4.1] Given r1 ∈ Rel(τ1, τ ′1)

and r2 ∈ Rel(τ2, τ ′2), we define r1 → r2 ∈ Rel(τ1 → τ2, τ ′1 → τ ′2) by:

(F, F ′) ∈ r1 → r2
def⇔ ∀(A,A ′) ∈ r1((F A, F ′ A ′) ∈ r2).

Definition 37. (Action of ∀ on term-relations). [Pitts’ Definition 4.2] Let τ1 and τ ′1 be

PolyPCF types with at most a single free type variable, α say. Suppose R is a function

mapping term-relations r ∈ Rel(τ2, τ ′2) (any τ2, τ ′2 ∈ Typ) to term-relations R(r) ∈
Rel(τ1[τ2/α], τ

′
1[τ
′
2/α]). Then we can form a term-relation ∀r(R(r)) ∈ Rel(∀α(τ1), ∀α(τ ′1))

as follows:

(G,G ′) ∈ ∀r(R(r)) def⇔ ∀τ2, τ ′2 ∈ Typ(∀r ∈ Rel(τ2, τ ′2)((G τ2,G ′ τ ′2) ∈ R(r))).

Definition 38. (Action of ( list−) on term-relations). [Pitts’ Definition 4.3] Given

τ, τ ′ ∈ Typ, r1 ∈ Rel(τ, τ ′) and r2 ∈ Rel(τ list, τ ′ list), define 1 + (r1 × r2) ∈
Rel(τ list, τ ′ list) by:

1 + (r1 × r2)
def
= {(nilτ,nilτ ′)} ∪ {(H :: T ,H ′ :: T ′) | (H,H ′) ∈ r1 & (T , T ′) ∈ r2}

Note that the subset relation makes Rel(τ list, τ ′ list) into a complete lattice and that, for

each r1 the function r2 7→ (1 + (r1 × r2))>> is monotone. Therefore we can form its greatest

(post-)fixed point:

(r1) list
def
= νr2(1 + (r1 × r2))>>.

Thus (r1) list is the unique term-relation satisfying

(r1) list = (1 + (r1 × (r1) list))
>>

∀r2(r2 ⊆ (1 + (r1 × r2))>> ⇒ r2 ⊆ (r1) list

Definition 39. (Action of T (−) on term relations). Given r ∈ Rel(τ, τ ′) define T(r) ∈
Rel(T(τ), T(τ ′)) by

T(r)
def
= {(M,M ′) | (outT M,outT M

′) ∈ r}

Definition 40. (The logical relation ∆). [Pitts’ Figure 8] For each PolyPCF type τ and each

list ~α = α1, . . . ,αn of distinct type variables containing the free type variables of τ, we define

a function from tuples of term-relations to term-relations

r1 ∈ Rel(τ1, τ ′1), . . . , rn ∈ Rel(τn, τ ′n) 7→ ∆τ(~r/~α) ∈ Rel(τ[~τ/~α], τ[~τ ′/~α ′]).

where ∆ is defined as in Figure 5.10.
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∆αi(~r/~α)
def
= ri

∆τ→τ ′(~r/~α)
def
= ∆τ(~r/~α)→ ∆τ ′(~r/~α)

∆∀α(τ) ′(~r/~α)
def
= ∀r(∆τ(r>>/α,~r/~α))

∆τ list(~r/~α)
def
= (∆τ(~r/~α)) list

∆T(τ)(~r/~α)
def
= T(∆τ(~r/~α))

Figure 5.10: Definition of the logical relation ∆ [Pitts’ Figure 8]

Definition 41. (Logical relation on open terms). [Pitts’ Definition 4.5] Suppose Γ ` M : τ

and Γ `M ′ : τ hold, with Γ = α1, . . . ,αm, x1 : τ1, . . . , xn : τn say. Write

Γ `M ∆M ′ : τ (5.1)

to mean: given any σi,σ ′i ∈ Typ and ri ∈ Rel(σi,σ
′
i) (for i = 1..m) with each ri >>-closed,

then for any (Nj,N
′
j) ∈ ∆rj(~r/~α) (for i = 1..n) it is the case that

(M[~σ/~α, ~N~x],M ′[~σ ′/~α, ~N ′~x]) ∈ ∆τ(~r/~α)

5.2.10 Fundamental Property

Proposition 42. (‘Fundamental Property’ of the logical relation). [Pitts’ Proposition 4.6]

The relation (5.1) between open PolyPCF terms is compatible and substitutive, in the sense of

Definition 28.

The proof of Proposition 42 depends on the following Lemma:

Lemma 43. [Pitts’ Lemma 4.11] For each open type τ, with free type variables in ~α say, if the

term-relations ~r are >>-closed, then so is the term-relation ∆r(~r/~α) defined in Figure 5.10.

In particular for each closed type τ, ∆τ() ∈ Rel(τ, τ) is >>-closed.

Pitts’ proof of this lemma proceeds by induction on the structure of types, showing that

the action of each type constructor takes >>-closed relations to >>-closed relations. We have

added a family of type constructors for tagged types T(−) and therefore need the following

lemma to extend this theorem to our augmented system.

Lemma 44 (T(−) preserves >>-closure). Suppose r ∈ Rel(τ, τ ′).
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(i) Suppose given values inTM and inTM ′ of types T(τ) and T(τ ′) respectively, satisfying

(M,M ′) ∈ r.

If r is >>-closed then (inT M,inT M ′) ∈ T(r).

(ii) If (S,S ′) ∈ r> then (S ◦ outT −,S ′ ◦ outT −) ∈ T(r)>.

(iii) If r is >>-closed then so is T(r).

Proof.

(i) The statement in (i) follows from the equivalence

outT inT M ⇓ V ⇐⇒ M ⇓ V

(ii) Suppose (S,S ′) ∈ r>. For any (N,N ′) ∈ T(r) we have

S ◦ outT − > N ⇔ S > outT N

(by definition of (−) > (−))

⇔ S ′ > outT N ′

(since (outT N,outT N ′) ∈ r
and (S,S ′) ∈ r>)

⇔ S ′ ◦ outT − > N ′

( by definition of (−) > (−))

It follows that (S ◦ outT −,S ′ ◦ outT −) ∈ T(r)>.

(iii) Suppose (S,S ′) ∈ r>, (N,N ′) ∈ r, (M,M ′) ∈ T(r)>>. We must show that (M,M ′) ∈
T(r).

By (ii) we have (S ◦ outT −,S ′ ◦ outT −) ∈ T(r)>, and hence

S ◦ outT − >M ⇔ S ′ ◦ outT − >M ′

Therefore

S > outT M ⇔ S ′ > outT M
′

Thus, by the definition of (−)>, (outT M,outT M ′) ∈ (r>)> = r, and so (M,M ′) ∈
T(r) by the definition of T(−). It follows that T(r) is >>-closed.
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Theorem 45. [Pitts’ Theorem 4.15] The logical relation (5.1) coincides with PolyPCF obser-

vational congruence:

Γ `M obs
= M ′ : τ ⇔ Γ `M ∆M ′ : τ (5.2)

Having established the necessary preliminaries to the equivalence proof, we now turn to

the development of the conversion between the two styles of abstract type.

5.3 Tagging and untagging

5.3.1 Example

The conversion between signing-style and sealing-style definitions of abstract types is per-

formed by a pair of type-indexed functions which insert and remove tags as necessary. For

example, to convert the function plus in the signing-style implementation of the complex type

given in Section 5.2.1 into a function that can be used in the sealing-style implementation we

generate a function of type

(α→ α→ α)→ (C(α)→ C(α)→ C(α))

where α is the type variable denoting the abstract type of complex numbers and C is the tag

used in the sealed representation. The conversion function generated for the type of plus in

the sealed representation is

λh:α→α→α
(λx:C(α)
((λj:α→α
(λy:C(α)((λz:α(inC z)) (j ((λz:C(α)(outC z)) y)))))
(h ((λz:C(α)(outC z)) x))))

which, after the “administrative” redexes introduced by the generation function are reduced,

becomes

λh : (α→ α→ α)(λx : C(α) (λy : C(α) (inC (h (outC x) (outC y)))))

Conversely, moving from the sealed to the signed representation requires a function of type

(C(α)→ C(α)→ C(α))→ (α→ α→ α)

In this case the generated term, after administrative reductions, is

λh : (C(α)→ C(α)→ C(α))(λx : α (λy : α (outC (h (inC x) (inC y)))))
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5.3.2 Definition

We now give the definitions of the type-indexed functions that translate between tagged and

untagged representations of abstract types.

For each type τ with a free variable α and no occurrences of the tag constructor T we will

define functions C+
T ,α[τ] and C−

T ,α[τ] with types

C+
T ,α[τ] : τ→ τ[T(α)/α]

C−
T ,α[τ] : τ[T(α)/α]→ τ

and define operations −+
T ,α and −−

T ,α on types:

τ+T ,α = τ

τ−T ,α = τ[T(α)/α]

Let p range over {+,−} and write p̄ for the operation that flips the polarity, so that

+̄
def
= − −̄

def
= +

Then C+
T ,α[τ] and C−

T ,α[τ] are defined as follows:

C
p
T ,α[∀β(τ)] = λx : ∀β(τ)p(Λβ(CpT ,α[τ] (x β)))

C
p
T ,α[τ1 → τ2] = λh : (τ1 → τ2)

p(λx : τp̄1 (C
p
T ,α[τ2] (h (Cp̄T ,α[τ1] x))))

C
p
T ,α[τ list] = mapList (τp) (τp̄) (CpT ,α[τ])

C
p
T ,α[T

′(τ)] = λx : T ′(τ)p(inT (CpT ,α[τ](outT x))

C
p
T ,α[β] = λx : β(x)

C+
T ,α[α] = λx : α(inT x)

C−
T ,α[α] = λx : T(α)(outT x)

where mapList : ∀α(∀β((α→ β)→ (α list→ β list))) is defined in the usual way:

Λα(Λβ(λf:α→β
(fix (λm:α list→β list

(λl:α list

(case l of { nil ⇒ nil | h::t ⇒ f h :: m t}))))))

The implementation of CpT ,α[−] at each type constructor is almost entirely determined by

its type. An equivalent implementation may be obtained in the following manner. Let mapτ be

the map of the bifunctor corresponding to τ, with type

∀β(∀γ((β→ γ)→ (γ→ β)→ τ[β/α]→ τ[γ/α]))
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(In general, if τ has n free type variables, mapτ will take 2n functions, since each type variable

may occur positively or negatively in τ). Let inT ,α and outT ,α be defined as follows.

inT ,α
def
= λx : α(inT x)

outT ,α
def
= λx : T(α)(outT x)

Then

C+
T ,α[τ]

def
= λx : τ+T ,α(mapτ α (T(α)) inT ,α outT ,α)

C−
T ,α[τ]

def
= λx : τ−T .α(mapτ (T(α)) α outT ,α inT ,α)

Proposition 46. The functions C−
T ,α[τ] and C+

T ,α[τ] are mutual inverses. That is, for all M of

type τ andM ′ of type T(τ),

C−
T ,α[τ] (C

+
T ,α[τ]M)

obs
= M (5.3)

C+
T ,α[τ] (C

−
T ,α[τ]M

′)
obs
= M ′ (5.4)

Proof. Either directly using the standard β- and η- equalities that follow from the evaluation

rules, or indirectly via map fusion.

5.4 Signing and sealing

In Section 5.2.1 we introduced the constructs sealtype and signtype for creating abstract

types. We now give formal definitions of each construct, both directly and via desugaring into

the core language.

5.4.1 Syntax

M ::= . . .

| signtype α = τ with x1 : τ1 =M1 . . . xn : τn =Mn inM

| sealtype α = T(τ) with x1 : τ1 =M1 . . . xn : τn =Mn inM

As we noted in the introduction, the distinction between the two constructs is somewhat

obscured in PolyPCF by the need to supply type signatures for each exported component in both

the signtype and sealtype variants. In a language with type inference the signatures can

be omitted in sealtype definitions.



176 Chapter 5. Signed and sealed

5.4.2 Typing

The typing rules for signtype and sealtype are as follows.

Γ `Mi : τi[τ/α] (∀i.1 6 i 6 n)
Γ ,α, x1 : τ1, . . . , xn : τn `M : τ ′ α /∈ fv(τ ′)

Γ ` signtype α = τ with x1 : τ1 =M1 . . . xn : τn :Mn inM : τ ′

Γ `Mi : τi[T(τ)/α] (∀i.1 6 i 6 n)
Γ ,α, x1 : τ1, . . . , xn : τn `M : τ ′ α /∈ fv(τ ′)

Γ ` sealtype α = T(τ) with x1 : τ1 =M1 . . . xn : τn :Mn inM : τ ′

We associate two types with each of the fields xi of the interface of an abstract type defined

with signtype or sealtype. The first is the type τi ascribed to that field in the signature;

this is the type given to xi within the continuationM. The second is the concrete type, in which

every occurrence of the abstract type variable α has been replaced by the representation type:

that is, with τ for signtype and with T(τ) for sealtype. This concrete type must match

the type of the termMi that is bound to the field.

The hypotheses for each rule further specify that each of the fields of the interface is in

scope only within the continuation,M, and not within the terms bound to the other fields. This

is perhaps too restrictive for practical use, but it is a restriction that is easily overcome with

a further layer of sugar. We can obtain mutually-recursive definitions using an n-ary fixpoint

combinator for any signature of n operations. For example, a combinator for creating two

mutually recursive functions may be defined, rather impenetrably, as follows:

fix2 : ∀α(∀β(∀γ(∀δ((((α→β × γ→ δ) → α→β)
× ((α→β × γ→ δ) → γ→ δ))
→ (α→β × γ→ δ)))))

fix2 = Λα(Λβ(Λγ(Λδ
(fix
(λfix2:((((α→β × γ→ δ) → α→β)

× ((α→β × γ→ δ) → γ→ δ))
→ (α→β × γ→ δ))
→ ((((α→β × γ→ δ) → α→β)
× ((α→β × γ→ δ) → γ→ δ))
→ (α→β × γ→ δ))

(λfs:((α→β × γ→ δ) → α→β)
× ((α→β × γ→ δ) → γ→ δ)

(〈λx:α((fst fs) (fix2 fs) x),
λx:γ((snd fs) (fix2 fs) x)〉)))))))
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5.4.3 Evaluation

The evaluation rules for signtype and sealtype are as follows.

M[τ/α,M1/x1, . . .Mn/xn] ⇓ V

signtype α = τ with x1 : τ1 =M1 . . . xn : τn :Mn inM ⇓ V

M[T(τ)/α,M1/x1, . . .Mn/xn] ⇓ V

sealtype α = T(τ) with x1 : τ1 =M1 . . . xn : τn :Mn inM ⇓ V

Evaluation is straightforward: the continuation M is evaluated after substituting the ab-

stract type T(τ) or τ for the abstract type variable α and the fields M1 . . .Mn for the corre-

sponding variables xi . . . xn. Like PolyPCF function application, evaluation of the signtype

and sealtype constructs is call-by-name.

5.4.4 Desugaring

Both signtype and sealtype are derived forms; there is a straightforward translation into

core PolyPCF terms, as shown by the following lemma.

Lemma 47 (Desugaring). Let I, J, K and L be defined as follows for some non-negative integer

n, termsM,M1, . . .Mn and types τ, τ1, . . . τn.

I
def
= signtype α = τ with x1 : τ1 =M1 . . . xn : τn :Mn inM

J
def
= sealtype α = T(τ) with x1 : τ1 =M1 . . . xn : τn :Mn inM

K
def
= (Λα(λx1 : τ1(. . . λxn : τn(M)) . . .)) (τ)M1 . . . Mn

L
def
= (Λα(λx1 : τ1(. . . λxn : τn(M)) . . .)) (T(τ))M1 . . . Mn

Then the following hold:

Γ ` I : τ ′ ⇐⇒ Γ ` K : τ ′ (5.5)

Γ ` J : τ ′ ⇐⇒ Γ ` L : τ ′ (5.6)

I ⇓ V ⇐⇒ K ⇓ V (5.7)

J ⇓ V ⇐⇒ L ⇓ V (5.8)

where α /∈ fv(τ ′).
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Proof. The statements 5.5 and 5.6 follow directly from the definition of the typing relation

` : in Section 5.4.2 and Figure 5.4.

The statements 5.7 and 5.8 follow directly from the definition of the evaluation relation ⇓
in Section 5.4.3 and Figure 5.5.

It is more conventional to present abstract types in terms of existential types (Pierce, 2002,

Chapter 24) than universal types, as we have done in Lemma 47. It would certainly be possible

to give the desugaring of signtype and sealtype in terms of existentials. For example,

using the extension of PolyPCF to existential types given by Pitts (2000), we might show that

the following terms are equivalent:

signtype α = τ with x : τ ′ =M ′ inM

open (pack τ,M ′ as ∃α(τ ′)) as α, x inM

The equivalence of this encoding to the desugaring of Lemma 47 follows immediately from

equation 54 of Pitts (2000).

5.4.5 Equivalence

Proposition 48. Abstract type definitions with signtypemay be converted to observationally-

equivalent sealtype definitions and conversely as shown below.

signtype α = τ with x1 : τ1 =M1 . . . xn : τn =Mn inM

obs
=

sealtype α = T(τ) with x1 : τ1 = C+
T ,α [τ1]M1 . . . xn : τn = C+

T ,α [τn]Mn inM

sealtype α = T(τ) with x1 : τ1 =M1 . . . xn : τn =Mn inM

obs
=

signtype α = τ with x1 : τ1 = C−
T ,α [τ1]M1 . . . xn : τn = C−

T ,α [τn]Mn inM

Proof. Let

RT [τ] = {〈M, T(M)〉 | `M : τ}>>

and

α `Mi : τi

for each 1 6 i 6 n.
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Comparing the definitions of ∆, C+
T ,α and C−

T ,α reveals that

〈Mi, C
+
T ,α[τi]Mi〉 ∈ ∆τi(RT [τ]/α) (5.9)

〈C−
T ,α[τi]Mi, Mi〉 ∈ ∆τi(RT [τ]/α) (5.10)

By Theorem 42 (“Fundamental Property”) ∆ is compatible, and hence reflexive. We can in-

stantiate the relation (5.1) to give

α, x1 : τ1, . . . xn : τn `M ∆M : τ ′

From (5.9) and (5.10) it follows that

〈M[τ/α, ~Mi/~xi], M[T(τ)/α, ~C+
T ,α[τi]Mi/~xi]〉 ∈ ∆τ ′(RT [τ]/α)

〈M[τ/α, ~C−
T ,α[τi]Mi/~xi], M[T(τ)/α, ~Mi/~xi]〉 ∈ ∆τ ′(RT [τ]/α)

and so (since α /∈ fv(τ ′)),

〈M[τ/α, ~Mi/~xi], M[T(τ)/α, ~C+
T ,α[τi]Mi/~xi]〉 ∈ ∆τ ′()

〈M[τ/α, ~C−
T ,α[τi]Mi/~xi], M[T(τ)/α, ~Mi/~xi]〉 ∈ ∆τ ′()

and hence (by Theorem 45),

M[τ/α, ~Mi/~xi]
obs
= M[T(τ)/α, ~C+

T ,α[τ1]Mi/~xi]

M[T(τ)/α, ~Mi/~xi]
obs
= M[τ/α, ~C−

T ,α[τi]Mi/~xi]

and hence (by the evaluation rules for sealtype and signtype),

signtype α = τ with x1 : τ1 =M1 . . . xn : τn =Mn inM

obs
=

sealtype α = T(τ) with x1 : τ1 = C+
T ,α [τ1]M1 . . . xn : τn = C+

T ,α [τn]Mn inM

sealtype α = T(τ) with x1 : τ1 =M1 . . . xn : τn =Mn inM

obs
=

signtype α = τ with x1 : τ1 = C−
T ,α [τ1]M1 . . . xn : τn = C−

T ,α [τn]Mn inM
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Syntax

d ::= declarations

p = e where d1; . . . ;dn value

data T α1 . . .αn = c1 | . . . | cn datatype

newtype T α1 . . .αn = C {unC :: τ} newtype

type T α1 . . .αn = τ type synonym

x :: τ signature

τ ::= types

α type variable

T type constructor

τ1 τ2 type application

c ::= C τ1 . . . τn constructor spec.

e ::= expressions

x variable

C constructor

e1 e2 application

λp1 . . .pn → e abstraction

case e of p1 → e1 . . .pn → en case match

p ::= patterns

x variable

C p1 . . .pn constructor

x, xi variables α, αi type variables

C, Ci constructors T, Ti type constructors

Figure 5.11: (Subset of) Haskell syntax

5.5 Signed types in Haskell

5.5.1 Introduction

Having investigated the equivalence of the signing and sealing styles of defining abstract types,

we will now develop an application of the result to Haskell.

A number of Haskell’s features conspire to make it a suitable showcase for an implemen-

tation of signing in terms of sealing: it has the obvious prerequisite of sealing-style abstract

types, and the Template Haskell extension (Sheard and Peyton Jones, 2002) provides the re-

quired metaprogramming facilities. Pureness and laziness provide additional benefits. In a
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pure language there is no need for an SML-style “value restriction”, so we can insert appli-

cations of transformation functions within bindings without losing polymorphism. In a lazy

language the performance penalties of applying these transformation functions are amortized.

Finally, mutable types (such as SML’s ref) appear to pose an insurmountable problem for the

technique described here in that they do not admit the map function on which our technique

fundamentally depends: we cannot use a function of type s→ t to construct an t ref from an

s ref in a way that preserves equality.

To create an abstract type in Haskell the programmer defines a datatype in a module which

does not export the data constructors. Haskell provides a special form of datatype definition,

introduced with the newtype keyword, for creating type isomorphisms with a single, unary

constructor. Unlike a constructor introduced with data, which forces evaluation when used

in a pattern match, a newtype constructor has no effect on evaluation: its sole effect is to

change the type of a value. We can use newtype within a module to define the abstract type

of complex numbers as follows.

module Complex (Complex, make, real, imag, conj, plus)
where

newtype Complex = MkComplex (Float, Float)

make (x,y) = MkComplex (x,y)

real (MkComplex (x,y)) = x

imag (MkComplex (x,y)) = y

conj c = MkComplex (real c, -imag c)

plus (MkComplex (u,v)) (MkComplex (x,y)) =
MkComplex (u+x,v+y)

The Complex type is abstract because the constructor MkComplex is not included in the list

of exported identifiers on the first line. All creation and inspection of Complex values outside

this module must take place through the five functions in this interface.

The designers of Haskell, as we saw on page 157, chose to provide this style of defini-

tion rather than the signing style because of concerns about how types defined with signing

would interact with type classes — in particular, about potential ambiguity between type-class

instances given for the representation and abstract types (Hudak et al., 2007).

In this section we describe a Haskell extension written using Template Haskell that trans-

lates abstract type definitions written in the signing style into definitions in the sealing style,

demonstrating the feasibility of adding the signing style of abstract type definition to Haskell.



182 Chapter 5. Signed and sealed

5.5.2 Example: complex numbers

We begin with a familiar example. The abstract type of complex numbers may be written as

follows using the Template Haskell extension:

$(signed
[d| type Complex = (Float, Float)

make :: (Float, Float) → Complex

make (x,y) = (x,y)

real :: Complex → Float

real (x,y) = x

imag :: Complex → Float

imag (x,y) = y

conj :: Complex → Complex

conj c = (real c, -imag c)

plus :: Complex → Complex → Complex

plus (u,v) (x,y) = (u+x,v+y) |])

The Template Haskell quote operation [d| . . . |] and unquote operation $( . . . ) convert

between actual code and the abstract syntax trees used to represent it. (Template Haskell de-

fines a number of quote operations corresponding to syntax classes in the Haskell grammar; the

[d| ... |] indicates that we are quoting a declaration.) The meta-level function signed is

the interface to our library: it maps an abstract type definition in the signing style to an equiv-

alent definition in the sealing style. (We use an italic font to distinguish meta-level identifiers

like signed from object-level identifiers like Complex, which are set in typewriter face.) The

set of declarations passed to signed should include a type declaration and a number of function

and value bindings, each with a type signature. The type signatures are mandatory, since they

indicate at which points the representation type should be made abstract; that is, at which points

the generated code should wrap or unwrap values in a constructor. It would be convenient to

give type class instances for Complex within the signed block, but a technical difficulty pre-

vents this: type class instances cannot be defined for type aliases, and so Template Haskell

rejects instances for Complex before the quoted declarations are passed to signed for transfor-

mation. However, it is possible to define instances outside the signed block using functions in

the interface. For example, we can write

instance Num Complex where
(+) = plus
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and so on.

The signed function produces the following output for the signing-style definition of com-

plex numbers:

newtype Complex = In { out :: (Float, Float) }

(make, real, imag, conj, plus)
= (make’, real’, imag’, conj’, plus’)

mapFloat = id

mapComplex = id

map(,) = λf g (x, y) → (f x, g y)
map→ f g h = g · h · f

(inComplex, outComplex) = (λx→ mapComplex (In x),
λx→ out (mapComplex x))

(make’, real’, imag’, conj’, plus’)
= (map→ (map(,) mapFloat mapFloat) inComplex make,

map→ outComplex mapFloat real,
map→ outComplex mapFloat imag,
map→ outComplex inComplex conj,
map→ outComplex (map→ outComplex inComplex) plus)

where
make (x, y) = (x, y)
real (x, y) = x

imag (x, y) = y

conj c = (real c, -imag c)
plus (u, v) (x, y) = (u + x, v + y)

(Our actual implementation takes care to avoid introducing visible bindings. For example,

the names here written conj ′, imag ′, etc., are, in the output of the implementation, private

names, drawn from a vocabulary which is not available for use in Haskell source. In particular,

the constructor and destructor In and out that witness the type isomorphism are private; thus

there is no way to create or examine values of type Complex except via the five functions in

the interface.)

Although the generated code appears somewhat heavyweight, straightforward equational

reasoning reveals that the generated definition is in fact equivalent to the hand-written sealing-

style definition at the beginning of this section. It is no surprise to discover that the Glasgow

Haskell Compiler (GHC) generates absolutely equivalent object code for the two definitions

when basic optimisation is enabled.

Section 5.5.4 describes the translation scheme in the general case. We confine our remarks
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here to a couple of key points.

The most obvious distinction between the code generated by the Template Haskell exten-

sion and the PolyPCF code generated by the translation between tagged and untagged repre-

sentations of abstract types (Section 5.3.2) is the large number of calls to mapT functions in the

former, which do not appear at all in the latter. The explanation is simple: Haskell allows the

definition of new type constructors using the type, data and newtype constructs, whereas

type constructors in PolyPCF are limited to a predefined set, namely list, →, T(−) and ∀.
Each mapT function is used to traverse structures of type T τ1 . . . τn in order to add tags to

any values of type Complex located within. In the PolyPCF translation of Section 5.3.2 these

traversals are simply written out inline for each type constructor.

The type alias (defined with type) used in the input declaration is replaced in the out-

put with a newtype definition. The inComplex and outComplex functions are used to add and

remove the constructor for the Complex type at places where the type signatures in the input

definition indicate that the type should be abstract. They serve two functions: inComplex both

adds a constructor to a Complex value and traverses the value in order to add constructors to

any Complex values found within. (In this case the traversal is trivial, since there can never

be a Complex within a Complex; for parameterised abstract types the traversal is non-trivial,

as shown in Section 5.5.4.3.) The primed variables are used to distinguish the transformed

functions such as real’ which act upon the abstract type (Complex) from the original func-

tions such as real which act upon its representation ((Float, Float)). Thus, the reference to

real within the definition of conj refers to the original, not the transformed, version of the

function. (In Haskell, unlike in PolyPCF, bindings may generally be mutually recursive. We

take advantage of this facility here, using the real and imag functions to implement conj.)

5.5.3 Example: a sudoku solver

The Complex example illustrates the connection between our Template Haskell library and the

ML and PolyPCF programs in Sections 5.1–5.4. We now give a further example that highlights

some distinctive properties of the Template Haskell implementation and shows its applicability

to an existing program.

Bird (2006) presents a Haskell program for solving Sudoku puzzles. The development

begin by defining types to represent boards. A Sudoku board is a square matrix of characters,

which is represented as a list of lists:

type Matrix α = [[α]]
type Board = Matrix Char
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The representation is particularly convenient because Haskell provides a large library of list

functions, besides special syntax for creating and dissecting list values. Thus, for instance, the

choices function which replaces blank entries in a Sudoku board with all possible choices for

that entry has a characteristically concise implementation:

choices :: Board -> Matrix [Char]
choices = map (map choose)

Many of the other functions involved in the program are similarly elegant.

Unfortunately, when we come to print the result of the program we discover a minor incon-

venience. Since a Board is encoded as a list of lists, the standard Haskell functions for printing,

which are based on the type class Show, display a board using the standard list formatting. We

would like to see this:

Sudoku> print board

2 . . . . 1 . 3 8
. . . . . . . . 5
. 7 . . . 6 . . .
. . . . . . . 1 3
. 9 8 1 . . 2 5 7
3 1 . . . . 8 . .
9 . . 8 . . . 2 .
. 5 . . 6 9 7 8 4
4 . . 2 5 . . . .

but instead we see this:

Sudoku> print board

["2....1.38","........5",".7...6...",".......13",".981\
..257","31....8..","9..8...2.",".5..69784","4..25...."]

We can, naturally, write an additional function

showBoard :: Board → String

for printing boards in the format of our choosing. However, there is no way to connect

showBoard with the Show class: only one instance of Show for lists is allowed. Consequently,

if we wish to print a list of boards (which is quite probable, since that is the type of the result

of the Sudoku solver), we must first apply our showBoard function to every element in the list:

Sudoku> print (map showBoard boards)

If there were a way to give an instance of the Show class for boards then printing a list of boards

would be no harder than printing a single board:

Sudoku> print boards

Of course, there is a way to give distinct Show instances for boards and lists: we can make
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Board a distinct type (using newtype) rather than an alias (using type). Unfortunately,

while this solves the printing problem, it makes the implementation of the solver much less

elegant. Suppose that the type of boards is defined as follows:

newtype Board = MkBoard { unBoard :: Matrix Char}

We must now add code to many of the functions that implement the Sudoku solver to add and

remove the MkBoard constructor, resulting in an undesirable increase in the size of the code.

For example, the choices function becomes

choices :: Board -> Matrix [Char]
choices = map (map choose) · unBoard

The idea of the extension described in this section is to allow us the advantages of both ap-

proaches: we can define boards directly in terms of lists, enabling an elegant implementation

of the solver, while making the type Board distinct from the list type, allowing us to customise

the behaviour of overloaded functions such as show. A further benefit of moving from a type

alias to an abstract type is the potential to enforce constraints, such as board squareness, that

are not captured by the representation type.

5.5.4 The translation

We now turn to the specification of the translation.

Translation of the definition of an abstract type constructor T from the signing style to the

sealing style involves four meta-level functions, which we describe in Sections 5.5.4.1–5.5.4.4.

The first function, tynames , (Section 5.5.4.1) determines the set of type constructors involved

in the representation type and operations of T. The second function, map, (Section 5.5.4.2)

uses the definition of each type constructor to generate a corresponding map function. The

third function, tag , (Section 5.5.4.3) creates functions that convert between values of the ab-

stract type T and values of the corresponding representation type. The final function, tr , (Sec-

tion 5.5.4.4) generates functions that convert each operation in the abstract type definition from

the signing style to the sealing style. The meta-level function signed (Section 5.5.4.5) which

translates from signing-style to a sealing-style definition, is defined in terms of these four func-

tions.

5.5.4.1 Finding type constructors (tynames)

Both the representation of an abstract type and the signatures of the operations on the type are

given in terms of type constructors which are defined elsewhere in the program or provided

as standard. For example, the representation of the Complex type is built from the type con-
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structor for pairs, written (, ), and the nullary type constructor Float. The operations on the

Complex type also use the function type constructor,→. Inserting and removing tags involves

traversing values whose shape is specified by the definitions of these type constructors; in order

to traverse these values we must therefore generate a mapT function for each type constructor

T. The definition of mapT depends on the definition of T, to which we therefore require ac-

cess; retrieving the definition of a type constructor (or other identifier) is the purpose of the

reify function supplied with Template Haskell. Building on reify , we can retrieve the set of

all type constructors used in a type expression, whether they appear in the expression itself or

in the definition of some other type constructor which is used by the expression. We begin

by giving three Template Haskell functions — tynamesD, tynamesC and tynamesE — that

compute the set of type constructors used, respectively, in a type definition, a data constructor

specification, and a type expression.

The tynamesD function takes two arguments: a type declaration, written between brackets,

and a set r of the type constructors already seen. For data and newtype declarations we must

collect both the type constructor T on the left hand side and any type constructors used in the

constructor specifications. We add T to r when examining constructor specifications, since

these may use T if the type is recursive.

tynamesD [data T α1 . . .αn = c1 | . . . | cn] r

= {T} ∪ tynamesC [c1] (r ∪ {T}) ∪ . . . ∪ tynamesC [cn] (r ∪ {T})

tynamesD [newtype T α1 . . .αn = C {x :: τ}] r

= {T } ∪ tynamesE [τ] (r ∪ {T})

A type declaration cannot be recursive, so we pass through r unchanged. The result

consists of the type constructor on the left hand side of the declaration and any type constructors

used on the right hand side.

tynamesD [type T α1 . . .αn = τ] r = {T } ∪ tynamesE [τ] r

Finding the type constructors used in a constructor specification is simply a matter of ex-

amining the type expressions which specify the domain of the constructor.

tynamesC [C τ1 . . . τn] r = tynamesE [τ1] r . . . tynamesE [τn] r

The tynamesE function finds the type constructors used, directly or indirectly, in a type

expression. A type expression consisting of a type variable does not use any type constructors:

tynamesE [α] r = {}

For a type expression consisting of a type constructor T the result depends on whether T is

found in r. If it is then we are in the process of examining the definition of T already, so there
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is nothing more to do. If not, then the set of type constructors used consists of both T and all

of the type constructors used in the definition of T , which we retrieve using reify .

tynamesE [T] r = {} if T ∈ r
{T} ∪ tynamesD [reify T] r otherwise

For a type application we simply examine the sub-expressions to determine the set of type

constructors involved.

tynamesE [τ1 τ2] r = tynamesE τ1 r ∪ tynamesE τ2 r

5.5.4.2 Generating map functions (map)

The next step is to generate functions mapT for each type constructor T used in the definition of

the abstract type. These perform the bulk of the work in translating from the signing style to

the sealing style. The type of each mapT function depends the way that the type parameters to

T are used in its definition. A type constructor T with n parameters, all of which are used both

positively and negatively within the definition of T, results in a function mapT of the type

(α1→β1,β1→α1)→. . .→ (αn→βn,βn→αn)→ Tα1 . . .αn→ Tβ1 . . .βn

— that is, with a pair of functions for each parameter of T, to transform positive and negative

occurrences of the parameter. If a type parameter is only used positively then the second com-

ponent of the pair is omitted in the corresponding parameter to the generated mapT function.

For type parameters that are only used negatively, the first component is omitted. For “phan-

tom” type parameters, not used at all in the definition of T, there is no corresponding function

parameter.

There are four type constructors involved in the definition of Complex: Float, Complex,

(, ) and→. The first two of these, Float and Complex, are nullary, and so the associated map

functions are equivalent to the identity function. The map function for the pair type, map(,),

has type:

(α→ γ)→ (β→ δ)→ (α,β)→ (γ, δ)

In this case the parameters to map(,) are functions for transforming positive occurrences of the

corresponding type variables, since the type parameters to the pair type only occur positively in

its definition. We must distinguish between positive and negative occurrences, since at positive

occurrences of the type constructor Complex we will insert calls to In to convert from the

representation to the abstract type, and at negative occurrences we will insert calls to out. The

map→ function has two function parameters, reflecting the two type parameters to the function

type constructor →, the first (denoting the argument type on the function) negative and the
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second (denoting the return type) positive. Consequently, the generated map function has the

following type:

(γ→ α)→ (β→ δ)→ (α→ β)→ (γ→ δ)

We use an auxiliary function, param , to construct parameters for generated functions, writing

param(αi, T) = (pi, ni)

if αi occurs positively and negatively within T’s definition

param(αi, T) = pi

if αi occurs only positively within T’s definition

param(αi, T) = ni

if αi occurs only negatively within T’s definition

param(αi, T) = (i.e. nothing)

if αi does not occur within T’s definition

Each parameter pi of the generated function corresponds to a function which transforms the

positive occurrences of the ith type parameter, αi; each ni acts similarly on negative occur-

rences. If there are no positive occurrences of αi then pi is omitted; similarly, ni is omitted if

αi does not occur negatively.

We now turn to the definitions of the Template Haskell functions which generate the map

functions. Once again we give three Template Haskell functions, treating type definitions, type

expressions, and data constructor specifications. The mapD function generates a map function

for a type definition. There are three cases, one for each type-constructor-introducing keyword.

For a data declaration we generate a case match over the constructors of the declared

datatype, delegating generation of the matches to the mapC function. The substitution [αi 7→
(pi, ni)] passed to mapC records the correspondence between type variables and parameters.

mapD[data T α1 . . .αn = c1 | . . . | cn]

= λ param(α1, T) . . . param(αn, T) x→
case x of

mapC[c1][αi 7→ (pi, ni)]

. . .

mapC[cn][αi 7→ (pi, ni)]

The treatment of newtype is similar, save that there is only one constructor to consider.

mapD[newtype T α1 . . .αn = C {unC :: τ}]

= λ param(α1, T) . . . param(αn, T) x→
case x of

mapC[C τ][αi 7→ (pi, ni)]



190 Chapter 5. Signed and sealed

For alias declarations, declared with type, the mapE function does all of the work.

mapD[type T α1 . . .αn = τ]

= λ param(α1, T) . . . param(αn, T) x→
map+E [τn][αi 7→ (pi, ni)] x

The mapC function treats constructor specifications, generating a case match for a data

constructor. The xi variables bind the constructor parameters, and we use mapE to transform

each parameter, finally applying the constructor C.

mapC [C τ1 . . . τn] r = C x1 . . . xn → C (map+E [τ1] r x1) . . . (map+E [τn] r xn)

The mapE function generates, for a type τ with free variables α1 . . .αn, a term t with

free variables p1 . . . pn, n1 . . . nn. If each of the pi has type αi → βi and each of the ni has

type βi → αi then t will have type τ → τ[ ~βi/ ~αi]. Besides the substitution parameter r and

the parameter between brackets which denotes a type expression there is a further parameter

to mapC representing the “polarity” of the expression, i.e. whether type variables occurring

in the expression represent input or output parameters. At a type variable αi we project out

the first or second component of the corresponding pair of functions (pi, ni), depending on the

polarity.

map+E [αi] r = pi where r(αi) = (pi, ni)

map−E [αi] r = ni where r(αi) = (pi, ni)

At a type constructor T we generate a (possibly recursive) call to the map function for T.

mappE [T ] r = mapT

At type applications τ1 τ2 we generate function applications. The function component is gen-

erated from τ1 by mapE. The argument that is generated depends on the type of the generated

function expression (which, in turn, depends on the variance of the type constructor that is

involved). We write p̄ to reverse the polarity of p. Then we generate the following application

expressions from type applications:

mappE [τ1 τ2] r = mappE [τ1] r (mappE [τ2] r,mapp̄E [τ2] r)

if τ2 is the argument for a type parameter that is used both positively and negatively.

mappE [τ1 τ2] r = mappE [τ1] r (mappE [τ2] r)

if τ2 is the argument for a type parameter that is used only positively.

mappE [τ1 τ2] r = mappE [τ1] r (mapp̄E [τ2] r)

if τ2 is the argument for a type parameter that is used only negatively.

mappE [τ1 τ2] r = mappE [τ1] r

if τ2 is the argument for a phantom type parameter.
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5.5.4.3 Generating tagging and untagging functions (tag)

The operations of adding and removing constructors form the core of the translation between

the signing and the sealing style of abstract type definition. The tag function generates object-

level functions inT and outT for an abstract type constructor T. The inT function performs

the dual functions of constructing a value v of type T τ1 . . . τn from a value of the correspond-

ing representation type and traversing v using the map function generated for T. The outT

function performs the inverse operation, converting from the abstract type to the corresponding

representation type.

For example, for the Matrix type defined in Section 5.5.3,

newtype Matrix α = MkMatrix {unMatrix :: [[α]]}

the following terms are generated:

inMatrix = λp x → mapMatrix p (MkMatrix x)
outMatrix = λp x → unMatrix (mapMatrix p x)

The tag function takes a single parameter — a newtype definition for T — and generates

a pair of terms corresponding to (inT, outT). If the type constructor T has n non-phantom

parameters then each component of the pair is a function taking n+1 parameters: one for each

non-phantom parameter αi, and a value x of either the representation type τ (for inT) or the

abstract type T τ1 . . . τn (for outT). The inT function seals the value x and traverses the result

using mapT (Section 5.5.4.2) and the functions h1 . . . hn. The generated outT function unseals

the result of traversing the sealed value x.

tag [newtype T α1 . . . α1 = In {out :: τ}]
= (λparam(α1, T) . . . param(αn, T) x →

mapT param(α1, T) . . . param(αn, T) (In x),
λparam(α1, T) . . . param(αn, T) x →

out (mapT param(α1, T) . . . param(αn, T) x))

For a nullary type constructor such as Complex, inT and outT are equivalent to the constructor

and destructor for the type.

5.5.4.4 Converting signing-style functions to sealing-style functions (tr )

The final step in translating from the signing style to the sealing style involves translating each

operation in the definition of the abstract type.

For each operation f in the definition of the abstract type we generate a function that con-

verts from the signing-style version of f to the sealing-style version. For example, for the

function real, the generated transformation function is the following
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tr+Complex [Complex→ Float] = map→ outComplex mapFloat

with the type

((Float, Float) → Float) → (Complex → Float)

i.e. it accepts a function of type (Float, Float) → Float and returns a function of type

Complex→ Float.

The function tr generates transformation functions. There are three parameters: the name

of the abstract type constructor (written as a subscript), a polarity (written as a superscript) and

the type τ which to be transformed (written in brackets following tr ). The polarity is used to

keep track of whether we should insert constructors or destructors at a particular occurrence of

the abstract type constructor. The important cases occur when we encounter the constructor of

the abstract type T; here we insert calls to inT if we are treating a positive occurrence of T and

outT for a negative occurrence.

tr+T [T] = inT

tr−T [T] = outT

The remainder of the cases involve traversing values of the type to find occurrences of T . Since

T may not occur within type variables, the transformation function at a type variable is the

identity function.

trpT [α] = id

At type constructors other than T the transformation is based on the map function corresponding

to the constructor.

trpT [T’] = mapT ′ (where T 6= T ′)

At type applications τ1 τ2 the generated code is an application of the function generated for

τ1. As with the code that mapE generates for type applications, the argument that is generated

depends on the type of the generated function expression (and ultimately on the variance of the

type constructor that is involved). We generate the following application expressions from type

applications:

trpT [τ1 τ2] = trpT [τ1] (trpT [τ2], tr p̄T [τ2])

if τ2 is the argument for a type parameter that is used both positively and negatively.

trpT [τ1 τ2] = trpT [τ1] (trpT [τ2])

if τ2 is the argument for a type parameter that is used only positively.

trpT [τ1 τ2] = trpT [τ1] (tr p̄T [τ2])

if τ2 is the argument for a type parameter that is used only negatively.

trpT [τ1 τ2] = trpT [τ1]

if τ2 is the argument for a phantom type parameter.
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5.5.4.5 General translation scheme (signed )

The general scheme for translating signing-style definitions to sealing-style is as follows.

signed
[d| type T α1 . . . α1 = τ

x1 :: τ1

x1 = e1

. . .
xn :: τn
xn = en |]

=
[d| newtype T α1 . . . α1 = In {out :: τ}

(inT, outT) = tag[newtype T α1 . . . α1 = In {out :: τ}]

mapT = mapD[newtype T α1 . . . α1 = In {out :: τ}]
mapT1 = mapD[reify T1]
. . .
mapTm = mapD[reify Tm]

(x1’, . . . xn’) = (tr+T [τ1] x1, . . . tr+T [τn] xn)
where x1 = e1; . . . xn = en

x1 :: τ1

x1 = x1’
. . .
xn :: τn
xn = xn’ |]

where

{T1, . . . , Tm} = tynamesE [τ] {} ∪ tynamesE [τ1] {} ∪ . . . ∪ tynamesE [τn] {}

The definition of signed is largely a straightforward combination of the functions described

in Sections 5.5.4.1–5.5.4.4.

The bindings in the generated code are carefully arranged so that references to bindings

from inside the abstraction resolve to the untransformed versions of the functions in the in-

terface, while references to the bindings from outside resolve to the transformed versions. In

particular, the call to real in the definition of conj resolves to the function with type (Float,

Float)→ Float, not to the version with type Complex→ Float that is exposed to the user.

5.6 Related work

The sealing style for creating abstract types dates back to Morris (Morris, 1973), who infor-

mally outlines the connection with the signing style. More recently, several authors have given
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formal translations between static and dynamic schemes for preserving types. It is not surpris-

ing that the translations are similar in each case, although their motivations (and consequently

the precise properties that they investigate) differ considerably.

Sumii and Pierce (Sumii and Pierce, 2004) have examined the relationship between type

abstraction and cryptography, developing a theory of relational parametricity for their crypto-

graphic λ-calculus. They give an encoding of type abstraction into encryption (but not vice

versa); their encryption primitives, which give a variant of dynamic sealing, are significantly

more expressive than our tags, so the inverse translation is not straightforward.

Matthews and Findler (Matthews and Findler, 2009) investigate the semantics of programs

written in multiple languages — partly in Scheme and partly in ML. They investigate two ways

to encode foreign values: as opaque “lumps” that must be explicitly passed to the language

which created them each time they are used, or as values that have been wrapped using a type-

directed strategy, so that they can be used directly. The wrappings, which dynamically check

that the values they wrap have the appropriate shapes, are an instance of higher-order contracts

(Findler and Felleisen, 2002); the type-directed scheme for inserting guards is analogous to our

translation from signing-style to sealing-style abstract types.

Matthews and Ahmed (Matthews and Ahmed, 2008) extend Matthews and Findler’s system

with polymorphism, and prove a parametricity property. In order to such prevent violations

of parametricity as can arise from dynamic inspection of values by the Scheme portion of a

program, they dynamically seal values of abstract type before passing them to Scheme.

5.7 Future work

Abstract types The central result of Sections 5.1–5.4 establishes an equivalence between

translations of the two styles of abstract type within the context of a single program (namely

the continuationM of the signtype and sealtype constructs). More traditionally, abstract

types are represented using existential types; we might obtain a stronger result by translating

signtype to an existential type and sealtype to some other appropriate type (perhaps

extending PolyPCF with scoped data constructors, rather than globally-available tags), then

showing that the two are isomorphic up to observational equivalence.

We have, in this chapter, investigated a comparatively simple notion of abstract type. Mod-

ern ML-family languages (Milner, Tofte, Harper, and MacQueen, 1997, Romanenko, Russo,

and Sestoft, 2000, Leroy, 2008) typically support considerably more elaborate mechanisms for

creating abstract types: nested signatures, parameterised modules (functors), recursive mod-

ules, and so on. Further, in our work the number of seals is statically fixed for each program.
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This concords with the features provided by Haskell and SML, but is less general than mecha-

nisms used in Scheme, where seals may be created dynamically. The question naturally arises

whether the scheme given here can be extended to treat these more general systems.

Overloading We have shown that the two styles of type abstraction commonly found in

functional programming languages are equivalent and inter-definable. The language designer

is therefore free to provide either style, without danger of loss of expressiveness. There is a

similar dichotomy in the design space of overloaded functions: should we base method res-

olution on the types of the program, or on its values? The designers of Haskell have chosen

the first option: values are typically represented uniformly, and method resolution in Haskell

can be influenced by type annotations. Object-oriented languages typically take the second

route, inspecting values at runtime to select a suitable method implementation. To what extent

are these approaches compatible? Can we design a system which admits either compilation

strategy? Odersky, Wadler, and Wehr (1995) resolve some of these questions, by requiring that

the type variable denoting the instance type appear as the first argument of every overloaded

method. It remains to be seen whether a system such as Odersky et al.’s (1995) can incorporate

features of the modern system of Haskell type classes, such as constructor classes and associ-

ated types (Chakravarty, Keller, and Peyton Jones, 2005a, Chakravarty, Keller, Peyton Jones,

and Marlow, 2005b).
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Conclusion

6.1 Contributions

Our study of three interfaces to computation — idioms, arrows, and monads — revealed that

idioms are the weakest of the three, an adjustment to the informal claims of McBride and

Paterson (2008). We have proved that the arrow calculus, a variant of Paterson’s notation, is in

equational correspondence with the classical presentation of arrows. Using the arrow calculus,

we have shown that idioms correspond to those arrows which are isomorphic to oblivious

computations that return functions:

A B ∼= 1 (A→ B)

and that monads correspond to those arrows which are isomorphic to functions that construct

computations:

A B ∼= A→ (1 B)

Additionally, we have used the laws of each interface to construct normalising transformers for

idioms, arrows and monads in Haskell.

We used our results about idioms, arrows and monads to guide the design of a library, form-

lets, for compositional construction of HTML forms. The semantics of formlets are given in

terms of three primitive idioms, which capture the effects involved in form construction: fresh

name generation, XML construction, and reading values from an environment. While each of

these idioms is also a monad, their composition as the formlet idiom is not a monad; in fact, we

argue that idioms, the weakest of the three interfaces, are the most suitable basis for formlets.

Our description of the formlet library is intended to reveal the “essence” of form abstraction,

and the result is accordingly simple. Nevertheless, formlets extend readily to more realistic

settings. We have shown how to support validation of user input by incorporating an idiom

197
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that captures failure, and how to give static guarantees of XHTML validity by using indexed

idioms, an analogue of indexed monads (Wadler and Thiemann, 2003, Abadi, 2007). Formlets

also come equipped with a convenient syntax; we have given a desugaring of this syntax into

applications of the idiom operations and an alternative, more efficient, desugaring based on

multi-holed contexts and parameterised idioms (an analogue of Atkey’s (2009) parameterised

monads).

The formlets library depends on continuations that persist between requests. Links uses a

stateless-server approach, embedding serialised continuations within the page sent to the client,

to be sent back to the server with subsequent requests. Code for serialisation typically recapit-

ulates the structure of the type to be serialised; we avoid this in the Links implementation by

using an analogue of Haskell’s deriving mechanism for automatically constructing overloaded

function instances from type declarations. The design of our deriving for OCaml (the Links

implementation language) is guided by the well-known correspondence between type classes

and ML-style modules. We have described the implementation of a structure-sharing serialiser,

Pickle, in the deriving framework, and shown how giving custom instances for equality and

hashing (superclasses of Pickle) can improve the compactness of its output without the need

to change any serialisation code. We illustrated this using a serialiser for lambda terms that

is customised to consider alpha-equivalent terms equal, resulting in more compact output than

serialisers which treat terms as simple trees.

Our final chapter investigated the two common styles of abstract type definition, in which

the abstraction boundary is drawn either in the terms, using a private data constructor (“seal-

ing”), or in the types, using a signature (“signing”). We extended Pitts’s (2000) partial poly-

morphic lambda calculus, PolyPCF, with constructs for both styles and used parametricity to

show that they are inter-definable. To demonstrate the utility of the equivalence we gave a

implementation of the signing style in Template Haskell, showing how programs written in the

signing style can be translated into the sealing style, addressing concerns about ambiguity that

led the Haskell designers to choose the latter over the former.

6.2 The status of Links

The ideas described in this dissertation were developed in the context of the Links project. The

reader may therefore be interested in a brief summary of the current status of Links.

There is a small community of Links users, with a mailing list of around seventy mem-

bers. Work on the implementation continues, with further releases planned for the near future.

Researchers in Maryland and Cambridge have developed variants of Links with integrated
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support for security (Swamy, Hicks, and Tsang, 2007, Corcoran, Swamy, and Hicks, 2007,

Swamy, Corcoran, and Hicks, 2008, Corcoran, Swamy, and Hicks, 2009, Baltopoulos and Gor-

don, 2009). Finally, researchers in Edinburgh are applying for funding to continue development

of Links.
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Arrow proofs

idioms I

3∼

		

monads M

		
static arrows S

II

��

� � 4 // arrow calculus A

1∼=

		

� � 7 // higher-order arrows H

��

6 ∼

II

classic arrows

with delay CS

2 ∼=

II

classic arrows C

II

classic arrows with

application Capp

5 ∼=

II

1. Section A.2, page 205.

2. Section A.3, page 220.

3. Section A.4, page 227.

4. Section A.5, page 245.

5. Section A.6, page 258.

6. Section A.7, page 264.

7. The identity embedding.

Figure A.1: Index to proofs

This appendix contains proofs of various statements connected with arrows made in Chap-

ter 2. Section A.1 supplies correctness proofs for the normalising arrow transformer of Sec-

tion 2.2.5.1. Sections A.2–A.7 give proofs of the relationships between the equational theories

introduced in Sections 2.3 and 2.4. Figure A.1 is an index to these proofs. Section A.8 gives a

proof that the ( H2) law of classic arrows with apply is redundant.

Throughout this appendix we make implicit use of  3, the associativity law for arrow

composition, writing L >>>M>>>N for both (L >>>M)>>>N and L >>> (M>>>N).
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A.1 Arrow normalisation

This section gives proofs of various statements related to the normalising arrow transformer of

Section 2.2.5.1.

We will use the law numbers given in the formal development of classic arrows in Fig-

ure 2.5, which correspond to the order in which the laws were presented in Section 2.2.2.3.

We require the following auxiliary law

arr (id× f) = second (arr f)

which is a companion to the fifth arrow law. Its proof is as follows:

second (arr f)
= (def second)

arr swap>>> first (arr f)>>> arr swap

= ( 5)
arr swap>>> arr (f× id)>>> arr swap

= ( 4)
arr (swap · f× id · swap)

= (swap · f× id · swap = id× f)
arr (id× f)

The following three statements occur in the proof of the correctness of the normalising arrow

transformer. The first statement is

arr f >>> ((arr g >>> c) &&& arr id)>>> h

=

((arr (g · f)>>> c) &&& arr id)>>> (arr (id× f)>>> h)

and its proof is as follows:

arr f>>> ((arr g>>> c) &&& arr id)>>> h

= (def &&&, 4, 1)
arr f>>> arr dup>>> first (arr g>>> c)>>> h

= ( 6)
arr f>>> arr dup>>> first (arr g)>>> first c>>> h

= ( 5)
arr f>>> arr dup>>> arr (g× id)>>> first c>>> h

= ( 4)
arr (g× id · dup · f)>>> first c>>> h

= ((g× id) · dup · f = (id× f) · ((g · f)× id) · dup)
arr ((id× f) · ((g · f)× id) · dup)>>> first c>>> h

= ( 4)
arr dup>>> arr ((g · f)× id)>>> arr (id× f)>>> first c>>> h

(continued on next page)
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(continued from previous page)
arr dup>>> arr ((g · f)× id)>>> arr (id× f)>>> first c>>> h

= (second (arr f) = arr (id× f))
arr dup>>> arr ((g · f)× id)>>> second (arr f)>>> first c>>> h

= ( 5, 7)
arr dup>>> first (arr (g · f))>>> first c>>> second (arr f)>>> h

= ( 6, second (arr f) = arr (id× f))
arr dup>>> first (arr (g · f)>>> c)>>> arr (id× f)>>> h

= (def &&&, 4, 1)
((arr (g · f)>>> c) &&& arr id)>>> arr (id× f)>>> h

The second statement is

first (((arr g >>> c) &&& arr id)>>> h)

=

((arr (g · fst)>>> c) &&& arr id)>>> arr assoc−1 >>> first h

and its proof is as follows:

first (((arr g>>> c) &&& arr id)>>> h)
= (def &&&)

first (arr dup>>> first (arr g>>> c)>>> arr swap

>>> first (arr id)>>> arr swap>>> h)
= ( 6)

first (arr dup>>> first (arr g)>>> first c>>> arr swap

>>> first (arr id)>>> arr swap>>> h)
= ( 5)

first (arr dup>>> arr (g× id)>>> first c>>> arr swap

>>> arr (id× id)>>> arr swap>>> h)
= ( 4, swap · id× id · swap = id)

first (arr ((g× id) · dup)>>> first c>>> arr id>>> h)
= ( 1)

first (arr ((g× id) · dup)>>> first c>>> h)
= ( 6)

first (arr ((g× id) · dup))>>> first (first c)>>> first h

= ( 5)
arr (((g× id) · dup)× id)>>> first (first c)>>> first h

= (assoc−1 · assoc = id, 1)
arr (((g× id) · dup)× id)>>> first (first c)>>> arr (assoc−1 · assoc)
>>> first h

(continued on next page)
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(continued from previous page)
arr (((g× id) · dup)× id)>>> first (first c)>>> arr (assoc−1 · assoc)
>>> first h

= ( 4)
arr (((g× id) · dup)× id)>>> first (first c)>>> arr assoc>>> arr assoc−1

>>> first h

= ( 9)
arr (((g× id) · dup)× id)>>> arr assoc>>> first c>>> arr assoc−1 >>> first h

= ( 4, assoc · (((g× id) · dup)× id) = ((g · fst)× id) · dup)
arr (assoc · (((g× id) · dup)× id))>>> first c>>> arr assoc−1 >>> first h

= ( 4, swap · id× id · swap · f = f)
arr dup>>> arr ((g · fst)× id)>>> first c>>> arr swap>>> arr (id× id)
>>> arr swap>>> arr assoc−1 >>> first h

= ( 5)
arr dup>>> first (arr (g · fst))>>> first c>>> arr swap>>> first (arr id)
>>> arr swap>>> arr assoc−1 >>> first h

= ( 6)
arr dup>>> first (arr (g · fst)>>> c)>>> arr swap>>> first (arr id)
>>> arr swap>>> arr assoc−1 >>> first h

= (def &&&)
((arr (g · fst)>>> c) &&& arr id)>>> arr assoc−1 >>> first h

The third statement is

f = ((arr id>>> f) &&& arr id)>>> arr fst

and its proof is as follows:

((arr id>>> f) &&& arr id)>>> arr fst

= (def &&&)
arr dup>>> first (arr id>>> f)>>> arr fst

= ( 6)
arr dup>>> first (arr id)>>> first f>>> arr fst

= ( 5)
arr dup>>> arr (id× id)>>> first f>>> arr fst

= (id× id = id, 1)
arr dup>>> first f>>> arr fst

= ( 8)
arr dup>>> arr fst>>> f

= ( 4, fst · dup = id)
arr id>>> f

= ( 1)
f
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A.2 Equational correspondence between A and C

This section gives a proof of Proposition 11 (page 61).

The proof depends on two lemmas. Lemma 8 justifies the meaning of translation on a

substitution. Lemma 10 gives the translation of weakening for commands of A.

A.2.1 Proofs of Lemmas 8 and 10

We begin with proofs of Lemma 8 and 10, which give the translations of substitution and

weakening.

Proof of Lemma 8 (Translating substitution from A to C) .

The translations of substitution on terms and commands from A to C are as follows.

JM[x :=N]K = JMK[x := JNK]

JP[x :=N]K∆ = arr (λ∆.(∆, JNK))>>> JPK∆,x

Proof. By mutual induction on the derivations of P and M. There is one case for each term

form and each command form. We give only the cases for command forms here.

1. Case L •M

J(L • M)[x := N]K∆
= (def substitution)

JL • (M[x := N])K∆
= (def J−K∆)

arr (λ∆. JM[x := N]K)>>> JLK
= (induction hypothesis)

arr (λ∆. JMK[x := JNK])>>> JLK
= ( 4)

arr (λ∆. 〈∆, JNK〉)>>> arr (λ〈∆, x〉. JMK)>>> JLK
= (def J−K∆,x)

arr (λ∆. 〈∆, JNK〉)>>> JL • MK∆,x

2. Case [M]

J[M][x := N]K∆
= (def substitution)

J[M[x := N]]K∆
= (def J−K∆)

arr (λ∆. JM[x := N]K)

(continued on next page)
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(continued from previous page)
arr (λ∆. JM[x := N]K)

= (induction hypothesis)
arr (λ∆. JMK[x := JNK])

= ( 4)
arr (λ∆. 〈∆, JNK〉)>>> arr (λ〈∆, x〉. JMK)

= (def J−K∆,x)

arr (λ∆. 〈∆, JNK〉)>>> J[M]K∆,x

3. Case let y⇐ P in Q

J(let y⇐ P in Q)[x := N]K∆
= (def substitution)

Jlet y⇐ P[x := N] in Q[x := N]K∆
= (def J−K∆)

(arr id &&& JP[x := N]K∆)>>> JQ[x := N]K∆,y

= (induction hypothesis)
(arr id &&& (arr (λ∆. 〈∆, JNK〉)>>> JPK∆,x))

>>> arr (λ〈∆, y〉. 〈〈∆, y〉, JNK〉)>>> JQK∆,y,x

= (def &&&)
arr dup>>> first (arr id)>>> arr swap

>>> first (arr (λ∆. 〈∆, JNK〉)>>> JPK∆,x)>>> arr swap

>>> arr (λ〈∆, y〉. 〈〈∆, y〉, JNK〉)>>> JQK∆,y,x

= ( 6)
arr dup>>> first (arr id)>>> arr swap>>> first (arr (λ∆. 〈∆, JNK〉))
>>> first JPK∆,x >>> arr swap>>> arr (λ〈∆, y〉. 〈〈∆, y〉, JNK〉)
>>> JQK∆,y,x

= ( 5)
arr dup>>> arr (id× id)>>> arr swap>>> arr ((λ∆. 〈∆, JNK〉)× id)
>>> first JPK∆,x >>> arr swap>>> arr (λ〈∆, y〉. 〈〈∆, y〉, JNK〉)>>> JQK∆,y,x

= ( 4, swap · id× id · dup = dup)
arr (λ∆. 〈〈∆, JNK〉,∆〉)>>> first JPK∆,x >>> arr (λ〈y, ∆〉. 〈〈∆, y〉, JNK〉)>>> JQK∆,y,x

= (Lemma 10)
arr (λ∆. 〈〈∆, JNK〉,∆〉)>>> first JPK∆,x >>> arr (λ〈y, ∆〉. 〈〈∆, y〉, JNK〉)
>>> arr (λ〈〈∆, y〉, x〉. 〈〈∆, x〉, y〉)>>> JQK∆,x,y

= ( 4,β→)
arr (λ∆. 〈〈∆, JNK〉, 〈∆, JNK〉〉)>>> arr (id× fst)>>> first JPK∆,x

>>> arr (λ〈y, ∆〉. 〈〈∆, JNK〉, y〉)>>> JQK∆,x,y

(continued on next page)
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(continued from previous page)
arr (λ∆. 〈〈∆, JNK〉, 〈∆, JNK〉〉)>>> arr (id× fst)>>> first JPK∆,x

>>> arr (λ〈y, ∆〉. 〈〈∆, JNK〉, y〉)>>> JQK∆,x,y

= ( 7)
arr (λ∆. 〈〈∆, JNK〉, 〈∆, JNK〉〉)>>> first JPK∆,x >>> arr (id× fst)

>>> arr (λ〈y, ∆〉. 〈〈∆, JNK〉, y〉)>>> JQK∆,x,y

= ( 4)
arr (λ∆. 〈〈∆, JNK〉, 〈∆, JNK〉〉)>>> first JPK∆,x >>> arr (id× (λ〈∆, x〉. 〈∆, JNK〉))
>>> arr swap>>> JQK∆,x,y

= ( 7)
arr (λ∆. 〈〈∆, JNK〉, 〈∆, JNK〉〉)>>> arr (id× (λ〈∆, x〉. 〈∆, JNK〉))>>> first JPK∆,x

>>> arr swap>>> JQK∆,x,y

= ( 4,β→)
arr (λ∆. 〈〈∆, JNK〉, 〈∆, JNK〉〉)>>> first JPK∆,x >>> arr swap>>> JQK∆,x,y

= ( 4, swap · id× id · dup = dup)
arr (λ∆. 〈∆, JNK〉)>>> arr dup>>> arr (id× id)>>> arr swap>>> first JPK∆,x

>>> arr swap>>> JQK∆,x,y

= ( 5)
arr (λ∆. 〈∆, JNK〉)>>> arr dup>>> first (arr id)>>> arr swap>>> first JPK∆,x

>>> arr swap>>> JQK∆,x,y

= (def &&&)
arr (λ∆. 〈∆, JNK〉)>>> (arr id &&& JPK∆,x)>>> JQK∆,x,y

= (def J−K∆,x)

arr (λ∆. 〈∆, JNK〉)>>> Jlet y⇐ P in QK∆,x

Proof of Lemma 10 (Translating weakening from A to C) .

The translation of weakening from A to C for commands is as follows.

u

vΓ ; ∆ ` Q ! B

Γ ′; ∆ ′ ` Q ! B

}

~ =
Γ ` JQK∆ : ∆ B

Γ ′ ` arr (λ∆ ′.∆)>>> JQK∆ : ∆ ′  B

Proof. By induction on the derivation of Q. There is one case for each command form.
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1. Case L •M.

JL • MK∆ ′
= (def J−K∆ ′ )

arr (λ∆
′
. JMK)>>> JLK

= ((λ∆. M) · (λ∆ ′ .∆) = (λ∆
′
. M))

arr ((λ∆. JMK) · (λ∆ ′ .∆))>>> JLK
= ( 4)

arr (λ∆
′
.∆)>>> arr (λ∆. JMK)>>> JLK

= (def J−K∆)
arr (λ∆

′
.∆)>>> JL • MK∆

2. Case [M].

J[M]K∆ ′
= (def J−K∆ ′ )

arr (λ∆
′
. JMK)

= ((λ∆. M) · (λ∆ ′ .∆) = (λ∆
′
. M))

arr ((λ∆. JMK) · (λ∆ ′ .∆))
= ( 4)

arr (λ∆
′
.∆)>>> arr (λ∆. JMK)

= (def J−K∆)
arr (λ∆

′
.∆)>>> J[M]K∆

3. Case let x⇐ P in Q.

Jlet x⇐ P in QK∆ ′
= (def J−K∆ ′ )

(arr id &&& JPK∆ ′ )>>> JQK∆ ′ ,x
= (induction hypothesis)

(arr id &&& (arr (λ∆
′
.∆)>>> JPK∆))>>> arr ((λ∆

′
.∆)× id)>>> JQK∆,x

= (def &&&)

arr dup>>> first (arr id)>>> arr swap>>> first (arr (λ∆
′
.∆)>>> JPK∆)

>>> arr swap>>> arr ((λ∆
′
.∆)× id)>>> JQK∆,x

= ( 6)

arr dup>>> first (arr id)>>> arr swap>>> first (arr (λ∆
′
.∆))

>>> first JPK∆ >>> arr swap>>> arr ((λ∆
′
.∆)× id)>>> JQK∆,x

= ( 5)

arr dup>>> arr (id× id)>>> arr swap>>> arr ((λ∆
′
.∆)× id)

>>> first JPK∆ >>> arr swap>>> arr ((λ∆
′
.∆)× id)>>> JQK∆,x

= ( 4, ((λ∆
′
.∆)× id) · swap · (id× id) · dup = (λ∆

′
. 〈∆,∆

′〉))
arr (λ∆

′
. 〈∆,∆

′〉)>>> first JPK∆ >>> arr (((λ∆
′
.∆)× id) · swap)>>> JQK∆,x

(continued on next page)
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(continued from previous page)
arr (λ∆

′
. 〈∆,∆

′〉)>>> first JPK∆ >>> arr (((λ∆
′
.∆)× id) · swap)>>> JQK∆,x

= ((f× g) · swap = swap · (id× g))

arr (λ∆
′
. 〈∆,∆

′〉)>>> first JPK∆ >>> arr (swap · (id× (λ∆
′
.∆)))>>> JQK∆,x

= ( 4)

arr (λ∆
′
. 〈∆,∆

′〉)>>> first JPK∆ >>> arr (id× (λ∆
′
.∆))>>> arr swap>>> JQK∆,x

= ( 7)

arr (λ∆
′
. 〈∆,∆

′〉)>>> arr (id× (λ∆
′
.∆))>>> first JPK∆ >>> arr swap>>> JQK∆,x

= ( 4, id× (λ∆
′
.∆) · (λ∆ ′ . 〈∆,∆

′〉) = (λ∆
′
. 〈∆,∆〉))

arr (λ∆
′
. 〈∆,∆〉)>>> first JPK∆ >>> arr swap>>> JQK∆,x

= (swap · (id× id) · dup · (λ∆ ′ .∆) = (λ∆
′
. 〈∆,∆〉))

arr (swap · (id× id) · dup · (λ∆ ′ .∆))>>> first JPK∆ >>> arr swap>>> JQK∆,x

= ( 4)

arr (λ∆
′
.∆)>>> arr dup>>> arr (id× id)>>> arr swap>>> first JPK∆

>>> arr swap>>> JQK∆,x

= ( 5)

arr (λ∆
′
.∆)>>> arr dup>>> first (arr id)>>> arr swap>>> first JPK∆

>>> arr swap>>> JQK∆,x

= (def &&&)

arr (λ∆
′
.∆)>>> (arr id &&& JPK∆)>>> JQK∆,x

= (def J−K∆)
arr (λ∆

′
.∆)>>> Jlet x⇐ P in QK∆

A.2.2 The laws of A follow from the laws of C

For each arrow calculus lawM = N we must show JMK = JNK.

1. (β )

J(λ•x. Q) • MK∆
= (def J−K∆)

arr (λ∆. JMK)>>> JQKx
= ( 4)

arr (λ∆. 〈∆, JMK〉)>>> arr (λ〈∆, x〉. x)>>> JQKx
= (Lemma 10)

arr (λ∆. 〈∆, JMK〉)>>> JQK∆,x

= (Lemma 8)
JQ[x := M]K∆
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2. (η )

Jλ•x. L • xK
= (def J−K)

arr id>>> JLK
= ( 1)

JLK

3. (left)

Jlet x⇐ [M] in QK∆
= (def J−K∆)

arr dup>>> first (arr (λ∆. JMK))>>> arr swap>>> JQK∆,x

= ( 5)
arr dup>>> arr ((λ∆. JMK)× id)>>> arr swap>>> JQK∆,x

= ( 4)
arr (swap · ((λ∆. JMK)× id) · dup)>>> JQK∆,x

= (swap · ((λ∆. JMK)× id) · dup = (λ∆. 〈∆, JMK〉))
arr (λ∆. 〈∆, JMK〉)>>> JQK∆,x

= (Lemma 8)
JQ[x := M]K∆

4. (right)

Jlet x⇐ P in [x]K∆
= (def J−K)

(arr id &&& JPK∆)>>> arr snd

= (def &&&)
arr dup>>> first (arr id)>>> second JPK∆ >>> arr snd

= ( 5, id× id = id)
arr dup>>> arr id>>> second JPK∆ >>> arr snd

= ( 1)
arr dup>>> second JPK∆ >>> arr snd

= (def second)
arr dup>>> arr swap>>> first JPK∆ >>> arr swap>>> arr snd

= ( 4, swap · dup = dup, swap · snd = fst)
arr dup>>> first JPK∆ >>> arr fst

= ( 8)
arr dup>>> arr fst>>> JPK∆

= ( 4, fst · dup = id)
arr id>>> JPK∆

= ( 1)
JPK∆
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5. (assoc)

Jlet y⇐ let x⇐ P in Q in RK∆
= (def J−K∆)

arr dup>>> first (arr dup>>> first JPK∆ >>> arr swap>>> JQK∆,x)

>>> arr swap>>> JRK∆,x

= ( 6)
arr dup>>> first (arr dup)>>> first (first JPK∆)>>> first (arr swap)
>>> first JQK∆,x >>> arr swap>>> JRK∆,x

= ( 5)
arr dup>>> arr (dup× id)>>> first (first JPK∆)>>> arr (swap× id)
>>> first JQK∆,x >>> arr swap>>> JRK∆,x

= ( 4)
arr (dup× id · dup)>>> first (first JPK∆)>>> arr (swap× id)
>>> first JQK∆,x >>> arr swap>>> JRK∆,x

= (swap× id = (λ〈x, 〈y, z〉〉. 〈〈y, x〉, z〉) · assoc)
arr (dup× id · dup)>>> first (first JPK∆)
>>> arr ((λ〈x, 〈y, z〉〉. 〈〈y, x〉, z〉) · assoc)
>>> first JQK∆,x >>> arr swap>>> JRK∆,x

= ( 4)
arr (dup× id · dup)>>> first (first JPK∆)>>> arr assoc

>>> arr (λ〈x, 〈y, z〉〉. 〈〈y, x〉, z〉)
>>> first JQK∆,x >>> arr swap>>> JRK∆,x

= ( 9)
arr (dup× id · dup)>>> arr assoc>>> first JPK∆
>>> arr (λ〈x, 〈y, z〉〉. 〈〈y, x〉, z〉)
>>> first JQK∆,x >>> arr swap>>> JRK∆,x

= ( 4, assoc · (dup× id) · dup = (id× dup) · dup)
arr (id× dup · dup)>>> first JPK∆ >>> arr (λ〈x, 〈y, z〉〉. 〈〈y, x〉, z〉)
>>> first JQK∆,x >>> arr swap>>> JRK∆,x

= ( 4)
arr dup>>> arr (id× dup)>>> first JPK∆ >>> arr (λ〈x, 〈y, z〉〉. 〈〈y, x〉, z〉)
>>> first JQK∆,x >>> arr swap>>> JRK∆,x

= ( 7)
arr dup>>> first JPK∆ >>> arr (id× dup)>>> arr (λ〈x, 〈y, z〉〉. 〈〈y, x〉, z〉)
>>> first JQK∆,x >>> arr swap>>> JRK∆,x

= ( 4)
arr dup>>> first JPK∆ >>> arr ((λ〈x, 〈y, z〉〉. 〈〈y, x〉, z〉) · (id× dup))
>>> first JQK∆,x >>> arr swap>>> JRK∆,x

= ((λ〈x, 〈y, z〉〉. 〈〈y, x〉, z〉) · (id× dup) = (id× fst) · (dup · swap))
arr dup>>> first JPK∆ >>> arr ((id× fst) · (dup · swap))
>>> first JQK∆,x >>> arr swap>>> JRK∆,x

(continued on next page)
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(continued from previous page)
arr dup>>> first JPK∆ >>> arr ((id× fst) · (dup · swap))
>>> first JQK∆,x >>> arr swap>>> JRK∆,x

= ( 4)
arr dup>>> first JPK∆ >>> arr (dup · swap)>>> arr (id× fst)
>>> first JQK∆,x >>> arr swap>>> JRK∆,x

= ( 7)
arr dup>>> first JPK∆ >>> arr (dup · swap)>>> first JQK∆,x

>>> arr (id× fst)>>> arr swap>>> JRK∆,x

= ( 4, swap · (id× fst) = (λ〈〈∆, x〉, y〉. 〈∆, y〉) · swap)
arr dup>>> first JPK∆ >>> arr (dup · swap)>>> first JQK∆,x

>>> arr swap>>> arr (λ〈〈∆, x〉, y〉. 〈y,∆〉)>>> JRK∆,x

= (Lemma 10)
arr dup>>> first JPK∆ >>> arr (dup · swap)>>> first JQK∆,x

>>> arr swap>>> JRK∆,x,y

= ( 4)
arr dup>>> first JPK∆ >>> arr swap>>> arr dup>>> first JQK∆,x

>>> arr swap>>> JRK∆,x,y

= (def J−K∆)
Jlet x⇐ P in let x⇐ Q in RK∆

A.2.3 The laws of C follow from the laws of A

For each classic arrows lawM = N we must show 〈[M]〉 = 〈[N]〉.
1. ( 1)

〈[arr id>>> L]〉
= (def 〈[−]〉)

λ•x.let y⇐ (λ•z. [id z]) • x in 〈[L]〉 • y
= (β→)

λ•x.let y⇐ (λ•z. [z]) • x in 〈[L]〉 • y
= (β )

λ•x.let y⇐ [x] in 〈[L]〉 • y
= (left)

λ•x. 〈[L]〉 • x
= (η )
〈[L]〉
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2. ( 2)

〈[L>>> arr id]〉
= (def 〈[−]〉)

λ•x.let y⇐ 〈[L]〉 • x in (λ•z. [id z]) • y
= (β→)

λ•x.let y⇐ 〈[L]〉 • x in (λ•z. [z]) • y
= (β )

λ•x.let y⇐ 〈[L]〉 • x in [y]
= (right)

λ•x. 〈[L]〉 • x
= (η )
〈[L]〉

3. ( 3)

〈[(L>>> M)>>> N]〉
= (def 〈[−]〉)

λ•z.let w⇐ (λ•x.let y⇐ 〈[L]〉 • x in 〈[M]〉 • y) • z in 〈[N]〉 • w
= (β )

λ•z.let w⇐ let y⇐ 〈[L]〉 • z in 〈[M]〉 • y in 〈[N]〉 • w
= (assoc)

λ•z.let y⇐ 〈[L]〉 • z in let w⇐ 〈[M]〉 • y in 〈[N]〉 • w
= (β )

λ•z.let y⇐ 〈[L]〉 • z in (λ•z.let w⇐ 〈[M]〉 • z in 〈[N]〉 • w) • y
= (def 〈[−]〉)
〈[L>>> (M>>> N)]〉

4. ( 4)

〈[arr (M · L)]〉
= (def 〈[−]〉)

λ•x. [(〈[M]〉 · 〈[L]〉) x]
= (def ·)

λ•x. [M (L x)]
= (left)

λ•x.let y⇐ [L x] in [M y]
= (β ,β )

λ•x.let y⇐ (λ•x. [L x]) • x in (λ•x. [M x]) • y
= (def 〈[−]〉)
〈[arr L>>> arr M]〉
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5. ( 5)

〈[first (arr L)]〉
= (def 〈[−]〉,β )

λ•z.let x⇐ [〈[L]〉 (fst z)] in [〈x,snd z〉]
= (left)

λ•z. [〈〈[L]〉 (fst z),snd z〉]
= (def ×)

λ•z. [(〈[L]〉 × id) z]
= (def 〈[−]〉)
〈[arr (L× id)]〉

6. ( 6)

〈[first (L>>> M)]〉
= (def 〈[−]〉,β )

λ•z.let w⇐ let y⇐ 〈[L]〉 • (fst z) in 〈[M]〉 • y in [〈w,snd z〉]
= (assoc)

λ•z.let y⇐ 〈[L]〉 • fst z in let w⇐ 〈[M]〉 • y in [〈w,snd z〉]
= (β×1 ,β×2 )

λ•z.let y⇐ 〈[L]〉 • fst z in
let w⇐ 〈[M]〉 • fst 〈y,snd z〉 in

[〈w,snd 〈y,snd z〉〉]
= (left)

λ•z.let y⇐ 〈[L]〉 • fst z in
let v⇐ [〈y,snd z〉] in
let w⇐ 〈[M]〉 • fst v in

[〈w,snd v〉]
= (assoc)

λ•z.let v⇐ let y⇐ 〈[L]〉 • fst z in [〈y,snd z〉] in
let w⇐ 〈[M]〉 • fst v in

[〈w,snd v〉]
= (def 〈[−]〉,β )
〈[first L>>> first M]〉

7. ( 7)

〈[first L>>> arr (id× M)]〉
= (def 〈[−]〉,β )

λ•x.let y⇐ let v⇐ 〈[L]〉 • fst x in [〈v,snd z〉] in [(id× M) y]
= (assoc)

λ•x.let v⇐ 〈[L]〉 • fst x in let y⇐ [〈v,snd z〉] in [(id× M) y]

(continued on next page)
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(continued from previous page)
λ•x.let v⇐ 〈[L]〉 • fst x in let y⇐ [〈v,snd z〉] in [(id× M) y]

= (left)
λ•x.let v⇐ 〈[L]〉 • fst x in [(id× M) 〈v,snd z〉]

= (def ×)
λ•x.let v⇐ 〈[L]〉 • fst ((id× M) x) in [〈v,snd ((id× M) x)〉]

= (left)
λ•x.let y⇐ [(id× M) x] in let v⇐ 〈[L]〉 • fst y in [〈v,snd y〉]

= (def 〈[−]〉,β )
〈[arr (id× M)>>> first L]〉

8. ( 8)

〈[first L>>> arr fst]〉
= (def 〈[−]〉)

λ•x.let y⇐ (λ•z.let w⇐ 〈[L]〉 • fst z in [〈w,snd z〉]) • x in
(λ•z. [fst z]) • y

= (β )
λ•x.let y⇐ let w⇐ 〈[L]〉 • fst x in [〈w,snd x〉] in [fst y]

= (assoc)
λ•x.let w⇐ 〈[L]〉 • fst x in let y⇐ [〈w,snd x〉] in [fst y]

= (left)
λ•x.let w⇐ 〈[L]〉 • fst x in [fst 〈w,snd x〉]

= (β×1 )
λ•x.let w⇐ 〈[L]〉 • fst x in [w]

= (right)
λ•x. 〈[L]〉 • fst x

= (left)
λ•x.let y⇐ [x] in 〈[L]〉 • y

= (β )
λ•x.let y⇐ (λ•z. [fst z]) • x in 〈[L]〉 • y

= (def 〈[−]〉)
〈[arr fst>>> L]〉

9. ( 9)

〈[first (first L)>>> arr assoc]〉
= (def 〈[−]〉,β )

λ•a.let b⇐ let x⇐ let r⇐ 〈[L]〉 • fst (fst a) in
[〈r,snd (fst a)〉] in [〈x,snd a〉] in

[assoc b]

(continued on next page)
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λ•a.let b⇐ let x⇐ let r⇐ 〈[L]〉 • fst (fst a) in

[〈r,snd (fst a)〉] in [〈x,snd a〉] in
[assoc b]

= (assoc)
λ•a.let r⇐ 〈[L]〉 • fst (fst a) in

let x⇐ [〈r,snd (fst a)〉] in
let b⇐ [〈x,snd a〉] in

[assoc b]
= (left)

λ•a.let r⇐ 〈[L]〉 • fst (fst a) in [assoc 〈〈r,snd (fst a)〉,snd a〉]
= (def assoc)

λ•a.let r⇐ 〈[L]〉 • fst (fst a) in [〈r, 〈snd (fst a),snd a〉〉]
= (fst (assoc a) = fst (fst a), 〈snd (fst a),snd a〉 = snd (assoc a))

λ•a.let r⇐ 〈[L]〉 • fst (assoc a) in [〈r,snd (assoc a)〉]
= (left)

λ•a.let b⇐ [assoc a] in let r⇐ 〈[L]〉 • fst b in [〈r,snd b〉]
= (def 〈[−]〉,β )
〈[arr assoc>>> first L]〉

A.2.4 Translating A to C and back

For each arrow calculus term M, 〈[ JMK ]〉 = M. For each arrow calculus command P,

〈[ JPK∆ ]〉 • ∆ = P. The proof is by mutual induction on the derivations ofM and P.

1. Case λ•x.Q

〈[Jλ•x. QK]〉
= (def J−K)
〈[JQKx]〉

= (induction hypothesis)
λ•x. Q

2. Case L •M

〈[JL • MK∆]〉
= (def J−K∆)
〈[arr (λ∆. JMK)>>> JLK]〉

= (def 〈[−]〉)
λ•∆.let y⇐ (λ•z. [(λ∆. 〈[JMK]〉) z]) • ∆ in 〈[JLK]〉 • y

(continued on next page)
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λ•∆.let y⇐ (λ•z. [(λ∆. 〈[JMK]〉) z]) • ∆ in 〈[JLK]〉 • y

= (induction hypothesis)
λ•∆.let y⇐ (λ•z. [(λ∆. M) z]) • ∆ in L • y

= (β ,β→)
λ•∆.let y⇐ [M] in L • y

= (left)
λ•∆. L • M

3. Case [M]

〈[J[M]K∆]〉
= (def J−K∆)
〈[arr (λ∆. JMK)]〉

= (def 〈[−]〉)
λ•∆. [(λ∆. 〈[JMK]〉) ∆]

= (induction hypothesis)
λ•∆. [(λ∆. M) ∆]

= (β→)
λ•∆. [M]

4. Case let x⇐ P in Q

〈[Jlet x⇐ P in QK]〉
= (def J−K)
〈[(arr id &&& JPK∆)>>> JQK∆,x]〉

= (def &&&)
〈[arr dup>>> first (arr id)>>> arr swap>>> first JPK∆ >>> arr swap

>>> JQK∆,x]〉
= ( 5)
〈[arr dup>>> arr (id× id)>>> arr swap>>> first JPK∆ >>> arr swap

>>> JQK∆,x]〉
= (id× id = id)
〈[arr dup>>> arr id>>> arr swap>>> first JPK∆ >>> arr swap>>> JQK∆,x]〉

= ( 1)
〈[arr dup>>> arr swap>>> first JPK∆ >>> arr swap>>> JQK∆,x]〉

= ( 4, swap · dup = dup)
〈[arr dup>>> first JPK∆ >>> arr swap>>> JQK∆,x]〉

= (def 〈[−]〉, def dup,β )
λ•∆.let x⇐ [〈∆,∆〉] in let w⇐ let v⇐ 〈[JPK∆]〉 • fst x in [〈v,snd x〉] in

let y⇐ [swap w] in 〈[JQK∆,x]〉 • y

(continued on next page)
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(continued from previous page)
λ•∆.let x⇐ [〈∆,∆〉] in let w⇐ let v⇐ 〈[JPK∆]〉 • fst x in [〈v,snd x〉] in

let y⇐ [swap w] in 〈[JQK∆,x]〉 • y
= (left,β×1 ,β×2 )

λ•∆.let w⇐ let v⇐ 〈[JPK∆]〉 • ∆ in [〈v,∆〉] in let y⇐ [swap w] in 〈[JQK∆,x]〉 • y
= (assoc)

λ•∆.let v⇐ 〈[JPK∆]〉 • ∆ in let w⇐ [〈v,∆〉] in let y⇐ [swap w] in 〈[JQK∆,x]〉 • y
= (left, def swap)

λ•∆.let v⇐ 〈[JPK∆]〉 • ∆ in 〈[JQK∆,x]〉 • 〈∆, v〉
= (induction hypothesis)

λ•∆.let v⇐ (λ•∆. P) • ∆ in (λ•〈∆, x〉. Q) • 〈∆, v〉
= (β )

λ•∆.let v⇐ P in Q

A.2.5 Translating C to A and back

For each classic arrows term M, J 〈[M]〉 K =M. The proof is by induction on the derivation of

M. There are three cases, one for each constant of C.

1. Case arr

J〈[arr]〉K
= (def 〈[−]〉,β→)

Jλf. λ•x. [f x]K
= (def J−K)

λf. arr (λx. f x)
= (η→)

arr

2. Case (>>>)

J〈[(>>>)]〉K
= (def 〈[−]〉,β→)

Jλf. λg. λ•x.let y⇐ f • x in g • yK
= (def J−K, 1)

λf. λg. (arr id &&& f)>>> arr snd>>> g

= (def &&&)
λf. λg. arr dup>>> first (arr id)>>> arr swap>>> first f>>> arr swap

>>> arr snd>>> g

(continued on next page)
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λf. λg. arr dup>>> first (arr id)>>> arr swap>>> first f>>> arr swap

>>> arr snd>>> g

= ( 5)
λf. λg. arr dup>>> arr (id× id)>>> arr swap>>> first f>>> arr swap

>>> arr snd>>> g

= (id× id = id)
λf. λg. arr dup>>> arr id>>> arr swap>>> first f>>> arr swap

>>> arr snd>>> g

= ( 2)
λf. λg. arr dup>>> arr swap>>> first f>>> arr swap>>> arr snd>>> g

= ( 4, swap · dup = dup, snd · swap = fst)
λf. λg. arr dup>>> first f>>> arr fst>>> g

= ( 8)
λf. λg. arr dup>>> arr fst>>> f>>> g

= ( 4, fst · dup = id)
λf. λg. arr id>>> f>>> g

= ( 1,η→)
(>>>)

3. Case first

J〈[first]〉K
= (def 〈[−]〉,β→)

Jλf. λ•z.let x⇐ f • fst z in [〈x,snd z〉]K
= (def J−K, def fst, def &&&)

λf. arr dup>>> first (arr id)>>> arr swap>>> first (arr fst>>> f)
>>> arr swap>>> arr (λv. 〈snd v,snd (fst v)〉)

= ( 6)
λf. arr dup>>> first (arr id)>>> arr swap>>> first (arr fst)>>> first f

>>> arr swap>>> arr (λv. 〈snd v,snd (fst v)〉)
= ( 5)

λf. arr dup>>> arr (id× id)>>> arr swap>>> arr (fst× id)>>> first f

>>> arr swap>>> arr (λv. 〈snd v,snd (fst v)〉)
= ( 4, swap · id× id · dup = dup, ((λv. 〈snd v,snd (fst v)〉) · swap) = id× snd)

λf. arr (fst× id · dup)>>> first f>>> arr (id× snd)
= ( 7)

λf. arr (fst× id · dup)>>> arr (id× snd)>>> first f

= ( 4)
λf. arr (id× snd · dup)>>> first f

= (id× snd · fst× id · dup = id)
λf. arr id>>> first f

= ( 1,η→)
first
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A.3 Equational correspondence between S and CS

This section gives a proof of Proposition 12 (page 69). The proofs here extend the proofs of

the equational correspondence between A and C in Section A.2.

A.3.1 Extensions of Lemmas 8 and 10

We must first extend Lemmas 8 and 10 to show that the translations of substitution and weak-

ening hold for the run L construct. The proof of Lemma 8 for run L is as follows:

J(run L)[x := N]K∆
= (def substitution)

Jrun LK∆
= (def J−K∆)

arr (λ∆. 〈〉)>>> delay JLK
= ( 4, def ·)

arr (λ∆. 〈∆, JNK〉)>>> arr (λ〈∆, x〉. 〈〉)>>> delay JLK
= (def J−K∆,x)

arr (λ∆. 〈∆, JNK〉)>>> Jrun LK∆,x

The proof of Lemma 10 for run L is as follows:

Jrun LK∆ ′
= (def J−K∆ ′ )

arr (λ∆. 〈〉)>>> delay JLK
= ( 4, def ·)

arr (λ∆
′
.∆)>>> arr (λ∆. 〈〉)>>> delay JLK

= (def J−K∆)
arr (λ∆

′
.∆)>>> Jrun LK∆

A.3.2 The laws of S follow from the laws of CS

For each static arrows law on terms M = N we must show JMK = JNK and for each static

arrows law on commands P = Q we must show JPK∆ = JQK∆.
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1. (run1)

JL • MK∆
= (def J−K∆)

arr (λ∆. JMK)>>> JLK
= ( S1)

arr (λ∆. JMK)>>> force (delay JLK)
= (def force)

arr (λ∆. JMK)>>> arr (λa. 〈〈〉, a〉)>>> first (delay JLK)>>> arr (λ〈f, a〉. f a)
= ( 4,β→)

arr (λa. 〈〈〉, a〉)>>> arr (id× (λ∆. JMK))>>> first (delay JLK)
>>> arr (λ〈f, a〉. f a)

= ( 7)
arr (λa. 〈〈〉, a〉)>>> first (delay JLK)
>>> arr (id× (λ∆. JMK))>>> arr (λ〈f, a〉. f a)

= ( 4)
arr (λa. 〈〈〉, a〉)>>> first (delay JLK)>>> arr ((λ〈f, a〉. f a) · (id× (λ∆. JMK)))

= (β→)
arr (λa. 〈〈〉, a〉)>>> first (delay JLK)>>> arr (λ〈f, ∆〉. f JMK)

= ( 4,β→)
arr dup>>> arr (id× id)>>> arr swap>>> arr ((λ∆. 〈〉)× id)
>>> first (delay JLK)>>> arr swap>>> arr (λ〈∆, f〉. f JMK)

= ( 5)
arr dup>>> first (arr id)>>> arr swap>>> first (arr (λ∆. 〈〉))
>>> first (delay JLK)>>> arr swap>>> arr (λ〈∆, f〉. f JMK)

= ( 6)
arr dup>>> first (arr id)>>> arr swap>>> first (arr (λ∆. 〈〉)>>> delay JLK)
>>> arr swap>>> arr (λ〈∆, f〉. f JMK)

= (def &&&)
(arr id &&& (arr (λ∆. 〈〉)>>> delay JLK))>>> arr (λ〈∆, f〉. f JMK)

= (def J−K∆)
Jlet f⇐ run L in [f M]K∆

2. (run2)

Jrun (λ•x. [M])K∆
= (def J−K∆)

arr (λ∆. 〈〉)>>> delay (arr (λx. JMK))
= ((λx. JMK) = (apply · ((λ〈〉. λx. JMK)× id) · (λx. 〈〈〉, x〉)))

arr (λ∆. 〈〉)>>> delay (arr (apply · ((λ〈〉. λx. JMK)× id) · (λx. 〈〈〉, x〉)))
= ( 4)

arr (λ∆. 〈〉)>>> delay (arr (λx. 〈〈〉, x〉)>>> arr ((λ〈〉. λx. JMK)× id)>>> arr apply)
= ( 5)

arr (λ∆. 〈〉)>>> delay (arr (λx. 〈〈〉, x〉)>>> first (arr (λ〈〉. λx. JMK))>>> arr apply)

(continued on next page)
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arr (λ∆. 〈〉)>>> delay (arr (λx. 〈〈〉, x〉)>>> first (arr (λ〈〉. λx. JMK))>>> arr apply)

= (def force)
arr (λ∆. 〈〉)>>> delay (force (arr (λ〈〉. λx. JMK)))

= ( S2)
arr (λ∆. 〈〉)>>> arr (λ〈〉. λx. JMK)

= ( 4,β→)
arr (λ∆. λx. JMK)

= (def J−K∆)
J[λx. M]K∆

3. (run3)

Jrun (λ•x.let y⇐ P in Q)K∆
= (def J−K∆)

arr (λ∆. 〈〉)>>> delay ((arr id &&& JPKx)>>> JQKx,y)

= (Lemma 10)
arr (λ∆. 〈〉)>>> delay ((arr id &&& (arr (λx. 〈〉)>>> JPK〈〉))>>> JQKx,y)

= (def &&&)
arr (λ∆. 〈〉)>>> delay (arr dup>>> first (arr id)>>> arr swap

>>> first (arr (λx. 〈〉)>>> JPK〈〉 >>> arr swap)>>> JQKx,y)

= ( 6)
arr (λ∆. 〈〉)
>>> delay (arr dup>>> first (arr id)>>> arr swap

>>> first (arr (λx. 〈〉))>>> first JPK〈〉 >>> arr swap>>> JQKx,y)

= ( 5)
arr (λ∆. 〈〉)
>>> delay (arr dup>>> arr (id× id)>>> arr swap

>>> arr ((λx. 〈〉)× id)>>> first JPK〈〉 >>> arr swap>>> JQKx,y)

= ( 4, ((λx. 〈〉)× id) · swap · id× id · dup = dup)
arr (λ∆. 〈〉)
>>> delay (arr (λx. 〈〈〉, x〉)>>> first JPK〈〉 >>> arr swap>>> JQKx,y)

= ( S1)
arr (λ∆. 〈〉)
>>> delay (arr (λx. 〈〈〉, x〉)>>> first JPK〈〉 >>> arr swap

>>> force (delay JQKx,y))

= (def force)
arr (λ∆. 〈〉)
>>> delay (arr (λx. 〈〈〉, x〉)>>> first JPK〈〉 >>> arr swap

>>> arr (λx. 〈〈〉, x〉)>>> first (delay JQKx,y)>>> arr (λ〈f, x〉. f x))

(continued on next page)
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arr (λ∆. 〈〉)
>>> delay (arr (λx. 〈〈〉, x〉)>>> first JPK〈〉 >>> arr swap

>>> arr (λx. 〈〈〉, x〉)>>> first (delay JQKx,y)>>> arr (λ〈f, x〉. f x))
= ( 4)

arr (λ∆. 〈〉)
>>> delay (arr (λx. 〈〈〉, x〉)>>> first JPK〈〉 >>> arr (λ〈y, x〉. 〈〈〉, 〈x, y〉〉)

>>> first (delay JQKx,y)>>> arr (λ〈f, x〉. f x))
= ( 4)

arr (λ∆. 〈〉)
>>> delay (arr (λx. 〈〈〉, x〉)>>> first JPK〈〉 >>> arr (λ〈y, x〉. 〈〈〈〉, x〉, y〉)

>>> arr assoc>>> first (delay JQKx,y)>>> arr (λ〈f, x〉. f x))
= ( 9)

arr (λ∆. 〈〉)
>>> delay (arr (λx. 〈〈〉, x〉)>>> first JPK〈〉 >>> arr (λ〈y, x〉. 〈〈〈〉, x〉, y〉)

>>> first (first (delay JQKx,y))>>> arr assoc

>>> arr (λ〈f, x〉. f x))
= ( 4)

arr (λ∆. 〈〉)
>>> delay (arr (λx. 〈〈〉, x〉)>>> first JPK〈〉 >>> arr (λ〈y, x〉. 〈〈〈〉, y〉, x〉)

>>> first (first (delay JQKx,y))>>> arr (λ〈〈f, y〉, x〉. (f 〈x, y〉)))
= ( 5)

arr (λ∆. 〈〉)
>>> delay (arr (λx. 〈〈〉, x〉)>>> first JPK〈〉 >>> first (arr (λy. 〈〈〉, y〉))

>>> first (first (delay JQKx,y))>>> arr (λ〈〈f, y〉, x〉. (f 〈x, y〉)))
= ( 6)

arr (λ∆. 〈〉)
>>> delay (arr (λx. 〈〈〉, x〉)

>>> first (JPK〈〉 >>> arr (λy. 〈〈〉, y〉)>>> first (delay JQKx,y))

>>> arr (λ〈〈f, y〉, x〉. (f 〈x, y〉)))
= ( 5, 4)

arr (λ∆. 〈〉)>>> delay (arr (λx. 〈〈〉, x〉)
>>> first (JPK〈〉 >>> arr (λy. 〈〈〉, y〉)>>> first (delay JQKx,y))

>>> first (arr (λ〈f, y〉. λx. f 〈x, y〉))>>> arr (λ〈f, a〉. f a))
= ( 6)

arr (λ∆. 〈〉)>>> delay (arr (λx. 〈〈〉, x〉)
>>> first (JPK〈〉 >>> arr (λy. 〈〈〉, y〉)>>> first (delay JQKx,y)

>>> arr (λ〈f, y〉. λx. f 〈x, y〉))>>> arr (λ〈f, a〉. f a))
= (def force)

arr (λ∆. 〈〉)>>> delay (force (JPK〈〉 >>> arr (λy. 〈〈〉, y〉)>>> first (delay JQKx,y)

>>> arr (λ〈f, y〉. λx. f 〈x, y〉)))

(continued on next page)
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arr (λ∆. 〈〉)>>> delay (force (JPK〈〉 >>> arr (λy. 〈〈〉, y〉)>>> first (delay JQKx,y)

>>> arr (λ〈f, y〉. λx. f 〈x, y〉)))
= ( S2)

arr (λ∆. 〈〉)>>> JPK〈〉 >>> arr (λy. 〈〈〉, y〉)>>> first (delay JQKx,y)

>>> arr (λ〈f, y〉. λx. f 〈x, y〉)
= ( 4,β→)

arr (λ∆. 〈〈〉,∆〉)>>> arr fst>>> JPK〈〉 >>> arr (λy. 〈〈〉, y〉)
>>> first (delay JQKx,y)>>> arr (λ〈f, y〉. λx. f 〈x, y〉)

= ( 8)
arr (λ∆. 〈〈〉,∆〉)>>> first JPK〈〉 >>> arr fst>>> arr (λy. 〈〈〉, y〉)
>>> first (delay JQKx,y)>>> arr (λ〈f, y〉. λx. f 〈x, y〉)

= ( 4,β→)
arr (λ∆. 〈〈〉,∆〉)>>> first JPK〈〉 >>> arr (λ〈y, ∆〉. 〈〈〉, 〈∆, y〉〉)>>> arr (id× snd)

>>> first (delay JQKx,y)>>> arr (λ〈f, y〉. λx. f 〈x, y〉)
= ( 7)

arr (λ∆. 〈〈〉,∆〉)>>> first JPK〈〉 >>> arr (λ〈y, ∆〉. 〈〈〉, 〈∆, y〉〉)
>>> first (delay JQKx,y)>>> arr (id× snd)>>> arr (λ〈f, y〉. λx. f 〈x, y〉)

= ( 4,β→)
arr dup>>> arr (id× id)>>> arr swap>>> arr ((λ∆. 〈〉)× id)>>> first JPK〈〉
>>> arr swap>>> arr dup>>> arr (id× id)>>> arr swap

>>> arr ((λ〈∆, y〉. 〈〉)× id)>>> first (delay JQKx,y)

>>> arr swap>>> arr (λ〈〈∆, y〉, f〉. λx. f 〈x, y〉)
= ( 5)

arr dup>>> first (arr id)>>> arr swap>>> first (arr (λ∆. 〈〉))
>>> first JPK〈〉 >>> arr swap>>> arr dup>>> first (arr id)

>>> arr swap>>> first (arr (λ〈∆, y〉. 〈〉))>>> first (delay JQKx,y)

>>> arr swap>>> arr (λ〈〈∆, y〉, f〉. λx. f 〈x, y〉)
= ( 6)

arr dup>>> first (arr id)>>> arr swap>>> first (arr (λ∆. 〈〉)>>> JPK〈〉)
>>> arr swap>>> arr dup>>> first (arr id)>>> arr swap

>>> first (arr (λ〈∆, y〉. 〈〉)>>> delay JQKx,y)>>> arr swap

>>> arr (λ〈〈∆, y〉, f〉. λx. f 〈x, y〉)
= (def &&&)

(arr id &&& (arr (λ∆. 〈〉)>>> JPK〈〉))
>>> (arr id &&& (arr (λ〈∆, y〉. 〈〉)>>> delay JQKx,y))>>> arr (λ〈〈∆, y〉, f〉. λx. f 〈x, y〉)

= (Lemma 10)
(arr id &&& JPK∆)>>> (arr id &&& (arr (λ〈∆, y〉. 〈〉)>>> delay JQKx,y))

>>> arr (λ〈〈∆, y〉, f〉. λx. f 〈x, y〉)
= (def J−K∆)

Jlet y⇐ P in let f⇐ run (λ•〈x, y〉. Q) in [λx. f 〈x, y〉]K∆
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A.3.3 The laws of CS follow from the laws of S

For each lawM = N of classic arrows with delay we must show 〈[M]〉 = 〈[N]〉.

1. ( S1)

〈[force (delay a)]〉
= (def force)
〈[arr (λx. 〈〈〉, x〉)>>> delay a>>> arr (λz.fst z (snd z))]〉

= (def 〈[−]〉,β )
λ•x.let y⇐ [〈〈〉, x〉] in

let z⇐ let w⇐ run a in [〈w,snd y〉] in
[fst z (snd z)]

= (left,β×2 )
λ•x.let z⇐ let w⇐ run a in [〈w, x〉] in [fst z (snd z)]

= (assoc)
λ•x.let w⇐ run a in let z⇐ [〈w, x〉] in [fst z (snd z)]

= (left,β×1 ,β×2 )
λ•x.let w⇐ run a in [w x]

= (run1)
λ•x. a • x

= (η )
a

= (def 〈[−]〉)
〈[a]〉

2. ( S2)

〈[delay (force a)]〉
= (def force)
〈[delay (arr (λx. 〈〈〉, x〉)>>> a>>> arr (λz. (fst z (snd z))))]〉

= (def 〈[−]〉)
λ•〈〉.run (λ•x.let y⇐ [〈〈〉, x〉] in

let z⇐ let w⇐ a • (fst y) in [〈w,snd y〉] in [(fst z (snd z))])

= (left,β×1 ,β×2 )
λ•〈〉.run (λ•x.let z⇐ let w⇐ a • 〈〉 in [〈w, x〉] in [(fst z (snd z))])

= (assoc)
λ•〈〉.run (λ•x.let w⇐ a • 〈〉 in let z⇐ [〈w, x〉] in [(fst z (snd z))])

= (left,β×1 ,β×2 )
λ•〈〉.run (λ•x.let w⇐ a • 〈〉 in [w x])

= (run3)
λ•〈〉.let w⇐ a • 〈〉 in let f⇐ run (λ•〈x, w〉. [w x]) in [λx. f 〈x, w〉]

= (run2)
λ•〈〉.let w⇐ a • 〈〉 in let f⇐ [λ〈x, w〉. w x] in [λx. f 〈x, w〉]

(continued on next page)
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λ•〈〉.let w⇐ a • 〈〉 in let f⇐ [λ〈x, w〉. w x] in [λx. f 〈x, w〉]

= (left,β→)
λ•〈〉.let w⇐ a • 〈〉 in [λx. w x]

= (η→)
λ•〈〉.let w⇐ a • 〈〉 in [w]

= (right)
λ•〈〉. a • 〈〉

= (def 〈[−]〉,η )
〈[a]〉

A.3.4 Translating S to CS and back

For each static arrows command P we must show 〈[ JPK∆ ]〉 = λ•∆.P.

1. Case run L

〈[Jrun LK∆]〉
= (def J−K∆)
〈[arr (λ∆. 〈〉)>>> delay JLK]〉

= (def 〈[−]〉,β→,β )
λ•∆.let x⇐ [〈〉] in run 〈[JLK]〉

= (induction hypothesis)
λ•∆.let x⇐ [〈〉] in run L

= (left)
λ•∆.run L

A.3.5 Translating CS to S and back

For each termM of classic arrows with delay we must show J 〈[M]〉 K =M.

1. Case delay:

J〈[delay]〉K
= (def 〈[−]〉)

Jλa. λ•〈〉.run aK
= (def J−K)

λa. arr (λ〈〉. 〈〉)>>> delay a

= ( 1,η→)
delay
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A.4 Equational equivalence between I and S

This section gives a proof of Proposition 15 (page 70).

A.4.1 Proofs of Lemmas 13 and 14

We begin with proofs of Lemma 13 and 14, which give the translations of substitution and

weakening.

Proof of Lemma 13 (Translating substitution from S to I) .

The translations of substitution on terms and commands from S to I are as follows.

〈[M[x :=N]]〉 = 〈[M]〉[x := 〈[N]〉]

〈[(]〉Q[x :=N])∆ = pure (λg.λ∆.g (∆, 〈[N]〉))� 〈[Q]〉∆,x

Proof. By mutual induction on the derivations of P and M. There is one case for each term

form and each command form. We give only the cases for command forms here.

1. Case L •M

J(L • M)[x := N]K∆
= (def substitution)

JL • (M[x := N])K∆
= (def J−K∆)

pure (λl. λ∆. l JM[x := N]K)� JLK
= (induction hypothesis)

pure (λl. λ∆. l (JMK[x := JNK]))� JLK
= (I3, I2,β→)

pure (λg. λ∆. g 〈∆, JNK〉)� (pure (λl. λ〈∆, x〉. l JMK)� JLK)
= (def J−K∆,x)

pure (λg. λ∆. g 〈∆, JNK〉)� JL • MK∆,x

2. Case [M]

J[M][x := N]K∆
= (def substitution)

J[M[x := N]]K∆
= (def J−K∆)

pure (λ∆. JM[x := N]K)
= (induction hypothesis)

pure (λ∆. JMK[x := JNK])

(continued on next page)
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pure (λ∆. JMK[x := JNK])

= (I2,β→)
pure (λg. λ∆. g 〈∆, JNK〉)� pure (λ〈∆, x〉. JMK)

= (def J−K∆,x)

pure (λg. λ∆. g 〈∆, JNK〉)� J[M]K∆,x

3. Case let y⇐ P in Q

J(let y⇐ P in Q)[x := N]K∆
= (def substitution)

Jlet y⇐ P[x := N] in Q[x := N]K∆
= (def J−K∆)

pure (λp. λq. λ∆. q 〈∆, p ∆〉)� JP[x := N]K∆ � JQ[x := N]K∆,y

= (induction hypothesis)
pure (λp. λq. λ∆. q 〈∆, p ∆〉)
� (pure (λg. λ∆. g 〈∆, JNK〉)� JPK∆,x)

� (pure (λg. λ∆. g 〈∆, JNK〉)� JQK∆,y,x)

= (Lemma 14)
pure (λp. λq. λ∆. q 〈∆, p ∆〉)
� (pure (λg. λ∆. g 〈∆, JNK〉)� JPK∆,x)

� (pure (λg. λ∆. g 〈∆, JNK〉)� (pure (λg. λ〈〈∆, y〉, x〉. g 〈〈∆, x〉, y〉)� JQK∆,x,y))

= (I3, I2,β→)
pure (λg. λq. λ∆. q 〈∆, g 〈∆, JNK〉〉)� JPK∆,x

� (pure (λg. λ∆. g 〈∆, JNK〉)� (pure (λg. λ〈〈∆, y〉, x〉. g 〈〈∆, x〉, y〉)� JQK∆,x,y))

= (I3, I2,β→)
pure (λg. λq. λ∆. q 〈∆, g 〈∆, JNK〉〉)� JPK∆,x

� (pure (λg. λ〈∆, y〉. g 〈〈∆, JNK〉, y〉)� JQK∆,x,y)

= (I3)
pure (·)� (pure (λg. λq. λ∆. q 〈∆, g 〈∆, JNK〉〉)� JPK∆,x)

� pure (λg. λ〈∆, y〉. g 〈〈∆, JNK〉, y〉)� JQK∆,x,y

= (I3, I2,β→)
pure (λp. λs. λq. λ∆. s q 〈∆, p 〈∆, JNK〉〉)� JPK∆,x

� pure (λg. λ〈∆, y〉. g 〈〈∆, JNK〉, y〉)� JQK∆,x,y

= (I4)
pure (λh. h (λg. λ〈∆, y〉. g 〈〈∆, JNK〉, y〉))
� (pure (λp. λs. λq. λ∆. s q 〈∆, p 〈∆, JNK〉〉)� JPK∆,x)� JQK∆,x,y

= (I3, I2,β→)
pure (λp. λq. λ∆. q 〈〈∆, JNK〉, p 〈∆, JNK〉〉)� JPK∆,x � JQK∆,x,y

(continued on next page)
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(continued from previous page)
pure (λp. λq. λ∆. q 〈〈∆, JNK〉, p 〈∆, JNK〉〉)� JPK∆,x � JQK∆,x,y

= (I3, I2,β→)
pure (λb. λq. λ∆. b q 〈∆, JNK〉)
� (pure (λp. λq. λ∆. q 〈∆, p ∆〉)� JPK∆,x)� JQK∆,x,y

= (I3, I2,β→)
pure (λg. λ∆. g 〈∆, n〉)� (pure (λp. λq. λ∆. q 〈∆, p ∆〉)� JPK∆,x � JQK∆,x,y)

= (def J−K∆,x)

pure (λg. λ∆. g 〈∆, JNK〉)� Jlet y⇐ P in QK∆,x

4. Case run L

J(run L)[x := N]K∆
= (def substitution)

Jrun LK∆
= (def J−K∆)

pure (λl. λ∆. l)� JLK
= (I3, I2,β→)

pure (λg. λ∆. g 〈∆, JNK〉)� (pure (λl. λ〈∆, x〉. l)� JLK)
= (def J−K∆,x)

pure (λg. λ∆. g 〈∆, JNK〉)� Jrun LK∆,x

Proof of Lemma 14 (Translating weakening from S to I) .

The translation of weakening from S to I for commands is as follows.

〈Γ ; ∆ ` Q ! B

Γ ′; ∆ ′ ` Q ! B

〉 =
〈[Γ ]〉 ` 〈[Q]〉∆ : I(〈[∆]〉 → 〈[B]〉)
〈[Γ ′]〉 ` pure (λg. λ∆ ′.g ∆)� 〈[Q]〉∆ : I(〈[∆ ′]〉 → 〈[B]〉)

Proof. By induction on the derivation of Q. There is one case for each command form.

1. Case L •M.

JL • MK∆ ′
= (def J−K∆ ′ )

pure (λl. λ∆
′
. l JMK)� JLK

= (I3, I2,β→)

pure (λg. λ∆
′
. g ∆)� (pure (λl. λ∆. l JMK)� JLK)

= (def J−K∆)
pure (λg. λ∆

′
. g ∆)� JL • MK∆
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2. Case [M].

J[M]K∆ ′
= (def J−K∆ ′ )

pure (λ∆
′
. JMK)

= (I2,β→)

pure (λg. λ∆
′
. g ∆)� pure (λ∆. JMK)

= (def J−K∆)
pure (λg. λ∆

′
. g ∆)� J[M]K∆

3. Case let x⇐ P in Q.

Jlet x⇐ P in QK∆ ′
= (def J−K∆ ′ )

pure (λp. λq. λ∆
′
. q 〈∆ ′ , p ∆ ′〉)� JPK∆ ′ � JQK∆ ′ ,x

= (induction hypothesis)
pure (λp. λq. λ∆

′
. q 〈∆ ′ , p ∆ ′〉)� (pure (λg. λ∆

′
. g ∆)� JPK∆)

� (pure (λg. λ〈∆ ′ , x〉. g 〈∆, x〉)� JQK∆,x)

= (I3, I2,β→)

pure (λg. λq. λ∆
′
. q 〈∆ ′ , g ∆〉)� JPK∆ � (pure (λg. λ〈∆ ′ , x〉. g 〈∆, x〉)� JQK∆,x)

= (I3)

pure (·)� (pure (λg. λq. λ∆
′
. q 〈∆ ′ , g ∆〉)� JPK∆)

� pure (λg. λ〈∆ ′ , x〉. g 〈∆, x〉)� JQK∆,x

= (I3, I2,β→)

pure (λg. λb. λc. λ∆
′
. b c 〈∆ ′ , g ∆〉)� JPK∆

� pure (λg. λ〈∆ ′ , x〉. g 〈∆, x〉)� JQK∆,x

= (I4)

pure (λh. h (λg. λ〈∆ ′ , x〉. g 〈∆, x〉))
� (pure (λg. λb. λc. λ∆

′
. b c 〈∆ ′ , g ∆〉)� JPK∆)� JQK∆,x

= (I3, I2,β→)

pure (λp. λq. λ∆
′
. q 〈∆, p ∆〉)� JPK∆ � JQK∆,x

= (I3, I2,β→)

pure (λp. λq. λ∆
′
. p q ∆)� (pure (λp. λq. λ∆

′
. q 〈∆ ′ , p ∆ ′〉)� JPK∆)� JQK∆,x

= (I3, I2,β→)

pure (λg. λ∆
′
. g ∆)� (pure (λp. λq. λ∆

′
. q 〈∆ ′ , p ∆ ′〉)� JPK∆ � JQK∆,x)

= (def J−K∆)
pure (λg. λ∆

′
. g ∆)� Jlet x⇐ P in QK∆
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4. Case run L.

Jrun LK∆ ′
= (def J−K∆ ′ )

pure (λl. λ∆
′
. l)� JLK

= (I3, I2,β→)

pure (λg. λ∆
′
. g ∆)� (pure (λl. λ∆. l)� JLK)

= (def J−K∆ ′ ,x)
pure (λg. λ∆

′
. g ∆)� Jrun LK∆

A.4.2 The laws of I follow from the laws of S

For each lawM = N of I we must show JMK = JNK.

1. (I1)

Jpure id� MK
= (def J−K,β→)

λ•〈〉.let k⇐ (λ•〈〉. [id]) • 〈〉 in let x⇐ JMK • 〈〉 in [k x]
= (β )

λ•〈〉.let k⇐ [id] in let x⇐ JMK • 〈〉 in [k x]
= (left, def id)

λ•〈〉.let x⇐ JMK • 〈〉 in [x]
= (right)

λ•〈〉. JMK • 〈〉
= (η )

JMK

2. (I2)

Jpure M� pure NK
= (def J−K,β→)

λ•〈〉.let k⇐ (λ•〈〉. [JMK]) • 〈〉 in let x⇐ (λ•〈〉. [JNK]) • 〈〉 in [k x]
= (β )

λ•〈〉.let k⇐ [JMK] in let x⇐ [JNK] in [k x]
= (left)

λ•〈〉. [JMK JNK]
= (def J−K)

Jpure (M N)K
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3. (I3)

Jpure (·)� L� M� NK
= (def J−K,β→)

λ•〈〉.let l⇐ (λ•〈〉.let k⇐ (λ•〈〉.let j⇐ (λ•〈〉. [(·)]) • 〈〉 in
let y⇐ JLK • 〈〉 in [j y]) • 〈〉 in

let x⇐ JMK • 〈〉 in [k x]) • 〈〉 in
let m⇐ JNK • 〈〉 in [l m]

= (β )
λ•〈〉.let l⇐ let k⇐ let j⇐ [(·)] in

let y⇐ JLK • 〈〉 in [j y] in
let x⇐ JMK • 〈〉 in [k x] in

let m⇐ JNK • 〈〉 in [l m]
= (assoc)

λ•〈〉.let j⇐ [(·)] in
let y⇐ JLK • 〈〉 in
let k⇐ [j y] in
let x⇐ JMK • 〈〉 in
let l⇐ [k x] in
let m⇐ JNK • 〈〉 in [l m]

= (left)
λ•〈〉.let y⇐ JLK • 〈〉 in

let x⇐ JMK • 〈〉 in
let m⇐ JNK • 〈〉 in [(·) y x m]

= (def ·)
λ•〈〉.let k⇐ JLK • 〈〉 in

let j⇐ JMK • 〈〉 in
let y⇐ JNK • 〈〉 in [k (j y)]

= (left)
λ•〈〉.let k⇐ JLK • 〈〉 in

let j⇐ JMK • 〈〉 in
let y⇐ JNK • 〈〉 in
let x⇐ [j y] in [k x]

= (assoc)
λ•〈〉.let k⇐ JLK • 〈〉 in

let x⇐ let j⇐ JMK • 〈〉 in let y⇐ JNK • 〈〉 in [j y] in
[k x]

= (β )
λ•〈〉.let k⇐ JLK • 〈〉 in

let x⇐ (λ•〈〉.let j⇐ JMK • 〈〉 in let y⇐ JNK • 〈〉 in [j y]) • 〈〉 in
[k x]

= (def J−K,β→)
JL� (M� N)K
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4. (I4)

JM� pure NK
= (def J−K,β→)

λ•〈〉.let k⇐ JMK • 〈〉 in let x⇐ (λ•〈〉. [JNK]) • 〈〉 in [k x]
= (β )

λ•〈〉.let k⇐ JMK • 〈〉 in let x⇐ [JNK] in [k x]
= (left)

λ•〈〉.let k⇐ JMK • 〈〉 in [k JNK]
= (β→)

λ•〈〉.let x⇐ JMK • 〈〉 in [(λf. f JNK) x]
= (left)

λ•〈〉.let k⇐ [λf. f JNK] in let x⇐ JMK • 〈〉 in [k x]
= (β )

λ•〈〉.let k⇐ (λ•〈〉. [λf. f JNK]) • 〈〉 in let x⇐ JMK • 〈〉 in [k x]
= (def J−K,β→)

Jpure (λf. f N)� MK

A.4.3 The laws of S follow from the laws of I

For each law P = Q of S we must show 〈[P]〉∆ = 〈[Q]〉∆.

1. (β )

〈[(λ•x. Q) • M]〉∆
= (def 〈[−]〉∆)

pure (λl. λ∆. l 〈[M]〉)� 〈[Q]〉x
= (I2,β→)

pure (·)� pure (λg. λ∆. g 〈∆, 〈[M]〉〉)� pure (λg. λ〈∆, x〉. g x)� 〈[Q]〉x
= (I3)

pure (λg. λ∆. g 〈∆, 〈[M]〉〉)� (pure (λg. λ〈∆, x〉. g x)� 〈[Q]〉x)
= (Lemma 14)

pure (λg. λ∆. g 〈∆, 〈[M]〉〉)� 〈[Q]〉∆,x

= (Lemma 13)
〈[Q[x := M]]〉∆

2. (η )

〈[λ•x. L • x]〉
= (def 〈[−]〉)

pure (λl. λx. l x)� 〈[L]〉
= ((λl. λx. l x) = id, I1)
〈[L]〉
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3. (left)

〈[let x⇐ [M] in Q]〉∆
= (def 〈[−]〉∆)

pure (λp. λq. λ∆. q 〈∆, p ∆〉)� pure (λ∆. 〈[M]〉)� 〈[Q]〉∆,x

= (I2,β→)
pure (λq. λ∆. q 〈∆, 〈[M]〉〉)� 〈[Q]〉∆,x

= (Lemma 13)
〈[Q[x := M]]〉∆

4. (right)

〈[let x⇐ P in [x]]〉∆
= (def 〈[−]〉∆)

pure (λp. λq. λ∆. q 〈∆, p ∆〉)� 〈[P]〉∆ � pure (λ〈∆, x〉. x)
= (I4)

pure (λf. f (λ〈∆, x〉. x))� (pure (λp. λq. λ∆. q 〈∆, p ∆〉)� 〈[P]〉∆)
= (I3)

pure (·)� pure (λf. f (λ〈∆, x〉. x))� pure (λp. λq. λ∆. q 〈∆, p ∆〉)� 〈[P]〉∆
= (I2,β→)

pure (λc. λ∆. c ∆)� 〈[P]〉∆
= ((λc. λ∆. c ∆) = id, I1)
〈[P]〉∆

5. (assoc)

〈[let y⇐ (let x⇐ P in Q) in R]〉∆
= (def 〈[−]〉∆)

pure (λs. λr. λ∆. r 〈∆, s ∆〉)� (pure (λp. λq. λ∆. q 〈∆, p ∆〉)� 〈[P]〉∆ � 〈[Q]〉∆,x)

� 〈[R]〉∆,y

= (I3, I2,β→)
pure (λb. λc. λr. λ∆. r 〈∆, (b c) ∆〉)� (pure (λp. λq. λ∆. q 〈∆, p ∆〉)� 〈[P]〉∆)
� 〈[Q]〉∆,x � 〈[R]〉∆,y

= (I3, I2,β→)
pure (λl. λc. λr. λ∆. r 〈∆, (c 〈∆, l ∆〉)〉)� 〈[P]〉∆ � 〈[Q]〉∆,x � 〈[R]〉∆,y

= (I3, I2,β→)
pure (λt. λe. λi. t e (λ〈〈∆, x〉, y〉. i 〈∆, y〉))
� (pure (λc. λg. λl. λ∆. l 〈〈∆, c ∆〉, g 〈∆, c ∆〉〉)� 〈[P]〉∆)
� 〈[Q]〉∆,x � 〈[R]〉∆,y

= (I3, I2,β→)
pure (λb. λe. b e (λg. λ〈〈∆, x〉, y〉. g 〈∆, y〉))
� (pure ((·) (·))� (pure (λc. λg. λl. λ∆. l 〈〈∆, c ∆〉, g 〈∆, c ∆〉〉)� 〈[P]〉∆))
� 〈[Q]〉∆,x � 〈[R]〉∆,y

(continued on next page)
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pure (λb. λe. b e (λg. λ〈〈∆, x〉, y〉. g 〈∆, y〉))
� (pure ((·) (·))� (pure (λc. λg. λl. λ∆. l 〈〈∆, c ∆〉, g 〈∆, c ∆〉〉)� 〈[P]〉∆))
� 〈[Q]〉∆,x � 〈[R]〉∆,y

= (I3, I2,β→)
pure (λh. h (λg. λ〈〈∆, x〉, y〉. g 〈∆, y〉))
� (pure ((·) (·))� (pure (λc. λg. λl. λ∆. l 〈〈∆, c ∆〉, g 〈∆, c ∆〉〉)� 〈[P]〉∆)

� 〈[Q]〉∆,x)

� 〈[R]〉∆,y

= (I4)
pure ((·) (·))� (pure (λc. λg. λl. λ∆. l 〈〈∆, c ∆〉, g 〈∆, c ∆〉〉)� 〈[P]〉∆)
� 〈[Q]〉∆,x � pure (λg. λ〈〈∆, x〉, y〉. g 〈∆, y〉)� 〈[R]〉∆,y

= (I3, I2,β→)
pure (·)� (pure (λc. λg. λl. λ∆. l 〈〈∆, c ∆〉, g 〈∆, c ∆〉〉)� 〈[P]〉∆ � 〈[Q]〉∆,x)

� pure (λg. λ〈〈∆, x〉, y〉. g 〈∆, y〉)� 〈[R]〉∆,y

= (I3)
pure (λc. λg. λl. λ∆. l 〈〈∆, c ∆〉, g 〈∆, c ∆〉〉)� 〈[P]〉∆ � 〈[Q]〉∆,x

� (pure (λg. λ〈〈∆, x〉, y〉. g 〈∆, y〉)� 〈[R]〉∆,y)

= (I3, I2,β→)
pure (λf. f (λq. λr. λ∆. r 〈∆, q ∆〉))
� (pure (λe. λf. λg. λl. λ∆. f g l 〈∆, e ∆〉)� 〈[P]〉∆)
� 〈[Q]〉∆,x � (pure (λg. λ〈〈∆, x〉, y〉. g 〈∆, y〉)� 〈[R]〉∆,y)

= (I4)
pure (λe. λf. λg. λl. λ∆. f g l 〈∆, e ∆〉)� 〈[P]〉∆
� pure (λq. λr. λ∆. r 〈∆, q ∆〉)
� 〈[Q]〉∆,x � (pure (λg. λ〈〈∆, x〉, y〉. g 〈∆, y〉)� 〈[R]〉∆,y)

= (I3, I2,β→)
pure (·)� (pure (λc. λk. λl. λ∆. k l 〈∆, c ∆〉)� 〈[P]〉∆)
� pure (λq. λr. λ∆. r 〈∆, q ∆〉)
� 〈[Q]〉∆,x � (pure (λg. λ〈〈∆, x〉, y〉. g 〈∆, y〉)� 〈[R]〉∆,y)

= (I3)
pure (λc. λk. λl. λ∆. k l 〈∆, c ∆〉)� 〈[P]〉∆
� (pure (λq. λr. λ∆. r 〈∆, q ∆〉)� 〈[Q]〉∆,x)

� (pure (λg. λ〈〈∆, x〉, y〉. g 〈∆, y〉)� 〈[R]〉∆,y)

= (I3, I2,β→)
pure (·)� (pure (λp. λq. λ∆. q 〈∆, p ∆〉)� 〈[P]〉∆)
� (pure (λq. λr. λ∆. r 〈∆, q ∆〉)� 〈[Q]〉∆,x)

� (pure (λg. λ〈〈∆, x〉, y〉. g 〈∆, y〉)� 〈[R]〉∆,y)

(continued on next page)
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pure (·)� (pure (λp. λq. λ∆. q 〈∆, p ∆〉)� 〈[P]〉∆)
� (pure (λq. λr. λ∆. r 〈∆, q ∆〉)� 〈[Q]〉∆,x)

� (pure (λg. λ〈〈∆, x〉, y〉. g 〈∆, y〉)� 〈[R]〉∆,y)

= (I3)
pure (λp. λq. λ∆. q 〈∆, p ∆〉)� 〈[P]〉∆
� (pure (λq. λr. λ∆. r 〈∆, q ∆〉)� 〈[Q]〉∆,x

� (pure (λg. λ〈〈∆, x〉, y〉. g 〈∆, y〉)� 〈[R]〉∆,y))

= (Lemma 14)
pure (λp. λq. λ∆. q 〈∆, p ∆〉)� 〈[P]〉∆
� (pure (λq. λr. λ∆. r 〈∆, q ∆〉)� 〈[Q]〉∆,x � 〈[R]〉∆,x,y)

= (def 〈[−]〉∆)
〈[let x⇐ P in let y⇐ Q in R]〉∆

6. (run1)

〈[L • M]〉∆
= (def 〈[−]〉∆)

pure (λl. λ∆. l 〈[M]〉)� 〈[L]〉
= (I2,β→)

pure (·)� pure (λg. g (λ〈∆, f〉. f 〈[M]〉))� pure (λc. λq. λ∆. q 〈∆, c〉)� 〈[L]〉
= (I3)

pure (λg. g (λ〈∆, f〉. f 〈[M]〉))� (pure (λc. λq. λ∆. q 〈∆, c〉)� 〈[L]〉)
= (I4)

pure (λc. λq. λ∆. q 〈∆, c〉)� 〈[L]〉� pure (λ〈∆, f〉. f 〈[M]〉)
= (I3, I2,β→)

pure (λp. λq. λ∆. q 〈∆, p ∆〉)� (pure (λl. λ∆. l)� 〈[L]〉)� pure (λ〈∆, f〉. f 〈[M]〉)
= (def 〈[−]〉∆)
〈[let f⇐ run L in [f M]]〉

7. (run2)

〈[run (λ•x. [M])]〉∆
= (def 〈[−]〉∆)

pure (λl. λ∆. l)� pure (λx. 〈[M]〉)
= (I2)

pure (λ∆. λx. M)
= (def 〈[−]〉∆)
〈[[λx. M]]〉∆
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8. (run3)

〈[run (λ•x.let y⇐ P in Q)]〉∆
= (def 〈[−]〉∆)

pure const� (pure (λp. λq. λx. q 〈x, p x〉)� 〈[P]〉x � 〈[Q]〉x,y)

= (Lemma 14)
pure const� (pure (λp. λq. λx. q 〈x, p x〉)� (pure (λg. λx. g 〈〉)� 〈[P]〉〈〉)� 〈[Q]〉x,y)

= (I3, I2,β→)
pure const� (pure (λg. (λq. λx. q 〈x, g 〈〉〉))� 〈[P]〉〈〉 � 〈[Q]〉x,y)

= (I3, I2)
pure (λh. const · h)� (pure (λg. (λq. λx. q 〈x, g 〈〉〉))� 〈[P]〉〈〉)� 〈[Q]〉x,y

= (I3, I2,β→)
pure (λp. λq. λd. λx. q 〈x, p 〈〉〉)� 〈[P]〉〈〉 � 〈[Q]〉x,y

= (I3, I2)
pure ((·) const)� (pure (λp. λq. λx. q 〈x, p 〈〉〉)� 〈[P]〉〈〉)� 〈[Q]〉x,y

= (I3, I2,β→)
pure (λp. λq. λz. λx. q 〈x, p 〈〉〉)� 〈[P]〉〈〉 � 〈[Q]〉x,y

= (I3, I2,β→)
pure (λh. h (λf. λ〈∆, y〉. λx. f 〈x, y〉))
� (pure (λp. λb. λq. λz. b q 〈z, p 〈〉〉)� 〈[P]〉〈〉)
� 〈[Q]〉x,y

= (I4)
pure (λp. λb. λq. λz. b q 〈z, p 〈〉〉)� 〈[P]〉〈〉
� pure (λf. λ〈∆, y〉. λx. f 〈x, y〉)� 〈[Q]〉x,y

= (I3, I2,β→)
pure (λp. (λq. λz. q 〈z, p 〈〉〉))� 〈[P]〉〈〉
� (pure (λh. h (λ〈〈∆, y〉, f〉. λx. f 〈x, y〉))
� (pure (λn. λs. λ〈∆, y〉. s 〈〈∆, y〉, n〉)� 〈[Q]〉x,y))

= (I4)
pure (λp. (λq. λ∆. q 〈∆, p 〈〉〉))� 〈[P]〉〈〉
� (pure (λn. λs. λ〈∆, y〉. s 〈〈∆, y〉, n〉)� 〈[Q]〉x,y

� pure (λ〈〈∆, y〉, f〉. λx. f 〈x, y〉))
= (I3, I2,β→)

pure (λp. λq. λ∆. q 〈∆, p ∆〉)� (pure (λg. λ∆. g 〈〉)� 〈[P]〉〈〉)
� (pure (λr. λs. λ〈∆, y〉. s 〈〈∆, y〉, r 〈∆, y〉〉)� (pure const� 〈[Q]〉x,y)

� pure (λ〈〈∆, y〉, f〉. λx. f 〈x, y〉))
= (Lemma 14)

pure (λp. λq. λ∆. q 〈∆, p ∆〉)� 〈[P]〉∆
� (pure (λr. λs. λ〈∆, y〉. s 〈〈∆, y〉, r 〈∆, y〉〉)� (pure const� 〈[Q]〉x,y)

� pure (λ〈〈∆, y〉, f〉. λx. f 〈x, y〉))
= (def 〈[−]〉∆)
〈[let y⇐ P in let f⇐ run (λ•〈x, y〉. Q) in [λx. f 〈x, y〉]]〉∆
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A.4.4 Translating I to S and back

For each term M of I we must show 〈[JMK]〉 = fA(M). The proof is by induction on the

derivation ofM.

1. Case pure

f−1
A→I(A) 〈[JpureK]〉

= (def J−K, def 〈[−]〉)
f−1
A→I(A) (λx. pure (λ〈〉. x))

= (def f−1
A→I(A),β

→)

λv. pure (λx. f−1
A (x 〈〉))� pure (λ〈〉. (fA v))

= (I2,β→)

λv. pure (f−1
A (fA v))

= (f−1
A (fA v) = v,η→)

pure

2. Case (�)

f−1
I(A→B)→IA→IB
〈[J(�)K]〉

= (def J−K)
f−1
I(A→B)→IA→IB
〈[λh. λa. λ•〈〉.let k⇐ h • 〈〉 in let x⇐ a • 〈〉 in [k x]]〉

= (def 〈[−]〉)
f−1
I(A→B)→IA→IB
(λh. λa. pure (λp. λq. λ〈〉. q 〈〈〉, p 〈〉〉)� (pure (λl. λd. l 〈〉)� h)
� (pure (λp. λq. λ〈〈〉, k〉. q 〈〈〈〉, k〉, p 〈〈〉, k〉〉)� (pure (λl. λ〈〈〉, k〉. l 〈〉)� a)

� pure (λ〈〈〈〉, k〉, x〉. k x)))
= (I3, I2,β→)

f−1
I(A→B)→IA→IB
(λh. λa. pure (λc. λq. λ〈〉. q 〈〈〉, (c 〈〉)〉)� h

� (pure (λp. λq. λ〈〈〉, k〉. q 〈〈〈〉, k〉, p 〈〈〉, k〉〉)� (pure (λl. λ〈〈〉, k〉. l 〈〉)� a)
� pure (λ〈〈〈〉, k〉, x〉. k x)))

= (I4)

f−1
I(A→B)→IA→IB
(λh. λa. pure (λc. λq. λ〈〉. q 〈〈〉, (c 〈〉)〉)� h

� (pure (λf. f (λ〈〈〈〉, k〉, x〉. k x))� (pure (λp. λq. λ〈〈〉, k〉. q 〈〈〈〉, k〉, p 〈〈〉, k〉〉)
� (pure (λl. λ〈〈〉, k〉. l 〈〉)� a))))

(continued on next page)
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(continued from previous page)
f−1
I(A→B)→IA→IB
(λh. λa. pure (λc. λq. λ〈〉. q 〈〈〉, (c 〈〉)〉)� h

� (pure (λf. f (λ〈〈〈〉, k〉, x〉. k x))� (pure (λp. λq. λ〈〈〉, k〉. q 〈〈〈〉, k〉, p 〈〈〉, k〉〉)
� (pure (λl. λ〈〈〉, k〉. l 〈〉)� a))))

= (I3, I2,β→)

f−1
I(A→B)→IA→IB
(λh. λa. pure (·)� (pure (λc. λq. λ〈〉. q 〈〈〉, (c 〈〉)〉)� h)
� pure (λf. f (λ〈〈〈〉, k〉, x〉. k x))
� (pure (λc. λq. λ〈〈〉, k〉. q 〈〈〈〉, k〉, (c 〈〉)〉)� a))

= (I3, I2,β→)

f−1
I(A→B)→IA→IB
(λh. λa. pure (λt. λb. λc. λ〈〉. (b c) 〈〈〉, (t 〈〉)〉)� h

� pure (λf. f (λ〈〈〈〉, k〉, x〉. k x))
� (pure (λc. λq. λ〈〈〉, k〉. q 〈〈〈〉, k〉, (c 〈〉)〉)� a))

= (I4)

f−1
I(A→B)→IA→IB
(λh. λa. pure (λg. g (λf. f (λ〈〈〈〉, k〉, x〉. k x)))
� (pure (λt. λb. λc. λ〈〉. (b c) 〈〈〉, (t 〈〉)〉)� h)
� (pure (λc. λq. λ〈〈〉, k〉. q 〈〈〈〉, k〉, (c 〈〉)〉)� a))

= (I3, I2,β→)

f−1
I(A→B)→IA→IB
(λh. λa. pure (λn. λc. λ〈〉. c (λ〈〈〈〉, k〉, x〉. k x) 〈〈〉, (n 〈〉)〉)� h

� (pure (λc. λq. λ〈〈〉, k〉. q 〈〈〈〉, k〉, (c 〈〉)〉)� a))
= (I3, I2,β→)

f−1
I(A→B)→IA→IB
(λh. λa. pure ((λk. λe. λf. λ〈〉. e f (λ〈〈〈〉, p〉, x〉. p x) 〈〈〉, (k 〈〉)〉))� h

� pure (λc. λq. λ〈〈〉, k〉. q 〈〈〈〉, k〉, (c 〈〉)〉)� a)
= (I4)

f−1
I(A→B)→IA→IB
(λh. λa. pure (λg. g (λc. λq. λ〈〈〉, k〉. q 〈〈〈〉, k〉, (c 〈〉)〉))
� (pure ((λk. λe. λf. λ〈〉. e f (λ〈〈〈〉, p〉, x〉. p x) 〈〈〉, (k 〈〉)〉))� h)� a)

= (I3, I2,β→)

f−1
I(A→B)→IA→IB
(λh. λa. pure (λp. λq. λ〈〉. p 〈〉 (q 〈〉))� h� a)

= (def f−1
I(A→B)→IA→IB,β→)

(λs. λd. pure (λy. f−1
B (y 〈〉))

� (pure (λp. λq. λ〈〉. p 〈〉 (q 〈〉))� (pure (λz. λ〈〉. fB · z · f−1
A )� s)

� (pure (λx. λ〈〉. fA x)� d)))
= (I3, I2,β→)

(λs. λd. pure (λc. λm. λn. f−1
B (fB (c (f−1

A (m n 〈〉)))))� s

� pure (λx. λ〈〉. fA x)� d)
= (I4)

(λs. λd. pure (λg. g (λx. λ〈〉. fA x))

� (pure (λc. λm. λn. f−1
B (fB (c (f−1

A (m n 〈〉)))))� s)� d)

(continued on next page)
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(λs. λd. pure (λg. g (λx. λ〈〉. fA x))

� (pure (λc. λm. λn. f−1
B (fB (c (f−1

A (m n 〈〉)))))� s)� d)
= (I3, I2,β→)

(λs. λd. pure (λy. λn. f−1
B (fB (y (f−1

A (fA n)))))� s� d)

= (f−1
B (fB v) = v, f−1

A (fA v) = v)
(λs. λd. pure (λy. λn. y n)� s� d)

= (η→)
(λs. λd. pure id� s� d)

= (I1)
(λs. λd. s� d)

= (η→)
(�)

A.4.5 Translating S to I and back

For each term M of S we must show J〈[M]〉K = gA(M). For each command P of S we must

show J〈[P]〉∆K = g∆ A(λ•∆.P). The proof is by mutual induction on the derivations ofM and

P.

1. Case λ•x.Q

J〈[λ•x. Q]〉K
= (def 〈[−]〉)

J〈[Q]〉xK
= (induction hypothesis)

gA B (λ•x. Q)

2. Case L •M

g−1
D B J〈[L • M]〉∆K

= (def 〈[−]〉∆)
g−1
D B Jpure (λl. λ∆. l 〈[M]〉)� 〈[L]〉K

= (def J−K)
g−1
D B (λ•〈〉.let k⇐ (λ•〈〉. [λl. λ∆. l J〈[M]〉K]) • 〈〉 in let l⇐ J〈[L]〉K • 〈〉 in [k l])

= (β )

g−1
D B (λ•〈〉.let k⇐ [λl. λ∆. l J〈[M]〉K] in let l⇐ J〈[L]〉K • 〈〉 in [k l])

= (left,β→)

g−1
D B (λ•〈〉.let l⇐ J〈[L]〉K • 〈〉 in [λ∆. l J〈[M]〉K])

(continued on next page)
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g−1
D B (λ•〈〉.let l⇐ J〈[L]〉K • 〈〉 in [λ∆. l J〈[M]〉K])

= (induction hypothesis)
g−1
D B (λ•〈〉.let l⇐ (gA B L) • 〈〉 in [λ∆. l gA M])

= (def g−1
D B, def g−1

A B,β→)
(λ•∆.let h⇐ (λ•〈〉.let l⇐ (λ•〈〉.let f⇐ run L in

[λx. gB (f (g−1
A x))]) • 〈〉 in

[λ∆. l gA M]) • 〈〉 in
[g−1
B (h (gD ∆))])

= (β )

(λ•∆.let h⇐ (let l⇐ (let f⇐ run L in [λx. gB (f (g−1
A x))]) in

[λ∆. l gA M]) in
[g−1
B (h (gD ∆))])

= (assoc)
(λ•∆.let f⇐ run L in

let l⇐ [λx. gB (f (g−1
A x))] in

let h⇐ [λ∆. l gA M] in
[g−1
B (h (gD ∆))])

= (left,β→)

(λ•∆.let f⇐ run L in [g−1
B (gB (f (g−1

A (gA M))))])

= (g−1
A (gA x) = x, g−1

B (gB x) = x)
(λ•∆.let f⇐ run L in [f M])

= (run1)
(λ•∆. L • M)

3. Case [M]

J〈[[M]]〉∆K
= (def 〈[−]〉∆)

Jpure (λ∆. 〈[M]〉)K
= (def J−K)

λ•〈〉. [λ∆. J〈[M]〉K]
= (induction hypothesis)

λ•〈〉. [λ∆. gA M]
= (left)

λ•〈〉.let f⇐ [λ∆. M] in [λ∆. gA (f (g−1
D ∆))]

= (run2)

λ•〈〉.let f⇐ run (λ•∆. [M]) in [λ∆. gA (f (g−1
D ∆))]

= (def gD A)
gD A (λ•∆. [M])
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4. Case let x⇐ P in Q

g−1
D B J〈[let x⇐ P in Q]〉∆K

= (def 〈[−]〉∆)
g−1
D B Jpure (λp. λq. λ∆. q 〈∆, p q〉)� 〈[P]〉∆ � 〈[Q]〉∆,xK

= (def J−K)
g−1
D B (λ•〈〉.let j⇐ (λ•〈〉.let k⇐ (λ•〈〉. [λp. λq. λ∆. q 〈∆, p ∆〉]) • 〈〉 in

let x⇐ J〈[P]〉∆K • 〈〉 in [k x]) • 〈〉 in
let y⇐ J〈[Q]〉∆,xK • 〈〉 in

[j y])
= (β )

g−1
D B (λ•〈〉.let j⇐ (let k⇐ [λp. λq. λ∆. q 〈∆, p ∆〉] in

let x⇐ J〈[P]〉∆K • 〈〉 in
[k x]) in

let y⇐ J〈[Q]〉∆,xK • 〈〉 in [j y])

= (assoc)
g−1
D B (λ•〈〉.let k⇐ [λp. λq. λ∆. q 〈∆, p ∆〉] in

let x⇐ J〈[P]〉∆K • 〈〉 in
let j⇐ [k x] in
let y⇐ J〈[Q]〉∆,xK • 〈〉 in

[j y])
= (left,β→)

g−1
D B (λ•〈〉.let x⇐ J〈[P]〉∆K • 〈〉 in

let y⇐ J〈[Q]〉∆,xK • 〈〉 in
[λ∆. y 〈∆, x ∆〉])

= (induction hypothesis)
g−1
D B (λ•〈〉.let x⇐ (gD A (λ•∆. P)) • 〈〉 in

let y⇐ (g(D×A) B (λ•〈∆, x〉. Q)) • 〈〉 in
[λ∆. y 〈∆, x ∆〉])

= (def g−1
D B, def gD A, def g(D×A) B,β→)

(λ•∆.let h⇐ (λ•〈〉.let x⇐ (λ•〈〉.let f⇐ run (λ•∆. P) in
[λx. gA (f (g−1

D x))]) • 〈〉 in
let y⇐ (λ•〈〉.let f⇐ run (λ•〈∆, x〉. Q) in

[λx. gB (f (g−1
D×A x))]) • 〈〉 in

[λ∆. y 〈∆, x ∆〉]) • 〈〉 in
[g−1
B (h (gD ∆))])

= (β )

(λ•∆.let h⇐ (let x⇐ (let f⇐ run (λ•∆. P) in [λx. gA (f (g−1
D x))]) in

let y⇐ (let f⇐ run (λ•〈∆, x〉. Q) in [λx. gB (f (g−1
D×A x))]) in

[λ∆. y 〈∆, x ∆〉]) in
[g−1
B (h (gD ∆))])

(continued on next page)
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(λ•∆.let h⇐ (let x⇐ (let f⇐ run (λ•∆. P) in [λx. gA (f (g−1

D x))]) in
let y⇐ (let f⇐ run (λ•〈∆, x〉. Q) in [λx. gB (f (g−1

D×A x))]) in
[λ∆. y 〈∆, x ∆〉]) in

[g−1
B (h (gD ∆))])

= (assoc)
(λ•∆.let f⇐ run (λ•∆. P) in

let x⇐ [λx. gA (f (g−1
D x))] in

let j⇐ run (λ•〈∆, x〉. Q) in
let y⇐ [λx. gB (j (g−1

D×A x))] in
let h⇐ [λ∆. y 〈∆, x ∆〉] in

[g−1
B (h (gD ∆))])

= (left,β→)
(λ•∆.let f⇐ run (λ•∆. P) in

let j⇐ run (λ•〈∆, x〉. Q) in
[g−1
B (gB (j (g−1

D×A 〈gD ∆, gA (f (g−1
D (gD ∆)))〉)))])

= (def g−1
D×A)

(λ•∆.let f⇐ run (λ•∆. P) in
let j⇐ run (λ•〈∆, x〉. Q) in

[g−1
B (gB (j 〈g−1

D (gD ∆), g
−1
A (gA (f (g−1

D (gD ∆))))〉))])
= (g−1

D (gD x) = x, g−1
B (gB x) = x, g−1

A (gA x) = x)
(λ•∆.let f⇐ run (λ•∆. P) in let j⇐ run (λ•〈∆, x〉. Q) in [j 〈∆, f ∆〉])

= (run1)
(λ•∆.let f⇐ run (λ•∆. P) in (λ•〈∆, x〉. Q) • 〈∆, f ∆〉)

= (β )
(λ•∆.let f⇐ run (λ•∆. P) in Q[x := f ∆])

= (left)
(λ•∆.let f⇐ run (λ•∆. P) in let x⇐ [f ∆] in Q)

= (assoc)
(λ•∆.let x⇐ let f⇐ run (λ•∆. P) in [f ∆] in Q)

= (run1)
(λ•∆.let x⇐ (λ•∆. P) • ∆ in Q)

= (β )
(λ•∆.let x⇐ P in Q)
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5. Case run L

g−1
D (A→B) J〈[run L]〉∆K

= (def 〈[−]〉∆)
g−1
D (A→B) Jpure const� 〈[L]〉K

= (def J−K)
g−1
D (A→B) (λ

•〈〉.let k⇐ (λ•〈〉. [const]) • 〈〉 in let x⇐ J〈[L]〉K • 〈〉 in [k x])

= (β )

g−1
D (A→B) (λ

•〈〉.let k⇐ [const] in let x⇐ J〈[L]〉K • 〈〉 in [k x])

= (left)
g−1
D (A→B) (λ

•〈〉.let x⇐ J〈[L]〉K • 〈〉 in [const x])

= (def g−1
D (A→B))

λ•∆.let h⇐ (λ•〈〉.let x⇐ J〈[L]〉K • 〈〉 in [const x]) • 〈〉 in [g−1
A→B (h (gD x))]

= (β )

λ•∆.let h⇐ let x⇐ J〈[L]〉K • 〈〉 in [const x] in [g−1
A→B (h (gD x))]

= (assoc)
λ•∆.let x⇐ J〈[L]〉K • 〈〉 in let h⇐ [const x] in [g−1

A→B (h (gD x))]
= (left)

λ•∆.let x⇐ J〈[L]〉K • 〈〉 in [g−1
A→B x]

= (induction hypothesis)
λ•∆.let x⇐ (gA B L) • 〈〉 in [g−1

A→B x]
= (def gA B)

λ•∆.let x⇐ (λ•〈〉.let f⇐ run L in [λx. gB (f (g−1
A x))]) • 〈〉 in [g−1

A→B x]
= (β )

λ•∆.let x⇐ let f⇐ run L in [λx. gB (f (g−1
A x))] in [g−1

A→B x]
= (assoc)

λ•∆.let f⇐ run L in let x⇐ [λx. gB (f (g−1
A x))] in [g−1

A→B x]
= (left)

λ•∆.let f⇐ run L in [g−1
A→B (λx. gB (f (g−1

A x)))]

= (def g−1
A→B)

λ•∆.let f⇐ run L in [λs. g−1
B (gB (f (g−1

A (gA s))))]

= (g−1
A (gA v) = v, g−1

B (gB v) = v)
λ•∆.let f⇐ run L in [λs. f s]

= (η→)
λ•∆.let f⇐ run L in [f]

= (right)
λ•∆.run L
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A.5 Equational embedding of S into A

This section gives a proof of Proposition 19 (page 75).

A.5.1 Proofs of Lemmas 16 and 18

We begin with proofs of Lemma 16 and 18, which give the translations of substitution and

weakening.

Proof of Lemma 16 (Translating substitution from S to A) .

The translations of substitution on terms and commands from S to A are as follows.

JM[x :=N]K = JMK[x := JNK]

JQ[x :=N]K = let q⇐ JQK∆,x in [λ∆.q (∆, JNK)]

Proof. By mutual induction on the derivations of P and M. There is one case for each term

form and each command form. We give only the cases for command forms here.

1. Case L •M

J(L • M)[x := N]K∆
= (def substitution)

JL • (M[x := N])K∆
= (def J−K∆)

let l⇐ JLK • 〈〉 in [λ∆. l JM[x := N]K]
= (induction hypothesis)

let l⇐ JLK • 〈〉 in [λ∆. l (JMK[x := JNK])]
= (left)

let l⇐ JLK • 〈〉 in let q⇐ [λ〈∆, x〉. l JMK] in [λ∆. q 〈∆, JNK〉]
= (assoc)

let q⇐ (let l⇐ JLK • 〈〉 in [λ〈∆, x〉. l JMK]) in [λ∆. q 〈∆, JNK〉]
= (def J−K∆,x)

let q⇐ JL • MK∆,x in [λ∆. q 〈∆, JNK〉]
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2. Case [M]

J[M][x := N]K∆
= (def substitution)

J[M[x := N]]K∆
= (def J−K∆)

[λ∆. JM[x := N]K]
= (induction hypothesis)

[λ∆. M[x := JNK]]
= (left)

let q⇐ [λ〈∆, x〉. JMK] in [λ∆. q 〈∆, JNK〉]
= (def J−K∆,x)

let q⇐ J[M]K∆,x in [λ∆. q 〈∆, JNK〉]

3. Case let y⇐ P in Q

J(let y⇐ P in Q)[x := N]K∆
= (def substitution)

Jlet y⇐ P[x := N] in Q[x := N]K∆
= (def J−K∆)

let p⇐ JP[x := N]K∆ in let q⇐ JQ[x := N]K∆,y in [λ∆. q 〈∆, p ∆〉]
= (induction hypothesis)

let p⇐ (let r⇐ JPK∆,x in [λ∆. r 〈∆, JNK〉]) in
let q⇐ (let s⇐ JQK∆,y,x in [λ〈∆, y〉. s 〈〈∆, y〉, JNK〉]) in

[λ∆. q 〈∆, p ∆〉]
= (assoc)

let r⇐ JPK∆,x in
let p⇐ [λ∆. r 〈∆, JNK〉] in
let s⇐ JQK∆,y,x in
let q⇐ [λ〈∆, y〉. s 〈〈∆, y〉, JNK〉] in

[λ∆. q 〈∆, p ∆〉]
= (left,β→)

let r⇐ JPK∆,x in let s⇐ JQK∆,y,x in [λ∆. s 〈〈∆, r 〈∆, JNK〉〉, JNK〉]
= (Lemma 18)

let r⇐ JPK∆,x in
let s⇐ (let q⇐ JQK∆,x,y in [λ〈〈∆, y〉, x〉. q 〈〈∆, x〉, x〉]) in
[λ∆. s 〈〈∆, r 〈∆, JNK〉〉, JNK〉]

= (assoc)
let r⇐ JPK∆,x in
let q⇐ JQK∆,x,y in
let s⇐ [λ〈〈∆, y〉, x〉. q 〈〈∆, x〉, y〉] in
[λ∆. s 〈〈∆, r 〈∆, JNK〉〉, JNK〉]

(continued on next page)
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let r⇐ JPK∆,x in
let q⇐ JQK∆,x,y in
let s⇐ [λ〈〈∆, y〉, x〉. q 〈〈∆, x〉, y〉] in
[λ∆. s 〈〈∆, r 〈∆, JNK〉〉, JNK〉]

= (left,β→)
let p⇐ JPK∆,x in
let q⇐ JQK∆,x,y in
[λ∆. q 〈〈∆, JNK〉, p 〈∆, JNK〉〉]

= (left,β→)
let p⇐ JPK∆,x in
let q⇐ JQK∆,x,y in
let s⇐ [λ〈∆, x〉. q 〈〈∆, x〉, p 〈∆, x〉〉] in
[λ∆. s 〈∆, JNK〉]

= (assoc)
let s⇐ (let p⇐ JPK∆,x in

let q⇐ JQK∆,x,y in
Jλ〈∆, x〉. q 〈〈∆, x〉, p 〈∆, x〉〉K) in

[λ∆. s 〈∆, JNK〉]
= (def J−K∆,x)

let s⇐ Jlet y⇐ P in QK∆,x in [λ∆. s 〈∆, JNK〉]

4. Case run L

J(run L)[x := N]K∆
= (def substitution)

Jrun LK∆
= (def J−K∆)

let h⇐ JLK • 〈〉 in [λ∆. h]
= (left)

let h⇐ JLK • 〈〉 in let q⇐ [λ〈∆, x〉. h] in [λ∆. q 〈∆, JNK〉]
= (assoc)

let q⇐ (let h⇐ JLK • 〈〉 in [λ〈∆, x〉. h]) in [λ∆. q 〈∆, JNK〉]
= (def J−K∆,x)

let q⇐ Jrun LK∆,x in [λ∆. q 〈∆, JNK〉]
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Proof of Lemma 18 (Translating weakening from S to A) The translation of weaken-

ing from S to A for commands is as follows.

u

vΓ ; ∆ ` Q ! B

Γ ′; ∆ ′ ` Q ! B

}

~ =
JΓK; · ` JQK∆ ! J∆K→ JBK

JΓ ′K; · ` let q⇐ JQK∆ in [λ∆ ′.q ∆] ! J∆ ′K→ JBK

Proof. By induction on the derivation of Q. There is one case for each command form.

1. Case L •M.

JL • MK∆ ′
= (def J−K∆ ′ )

let l⇐ JLK • 〈〉 in [λ∆
′
. l JMK]

= (left,β→)

let l⇐ JLK • 〈〉 in let q⇐ [λ∆. l JMK] in [λ∆
′
. q ∆]

= (assoc)
let q⇐ let l⇐ JLK • 〈〉 in [λ∆. l JMK] in [λ∆

′
. q ∆]

= (def J−K∆)
let q⇐ JL • MK∆ in [λ∆

′
. q ∆]

2. Case [M].

J[M]K∆ ′
= (def J−K∆ ′ )

[λ∆
′
. JMK]

= (left,β→)

let q⇐ [λ∆. JMK] in [λ∆
′
. q ∆]

= (def J−K∆)
let q⇐ J[M]K∆ in [λ∆

′
. q ∆]

3. Case let x⇐ P in Q.

Jlet x⇐ P in QK∆ ′
= (def J−K∆ ′ )

let p⇐ JPK∆ ′ in let q⇐ JQK∆ ′ ,x in [λ∆
′
. q 〈∆ ′ , p ∆ ′〉]

= (induction hypothesis)
let r⇐ let p⇐ JPK∆ in [λ∆

′
. p ∆] in

let s⇐ let q⇐ JQK∆ ′ ,x in [λ〈∆ ′ , x〉. q 〈∆, x〉] in
[λ∆

′
. s 〈∆ ′ , r ∆ ′〉]

(continued on next page)
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let r⇐ let p⇐ JPK∆ in [λ∆

′
. p ∆] in

let s⇐ let q⇐ JQK∆ ′ ,x in [λ〈∆ ′ , x〉. q 〈∆, x〉] in
[λ∆

′
. s 〈∆ ′ , r ∆ ′〉]

= (assoc)
let p⇐ JPK∆ in
let r⇐ [λ∆

′
. p ∆] in

let q⇐ JQK∆ ′ ,x in
let s⇐ [λ〈∆ ′ , x〉. q 〈∆, x〉] in
[λ∆

′
. s 〈∆ ′ , r ∆ ′〉]

= (left,β→)

let p⇐ JPK∆ in let q⇐ JQK∆ ′ ,x in [λ∆
′
. q 〈∆, p ∆〉]

= (left,β→)

let p⇐ JPK∆ in let q⇐ JQK∆,x in let q⇐ [λ∆. q 〈∆, p ∆〉] in [λ∆
′
. q ∆]

= (assoc)
let q⇐ (let p⇐ JPK∆ in let q⇐ JQK∆,x in [λ∆. q 〈∆, p ∆〉]) in [λ∆

′
. q ∆]

= (def J−K∆)
let q⇐ Jlet x⇐ P in QK∆ in [λ∆

′
. q ∆]

4. Case run L.

Jrun LK∆ ′
= (def J−K∆ ′ )

let h⇐ JLK • 〈〉 in [λ∆
′
. h]

= (left,β→)

let h⇐ JLK • 〈〉 in let q⇐ [λ∆. h] in [λ∆
′
. q ∆]

= (assoc)
let q⇐ let h⇐ JLK • 〈〉 in [λ∆. h] in [λ∆

′
. q ∆]

= (def J−K∆)
let q⇐ Jrun LK∆ in [λ∆

′
. q ∆]



250 Appendix A. Arrow proofs

A.5.2 The laws of S follow from the laws of A

For each lawM = N or P = Q of S we must show JMK = JNK or JPK∆ = JQK∆.

1. (β )

J(λ•x. Q) • MK∆
= (def J−K∆)

let l⇐ (λ•〈〉. JQKx) • 〈〉 in [λ∆. l JMK]
= (β )

let l⇐ JQKx in [λ∆. l JMK]
= (Lemma 16)

JQ[x := M]K

2. (η )

Jλ•x. L • xK
= (def J−K)

λ•〈〉.let l⇐ JLK • 〈〉 in [λx. l x]
= (η→)

λ•〈〉.let l⇐ JLK • 〈〉 in [l]
= (right)

λ•〈〉. JLK • 〈〉
= (η )

JLK

3. (left)

Jlet x⇐ [M] in QK∆
= (def J−K∆)

let p⇐ [λ∆. JMK] in let q⇐ JQK∆,x in [λ∆. q 〈∆, p ∆〉]
= (left,β→)

let q⇐ JQK∆,x in [λ∆. q 〈∆, JMK〉]
= (Lemma 16)

JQ[x := M]K∆

4. (right)

Jlet x⇐ P in [x]K∆
= (def J−K∆)

let p⇐ JPK∆ in let q⇐ [λ〈∆, x〉. x] in [λ∆. q 〈∆, p ∆〉]
= (left,β→)

let p⇐ JPK∆ in [λ∆. p ∆]

(continued on next page)
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(continued from previous page)
let p⇐ JPK∆ in [λ∆. p ∆]

= (η→)
let p⇐ JPK∆ in [p]

= (right)
JPK∆

5. (assoc)

Jlet y⇐ (let x⇐ P in Q) in RK∆
= (def J−K∆)

let s⇐ (let p⇐ JPK∆ in let q⇐ JQK∆,x in [λ∆. q 〈∆, p ∆〉]) in
let r⇐ JRK∆,y in [λ∆. r 〈∆, s ∆〉]

= (assoc)
let p⇐ JPK∆ in
let q⇐ JQK∆,x in
let s⇐ [λ∆. q 〈∆, p ∆〉] in
let r⇐ JRK∆,y in
[λ∆. r 〈∆, s ∆〉]

= (left)
let p⇐ JPK∆ in
let q⇐ JQK∆,x in
let r⇐ JRK∆,y in
[λ∆. r 〈∆, q 〈∆, p ∆〉〉]

= (left,β→)
let p⇐ JPK∆ in
let q⇐ JQK∆,x in
let r⇐ JRK∆,y in
let t⇐ [λ〈〈∆, x〉, y〉. r 〈∆, y〉] in
let s⇐ [λ〈∆, x〉. t 〈〈∆, x〉, q 〈∆, x〉〉] in

[λ∆. s 〈∆, p ∆〉]
= (assoc)

let p⇐ JPK∆ in
let s⇐ (let q⇐ JQK∆,x in

let t⇐ (let r⇐ JRK∆,y in [λ〈〈∆, x〉, y〉. r 〈∆, y〉]) in
[λ〈∆, x〉. t 〈〈∆, x〉, q 〈∆, x〉〉]) in

[λ∆. s 〈∆, p ∆〉]

(continued on next page)
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(continued from previous page)
let p⇐ JPK∆ in
let s⇐ (let q⇐ JQK∆,x in

let t⇐ (let r⇐ JRK∆,y in [λ〈〈∆, x〉, y〉. r 〈∆, y〉]) in
[λ〈∆, x〉. t 〈〈∆, x〉, q 〈∆, x〉〉]) in

[λ∆. s 〈∆, p ∆〉]
= (Lemma 18)

let p⇐ JPK∆ in
let s⇐ (let q⇐ JQK∆,x in

let r⇐ JRK∆,x,y in [λ〈∆, x〉. r 〈〈∆, x〉, q 〈∆, x〉〉]) in
[λ∆. s 〈∆, p ∆〉]

= (def J−K∆)
Jlet x⇐ P in (let y⇐ Q in R)K∆

6. (run1)

JL • MK∆
= (def J−K∆)

let h⇐ JLK • 〈〉 in [λ∆. h JMK]
= (left)

let h⇐ JLK • 〈〉 in
let p⇐ [λ∆. h] in
let q⇐ [λ〈∆, f〉. f JMK] in [λ∆. q 〈∆, p ∆〉]

= (assoc)
let p⇐ let h⇐ JLK • 〈〉 in [λ∆. h] in
let q⇐ [λ〈∆, f〉. f JMK] in [λ∆. q 〈∆, p ∆〉]

= (def J−K∆)
Jlet f⇐ run L in [f M]K∆

7. (run2)

Jrun (λ•x. [M])K∆
= (def J−K∆)

let h⇐ (λ•〈〉. [λx. JMK]) • 〈〉 in [λ∆. h]
= (β )

let h⇐ [λx. JMK] in [λ∆. h]
= (left)

[λ∆. λx. JMK]
= (def J−K∆)

J[λx. M]K∆
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8. (run3)

Jrun (λ•x.let y⇐ P in Q)K∆
= (def J−K∆)

let h⇐ (λ•〈〉.let p⇐ JPKx in let q⇐ JQKx,y in [λx. q 〈x, p x〉]) • 〈〉 in [λ∆. h]

= (β )
let h⇐ let p⇐ JPKx in let q⇐ JQKx,y in [λx. q 〈x, p x〉] in [λ∆. h]

= (Lemma 18)
let h⇐ let p⇐ let w⇐ JPK〈〉 in [λx. w 〈〉] in

let q⇐ JQKx,y in [λx. q 〈x, p x〉] in
[λ∆. h]

= (assoc)
let p⇐ JPK〈〉 in let w⇐ [λx. p 〈〉] in
let q⇐ JQKx,y in let h⇐ [λx. q 〈x, w x〉] in [λ∆. h]

= (left)
let p⇐ JPK〈〉 in let q⇐ JQKx,y in [λ∆. λx. q 〈x, p 〈〉〉]

= (left)
let p⇐ JPK〈〉 in let z⇐ [λ∆. p 〈〉] in let q⇐ JQKx,y in [λ∆. λx. q 〈x, z ∆〉]

= (assoc)
let z⇐ (let p⇐ JPK〈〉 in [λ∆. p 〈〉]) in let q⇐ JQKx,y in [λ∆. λx. q 〈x, z ∆〉]

= (Lemma 18)
let p⇐ JPK∆ in let q⇐ JQKx,y in [λ∆. λx. q 〈x, p ∆〉]

= (left,β→)
let q⇐ JQKx,y in
let p⇐ JPK∆ in
let r⇐ [λ〈∆, y〉. q] in
let t⇐ [λ〈〈∆, y〉, f〉. λx. f 〈x, y〉] in
let s⇐ [λ〈∆, y〉. t 〈〈∆, y〉, r 〈∆, y〉〉] in [λ∆. s 〈∆, p ∆〉]

= (β )
let q⇐ (λ•〈〉. JQKx,y) • 〈〉 in
let p⇐ JPK∆ in
let r⇐ [λ〈∆, y〉. q] in
let t⇐ [λ〈〈∆, y〉, f〉. λx. f 〈x, y〉] in
let s⇐ [λ〈∆, y〉. t 〈〈∆, y〉, r 〈∆, y〉〉] in [λ∆. s 〈∆, p ∆〉]

= (assoc)
let p⇐ JPK∆ in
let s⇐ (let r⇐ (let q⇐ (λ•〈〉. JQKx,y) • 〈〉 in [λ〈∆, y〉. q]) in

let t⇐ [λ〈〈∆, y〉, f〉. λx. f 〈x, y〉] in [λ〈∆, y〉. t 〈〈∆, y〉, r 〈∆, y〉〉]) in
[λ∆. s 〈∆, p ∆〉]

= (def J−K∆)
Jlet y⇐ P in let f⇐ run (λ•〈x, y〉. Q) in [λx. f 〈x, y〉]K∆
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A.5.3 The laws of A follow from the laws of S

For each lawM = N or P = Q of A we must show 〈[P]〉 = 〈[Q]〉.
1. (β )

〈[(λ•〈〉. Q) • M]〉
= (def 〈[−]〉)

run (λ•x.let y⇐ 〈[Q]〉 in [y x])
= (run3)

let y⇐ 〈[Q]〉 in let f⇐ run (λ•〈x, y〉. [y x]) in [λx. f 〈x, y〉]
= (run2)

let y⇐ 〈[Q]〉 in let f⇐ [λ〈x, y〉. y x] in [λx. f 〈x, y〉]
= (left)

let y⇐ 〈[Q]〉 in [λx. (λ〈x, y〉. y x) 〈x, y〉]
= (β→)

let y⇐ 〈[Q]〉 in [λx. y x]
= (η→)

let y⇐ 〈[Q]〉 in [y]
= (right)
〈[Q]〉

= (Lemma 17)
〈[Q[x := M]]〉

2. (η )

〈[λ•〈〉. L • 〈〉]〉
= (def 〈[−]〉)

λ•x.let h⇐ run 〈[L]〉 in [h x]
= (run1)

λ•x. 〈[L]〉 • x
= (η )
〈[L]〉

3. (left)

〈[let x⇐ [M] in Q]〉
= (def 〈[−]〉)

let x⇐ [〈[M]〉] in 〈[Q]〉
= (left)
〈[Q]〉[x := 〈[M]〉]

= (Lemma 17)
〈[Q[x := M]]〉
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4. (right)

〈[let x⇐ P in [x]]〉
= (def 〈[−]〉)

let x⇐ 〈[P]〉 in [x]
= (right)
〈[P]〉

5. (assoc)

〈[let y⇐ (let x⇐ P in Q) in R]〉
= (def 〈[−]〉)

let y⇐ let x⇐ 〈[P]〉 in 〈[Q]〉 in 〈[R]〉
= (assoc)

let x⇐ 〈[P]〉 in let y⇐ 〈[Q]〉 in 〈[R]〉
= (def 〈[−]〉)
〈[let x⇐ P in let y⇐ Q in R]〉
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A.5.4 Translating S to A and back

For each term M of S we must show 〈[ JMK ]〉 =M. For each command P of S we must show

〈[ JPK∆ ]〉 • ∆ = P. The proof is by mutual induction on the derivations ofM and P.

1. Case λ•x.Q

〈[Jλ•x. QK]〉
= (def J−K)
〈[λ•〈〉. JQKx]〉

= (def J−K)
λ•x.let h⇐ 〈[JQKx]〉 in [h x]

= (induction hypothesis)
λ•x.let h⇐ run (λ•x. Q) in [h x]

= (run1)
λ•x. (λ•x. Q) • x

= (β )
λ•x. Q

2. Case L •M

let d⇐ 〈[JL • MK∆]〉 in [d ∆]
= (def J−K∆)

let d⇐ 〈[let l⇐ JLK • 〈〉 in [λ∆. l JMK]]〉 in [d ∆]
= (def 〈[−]〉)

let d⇐ let l⇐ run 〈[JLK]〉 in [λ∆. l 〈[JMK]〉] in [d ∆]
= (induction hypothesis)

let d⇐ let l⇐ run L in [λ∆. l M] in [d ∆]
= (assoc)

let l⇐ run L in let d⇐ [λ∆. l M] in [d ∆]
= (left)

let l⇐ run L in [l M]
= (run1)

L • M

3. Case [M]

let d⇐ 〈[J[M]K∆]〉 in [d ∆]
= (def J−K∆)

let d⇐ 〈[[λ∆. JMK]]〉 in [d ∆]
= (def 〈[−]〉)

let d⇐ [λ∆. 〈[JMK]〉] in [d ∆]
= (induction hypothesis)

let d⇐ [λ∆. M] in [d ∆]
= (left)

[M]
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4. Case let x⇐ P in Q

let d⇐ 〈[Jlet x⇐ P in QK∆]〉 in [d ∆]
= (def J−K∆)

let d⇐ 〈[let p⇐ JPK∆ in let q⇐ JQK∆,x in [λ∆. q 〈∆, p ∆〉]]〉 in [d ∆]

= (def 〈[−]〉)
let d⇐ let p⇐ 〈[JPK∆]〉 in let q⇐ 〈[JQK∆,x]〉 in [λ∆. q 〈∆, p ∆〉] in [d ∆]

= (assoc)
let p⇐ 〈[JPK∆]〉 in let q⇐ 〈[JQK∆,x]〉 in let d⇐ [λ∆. q 〈∆, p ∆〉] in [d ∆]

= (left)
let p⇐ 〈[JPK∆]〉 in let q⇐ 〈[JQK∆,x]〉 in [q 〈∆, p ∆〉]

= (induction hypothesis)
let p⇐ run (λ•∆. P) in let q⇐ run (λ•〈∆, x〉. Q) in [q 〈∆, p ∆〉]

= (run1)
let p⇐ run (λ•∆. P) in (λ•〈∆, x〉. Q) • 〈∆, p ∆〉

= (β )
let p⇐ run (λ•∆. P) in Q[x := p ∆]

= (left)
let p⇐ run (λ•∆. P) in let x⇐ [p ∆] in Q

= (assoc)
let x⇐ let p⇐ run (λ•∆. P) in [p ∆] in Q

= (run1)
let x⇐ (λ•∆. P) • ∆ in Q

= (β )
let x⇐ P in Q

5. Case run L

let d⇐ 〈[Jrun LK∆]〉 in [d ∆]
= (def J−K∆)

let d⇐ 〈[let h⇐ JLK • 〈〉 in [λ∆. h]]〉 in [d ∆]
= (def 〈[−]〉)

let d⇐ let h⇐ run 〈[JLK]〉 in [λ∆. h] in [d ∆]
= (induction hypothesis)

let d⇐ let h⇐ run L in [λ∆. h] in [d ∆]
= (assoc)

let h⇐ run L in let d⇐ [λ∆. h] in [d ∆]
= (left)

let h⇐ run L in [h]
= (right)

run L
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A.6 Equational correspondence between H and Capp

This section gives a proof of Proposition 20 (page 77). The proofs here extend the proofs of

the equational correspondence between A and C in Section A.2.

A.6.1 Extensions of Lemmas 8 and 10

We must first extend Lemmas 8 and 10 to show that the translations of substitution and weak-

ening hold for the L ?M construct.

The proof of Lemma 8 for L ?M is as follows:

J(L ? M)[x := N]K∆
= (def substitution)

J(L[x := N]) ? (M[x := N])K∆
= (def J−K∆)

arr (λ∆. 〈JL[x := N]K, JM[x := N]K〉)>>> app

= ( 4, def ·)
arr (λ∆. 〈∆, JNK〉)>>> arr (λ〈∆, x〉. 〈JLK, JMK〉)>>> app

= (def J−K∆,x)

arr (λ∆. 〈∆, JNK〉)>>> JL ? MK∆,x

The proof of Lemma 10 for L ?M is as follows:

JL ? MK∆ ′
= (def J−K∆ ′ )

arr (λ∆
′
. 〈JLK, JMK〉)>>> app

= ( 4, def ·)
arr (λ∆

′
.∆)>>> arr (λ∆. 〈JLK, JMK〉)>>> app

= (def J−K∆)
arr (λ∆

′
.∆)>>> JL ? MK∆
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A.6.2 The laws of H follow from the laws of Capp

For each higher-order arrows law on terms M = N we must show JMK = JNK and for each

higher-order arrows law on commands P = Q we must show JPK∆ = JQK∆.

1. (βapp)

J(λ•x. Q) ? MK∆
= (def J−K∆)

arr (λ∆. 〈JQKx, JMK〉)>>> app

= (((λx. M)× (λx. N)) · dup = (λx. 〈M, N〉))
arr dup>>> arr ((λ∆. JQKx)× (λ∆. JMK))>>> app

= (swap · (f× id) · swap · (g× id) · dup = g× f)
arr (swap · ((λ∆. JMK)× id) · swap · ((λ∆. JQKx)× id) · dup)>>> app

= ( 4)
arr dup>>> arr ((λ∆. JQKx)× id)>>> arr swap>>> arr ((λ∆. JMK)× id)
>>> arr swap>>> app

= ( 5)
arr dup>>> first (arr (λ∆. JQKx))>>> arr swap>>> first (arr (λ∆. JMK))
>>> arr swap>>> app

= (def &&&, def second)
(arr (λ∆. JQKx) &&& arr (λ∆. JMK))>>> app

= (Lemma 10)
(arr (λ∆. (arr (λx. 〈∆, x〉)>>> JQK∆,x)) &&& arr (λ∆. JMK))>>> app

= (def &&&)
arr dup>>> first (arr ((>>>JQK∆,x) · ((λx. arr (λy. 〈x, y〉)))))
>>> second (arr (λ∆. JMK))>>> app

= ( 5)
arr dup>>> arr (((>>>JQK∆,x) · ((λx. arr (λy. 〈x, y〉))))× id)

>>> second (arr (λ∆. JMK))>>> app

= (arr (f× id)>>> second g = second g>>> arr (f× id))
arr dup>>> second (arr (λ∆. JMK))
>>> arr (((>>>JQK∆,x) · ((λx. arr (λy. 〈x, y〉))))× id)>>> app

= ( 5)
arr dup>>> second (arr (λ∆. JMK))
>>> first (arr ((>>>JQK∆,x) · ((λx. arr (λy. 〈x, y〉)))))>>> app

= ( 4)
arr dup>>> second (arr (λ∆. JMK))
>>> first (arr ((λx. arr (λy. 〈x, y〉)))>>> arr (>>>JQK∆,x))>>> app

= ( 6)
arr dup>>> second (arr (λ∆. JMK))>>> first (arr ((λx. arr (λy. 〈x, y〉))))
>>> first (arr (>>>JQK∆,x))>>> app

= ( H3)
arr dup>>> second (arr (λ∆. JMK))>>> first (arr ((λx. arr (λy. 〈x, y〉))))
>>> app>>> JQK∆,x

(continued on next page)
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(continued from previous page)
arr dup>>> second (arr (λ∆. JMK))>>> first (arr ((λx. arr (λy. 〈x, y〉))))
>>> app>>> JQK∆,x

= ( H1)
arr dup>>> second (arr (λ∆. JMK))>>> arr id>>> JQK∆,x

= ( 2)
arr dup>>> second (arr (λ∆. JMK))>>> JQK∆,x

= ( 1, id = id× id)
arr dup>>> arr (id× id)>>> second (arr (λ∆. JMK))>>> JQK∆,x

= ( 5)
arr dup>>> first (arr id)>>> second (arr (λ∆. JMK))>>> JQK∆,x

= (def &&&)
(arr id &&& arr (λ∆. JMK))>>> JQK∆,x

= (Lemma 8)
JQ[x := M]K∆

A.6.3 The laws of Capp follow from the laws of H

For each lawM = N of Capp we must show 〈[M]〉 = 〈[N]〉.
1. ( H1)

〈[first (arr (λx. arr (λy. 〈x, y〉)))>>> app]〉
= (def 〈[−]〉)

λ•a.let b⇐ ((λf. λ•z.let c⇐ f • fst z in [〈c,snd z〉])
(λ•x. [λ•y. [〈x, y〉]])) • a in

(λ•z.fst z ? snd z) • b
= (β→,β )

λ•a.let b⇐ (let c⇐ (λ•x. [λ•y. [〈x, y〉]]) • fst a in [〈c,snd a〉]) in
fst b ? snd b

= (β , assoc)
λ•a.let c⇐ [λ•y. [〈fst a, y〉]] in let b⇐ [〈c,snd a〉] in fst b ? snd b

= (left,β×1 ,β×2 )
λ•a. (λ•y. [〈fst a, y〉]) ? snd a

= (βapp)
λ•a. [〈fst a,snd a〉]

= (η×)
λ•a. [a]

= (def 〈[−]〉)
〈[arr id]〉
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2. ( H2)

〈[first (arr (L>>>))>>> app]〉
= (def 〈[−]〉)

λ•a.let b⇐ (λ•z.let x⇐ (λ•f. [〈[L>>> f]〉]) • fst z in [〈x,snd z〉]) • a in
(λ•w.fst w ? snd w) • b

= (β ,β )
λ•a.let b⇐ (let x⇐ (λ•f. [〈[L>>> f]〉]) • fst a in [〈x,snd a〉]) in

fst b ? snd b

= (assoc)
λ•a.let x⇐ (λ•f. [〈[L>>> f]〉]) • fst a in

let b⇐ [〈x,snd a〉] in
fst b ? snd b

= (β )
λ•a.let x⇐ [〈[L>>> (fst a)]〉] in

let b⇐ [〈x,snd a〉] in
fst b ? snd b

= (left)
λ•a.let x⇐ [〈[L>>> (fst a)]〉] in x ? snd a

= (def 〈[−]〉)
λ•a.let x⇐ [λ•d.let y⇐ 〈[L]〉 • d in fst a • y] in x ? snd a

= (ηapp,β )
λ•a.let x⇐ [λ•d.let y⇐ 〈[L]〉 • d in fst a ? y] in x ? snd a

= (left,βapp)
λ•a.let y⇐ 〈[L]〉 • snd a in fst a ? y

= (left)
λ•a.let y⇐ 〈[L]〉 • snd a in

let b⇐ [〈fst a, y〉] in
fst b ? snd b

= (assoc)
λ•a.let b⇐ (let y⇐ 〈[L]〉 • snd a in [〈fst a, y〉]) in fst b ? snd b

= (β ,β )
λ•a.let b⇐ (λ•z.let y⇐ 〈[L]〉 • snd z in [〈fst z, y〉]) • a in

(λ•w.fst w ? snd w) • b
= (def 〈[−]〉)
〈[second L>>> app]〉
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3. ( H3)

〈[first (arr (>>>L))>>> app]〉
= (def 〈[−]〉,β→)

λ•x.let y⇐ (λ•z.let w⇐ (λ•z. [λ•t.let s⇐ z • t in 〈[L]〉 • s]) • fst z in
[〈w,snd z〉]) • x in

(λ•p.fst p ? snd p) • y
= (β )

λ•x.let y⇐ (let w⇐ [λ•t.let s⇐ fst x • t in 〈[L]〉 • s] in [〈w,snd x〉]) in
fst y ? snd y

= (assoc)
λ•x.let w⇐ [λ•t.let s⇐ fst x • t in 〈[L]〉 • s] in

let y⇐ [〈w,snd x〉] in
fst y ? snd y

= (left,β×1 ,β×2 )
λ•x. (λ•t.let s⇐ fst x • t in 〈[L]〉 • s) ? snd x

= (βapp)
λ•x.let s⇐ fst x • snd x in 〈[L]〉 • s

= (β )
λ•x.let s⇐ (λ•p.fst p ? snd p) • x in 〈[L]〉 • s

= (def 〈[−]〉)
〈[app>>> L]〉

A.6.4 Translating H to Capp and back

For each term M of H we must show 〈[ JMK ]〉 = M and for each command P of H we must

show 〈[ JPK∆ ]〉 • ∆ = P.

1. Case L ?M

〈[JL ? MK∆]〉
= (def J−K∆)
〈[arr (λ∆. 〈JLK, JMK〉)>>> app]〉

= (def 〈[−]〉,β→)
λ•∆.let y⇐ (λ•∆. [〈〈[JLK]〉, 〈[JMK]〉〉]) • ∆ in (λ•p. fst p ? snd p) • y

= (β )
λ•∆.let y⇐ [〈〈[JLK]〉, 〈[JMK]〉〉] in fst y ? snd y

= (left,β×1 ,β×2 )
λ•∆. 〈[JLK]〉 ? 〈[JMK]〉

= (induction hypothesis)
λ•∆. L ? M
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A.6.5 Translating Capp to H and back

For each termM of Capp we must show J 〈[M]〉 K =M.

1. Case app

J〈[app]〉K
= (def 〈[−]〉)

Jλ•p. fst p ? snd pK
= (def J−K)

arr (λp. 〈fst p, snd p〉)>>> app

= (η×)
arr id>>> app

= ( 1)
app
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A.7 Equational equivalence between M and H

This section gives a proof of Proposition 22 (page 78).

A.7.1 The laws of M follow from the laws of H

For each lawM = N of M we must show JMK = JNK.

1. (M1)

Jreturn N>>= MK
= (def J−K)

λ•〈〉.let x⇐ (λ•〈〉. [JNK]) ? 〈〉 in (JMK x) ? 〈〉
= (βapp)

λ•〈〉.let x⇐ [JNK] in (JMK x) ? 〈〉
= (left)

λ•〈〉. (JMK JNK) ? 〈〉
= (ηapp)

JMK JNK
= (def J−K)

JM NK

2. (M2)

JM>>= returnK
= (def J−K,β→)

λ•〈〉.let x⇐ JMK ? 〈〉 in (λ•〈〉. [x]) ? 〈〉
= (βapp)

λ•〈〉.let x⇐ JMK ? 〈〉 in [x]
= (right)

λ•〈〉. JMK ? 〈〉
= (ηapp)

JMK

3. (M3)

J(L>>= M)>>= NK
= (def J−K)

λ•〈〉.let x⇐ (λ•〈〉.let y⇐ JLK ? 〈〉 in (JMK y) ? 〈〉) ? 〈〉 in (JNK x) ? 〈〉
= (βapp)

λ•〈〉.let x⇐ let y⇐ JLK ? 〈〉 in (JMK y) ? 〈〉 in (JNK x) ? 〈〉
= (assoc)

λ•〈〉.let y⇐ JLK ? 〈〉 in let x⇐ (JMK y) ? 〈〉 in (JNK x) ? 〈〉

(continued on next page)
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(continued from previous page)
λ•〈〉.let y⇐ JLK ? 〈〉 in let x⇐ (JMK y) ? 〈〉 in (JNK x) ? 〈〉

= (βapp)
λ•〈〉.let y⇐ JLK ? 〈〉 in (λ•〈〉.let x⇐ (JMK y) ? 〈〉 in (JNK x) ? 〈〉) ? 〈〉

= (def J−K,β→)
JL>>= (λs. M s>>= N)K

A.7.2 The laws of H follow from the laws of M

For each lawM = N or P = Q of H we must show 〈[M]〉 = 〈[N]〉 or 〈[P]〉 = 〈[Q]〉.
1. (β )

〈[(λ•x. Q) • M]〉
= (def 〈[−]〉)

(λx. 〈[Q]〉) 〈[M]〉
= (β→)
〈[Q]〉[x := 〈[M]〉]

= (Lemma 21)
〈[Q[x := M]]〉

2. (η )

〈[λ•x. L • x]〉
= (def 〈[−]〉)

λx. 〈[L]〉 x
= (η→)
〈[L]〉

3. (left)

〈[let x⇐ [M] in Q]〉
= (def 〈[−]〉)

return 〈[M]〉>>= (λx. 〈[Q]〉)
= (M1,β→)
〈[Q]〉[x := 〈[M]〉]

= (Lemma 21)
〈[Q[x := M]]〉
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4. (right)

〈[let x⇐ P in [x]]〉
= (def 〈[−]〉)
〈[P]〉>>= (λx. return x)

= (η→)
〈[P]〉>>= return

= (M2)
〈[P]〉

5. (assoc)

〈[let y⇐ (let x⇐ P in Q) in R]〉
= (def 〈[−]〉)

(〈[P]〉>>= (λx. 〈[Q]〉))>>= (λy. 〈[R]〉)
= (M3)
〈[P]〉>>= (λx. (λx. 〈[Q]〉) x>>= (λy. 〈[R]〉))

= (β→)
〈[P]〉>>= (λx. 〈[Q]〉>>= (λy. 〈[R]〉))

= (def 〈[−]〉)
〈[let x⇐ P in (let y⇐ Q in R)]〉

6. (βapp)

〈[(λ•x. Q) ? M]〉
= (def 〈[−]〉)

(λ•x. 〈[Q]〉) 〈[M]〉
= (β→)
〈[Q]〉[x := 〈[M]〉]

= (Lemma 21)
〈[Q[x := M]]〉

A.7.3 Translating M to H and back

For each term M of M we must show 〈[ JMK ]〉 = fA(M). The proof is by induction on the

derivation ofM.

1. Case return

f−1
A→MA 〈[JreturnK]〉

= (def J−K)
f−1
A→MA 〈[λx. λ•〈〉. [x]]〉

(continued on next page)
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(continued from previous page)
f−1
A→MA 〈[λx. λ•〈〉. [x]]〉

= (def 〈[−]〉)
f−1
A→MA (λx. λ〈〉. return x)

= (def f−1
A→MA)

(λh. λz. (λh. h 〈〉>>= (λv. return (f−1
A (v)))) (h (fA (z)))) (λx. λ〈〉. return x)

= (β→,η→)

λz. return (fA (z))>>= (λv. return (f−1
A (v)))

= (M1,β→)

λz. return (f−1
A (fA (z)))

= (f−1
A (fA x) = x)

λz. return z
= (η→)

return

2. Case (>>=)

f−1
MA→(A→MB)→MB 〈[J(>>=)K]〉

= (def J−K)
f−1
MA→(A→MB)→MB 〈[λa. λh. λ•〈〉.let x⇐ a • 〈〉 in (h x) • 〈〉]〉

= (def 〈[−]〉)
f−1
MA→(A→MB)→MB (λa. λh. λ〈〉. a 〈〉>>= (λx. h x 〈〉))

= (def f−1
MA→(A→MB)→MB)

(λh. (λg. ((λl. l 〈〉>>= (return · f−1
B )) · g

· (λj. (λa. λ〈〉. a>>= (return · fB)) · j · f−1
A )))

· h · (λb. λ〈〉. b>>= (return · fA)))
(λa. λh. λ〈〉. a 〈〉>>= (λx. h x 〈〉))

= (β→)

λb. λj. (((b>>= (return · fA))>>= (λx. (j (f−1
A (x))>>= (return · fB))))

>>= (return · f−1
B ))

= (M3,β→)

λb. λj. (b>>= (λx. return (fA (x))>>= (λx. j (f−1
A (x)))))

>>= (λx. return (fB x)>>= (return · f−1
B ))

= (M1)

λb. λj. (b>>= (λx. return (fA (x))>>= (λx. j (f−1
A (x)))))

>>= (λx. return (f−1
B (fB (x))))

= (f−1
B (fB x) = x,η→)

λb. λj. (b>>= (λx. return (fA (x))>>= (λx. j (f−1
A (x)))))>>= return

= (M2)

λb. λj. (b>>= (λx. return (fA (x))>>= (λx. j (f−1
A (x)))))

(continued on next page)
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(continued from previous page)
λb. λj. (b>>= (λx. return (fA (x))>>= (λx. j (f−1

A (x)))))
= (M1)

λb. λj. (b>>= (λx. j (f−1
A (fA (x)))))

= (f−1
A (fA x) = x,η→)

λb. λj. b>>= j

= (η→)
(>>=)

A.7.4 Translating H to M and back

For each term M of H we must show J 〈[M]〉 K = gA(M). For each command P of H we

must show J〈[P]〉K = λ•〈〉. .let z ⇐ P in [gA(z)]. The proof is by mutual induction on the

derivations ofM and P.

1. Case λ•x.Q

J〈[λ•x. Q]〉K
= (def 〈[−]〉)

λx. J〈[Q]〉K
= (induction hypothesis)

λx. λ•〈〉.let z⇐ Q[x := g−1
A (x)] in [gB (z)]

= (β )

λx. λ•〈〉.let z⇐ (λ•x. Q) • (g−1
A (x)) in [gB (z)]

= (def gA B,β→)
gA B (λ•x. Q)

1. Case L •M

J〈[L • M]〉K
= (def 〈[−]〉)

J〈[L]〉 〈[M]〉K
= (def J−K)

J〈[L]〉K J〈[M]〉K
= (induction hypothesis)

(gA B L) (gA M)
= (def gA B)

((λa. λx. λ•〈〉.let z⇐ a • g−1
A x in [gB z]) L) (gA M)

= (β→)

λ•〈〉.let z⇐ L • g−1
A (gA M) in [gB z]

= (g−1
A (gA x) = x)

λ•〈〉.let z⇐ L • M in [gB z]



A.7. Equational equivalence between M and H 269

2. Case [M]

J〈[[M]]〉K
= (def 〈[−]〉)

Jreturn 〈[M]〉K
= (def J−K)

λ•〈〉. [J〈[M]〉K]
= (induction hypothesis)

λ•〈〉. [gA M]
= (left)

λ•〈〉.let z⇐ [M] in [gA z]

3. Case let x⇐ P in Q

J〈[let x⇐ P in Q]〉K
= (def 〈[−]〉)

J〈[P]〉>>= (λx. 〈[Q]〉)K
= (def J−K)

λ•〈〉.let x⇐ J〈[P]〉K • 〈〉 in ((λx. J〈[Q]〉K) x) • 〈〉
= (β→)

λ•〈〉.let x⇐ J〈[P]〉K • 〈〉 in J〈[Q]〉K • 〈〉
= (induction hypothesis)

λ•〈〉.let x⇐ (λ•〈〉.let z⇐ P in [gA (z)]) • 〈〉 in
(λ•〈〉.let z⇐ Q[x := g−1

A ] in [gB (z)]) • 〈〉
= (β )

λ•〈〉.let x⇐ let z⇐ P in [gA z] in let y⇐ Q[x := g−1
A ] in [gB y]

= (assoc)
λ•〈〉.let z⇐ P in let x⇐ [gA (z)] in let y⇐ Q[x := g−1

A ] in [gB y]

= (left, g−1
A (gA (x)) = x)

λ•〈〉.let x⇐ P in let y⇐ Q in [gB (y)]
= (assoc)

λ•〈〉.let y⇐ let x⇐ P in Q in [gB (y)]
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4. Case L ?M

J〈[L ? M]〉K
= (def 〈[−]〉, def J−K)

J〈[L]〉K J〈[M]〉K
= (induction hypothesis)

(gA B L) (gA (M))
= (def gA B,β→)

λ•〈〉.let z⇐ L • g−1
A (gA (M)) in [gB (z)]

= (g−1
A (gA M) = M)

λ•〈〉.let z⇐ L • M in [gB (z)]
= (ηapp)

λ•〈〉.let z⇐ (λ•x. L ? x) • M in [gB (z)]
= (β )

λ•〈〉.let z⇐ L ? M in [gB (z)]
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A.8 Redundancy of ( H2)

We give below a direct proof that the ( H2) law of Capp is redundant.

first (arr (L>>>))>>> app

= ( 1)
first (arr (λx. L>>> arr id>>> x))>>> app

= ( 4, snd · dup = id)
first (arr (λx. L>>> arr dup>>> arr snd>>> x))>>> app

= ( H1)
first (arr (λx. L>>> arr dup>>> first (arr (λb. arr (λa. 〈b, a〉)))>>> app

>>> arr snd>>> x))>>> app

= ( H3)
first (arr (λx. L>>> arr dup>>> first (arr (λb. arr (λa. 〈b, a〉)))

>>> first (arr (>>>(arr snd>>> x)))>>> app))>>> app

= ( 5)
first (arr (λx. L>>> arr dup>>> arr ((λb. arr (λa. 〈b, a〉))× id)

>>> arr ((>>>(arr snd>>> x))× id)>>> app))>>> app

= ( 4)
first (arr (λx. L>>> arr (λw. 〈arr id>>> x, w〉)>>> app))>>> app

= ( 1)
first (arr (λx. L>>> arr (λw. 〈x, w〉)>>> app))>>> app

= ( 4)
first (arr (λx. arr dup>>> arr fst>>> L>>> arr (λw. 〈x, w〉)>>> app))>>> app

= ( 8)
first (arr (λx. arr dup>>> first L>>> arr fst>>> arr (λw. 〈x, w〉)>>> app))>>> app

= ( 4)
first (arr (λx. arr dup>>> first L>>> arr (id× const x)>>> arr swap>>> app))
>>> app

= ( 7)
first (arr (λx. arr dup>>> arr (id× const x)>>> first L>>> arr swap>>> app))
>>> app

= ( 4)
first (arr (λx. arr (λw. 〈x, w〉)>>> arr swap>>> first L>>> arr swap>>> app))>>> app

= (def second)
first (arr (λx. arr (λw. 〈x, w〉)>>> second L>>> app))>>> app

= ( 6)
arr (λz. 〈arr (λw. 〈fst z, w〉)>>> second L>>> app, snd z〉)>>> app

= ( 4)
arr (λz. 〈z, snd z〉)>>> arr (((λb. arr (λa. 〈b, a〉)))× id)
>>> arr ((>>>(arr (fst× id)>>> second L>>> app))× id)>>> app

= ( 5)
arr (λz. 〈z, snd z〉)>>> first (arr ((λb. arr (λa. 〈b, a〉))))
>>> first (arr (>>>(arr (fst× id)>>> second L>>> app)))>>> app

(continued on next page)
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(continued from previous page)
arr (λz. 〈z, snd z〉)>>> first (arr ((λb. arr (λa. 〈b, a〉))))
>>> first (arr (>>>(arr (fst× id)>>> second L>>> app)))>>> app

= ( 4, second L>>> arr (M× id) = arr (M× id)>>> second L)
arr (λz. 〈z, snd z〉)>>> first (arr ((λb. arr (λa. 〈b, a〉))))
>>> first (arr (>>>(arr dup>>> arr (id× snd)>>> second L

>>> arr (fst · fst× id)>>> app)))>>> app

= (second (arr L) = arr (id× L))
arr (λz. 〈z, snd z〉)>>> first (arr ((λb. arr (λa. 〈b, a〉))))
>>> first (arr (>>>(arr dup>>> second (arr snd)>>> second L

>>> arr (fst · fst× id)>>> app)))
>>> app

= (def &&&, 6)
arr (λz. 〈z, snd z〉)>>> first (arr ((λb. arr (λa. 〈b, a〉))))
>>> first (arr (>>>((arr id &&& (arr snd>>> L))>>> arr (fst · fst× id)>>> app)))
>>> app

= ( H3)
arr (λz. 〈z, snd z〉)>>> first (arr ((λb. arr (λa. 〈b, a〉))))>>> app

>>> ((arr id &&& (arr snd>>> L))>>> arr (fst · fst× id)>>> app)
= ( H1)

arr (λz. 〈z, snd z〉)>>> arr id>>> (arr id &&& (arr snd>>> L))
>>> arr (fst · fst× id)>>> app

= ( 1)
arr (λz. 〈z, snd z〉)>>> (arr id &&& (arr snd>>> L))>>> arr (fst · fst× id)>>> app

= (def &&&)
arr (λz. 〈z, snd z〉)>>> arr dup>>> second (arr snd>>> L)
>>> arr (fst · fst× id)>>> app

= (second (L>>> M) = second L>>> second M)
arr (λz. 〈z, snd z〉)>>> arr dup>>> second (arr snd)>>> second L

>>> arr (fst · fst× id)>>> app

= (second (arr L) = arr (id× L))
arr dup>>> arr (id× snd)>>> arr dup>>> arr (id× snd)>>> second L

>>> arr (fst · fst× id)>>> app

= ( 4)
arr (λx. 〈〈x, snd x〉, snd x〉)>>> second L>>> arr (fst · fst× id)>>> app

= (second L>>> arr (M× id) = arr (M× id)>>> second L)
arr (λx. 〈〈x, snd x〉, snd x〉)>>> arr ((fst · fst)× id)>>> second L>>> app

= ( 4)
arr id>>> second L>>> app

= ( 1)
second L>>> app
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Formlets extras

B.1 The page construct

This appendix describes the page construct, which is used in combination with input-validating

formlets (Section 3.6.2). The function of the page construct is to associate the context in which

each formlet appears with the value representing the formlet. If the input submitted by the user

is determined to be invalid, the formlet then re-renders itself together in the context, together

with error messages indicating the problems wit the input.

The page construct really represents composable page fragments, just as formlets rep-

resent fragments of forms. As with formlets, we provide a new syntactic form based on

XML literals with embedded expressions. Consider the date example of Figure 3.1. The fi-

nal step in that example is to associate the formlet travel_formlet with the continuation

display_itinerary:

handle travel_formlet display_itinerary

The page construct subsumes the functionality of handle: it associates a formlet with its con-

tinuation in the context of some larger XML value. For example, the following code associates

travel_formlet with display_itinerary in the context of the enclosing <body> ele-

ment.

page
<body

<h1>Itinerary</h1>
{travel_formlet =⇒ display_itinerary}

</body>

As we have said, the page construct is designed for use with input-validating formlets, where

there are two possible outcomes when a form is submitted. Suppose that travel_formlet
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module type MONOID =
sig
type t

val zero : t

val (⊗) : t → t → t

end

Figure B.1: The monoid interface

module type PAGE =
sig
include MONOID

val xml : xml → t

val tag : tag → attributes → t → t

val form : α VFormlets.t → (α → t) → t

val render : t → xml

end

Figure B.2: The page interface

has some validation procedures attached (using the extract function of 3.6.2). If these

succeed when run on the submitted data, producing a result, then the result is passed to

display_itinerary to compute the next page. If instead validation fails, then travel_formlet

will be re-rendered (along with any error messages returned by validation), and sent back to

the user in its enclosing context (i.e. the <body> element) to be edited and re-submitted.

As with formlets, the new syntactic form is defined by a straightforward desugaring into

combinators that build new page values from existing page values. Here is the result of desug-

aring our example above:

Page.tag "body"
(Page.tag "h1" (Page.xml (xml_text "Itinerary"))
⊗p Page.form travel_formlet display_itinerary)

In the remainder of this appendix we define the page interface (Section B.1.1) and the

associated syntactic sugar (Section B.1.2).

B.1.1 The page interface

Figure B.1 gives the MONOID interface; it is the OCaml analogue of the Monoid type class of

Section 2.2.4.

Figure B.2 gives the PAGE interface, which extends MONOID. There are five constructors for

pages. The first two are the monoid operations, zero and ⊗, which respectively construct an
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type xml_context = xml list → xml

type recform = { recform : recform list → xml }
type form_builder = xml_context → int → recform

let tie : recform list → xml list

= fun zs → List.map (fun z → z.recform zs) zs

Figure B.3: Auxiliary types used to implement pages

empty page and concatenate two pages. The third and fourth, xml and tag, lift an XML value

to a page and enclose a page in an XML element. The fifth, form, constructs a page from a

formlet and its handler function. The render function converts a page to XML for sending to

the client.

Figure B.3 defines a number of types used in the definition of the page construct. The

xml_context type represents multi-holed xml contexts. Here we represent contexts simply as

functions from lists of XML values to XML values. (Appendix B.2 describes a more careful

implementation in which the type of a context reflects the number of holes it contains, and

in which the type does not contain inappropriate values such as non-terminating or effectful

functions.) Each page contains zero or more forms; the recform type represents one of these.

We represent each form as a function from the other forms in the group to its rendering as XML.

We associate all the forms in the group with each form in this way so that when validation

of a form fails all the forms in the group can be re-rendered. The form_builder type is a

function that builds a form representation from two arguments: a multi-holed XML context

and the position of the form in the group. We will store the formlets associated with a page

as form_builder values until the page is rendered; it is only at rendering time that the full

page context and the list of all the forms are available. The tie function renders a list of form

representations by passing the whole group to each recform value.

Figure B.4 gives an implementation of the PAGE interface. The type t is a record of the

three components used to represent pages: a count, size, of the number of embedded formlets,

a size-holed XML context, ctxt, and a list of form builders, frms.

The monoid operations act straightforwardly on components of the record, exploiting the

underlying monoidal operations at those types. At the context component, monoid multipli-

cation constructs a new context by concatenating the contexts of the arguments, creating a

new context with l.size +r.size holes, which plugs in the first l.size of these into the left

context, and the remainder into the right.

The tag function lifts the tagging operation to contexts.
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module Page : PAGE =
struct
type t = { size : int;

ctxt : xml_context ;
frms : form_builder list }

let zero = { size = 0; ctxt = const []; frms = []}
let (⊗) l r =
{ size = l.size + r.size;
ctxt = (fun xs→ l.ctxt (take l.size xs)

@ r.ctxt (drop l.size xs));
frms = l.frms @ r.frms;}

let tag t ats pg = { pg with ctxt = xml_tag t ats ◦ pg.ctxt}
let xml x = { zero with ctxt = const x}

let render pg = pg.ctxt (tie (mapi (fun m→ m pg.ctxt) pg.frms))

let mk_form contents k =
let pickled = pickle_cont (render ◦ k) in
<form>

<input type="hidden" name="_k" value="{pickled}"/>
{contents}

</form>
let form f h =
let x, c = VFormlet.run f in
let rec loop k i zs env =
match c env with
| Right v → h v

| Left x → xml (k (tie (subst_at zs i

{recform = mk_form x ◦ loop k i})))
in {size = 1; ctxt = List.hd;

frms = [fun k i → {recform = mk_form x ◦ loop k i}]}
end

Figure B.4: The page implementation

The xml function takes an XML value and creates a page with no embedded formlets.

The render function renders a page as XML. It first builds form representations from each

of the form builders in the page record by passing the page context and the position of the form

builder in the list to each. (The mapi function is similar to the standard map, but passes an

extra argument to the mapped function representing the position of the element in the list.) It

then uses tie to produce XML renderings of the form representations, and plugs these into the

context to produce the page.
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Expressions

e ::= · · · | page p (page fragment)

Page quasiquotes

n ::= s | { e } | { f =⇒ e } | {| g |} | <t ats>n1 . . . nk</t> node

p ::= <t ats>n1 . . . nk</t> | <#>n1 . . . nk</#> quasiquote

Meta variables

f formlet g page-type expression s string

Figure B.5: Page syntax.

The mk_form function performs part of the work that was previously the responsibility

of handle (Section 3.5): it embeds a continuation and an rendered formlet within an HTML

form. The continuation passed as argument has type env→ t; it is converted to a function of

type env→ xml by composition with the render function.

The form function associates an input-validating formlet with a handler, to construct a

page. After extracting the rendering and collector of the formlet using the run function, it

constructs a page consisting of a single formlet. Note that List.hd function serves as a context

consisting of a single hole. The form builder is the interesting part of the page record: it is the

composition of the mk_form function already described, and an auxiliary function, loop. The

loop function encodes the validation loop for a particular formlet. It takes four arguments: a

multi-holed XML context, the position of the formlet in the context, the list of all the formlets

in the page, and the CGI environment. The first three of these arguments will be supplied

when the page is rendered; the environment will be supplied when the form is submitted. The

outcome of running loop depends on the outcome of the collector function, c. If c succeeds,

returning a value, then the handler function of the formlet is applied to the value to construct

the next page. If c fails, returning a re-rendering of the formlet annotated with error messages,

then the re-rendered formlet replace the previous version of itself in the list and the page in

which the formlet appeared is reconstructed to be sent back to the user.

B.1.2 The page syntax

We now define the page syntax and its desugaring.

Figure B.5 defines the page syntax. Besides the standard forms for XML quasiquotes given

in Figure 3.12, there are two new splicing forms. The form { f =⇒ e } associates the formlet
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Jpage pK = pp

sp = Page.xml (xml_text s)

{ e }p = Page.xml JeK

{ f =⇒ e }p = Page.form Jf K JeK

{| g |}
p = JgK

<t as>n1 . . .nk</t>p = Page.tag t as (<#>n1 . . .nk</#>)
p

<#>n1 . . .nk</#>p = np1 ⊗p . . .⊗p n
p
k

Figure B.6: Desugaring pages.

denoted by f with the handler denoted by e . The form {| g |} indicates the splicing of the page

value denoted by g .

Figure B.6 gives the desugaring algorithm for page literals. Each syntactic form translates

directly into an application of a combinator in the Page module.
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module type CONTEXT =
sig

type item

and t = item list

val text : string → t

val tag : tag → attrs → t → t

val hole : t

val plug : t → t list → t

val xml : xml → t

val to_xml : t → xml

end

Figure B.7: The untyped multi-holed context abstract type

B.2 Multi-holed contexts

We give here an implementation of formlets based on multi-holed contexts as sketched in Sec-

tion 3.6.3 of Chapter 3.

There is only a small conceptual difference between the presentation of formlets in Sec-

tions 3.1–3.4 of Chapter 3 and the presentation based on multi-holed contexts described in

Section 3.6.3 and this appendix. The first presentation is based on accumulating a single XML

value. There are two operations: the first, xml, injects XML values into the XML accumula-

tion idiom; the second, tag, encloses the XML accumulated within a new XML node. The

second presentation is based on accumulating a sequence of XML values. There is one opera-

tion, plug, which inserts these values into a multi-holed XML context, creating a single XML

value. The plug function is operationally straightforward, but some ingenuity is required to

assign it a type that prevents mismatches between the number of holes in the context and the

number of values to be inserted.

Figure B.7 gives the interface to the abstract type of XML contexts. It is “untyped” in

the sense that the number of holes in a context is not reflected in its type. The interface is

isomorphic to the interface to the XML abstract type (Figure 3.3) except for the addition of a

constructor, hole, which constructs contexts consisting of a single hole. There is an operation,

plug, which inserts a list of context into a context in depth-first order, creating a new context. If

the number of holes in the first argument does not match the length of the list in the second then

plug exits with an exception. There are two further operations: a total function, xml, which

converts an xml value to a zero-holed context, and a partial function to_xml, which converts
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module Context : CONTEXT =
struct
type item = Text of string | Tag of tag × attrs × t | Hole

and t = item list

let tag t ats n = [Tag (t, ats, n)]
let hole = [Hole]
let rec to_xml xs = List.map to_xml_item xs

and to_xml_item = function
| Text s → Xml.Text s

| Tag (s, attrs, k) → Xml.Tag (s, attrs, to_xml k)
| Hole → failwith "Unexpected hole"

let rec xml xs = List.concat (List.map xml_item xs)
and xml_item = function
| Xml.Text s → text s

| Xml.Tag (t, ats, x) → tag t ats (xml x)
let plug k xs =

let rec plug = function
| ([], xs) → [], xs

| (z :: zs, xs) →
let (k, xs) = plug_item (z, xs) in
let (k’, xs) = plug (zs, xs) in

k @ k’, xs

and plug_item = function
| Text s, xs → [Text s], xs

| Tag (s, ats, k), xs → let (k, xs) = plug (k, xs)
in [Tag (s, ats, k)], xs

| Hole, [] → failwith "Too many holes"
| Hole, x::xs → x, xs in

match plug (k, xs) with
| k, [] → k

| _ → failwith "Too few holes"
end

Figure B.8: An implementation of Figure B.7

a zero-holed context to XML, exiting with an exception if the argument contains holes. The

types in the interfaces that follow will ensure that plug and to_xml are never passed input that

causes them to raise exceptions.

Figure B.8 gives an implementation of the CONTEXT interface. We assume an implementa-

tion of the XML abstract type (Figure 3.3) in which the item type is implemented by a datatype

with Text and Tag constructors. The implementation of CONTEXT is otherwise straightforward,

so we refrain from further comment.
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type z

type +α s

Figure B.9: Type-level peano numbers

module type NCONTEXT =
sig
type (+µ,+ν) context

val empty : (µ,µ) context

val xml : xml → (µ,µ) context

val tag : tag → attrs → (µ,ν) context → (µ,ν) context

val hole : (µ,µ s) context

val (++) : (κ,ν) context → (µ,κ) context → (µ,ν) context

type (+µ,+ν,+σ,+τ) contexts

val nil : (µ,µ,σ,σ) contexts

val cons : (κ,ν) context → (µ,κ,σ,τ) contexts

→ (µ,ν,σ,τ s) contexts

val append : (κ,ν,ρ,τ) contexts → (µ,κ,σ,ρ) contexts

→ (µ,ν,σ,τ) contexts

val plug : (σ,τ) context → (µ,ν,σ,τ) contexts

→ (µ,ν) context

val to_xml_list : (µ,µ,σ,τ) contexts → xml list

end

Figure B.10: The typed multi-holed context interface

Figure B.9 defines type constructors z and s (for zero and successor) which will form the

basis of the type-level arithmetic used to keep track of the number of holes in what follows.

Both z and s are uninhabited; we will use them as phantom types.

Figure B.10 gives the typed interface to the abstract type of XML contexts. Unlike the

Context interface, here all operations are total. There are two types: context, which repre-

sents a multi-holed context, and contexts, which represents a sequence of multi-holed con-

texts.

A value of type (µ,ν) context, where µ and ν are instantiated to Peano numbers, rep-

resents an XML context with µ − ν holes. There are five constructors for contexts: empty

and xml construct contexts with µ − µ (i.e. zero) holes; tag encloses an existing context in

an XML element, maintaining the number of holes; hole constructs a context with a single

hole (µ s − µ), and ++ concatenates contexts, adding the number of holes. It is this last

operation which really exploits the type-level representation of numbers: we use the identity
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module NContext : NCONTEXT =
struct

include Context

type (µ,ν) context = Context.t
let empty = []
let (++) = (@)
type (µ,ν,σ,τ) contexts = Context.t list

let nil = []
let cons x xs = x :: xs

let append = (@)
let to_xml_list = List.map Context.to_xml

end

Figure B.11: The typed multi-holed context implementation

(µ− ν) = (κ− ν) + (µ− κ) to “compute” the number of holes in the output from the number

of holes in the arguments without performing any actual arithmetic at the type level.

A value of type (µ,ν,σ,τ) contexts, where all the type parameters are instantiated to

Peano numbers, represents a sequence of XML contexts σ− τ elements long, with µ−ν holes

in total. There are three constructors for context sequences. The first, nil, constructs an empty

sequence: there are σ − σ contexts, and a total of µ − µ holes. The second, cons, adds a new

context to an existing sequence: given a context with κ − ν holes and a sequence of length

σ− τ with a total of µ− κ holes, cons constructs a new sequence with one additional context

(making σ s − τ = σ − τ + 1 in all) and with (κ − ν) + (µ − κ) = µ − ν holes. The third,

append, concatenates two sequences, adding the numbers of holes and the numbers of contexts

in the arguments. The last, plug, takes a context with σ − τ holes and a list of σ − τ contexts

with a total of µ − ν holes, and plugs the second into the first, producing a new context with

µ− ν holes. Finally, there is a safe upcast operation, to_xml_list, which discards types in a

sequence of zero-holed contexts to produce an XML value.

Figure B.11 gives an implementation of Figure B.10. The implementation is particularly

simple: the constructors for contexts are simply the constructors for values of type Context.t,

and the constructors for context sequences are simply the standard list constructors. The

to_xml_list operation is implemented directly in terms of the to_xml operation of Context.

Note that although the implementations are the same as those of the Context module, the types

in the interface prevent to_xml_list being applied to a context with holes, and prevent hole-

number mismatches in the arguments of plug, eliminating the undesired partiality.

Figure B.12 gives an adaptation of the XML accumulation idiom of Figure 3.9 to the new

setting. Computations in the idiom of Figure 3.9 accumulate a single XML value, but here
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module NXmlWriter :
sig
include PIDIOM

val plug : (µ,ν) context → (µ,ν,α) t → (κ,κ s,α) t

val run : (z,z s,α) t → xml × α
end =
struct

open NContext

type (µ,ν,α) t = (z,z,µ,ν) contexts × α
let pure v = (nil, v)
let (�) (xs, f) (ys, a) = (append xs ys, f a)
let plug k (xs, v) = (cons (plug k xs), nil, v)
let run (xs, v) = (List.hd (to_xml_list xs), v)

end

Figure B.12: The multi-holed XML accumulation parameterised idiom

module type NFORMLET =
sig

include PIDIOM

val plug : (µ,ν) context → (µ,ν,α) t → (κ,κ s,α) t

val input : (µ,µ s,string) t

val run : (z,z s,a) t → xml × (env → a)
end

Figure B.13: The multi-holed formlet interface

we accumulate a sequence of XML values and provide an operation for plugging them into

a context. The NXmlWriter module implements the parameterised idiom interface PIDIOM

(Figure 3.23). A computation of type (µ,ν,α) NXmlWriter.t accumulates µ − ν XML

values and returns a result of type α. The plug operation takes a context with µ − ν holes

and a computation that accumulates the same number of values and returns a computation

that accumulates a single value, formed by plugging the values into the context. As with the

standard XML accumulation idiom, the pure and � operations correspond to the unit and

multiplication of the underlying XML monoid, which is in this case the free monoid on the set

of XML values. The run function takes a computation that accumulates a single XML value

and returns the accumulated XML value and the result of the computation.

Figure B.13 gives the interface to the parameterised formlet idiom based on multi-holed

contexts. As with NXmlWriter, a computation of type (µ,ν,α) NFORMLET.t accumulates

µ − ν XML values and returns a result of type α. The plug operation is simply the plug

of NXmlWriter lifted to formlets. The input operation corresponds to the input operation
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module ComposePI (F : PIDIOM) (G : IDIOM)
: PIDIOM with type (+µ,+ν,+α) t = (µ,ν,α G.t) F.t

module ComposeIP (F : IDIOM) (G : PIDIOM)
: PIDIOM with type (+µ,+ν,+α) t = (µ,ν,α) G.t F.t

Figure B.14: Composition of an idiom and a parameterised idiom

module NFormlet : NFormlet =
struct

include ComposeIP (NameGen)
(ComposePI (NXmlWriter) (Environment))

module N = NameGen

module A = NXmlWriter

module E = Environment

let plug k f = N.pure (A.plug k) �N f

let input =
N.pure
(fun name →

A.plug (NContext.tag
"input" [("name", name)] NContext.empty)

(A.pure (E.lookup name)))
�N N.next_name

let run v = let xml, c = A.run (N.run v) in xml, E.run c

end

Figure B.15: The multi-holed formlet implementation

of the Formlet interface (Figure 3.5). The run operation extracts the XML and the collector

from a formlet computation that accumulates a single XML value.

Figure B.14 gives the interface to pre- and post-composition of a parameterised idiom with

an idiom. We omit the implementations, which are precisely the same as the implementation

of standard idiom composition (Figure 3.10).

Figure B.15 gives the implementation of the parameterised formlet idiom of Figure B.13.

As with standard formlets (Figure 3.11), formlets are formed by composing the idioms for name

generation, XML accumulation and reading from an environment; here XML accumulation is

implemented by a parameterised idiom, so the result is a parameterised idiom.

Figure B.16 gives the desugaring algorithm for formlets based on multi-holed contexts.

Given a formlet literal formlet q yields e , the operations qk, q# and q denote respec-

tively the XML context for q (i.e. the XML literal, but with holes in place of formlet bindings),
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Jformlet q yields eK = NFormlet.plug qk

(NFormlet.pure (fun q†1 . . . q†n → JeK)

� q#
1 � . . . � q#

n )

sk = NContext.xml (xml_text s)

{e}k = NContext.xml JeK

{f ⇒ p}k = NContext.hole

(<t ats>n1 . . . nk</t>)k = NContext.tag t ats (<#>n1 . . . nk</#>)k

(<#>n1 . . . nk</#>)k = nk1 ++ . . . ++ nkk

s# = ()

{e}# = ()

{f ⇒ p}# = f

(<t ats>n1 . . . nk</t>)# = n#
1 , . . . , n#

k

(<#>n1 . . . nk</#>)# = n#
1 , . . . , n#

k

s† = ()

{e}† = ()

{f ⇒ p}† = p

(<t ats>n1 . . . nk</t>)† = n†1 , . . . , n†k

(<#>n1 . . . nk</#>)† = n†1 , . . . , n†k

Figure B.16: Formlet desugaring based on multi-holed contexts

the sequence of formlets bound within q and the sequence of patterns to which those formlets

are bound. We abuse the notation a little in the definition of J−K, writing q†i to refer to the

i-th element of the sequence q†, and similarly for q#. The result of the desugaring for each

formlet literal is a single application of the plug function to an idiom computation in normal

form (Section 2.2.5.3). We refer the reader again to Figure 3.22 of Section 3.6.3 for an example

of the output.

As we have said, it is possible to combine the multi-holed context approach to producing

XML with the static XHTML validation of Section 3.6.1. We refer the reader to Lindley (2008)

for the details.
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