[Mil93]

[MS91]

[Nel87]
[Rad93]

[Rif93]

[Shn92]

[vdS93]

[VKSY]

[vWO3]

Russ Miller. The status of parallel processing education: 1993. Technical
Report available through anonymous ftp, Computer Science Department,

State University of New York at Buffalo, August 1993.

Bernard M.E. Moret and Henry D. Shapiro. Algorithms from P to NP -
Volume [I: Design and Efficiency. The Benjamin/ Cummings Publishing
Company, 1991.

Ted Nelson. Computer Lib/ Dream Machines. Microsoft Press, 1987.
Roy Rada. Hypertext: From Text to Expertext. McGraw Hill, 1993.

Adam Rifkin. Teaching parallel programming and software engineering
concepts to high school students. Technical Report CRPC-93-4, Center
for Research on Parallel Computation, California Institute of Technology,

1993.

Ben Shneiderman. Designing the User Interface: Strategies for Effective
Human-Computer Interaction. Addison Wesley, 2nd edition, 1992.

Jan L.A. van de Snepscheut. What Computing Is All About. Springer-
Verlag, 1993.

Dennis M. Volpano and Richard B. Kieburtz. The templates approach to
software reuse. In Software Reusability, Volume I: Concepts and Models,

pages 247-255. ACM Press, 1989.

Mark von Wodtke. Mind Over Media: Creative Thinking Skills for Elec-
tronic Media. McGraw Hill, 1993.

Teaching Archetypal Design 27 Printed March 2, 1994

[BDY2]

[BGY3]

[Cha93a)

[Cha93b)]

[Che93]

[CMS8Y]

[CR93]

[CT92]

[J92]

[KR3]

[Les93]

Meera M. Blattner and Roger B. Dannenberg, editors. Multimedia Interface
Design. ACM Press, 1992.

Richard Bergman and David Guenette. What is the state of electronic
books? New Media, page 12, May 1993.

K. Mani Chandy. Archetypes and the systematic development of parallel
programs. Technical Report forthcoming, Center for Research on Parallel

Computing, California Institute of Technology, 1993.

K. Mani Chandy. Properties of concurrent programs. Technical Report
Caltech-CS-TR-93-24, Computer Science Department, California Institute
of Technology, 1993.

Doreen Y. Cheng. A survey of parallel programming languages and tools.
Technical Report RND-93-005, NASA Ames Research Center, Mail Stop
258-6, Moffett Field, CA 94035 -1000, March 1993.

K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Founda-
tion. Addison Wesley, May 1989.

K. Mani Chandy and Adam Ritkin. An archetype-based approach to par-
allel program libraries. Technical Report forthcoming, California Institute

of Technology, 1993.

K. Mani Chandy and Stephen Taylor. An Introduction to Parallel Program-
ming. Jones and Bartlett, 1992.

Joseph JaJa. An Introduction to Parallel Algorithms. Addison Wesley,
1992.

Rohit Khare and Adam Ritkin. etext: A document-centric hypermedia
publishing environment. submitted to USENIX 94, 1993.

Bruce P. Lester. The Art of Parallel Programming. Prentice Hall, 1993.

Teaching Archetypal Design 26 Printed March 2, 1994

to develop methods and tools to aid in the software engineering of parallel programs,
for a variety of natural science, mathematics, and computer science applications. The
methods deal with the systematic development of parallel programs from specifica-
tions — and in many cases, the specification is a sequential program which is required
to be “parallelized.” The tools support reasoning about parallel programs, then de-
bugging them on workstations, and finally porting the source code from workstations
to parallel machines. The methodology has been used for such applications as fluid
dynamics computations. eText, Archetypes, and PEN play central roles in the overall
effort. The research on libraries of Archetypes was sponsored by ARPA under con-
tract N00014-91-J-4014, and this support dovetails with CRPC support for education
and parallel scientific applications, under cooperative agreement CCR-9120008. The

government has certain rights in this material.

Demonstrations are available on request through the eText Group at the Department
of Computer Science at Caltech. Presently two electronic textbook user interfaces
have been implemented: one is running on the applications layer of NEXTSTEP, and
the other executes on XMosaic, a layer over the Internet World Wide Web. Future
plans include ports to PCs and/or Macs. A modified version of this paper will be
presented at the Computer Science Conference of the ACM, to be held in Phoenix,
Arizona, March 6-12, 1994.

References

[Ada93] John A. Adam. Applications, implications. [EEFE Spectrum, pages 24-31,
March 1993.

[AK93] Paul Ainsworth and Svetlana Kryukova. A multimedia interactive envi-
ronment using program archetypes: Divide and conquer. Technical Report

forthcoming, California Institute of Technology, 1993.

[BD91] Emily Berk and Joseph Devlin, editors. Hypertext/ Hypermedia Handbook.
McGraw Hill, 1991.

Teaching Archetypal Design 25 Printed March 2, 1994

In addition, Archetypes integrate parallel and sequential models of thinking, providing
a systematic methodology for patterns of problem solving. Archetypes provide com-
ponents for documentation, algorithm and code, correctness verification, efficiency
and performance analysis, and test suite design. Through the interactive environ-
ment founded on eText’s electronic textbook, Archetypes (and the applications and
programs that accompany them) can be used for learning and reference. The Archety-
pal libraries of source code provide a wealth of implemented applications for browsing
and using. Evidence from early experiences with Archetypes and the electronic text-
book indicate they will instill important software engineering practices in the people
who use them. As a final note, we observe that Archetypes and eText are, and will

continue to be, organic; they are expected to continue to grow and flourish.

Acknowledgments

Software Archetypes were first conceived by K. Mani Chandy, who has been instru-
mental in refining them, coordinating and inspiring the eText group, and editing this
manuscript. Also, special thanks go to Svetlana Kryukova, Paul Ainsworth, and Sid-
dhartha Agarwal, who developed the Divide-and-Conquer and Dynamic Programming
Archetypes; to Rohit Khare, architect of the eText electronic book publishing system;
to Rajit Manohar, who worked on the Grid Computation Archetype; Adam Ritkin
and John Thornley, who were instrumental in adding and removing (respectively)
a number of quirky colloquialisms and in offering helpful comments to improve this
document; to We are also grateful to the other members of the eText project team
at Caltech: Alan Blaine, Greg Davis, Diana Finley, Diane Goodfellow, Paul Kim,
Tal Lancaster, and Ted Turécy. The following people have been helpful consultants
throughout the course of the eText project: Ulla Binau, JoAnn Boyd, Peter Carlin,
James Cook, Robert Harley, Carl Kesselman, Rustan Leino, Berna Massingill, Paul
Sivilotti, and Gail Stowers. We thank Cindy Ferrini and Nancy Zachariasen for their

patience while this document was being written over a number of months.

This paper reflects a larger overall effort [Cha93a], led by K. Mani Chandy at Caltech,

Teaching Archetypal Design 24 Printed March 2, 1994

Main b =] The Method

1) Initiality: The first subproblem in the series (Qp) can be solved _
easily.

2] Progression: Any of the other subproblems can be solved,
provided we know the solutions to all previous subproblems. Initially

Carrant
Edit
Layout

3] Equivalence: The final problem in the series [Qfng) is
equivalent ta the problem P that you originally wanted to solve.

Corsole The Method

After creating this series of subproblems, we then go through
and solve each subproblem in order. Once we have solved all
the subproblems in the series, then we notice that the last
problem in the series (G4} is the problem P, that we wanted to

solve in the first place.

MNow that we have described the general idea behind the
template, we will describe in detail the the concepts that are @

central to the dynamic programming template:

Section 2: The Series, the Function, and the Graph

'The major step in solving a problem using dynamic programming
is actually taking the problem P and somehow turning it into the

series of subproblems. Ewven though the idea is conceptually s Characteris
4 straightforward, in practice it is seldom simple. w‘

The Qualities

_
Easily
-0 |@-

Q0 Solved

Q1 through Qk Q(k+1) solved Qfinal Solved Problem P
Initiality Progression Equivalence

Figure 9: A lesson designed in eText for the Dynamic Programming Archetype.

5 Summary

The efforts discussed in this paper, and the ensuing testing that accompanies them,
indicate that Archetypes will influence the way students can learn to parallel program
in the future. It is our belief that a large number of application programs (greater than
80%) can be accommodated by a compact set of Archetypes (less than 20), making
them useful and feasible for teaching parallel programming and for the technology
transfer of parallel programming. On the learning front, Archetypes allow students
to learn parallel programming by associating it with the analogous skills involved
with sequential programming. And, since they abstract design solutions, Archetypes
provide reuse at the design level as well as at the source code level; as a result, they
represent a knowledge-acquisition system that encapsulates the experience of seasoned

parallel programmers for use by developing parallel programmers.

Teaching Archetypal Design 23 Printed March 2, 1994

are presented concurrently with the lessons for sequential programming styles, making
use of the concepts of spawned processes, multiple threads of control, and synchro-
nization and communication through channels. The Introduction to Programming
chapter is an example of how to use eText for learning and reference, and provides

the foundation for the Archetypes.

4.2 Computer Science Archetypes

Presently, the Dynamic Programming (as illustrated in figure 9) and Divide-and-
Conquer Archetypes [AK93] are being completed for use with Caltech’s Computer
Algorithms class this fall. Both provide illustrations of the niceties supplied by
Archetypes. Future plans may include Archetypes for the following methodologies:
Greedy Algorithms, Hill Climbing Algorithms, Iterative Methods, Numerical Meth-
ods, Branch-and-Bound Algorithms, Graph Algorithms, Discrete-Event Simulations,

and Monte Carlo Simulations.

Later goals include Archetypes for a number of distributed algorithms, including

Global Snapshots and reactive systems such as the Dining Philosophers’ Problem, as

discussed in [CM89].

4.3 Other Archetype Examples

Presently the eText group at Caltech is working on Archetypes for scientific pro-
gramming, under the realms of Matrix Computations, Grid Computations, Spectral
Methods, and n-Body Problems. It is conceivable, and we hope that, other groups
will develop Archetypes for applied computational systems as diverse as financial al-
gorithms and genetic algorithms. New Archetypes, applications and programs are
continually being added to the eText electronic textbook. Archetypes are limited
only by our imagination, time, and budget constraints. We expect the number of
Archetypes, applications, and programs in eText to balloon as the number of groups

contributing to the project blossoms in the near future.

Teaching Archetypal Design 22 Printed March 2, 1994

3.3 Using eText to Teach Archetypes

eText wraps the extensive features described in §3.1 and §3.2 in a intuitive graphical
user interface. It provides modes for authoring documents, modifying created doc-
uments, and reading existing documents. For authoring (and printing), to borrow
from the parlance of desktop publishing, eText is WYSIWYG. The reader has the
full range of navigation and inspection features described earlier, as depicted in fig-
ure 8. For example, if the user chose the documentation for the Divide-and-Conquer
Archetype, he or she would arrive at the window illustrated in figure 4, after which a
guided tour would take him or her through the Archetype’s various components. We
have developed a number of Archetypes; these instantiations are summarized in the

next section.

4 Case Study: Examples

We concisely explore the currently developing Archetypes that demonstrate not only

the feasibility of their usage, but also the utility they offer.

4.1 Introduction to Programming

Although not a formal Archetype, the Introduction to Programming chapter provides
an appropriate beginning for readers initially learning programming principles. It dis-
cusses basic programming ideas, assertional thinking about programs, Hoare triples,
and preconditions and postconditions, as presented in [vdS93]. It continues with some
mathematical fundamentals, and then proceeds with programming constructs, includ-
ing assignment statements, sequenced statements, conditional statements, and loop-
ing statements. The intricacies of modular design, recursion, data structures, data
abstraction, encapsulation, and object-oriented programming styles are described in
a programming language-independent manner. Also, specific programming notations

are discussed, providing examples of usage. Lessons in parallel programming styles

Teaching Archetypal Design 21 Printed March 2, 1994

annotations can be collapsed or traveled similarly. The multimedia features are
designed to be as easy to use as to the navigations of conventional media listed
previously, and do not interfere with the presentation flow because the use of

such functionality is under user control.

e Interactive Media. Through the use of interactive figures, interactive slide
shows, and enhanced animations, eText provides a feedback facility that allows
the electronic book to modity its lessons based on the perceived learning level

and desires of the user.

[m]

Divide AndConguer.rtfd — /XeNT/ETEXT/eBookSystem

The Divide and Conquer Archetype «

Overview:
@ Documentation
% Inroducton to Methodology
@ How to Recognize Divide and Conguer Problems
& Annotated Description of Divide and Conquer Archetype
@ "Further Reference” Reading List
@ Correctmess Abstraction
@ Psendo Code Curline for Divide and Conquer Algorithms
& Assertional Debugging Techniques
@ Test Suite Dresign Strategy
% Systematc Proof Cutline
< Proof Obligarions for User-Supplied Code
< Safety and Progress Considerations
P Termination Verficaton
@ Efficiency Abstracton
@ Bequental Efficiency Analysis Overview
< Parallel Issues (Granularity, Mapping, Cormunication)
@ Cornparison of Task-parallel and Data-parallel Applications
% Orthogonal Look at Control Flow and Drata Flow Problems
@ Orthogonal Look st Sequendal and Parallel Applicatons
& Applications Librany
& Convex Hulls
& Fast Fourer Transform
@ Mergesort
& Quicksort
% Skylme

I. Documentation &
Divide and Coneuer iz one of the fundamental partems of problern selving in
compurer science today. Its premise is simple:

DIVIDE: breaking the problem inte smaller, independent subproblems
CONQUER: sclving each subproblem recursively, and recombining the
subsclutions into the soludon for the original problem

Divide and Conguer problems naturally lend themselves to parallel solutons, as
subproblems can be distributed over a message passing network and solved
independently on different machines,

.etfd Inspector

Annotations ﬂI

Title: DivideAndConguer

Owns: ConvexHulls,
FastFourierTransform, Mergesart,
Quicksort, Skyline

XRef. ProofBasics, ParallelBasics,
DynamicProgramming

Creator: Adam Rifkin

CreationDate: 05/3/93

Comment: This is the Divide and
Conguer Archetype, inwhich the
ocumentation, correctness ahstraction,
and efficiency abstraction are discussed
n detail through interactive figures
Cross links to applications libraries
rovide examples In languages such as
Compositional C++, Foriran b, Maisie,
Madula 3-D, and Declarative Ada

Rever oK <~

Figure 8: A group of hyperlinks within the eText navigational engine table of contents
for the Divide and Conquer Archetype.

Teaching Archetypal Design 20 Printed March 2, 1994

the eText electronic book engine

Interactive Media Interactive Figures Feedback
Interactive Side Shows Enhanced Animations

Hypermedia Crossreferencing Hypernotes

Hyperlinks Inspectors

Multidimensional navigation Hypertext

Multimedia Animations Video Audio Guided Tours
Dynamic Pictures Side Shows Graphics Enhanced text

Conventional Media Sandard Text Footnotes Satic Pictures
Bibliography Index Diagrams cparts Sections Table of Contents

Figure 7: The pyramid of media upon which eText is constructed.

e Multimedia. Because eText is an online system, it can provide several kinds
of live, time-based annotations, such as audio (voice, sound effects, and music),
branching slide shows, computer animations, and video. In addition, eText
provides for enhanced text format by allowing a variety of fonts, colors, and
formatting options. The multimedia features are designed to be as easy to use
as to the aforementioned annotations of conventional media, but do not interfere
with the presentation flow because the use of such functionality is under user

control.

e Hypermedia. Hyperfeatures allow a user to click on an annotation and jump
to elsewhere in the document, or elsewhere in another document. They pro-
vide eText with rich navigation facilities for cross-referencing, inspecting, and
hyperlinking (as illustrated in figure 8). A user can click on a special hypernote
or hypergraphic left by an author, or utilize the hypertext buttons to look up
words in glossaries or elsewhere in other documents. Hypermedia make provi-
sions for true multidimensional navigation, meaning that eText can provide a
thick book of information disguised as a thin book of information. Any ideas

that need further clarification can be expanded by clicking the proper button;

Teaching Archetypal Design 19 Printed March 2, 1994

MERGE SORT EXAMPLE

This program is an abstract example of merge sort.

When you click start button, some munber of circles with
the arbitrary radius will be created. Number of circles can be
changed by entering any namural number in the rexrfield
"Number". {Note: if you enter too big number some of the,
circles might be not seen.)

The mergesort algorithm can be executed in tvwwo modes,
Manual step by step, by clicking the "Next Step” button, or
automatically,

If you wwant to look at the steps of algorithm, split, sort or
cornbine procedures more carefully, press proper burton.,
Window for executon the corresponding procedure will be.
open,

Figure 6: An interactive figure incorporated into eText, that demonstrates how Merge-

sort works by using colored circles to animate the Divide-and-Conquer algorithm.

3.2 The Use of Interactive Media in eText

The electronic textbook utilizes a variety of media to intensify its teaching and ref-
erence capabilities. A medium can either be an annotation to a document (such as
text, audio, or pictures), or a navigation through a document (such as footnotes, hy-
perlinks, or indices). As shown in figure 7, eText has its foundations built upon the
pyramid of currently available state-of-the-art features. These are briefly discussed

below.

e Conventional Media. “Traditional” media encompasses devices commonly
associated with printed books and papers. eText provides facilities for standard
text, diagrams, charts, and static pictures. Furthermore, it affords canonical
conventions for navigation, including: tables of contents, chapter and section

divisions, indices, footnotes, glossaries, and bibliographies.

Teaching Archetypal Design 18 Printed March 2, 1994

§3.2) provides a variety of learning aids. Perhaps the most useful tool eText
provides is the customizable interactive figure, as illustrated by the Mergesort
example in figure 6. Authors can design special simulations and animations
to supplement the traditional components of Archetypes. eText also provides
a facility that allows the author to develop different “guided tours” through
the information space, so that a reader can have a different teaching companion
(with different accompanying levels of instructing text) based on his or her level

of expertise or goals.

e Navigational Engine. Once a student has learned how to use a particular
Archetype, he or she will need a suitable referencing environment that allows
for speed of navigation and location of information to help improve his or her
programming skills. eText provides hypermedia features such as multidimen-
sional indexing, a table of contents, links from parts of one document to other
parts of the same document or parts of other documents, and automatic cross

referencing for ease of travel through the Archetypes’ hierarchy.

e Annotations. All items in the hierarchy (Archetypes, applications, and pro-
grams) are considered documents with various attributes that can be modified
to better suit the author or the reader. Further, documents are self-aware, in
the sense that they know their relationships to other documents, and the eText
engine. Printing capabilities allow users to make hardcopies of relevant material

for portability.

e Runtime Environment. To encourage students to play with provided code
libraries, eText provides a code browser with cut-and-paste capabilities. Stu-
dents can use an editing environment to slice and house relevant portions of
code, which can then be modified, compiled, debugged, executed and evaluated
in an integrated environment. This provides students with immediate hands-on
experience, breaking down the often-intimidating barriers that accompany one’s

initial reaction to parallel programming as to where to even begin.

Teaching Archetypal Design 17 Printed March 2, 1994

follows similar conventions under either paradigm. Archetypes also integrate

object-oriented methodologies by presenting them in an intuitive manner.

e Learning Tool. Archetypes provide a coherent, cohesive approach to problem
solving. This approach can be thought of as a helpful learning aid, with guides

on problem solving and careful considerations of subtle issues.

In short, Archetypes not only teach people how to program; they teach people how
to program efficiently, correctly, and easily. They provide instant access to a wealth

of reference information, and espouse reuse and other software engineering principles.

2.5 How Archetypes Are Used

Presently a number of prototype Archetypes have been developed at Caltech as a
demonstration of their feasibility and utility. These examples (as discussed in §4) use

the eText interface, described in the next section.

3 The Electronic Textbook

We briefly describe the interactive learning and referencing environment called eText.
For an exhaustive investigation of the issues involved in the design and use of eText,

please refer to [KR93].

3.1 Design and Implementation of eText

The electronic book is designed to facilitate the authoring and usage of Archetypes,

incorporating the following features:

e Interactive Learning Environment. eText serves as a teacher, guiding
the student through the documentation and various components of a given

Archetype. The use of multimedia, hypermedia, and interactive media (see

Teaching Archetypal Design 16 Printed March 2, 1994

eText provides a facility for navigation and reference to the Archetype libraries of

instantiated code, for direct use or modification.

2.4 Why Archetypes Are Useful

We consider the benefits derived from the use of Archetypes, as a justification of their

Algorithm Independence Programming Language |ndependence

[Archetypes

Architectural Independence Sequential/ Parallel Paradigm Independence

Figure 5: The independences that Archetypes foster.

utility.

e Software Engineering. Archetypes espouse a principled approach to problem
solving, supporting the software engineering ideals of abstraction, specification,
instantiation, design, and reuse. Because the same structure exists at each level

(Archetypes, applications, and programs), there is reuse at every level.

e Independence. Archetypes can set programmers free. As illustrated in figure
5, Archetypes represent an abstraction subsuming any particular algorithm, an
abstraction above any particular machine architecture, an abstraction above
any particular programming language, and an abstraction above any particular

paradigm. This represents a unique level of independence of problem solving.

e Paradigm Unification. Archetypes depict an unconventional breaking of the
artificial wall created to separate sequential and parallel programming styles.

Through their continued use, programmers discover that algorithm development

Teaching Archetypal Design 15 Printed March 2, 1994

enables performance tuning of parallel implementations.

e Correctness Abstraction. For this component, the following verification
issues are confronted and discussed: the general algorithm outlines from the Al-
gorithm component are critiqued, assertional debugging techniques to consider
for this algorithm are described, and a systematic proof outline is presented.
Again, for some applications, and for all programs, these are instantiated for
the specific problem being solved in the given notation. The systematic cor-
rectness outline for an Archetype or application may include proof obligations
for user-supplied components, safety and progress considerations for distributed

algorithms, invariants, and termination verification strategies.

o Efficiency Abstraction. This component covers the essentials of sequential
and parallel performance evaluation. This could include: a sequential efficiency
analysis overview; parallel and distributed issues such as granularity, mapping,
and communication; a comparison of task-parallel and data-parallel approaches;
a look at control flow and data flow considerations; and a comparison of the
sequential and parallel algorithms prescribed. For some applications, and for
all programs, these are instantiated for the specific problem solved in the given
notation. Performance analysis is always included with implementations, some-
times included with applications, and rarely included with the Archetypes them-

selves.

e Debugging Tips/ Test Suite Design. Strategies for developing a thorough
yet sufficiently small test suite are discussed in this component. For some
applications, and for all programs, these are instantiated for the specific problem
solved in the given notation. In addition, techniques for debugging canonical

errors are presented; in this manner we capture programmer experience.

Asimplemented using the interactive learning environment enabled by eText, Archetypes
also include a number of teaching abstractions. These include interactive figures,

slide shows, menus, process diagrams, animations, and laboratory exercises. Further,

Teaching Archetypal Design 14 Printed March 2, 1994

arranged in a pile for ease of moving, Since 10,000 piled books are too
any o transfer easily at once, you decide to divide the books infe two
qual piles. 5000 books are easier to ransport at one tme; howewver,
oth piles are stll too big to move easily. You divide the piles again,
ielding four piles of 2,500 books. If you continue to split the piles of
ocks into smaller piles, eventually we will reach a point when you will
ave a pile of books srnall enough to carry easily to the new ibrary
let’s say that a pile of books is "easy to carry” if it has less than 10
ooks inith, Once vouhave a pile that can be easily carried, youmove
to the new building, Once vouhave all of the piles in the new
uilding, you take all of the small piles and start merging thern back into
igger piles (essentally reversing the division done previously), Asyou
ondnue to merge piles of books, eventually vou will again have the
riginal pile of 10,000 books, and, having completed your job, you can
elax with a tall glass oflemonade and the satsfaction of a job well
one.

he idea employed in the above example is known as Divide-and-
ongquer. The Divide-and-Conguer archetype is method of solving
roblems by using a very simple strategy. The strategy iz as follows:

When faced with a large problem,
1 Take the problern and divide it inte smaller problems of the sarmne

type, contnue dividing untdl we reach a problem that is small enough to
e solved easily (we will call a problem of this size a "base case").

Al

ll 2% When we reach abase case problem, we solve it

o Divide-and-Conquer Archetype X|
G Basic ldea About the author |
et’s say that the local library is moving to a new location, and you've _
een given the job of moving all of the books to the new building, For
e sake of simplicity, assume this ibrary has exacty 10,000 books, Basic Idea

Algorithm Development

Algorithm

Parallel Implementation

Reasoning

Testing

Performance Analy sis

Applications

— Headiyggmode ———
{" Formal stuff only
" Include introductions

———

rchetype:
pattern or template which represents a method of solving a problem.

Figure 4: The eText interface for the Divide and Conquer Archetype.

a “further reference” reading list, which will eventually contain hyperlinks to

other online documents.

e Algorithm. In this component, lessons describe the creative steps neces-

sary for sequential and parallel algorithm development for problems its parent

Archetype. When specified for an Archetype or application, this section will

often include pseudo-code; instantiated for a program, this section provides ac-

tual code in the given notation. Also, a methodology for parallelizing a given

sequential algorithm is given, including a stepwise refinement process which

Teaching Archetypal Design 13

Printed March 2, 1994

of code, easily accessible for browsing and modification. For instance, the Fast Fourier
Transform Application owns source code examples in sequential notations such as C,
Pascal, FORTRAN, and C++, and in parallel notations such as a parallel C called
Maisie, a parallel Pascal called Mosaic Pascal, a parallel Fortran called FORTRAN
M, and a parallel C++ called Compositional C++. It also owns source code ex-
amples in sequential notations with channel libraries added to obtain parallelism.
Looking at any one of these instances, for example the Fast Fourier Transform Pas-
cal Program, we notice that this program (as do all) maintains the same structure
as its parent application (and Archetype, for that matter), including documentation,
program in actual Pascal code, correctness proof presentation, efficiency and per-
formance evaluation analysis, and small but thorough test suites, for the sequential
algorithm developed. Students can peruse the source code, compare parallel and se-
quential algorithms for the same programming notation, and discover the issues of
parallel programming by probing the code provided and moditying it in a special
environment. The navigational engine, text browsers, and runtime environment form
the crux of eText, as discussed in [KR93]. The whole concept of Archetypes is fully
explained in [CR93].

2.3 The Components Archetypes Include

Here we succinctly and informally describe the characteristic components contained
within an Archetype (and application, and program); for a full description of these
components, please refer to [CR93|. eText provides a rich navigational interface to
Archetypes, as exemplified by figure 4. Each component component consists of a

number of elements, outlined below.

e Documentation. Documentation includes all accompanying explanatory text,
to discuss nuances of the given Archetype and the subtleties of the given ap-
proach. Typically, documentation will include, but is not limited to, an ana-
logical introduction to the methodology (see figure 4), clues describing how to

recognize the problem pattern, an annotated description of the Archetype, and

Teaching Archetypal Design 12 Printed March 2, 1994

C++, as well as parallel versions of those languages.

Archetype Divide and Conquer
high level

Application Mergesort Patte'rn Fast Fourier N.earest Skyline
middle level Matching Transform Neighbors

Program C | |Maisie Pascal | |Mosaic Pascal | | FORTRAN | [FORTRANM || C++ || CC++
low level

Figure 3: The three-tiered hierarchy of Archetypes, applications, and programs, in-
stantiated for the Divide-and-Conquer Archetypes example.

For example, we have developed a Divide-and-Conquer Archetype, which represents
a methodological approach to solving problems that can be classified under a pattern
of “dividing” a problem into similar, smaller subproblems, solving the subproblems
(“conquering”), and then merging the solved subproblems to combine a solution for
the original problem. This Archetype (as do all) includes documentation, program
outline in pseudo-code, correctness obligations, efficiency and performance evaluation

components, and test suite design issues, for both sequential and parallel algorithms.

Now, one application of this Archetype is the Fast Fourier Transform Application,
useful in many scientific and signal processing programs. This application (as do
all) maintains the same structure as its parent Archetype, including documentation,
program outline in pseudo-code, correctness obligations, efficiency and performance
evaluation components, and test suite design issues, for both sequential and parallel

algorithm development.

Further, this application owns a number of Fast Fourier Transform Program Case-

books, developed as Archetype libraries. These libraries bind together anthologies

Teaching Archetypal Design 11 Printed March 2, 1994

Beginner Intermediate ~ Advanced Expert
Analogical approach Mimics parallel code Writes parallel code Reuses parallel code

Figure 2: The ability levels of a parallel programmer.

2.2 The Design of Archetypes

The main feature of our approach to the design of Archetypes is self-similarity:;
at each level of the three-tiered hierarchy, the component components are the same.
Sequential and parallel design issues are addressed at each level. The three tiers, as

illustrated in figure 3, are:

1. The Archetypes Level. At this, the highest level of problem abstraction, we
isolate general patterns of problem solving for which many algorithms behave.
These algorithms may fall under the realm of computer science and/or ap-
plied natural sciences. One Archetype, for example, is the Divide-and-Conquer
Archetype, described below. Other examples include Matrix Computations,
Mesh Computations, Spectral Methods, and n-Body Methods.

2. The Applications Level. At this, the middle level of problem solving, we
isolate specific applications whose algorithms conform to the parent Archetype.
For example, the Divide-and-Conquer Archetype would have many applications
(that include documentation, pseudo code, correctness proofs, parallelizing tech-
niques, efficiency analysis, debugging tips, and test suites), such as Mergesort,

Skyline, String Matching, Nearest Neighbors, and Fast Fourier Transform.

3. The Programs Level. At this, the lowest level of problem solving, actual
working source code implementations which vary by programming language,
granularity, and target machine architecture considerations. For example, the
Fast Fourier Transform Application might have Programs (that include docu-
mentation, correctness proofs, parallelizing techniques, efficiency analysis, de-

bugging tips and test suites) written in sequential C, Pascal, FORTRAN, and

Teaching Archetypal Design 10 Printed March 2, 1994

2.1 How Archetypes Improve Skill

In determining a good way to teach parallel programming, we isolate operational
issues necessary to develop proficient users. Archetypes afforded a unique learning
environment because of their systematic approach to presenting algorithm design.

Briefly, the parallel programmer skill levels and the issues associated with each are:

e Beginner to Intermediate. A learning environment should include many
source code examples, so students can learn by observing working code and
modifying it. Furthermore, examining the code can reveal that parallel and
sequential programming conform to similar principles. Finally, when the student
tries to write custom code, he or she will be able to construct a solution by

analogy to the library code.

e Intermediate to Advanced. A unified and methodical approach should be
taught concurrently, during these learning sessions, so students could learn to
design code, develop test suites, and perform correctness proofs, efficiency anal-

ysis, and performance evaluation.

e Advanced to Expert. A system should be designed that encourages software
reuse. Such a system has been explored for sequential algorithms [VK89], but
none to date has been developed for parallel algorithms. Archetypes lend them-
selves nicely to many software engineering principles including software reuse,
leading to a paradigm bridging between sequential and parallel algorithms pre-

viously unachieved.

We believe Archetypes represent a manner by which programmers can progress.

Further, by being useful to parallel programmers at every level, Archetypes bridge
the gap between different skills of programmers, providing a means by which all

programmers can learn and refer to principles at many levels.

Teaching Archetypal Design 9 Printed March 2, 1994

2 Archetypes

Archetypes represent a systematic, taxonomic and patterned way of grouping similar
problems and their respective solutions. Their usefulness resides in the facility for an
able programmer to instantiate an Archetype, for a new problem that arises with clues

indicating that it follows the same pattern as other applications for that Archetype.

Representation of Archetypes

Documentation

Program Code

Explanation of Correctness

— Efficiency and Hintsfor Parallelizing —
— Test Suite Design and Debugging Hints —

Figure 1: The components included in the representation of Archetypes.

An Archetype consists primarily of five components: documentation, program outline,
semantic correctness proof outline, efficiency abstraction with performance modeling
outline, and test suite design and debugging tips outline. These outlines are further
discussed in §2.3, after which we describe why Archetypes are useful and how we make
use of them in §2.4 and §2.5, respectively. But first, we describe why Archetypes are

needed and our approach to designing and maintaining them.

Teaching Archetypal Design 8 Printed March 2, 1994

source code in their preferred notations to the Archetype libraries easily. To
afford a more comfortable transition for programmers to the universe of parallel
computation, eText includes popular sequential languages with simple, small
extensions and/or libraries. In this manner, users can progress at a reasonable,

individualized pace.

e The use of an electronic textbook. Special issues must be addressed when
dealing with such a medium. Richard Bergman claims [BG93], “The driving
force has to be the content, and not the media... Electronic books have two
main advantages: ease of access with a search engine and the fact that you can
have a collection of books on a subject in one spot for easy cross-reference.”
We opted for the electronic book metaphor not only for ease of navigation and
access to a potentially exhaustive information content, but also for the interac-
tive simulations and lessons, and for the ability to maintain parallel Archetype
libraries online for ease of cut-and-paste, modification, compilation and dis-
tributed debugging of altered code, all in a run-time environment provided with

the electronic book.

The primary driving force behind the electronic book is its content, specifically
Archetypes; in Applications, Implications [Ada93], John Adam maintains that
multimedia systems are affordable by schools, government agencies, and busi-
nesses, but that “content, not technology, will determine success.” We also keep
in mind the words of David Guenette [BG93]: “What electronic books need is
what all books need: to be edited well.” To this end, Archetypes undergo a
rigorous revision and amendment process, allowing them to dynamically and

continually improve over time.

The remainder of this paper is organized as follows. Archetypes are described and
discussed in §2. The interactive electronic textbook is explained, and its relation to
teaching Archetypes is detailed, in §3. We follow with a few examples of Archetypes
being implemented using the electronic textbook in §4. Finally, we conclude with a

small evaluation of this work thus far in §5.

Teaching Archetypal Design 7 Printed March 2, 1994

e Interactively Teaching Issues Specific to Parallelism. These issues in-
clude, but are not limited to: granularity, parallel structuring, process mapping
orthogonal to a given problem structure, relations between machines and pro-

grams, and data flow issues.

1.3 Justification

Many computer science curricula are incorporating a variety of classes to teach parallel
computing [Mil93]. Our approach to teaching parallel programming — to be used to
supplement the Computer Algorithms class at Caltech this fall — is unique from the

approaches offered elsewhere in four main aspects:

e The use of Archetypes. Central to our instruction is the belief that the
systematic approach to problem solving afforded by Archetypes [CR93] encour-
ages more efficient code development. The resulting program designs are more
rapidly implemented, and amass properties that can be used to prove correct-

ness of implementation [Cha93b].

e The presentation of both parallel and sequential algorithm develop-
ment together. Many good textbook introductions to parallel programming
have been recently published [JQZ, Les93], but they rarely present algorithms in
a manner that unifies the parallel and sequential mind sets. A notable excep-
tion is compositional programming [CT92], and this presentation of material
has been used to teach a freshman class at Caltech. Perhaps the unified teach-

ing of parallel and sequential issues can ultimately lead to better programmers

[Rif93].

e The use of many programming notations. In the last ten years a wealth
of parallel languages have been developed [Che93]. eText is not bound to any
single language, offering the opportunity to learn parallel programming us-
ing whichever languages are most comfortable for the student. Furthermore,

authoring tools provided by eText allow different language developers to add

Teaching Archetypal Design 6 Printed March 2, 1994

for a given application — is designed to help students learn and experiment with
parallel programming. Moreover, each level of the hierarchy maintains the same
basic structure, affording an intuitive feel for ease of use. Programmers can also
browse the text in other ways; for example they can look at the given application
and identify different Archetypes used to solve that class of problems (e.g., Sorting).
They can also browse using keywords. eText is interactive, uses animation to help
explain parallel algorithms, and uses voice narration to allow programmers to focus
on animations while listening to an explanation. Since the book is being deployed
on Unix-based PCs and workstations, the programs can be executed directly on the

same system.

We briefly elaborate on the new ideas that make parallel Archetype libraries and the
eText project unique in their approach. Sequential template programming method-
ologies [VK89], multimedia presentations [BD92, Shn92, vW93], electronic textbooks
and hypertext systems [Nel87, BD91, Rad93], and algorithm methodologies [CM89,
MS91, vdS93] have been explored previously; the following ideas are original issues

being addressed:

o Archetypes. These provide a medium for the transfer of parallel processing
technology, and the encapsulation of the knowledge held by experienced par-
allel programmers. In addition, Archetypes allow for design scavenging, which

provides a system for reuse at a higher level than mere source code reuse.

e Programming Style. Most people program operationally. Some theoretically-
oriented people program assertionally. We seek to bridge the gap between these
two groups, relating assertions to operations, not only as a method of informally
proving program correctness but also as a debugging technique. Archetypes
incorporate both correctness verification outlines, and a history of archetypal
bugs and errors to aid testing and debugging. Archetypes are a means to this

hybrid programming style.

e Parallel Program Libraries. These extensive application source code exam-

ples. allow for cross referencing and querying.

Teaching Archetypal Design 5 Printed March 2, 1994

percomputers. Again, Archetypes emphasize an evolutionary path that requires
neither massive expenditures nor massive retraining to begin experimenting

with and benefiting from parallel computing.

e Interactivity. Archetypes employ tools available on the PC, including multi-
media tools and program development utilities, to develop an environment on
the PC that encourages people to experiment with parallel computing. This
drives knowledge acquisition past passive and even active education towards

the realm of interactive learning.

The electronic textbook (abbreviated eText [KR93]) is an interactive multimedia
manuscript with a multidimensional navigation system that executes on PCs and is
designed to help people learn about parallel programming via Archetypes. Through

the use of eText, a programmer can:

e Navigate — by browsing through a library of paradigm Archetypes,

e Learn — by selecting and understanding an Archetype through the extensive

documentation and provided teaching facilities,

e Experience - by looking at several applications that use the Archetype, empha-
sizing how the algorithm for each application was developed from the Archetype

in a systematic fashion, and

e Implement — by observing sequential and parallel code for each application in
C, Pascal, Fortran and C++, again emphasizing the systematic development of

the code from the Archetype. The programmer can also

e Scavenge — source codes, problem-solving designs, correctness proofs, and per-
formance analysis techniques, by using and modifying components from the

electronic textbook’s repository.

The three-tiered hierarchy (as discussed in §2.2 and illustrated in figure 3) — many

Archetypes, many applications for a given Archetype, and many implementations

Teaching Archetypal Design 4 Printed March 2, 1994

e Interactive. A learning environment should make use of instruments such
multimedia as audio, personalized slide shows, and custom animations, and
such hypermedia as document links and hypernotes, in effect teaching using the

range of tools an online system affords.

e Systematic. A productive and methodological approach should enable a good

parallel programmer to solve computing problems more efficiently.

e Extensible. A constructive system should be developed for adding to, mod-
ifying, and extracting from parallel libraries of source code modules that are
used in the system. It should also encourage design scavenging, as opposed to
the mere reuse of source code alone. Design scavenging enables a programmer
to borrow from and modify many aspects of the algorithm’s design along with

source code, such as reliability and performance components.

1.2 Proposed Solution

The main thrust of our solution relies on the development, maintenance, and teaching
of parallel and sequential Archetype libraries. Archetypes [CR93] impart structure to
knowledge acquisition by enforcing self-similarity between many levels of abstraction.
For parallel programming, Archetypes suggest a consistent solution methodology for
meta-algorithms, applications, and implementations. The eText group plans to use
Archetypes to provide an an evolutionary approach for students to learn parallel

programming, based on three tenets.

e Familiarity. Archetypes are at a level of abstraction above language, but in the
hierarchy described later, we show how they provide libraries and extensions of
languages currently used by programmers — languages such as C, Pascal, C++
and FORTRAN. Beginners should be able to move gradually from their present

programming styles to parallel programming.

e Ubiquity. Parallel programs should run on platforms that are the most widely

used — namely, workstation networks and PC networks — in addition to su-

Teaching Archetypal Design 3 Printed March 2, 1994

tive electronic textbook can be used by a student first to learn parallel programming,
presented as a form of algorithm development similar to sequential algorithm de-
velopment, and later to consult as a reference guide for continued use of parallel
programming techniques and reuse of parallel code libraries. In addition, we note
that Archetypes provide a means by which not only code, but also design solutions,

can be scavenged and reused.

1.1 Motivation: The Problem

In the past decade, the United States has committed many billion dollars to high per-
formance computing. High performance architectures provide the ability to achieve
performance simply unattainable with the standard sequential architectures. Compu-
tational demands have been steadily rising, also; fortunately, technology continually
improves to match it within the track of Moore’s Law. As a result, reasonably priced
multiprocessor machines, as well as networks of workstations and/or PCs, have re-
cently made high performance parallel and distributed computing affordable to cur-
rent sequential programmers. The central dilemma arising with the rapid growth of
parallel technology is the issue of training people to perform parallel programming in

the very near future.

The rise of high performance computing in the 1980s and 1990s has led to an interest-
ing paradox. Problems that were once impractically slow with sequential machines
can now be solved on parallel and distributed machines. However, although high
performance architectures provide extensive computing power, the source of their
strength is also the source of their greatest weakness: the handicap called parallel
programming. For many reasons, from architecture-specific quirks to the perceived
difficulty of distributed debugging, parallel programming has emerged as one of the
primary obstacles in reaping the benefits of high performance computing. How can

the development of correct, efficient parallel code be made more tractable?

We isolate three desirable characteristics for a parallel programming learning and

reference system:

Teaching Archetypal Design 2 Printed March 2, 1994

Teaching Archetypal Design
with an Electronic Textbook

Abstract

How can parallel programming be made tractable for students in high schools
and community colleges, to programmers in four-year colleges, to commercial
and government employees, to interested independent users learning on their
own, and as CASF tools for professional software designers? The computer
science community must address this question if the ability of programmers to
harness the power of parallel systems is to maintain pace with technology ad-
vances forthcoming in parallel systems. This paper addresses some of the issues
of bringing parallel programming to the people, ranging from newly developing
programmers with little experience on any computer to seasoned programmers
of single-processor machines.

We aim not only to enable people to use more powerful computers, but
also to enable people to use computers more powerfully, by nurturing the tech-
niques that enable them to develop efficient, correct code with relative ease.
This paper briefly presents the concept of an Archetype, a software engineer-
ing methodology developed at the Caltech for patterns of problem solving, and
for providing media for quick reference and natural software reuse. We then
describe eText, an interactive multimedia electronic textbook that facilitates
the teaching of, navigating through, and referring to Archetypes. Initial expe-
rience with Archetypes and the electronic textbook suggests that this approach
to teaching parallel programming can aid computer users in the immediate

future.

1 Background
Archetypes provide a general purpose design methodology which supports both se-

quential and parallel source code development, enabling a unification of these two

computing models. This paper demonstrates that Archetypes collected in an interac-

Teaching Archetypal Design 1 Printed March 2, 1994

Teaching Archetypal Design
with an Electronic Textbook

Last Revised, March 2, 199/

The eText Group
Department of Computer Science

California Institute of Technology
Mail Stop 256-80, Pasadena, CA 91125

adam@cs.caltech.edu

The primary author and contact for this paper is Adam Ritkin. The ideas presented
in this paper were developed by the eText team at Caltech in group discussions.

A modified version of this paper will be presented at the 22"¢ ACM CSC Conference
in Phoenix, March 6-12, 1994.

Keywords: Education, Libraries,
Multimedia, Parallel Programming, Software Engineering

Teaching Archetypal Design with
an Electronic Textbook

The eText Group

CRPC-TR94467
March, 1994

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

A modified version of this paper was presented at the 22nd
ACM CSC Conference in Pheonix, March 6-12, 1994.

