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4

M

This book presents a comprehensive treatment of signals and linear systems
suitable for juniors and seniors in electrical engineering. The book contains most of
the material from my earlier popular book Linear Systems and Signals (1992) with
added chapters on analog and digital filters and digital signal processing. There
are also additional applications to communications and controls. The sequence of
topics in this book is somewhat different from the earlier book. Here, the Laplace
transform follows Fourier, whereas in the 1992 book, the sequence was the exact
opposite. Moreover, the continuous-time and the discrete-time are treated sequen-
tially, whereas in the 1992 book, both approaches were interwoven. The book
contains enough material in discrete-time systems so that it can be used not only
for a traditional course in Signals and Systems, but also for an introductory course
in Digital Signal processing.

A perceptive author has said: “The function of a teacher is not so much to
cover the topics of study as to uncover them for the students.” The same can be
said of a textbook. This book, as all my previous books, emphasizes the physical
appreciation of concepts rather than mere mathematical manipulation of symbols.
There is a temptation to treat an engineering subject, such as this, as a branch of
applied mathematics. This view ignores the physical meaning behind various results
and derivations, which deprives a student of intuitive understanding of the subject.
1 have used mathematics not so much to prove an axiomatic theory as to enhance
the physical and intuitive understanding. Wherever possible, theoretical results
are interpreted heuristically} and are supported by carefully chosen examples and
analogies.}

Notable Features

The notable features of the book include the following:

1. Emphasis on intuitive and heuristic understanding of the concepts and physi-
cal meaning of mathematical results leading to ‘deeper appreciation and easier
comprehension of the concepts. As one reviewer put it, “One thing I found very
appealing about this book is great balance of mathematical and intuitive expla-
nation.” Most reviewers of the book have noted the reader friendly character
of the book with unusual clarity of presentation.

2. The book provides extensive applications in the areas of communication, con-
trols, and filtering,.

3. For those who like to get students involved with computers, computer solu-
tions of several examples are provided using MATLAB®, which is becoming a

tHeuristic [Greek heuriskein, to invent, discover]: a method of education in which the pupil is
trained to find out things for himself. The word ‘Eureka’ (I have found it) is the 1st pers. perf.
indic. act., of heuriskein.

1If these lines appear familiar to you, there is a good reason. I have used them in the preface of
some of my earlier books, including Signals, Systems, and Communication (Wiley, 1965). What
is more interesting, many other authors also have borrowed them for their preface.

v
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standard software package in an electrical engineering curriculum.

4. Many students are handicapped by an inadequate background in basic material
such as complex numbers, sinusoids, sketching signals, Cramer’s rule, partial
fraction expansion, and matrix algebra. I have added a chapter that addresses
these basic and pervasive topics in electrical engineering. Response by student
has been unanimously enthusiastic.

5. There are over 200 worked examples along with exercises (with answers) for stu-
dents to test their understanding. There are also about 400 selected problems
of varying difficulty at the end of the chapters. Many problems are provided
with hints to steer a student in the proper direction.

6. The discrete-time and continuous-time systems are covered sequentially, with
flexibility to teach them concurrently if so desired.

7. The summary at the end of each chapter proves helpful to students in summing
up essential developments in the chapter, and is an effective tool in the study
for tests. Answers to selected problems are helpful in providing feedback to
students trying to assess their knowledge.

8. There are several historical notes to enhance student’s interest in the subject.
These facts introduce students to historical background that influenced the
development of electrical engineering.

Organization

The book opens with a chapter titled Background, which deals with the math-
ematical background material that a student taking this course is expected to have
already mastered. It includes topics such as complex numbers, sinusoids, sketching
signals, Cramer’s rule, partial fraction expansion, matrix algebra. The next 7 chap-
ters deal with continuous-time signals and systems followed by 5 chapters treating
discrete-time signals and systems. The last chapter deals with state-space analysis.
There are MATLAB examples dispersed throught the book. The book can be read-
ily tailored for a variety of courses of 30 to 90 lecture hours. It can also be used as
a text for a first undergraduate course in Digital signal Processing (DSP).

The organization of the book permits a great deal of flexibility in teaching the
continuous-time and discrete-time concepts. The natural sequence of chapters is
meant for a sequential approach in which all the continuous-time analysis is cov-
ered first, followed by discrete-time analysis. It is also possible to integrate (inter-
weave) continuous-time and discrete-time analysis by using a appropriate sequence
of chapters.

Credits

The photographs of Gauss (p. 3), Laplace (p. 380), Heaviside (p. 380), Fourier
(p. 188), Michelson (p. 206) have been reprinted courtesy of the Smithsonian Insti-
tution. The photographs of Cardano (p. 3) and Gibbs (p. 206) have been reprinted

courtesy of the Library of Congress. Most of the MATLAB examples were prepared
by Dr. O. P. Mandhana of IBM, Austin, TX.
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University), Prof. Mhrk Herro (University of Notre Dame), Hua Lee (University of
California, Santa Barbara), Tina Tracy (University of Missouri, Columbia), J.K.
Tugnait (Auburn University), R.L. Tummala (Michigan State University) I owe Dr.
O.P. Mandhana a debt of gratitude for his helpful suggestions and his painstaking
solutions to most of the MATLAB problems. Special thanks go to Prof. James
Simes for generous help with computer solution of several problems. I am much
obliged to Ing Ming Chang for his enthusiastic and crucial help in solving MAT-
LAB problems and using computer to prepare the manuscript. Finally I would like
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B. P. Lathi

MATLAB

Throughout this book, examples have been provided to familiarize the reader
with computer tools for systems design and analysis using the powerful and versatile
software package MATLAB. Much of the time and cost associated with the analysis
and design of systems can be reduced by using computer software packages for
simulation. Many corporations will no longer support the development systems
without prior computer simulation and numerical results which suggest a design
will work. The examples and problems in this book will assist the reader in learning
the value of computer packages for systems design and simulation.

MATLAB is the software package used throughout this book. MATLAB is a
powerful package developed to perform matrix manipulations for system designers.
MATLAB is easily expandable and uses its own high level language. These factors
make developing sophisticated systems easier. In addition, MATLAB has been
carefully written to yield numerically stable results to produce reliable simulations.

All the computer examples in this book are verified to be compatible with the
student edition of the MATLAB when used according to the instructions given in
its manual. The reader should make sure that \MATLAB\BIN is added in the DOS
search path. MATLAB can be invoked by executing the command MATLAB. The
MATLAB banner will appear after a moment with the prompt ‘>>’. MATLAB has
a useful on-line help. To get help on a specific command, type HELP COMMAND
NAME and then press the ENTER key. DIARY FILE is a command to record all
the important keyboard inputs to a file and the resulting output of your MATLAB
session to be written on the named file. MATLAB can be used interactively, or
by writing functions (subroutines) often called M files because of the .M extension
used for these files. Once familiar with the basics of MATLAB, the reader can easily
learn how to write functions and to use MATLAB’s existing functions.

The MATLAB M-files have been created to supplement this text. This includes
all the examples solved by MATLAB in the text. These M-files may be retrieved
from the Mathworks anonymous FTP site at

ftp:/ /ftp.mathworks.com/pub/books/lathi/.

0. P. Mandhana
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The topics discussed in this chapter are not entirely new to students taking
this course. You have already studied many of these topics in earlier courses or are
expected to know them from your previous training. Even so, this background ma-
terial deserves a review because it is so pervasive in the area of signals and systems.
Investing a little time in such a review will pay big dividends later. Furthermore,
this material is useful not only for this course but also for several courses that follow.
It will also be helpful as reference material in your future professional career.

B.1 Complex Numbers

Complex numbers are an extension of ordinary numbers and are an integral
part of the modern number system. Complex numbers, particularly imaginary
numbers, sometimes seem mysterious and unreal. This feeling of unreality de-
rives from their unfamiliarity and novelty rather than their supposed nonexistence!
Mathematicians blundered in calling these numbers “imaginary,” for the term im-
mediately prejudices perception. Had these numbers been called by some other
name, they would have become demystified long ago, just as irrational numbers
or negative numbers were. Many futile attempts have been made to ascribe some
physical meaning to imaginary numbers. However, this effort is needless. In math-
ematics we assign symbols and operations any meaning we wish as long as internal
consistency is maintained. A healthier approach would have been to define a symbol
i (with any term but “imaginary” ), which has a property i2 = —1. The history of
mathematics is full of entities which were unfamiliar and held in abhorrence until
familiarity made them acceptable. This fact will become clear from the following
historical note.

B.1-1 A Historical Note

Among early people the number system consisted only of natural numbers
(positive integers) needed to count the number of children, cattle, and quivers of
arrows. These people had no need for fractions. Whoever heard of two and one-half
children or three and one-fourth cows!




2 Background

However, with the advent of agriculture, people needed to measure continuously
varying quantities, such as the length of a field, the weight of a quantity of butter,
and so on. The number system, therefore, was extended to include fractions. The
ancient Egyptians and Babylonians knew how to handle fractions, but Pythagoras
discovered that some numbers (like the diagonal of a unit square) could not be
expressed as a whole number or a fraction. Pythagoras, a number mystic, who
regarded numbers as the essence and principle of all things in the universe, was so
appalled at his discovery that he swore his followers to secrecy and imposed a death
penalty for divulging this secret.! These numbers, however, were included in the
number system by the time of Descartes, and they are now known as irrational
numbers.

Until recently, negative numbers were not a part of the number system. The
concept of negative numbers must have appeared absurd to early man. However,
the medieval Hindus had a clear understanding of the significance of positive and
negative numbers.?3 They were also the first to recognize the existence of absolute
negative quantities. The works of Bhaskar (1114-1185) on arithmetic (Liavati)
and algebra (Bijaganit) not only use the decimal system but also give rules for deal-
ing with negative quantities. Bhaskar recognized that positive numbers have two
square roots.> Much later, in Europe, the banking system that arose in Florence and
Venice during the late Renaissance (fifteenth century) is credited with developing
a crude form of negative numbers. The seemingly absurd subtraction of 7 from 5
seemed reasonable when bankers began to allow their clients to draw seven gold
ducats while their deposit stood at five. All that was necessary for this purpose was
to write the difference, 2, on the debit side of a ledger.®

Thus the number system was once again broadened (generalized) to include
negative numbers. The acceptance of negative numbers made it possible to solve
equations such as z 4+ 5 = 0, which had no solution before. Yet for equations such as
224+1=0, leading to z2 = —1, the solution could not be found in the real number
system. It was therefore necessary to define a completely new kind of number
with its square equal to —1. During the time of Descartes and Newton, imaginary
(or complex) numbers came to be accepted as part of the number system, but
they were still regarded as algebraic fiction. The Swiss mathematician Leonhard
Euler introduced the notation i (for imaginary) around 1777 to represent v/—1.
Electrical engineers use the notation j instead of ¢ to avoid confusion with the
notation ¢ often used for electrical current. Thus

j2=-1
and
V=1==j

This notation allows us to determine the square root of any negative number. For
example,

V=4 =4 x/=1=+2§

When imaginary numbers are included in the number system, the resulting
numbers are called complex numbers.

Origins of Complex Numbers

Ironically (and contrary to popular belief), it was not the solution of a quadratic
equation, such as z2 + 1 = 0, but a cubic equation with real roots that made

B.1 (

imagii
dismis
becaw
Milan
the Ru
in whi
to his

is give

For e>
in the

We c:¢
Carde

{This «

can alv
cubic ¢
cubic 1
Fonta
(“Stan
then s}

cubic.



und B.1 Complex Numbers 3
2
wsly
tter,
The
Jras
t be
who
1S SO '
eath
. the
onal
|
The
aver,
and
>lute
'uati_) '
Jeal-
two
sajnd Gerolamo Cardano (left) and Karl Friedrich Gauss (right).
ping
m 5 imaginary numbers plausible and acceptable to early mathematicians. They could
gold dismiss v—1 as pure nonsense when it appeared as a solution to 2+1= 0
P was because this equation has no real solution. But in 1545, Gerolamo Cardano of
Milan published Ars Magna (The Great Art), the most important algebraic work of
‘lude ‘ the Renaissance. In this book he gave a method of solving a general cubic equation
solve in which a root of a negative number appeared in an intermediate step. According
ch as to his method, the solution to a third-order equationf
mber
mber ‘ 3 +ax+b=0
nary
but is given by
aard 3 2 3 3 2 3
pard BNy RSN
1 the For example, to find a solution of z3 + 6z — 20 = 0, we substitute a = 6, b = —20
in the above equation to obtain
x= i‘/;)+\/ﬁ+ fﬂo-ﬁ: ¥/20.302 — V0.392 = 2
We can readily verify that 2 is indeed a solution of z3 + 6z — 20 = 0. But when
. For Cardano tried to solve the equation 3 — 15z — 4 = 0 by this formula, his solution

1This equation is known as the depressed cubic equation. A general cubic equation

. v +py’tay+r=0
iting can always be reduced to a depressed cubic form by substituting y = = — 2 Therefore any general
cubic equation can be solved if we know the solution to the depresseg cubic. The depressed

cubic was independently solved, first by Scipione del Ferro (1465-1526) and then by Niccolo

Fontana (1499-1557). The latter is better known in the history of mathematics as Tartaglia

R (“Stammerer”). Cardano learned the secret of the depressed cubic solution from Tartaglia. He
lratic then showed that by using the substitution y = z — 131, a general cubic is reduced to a depressed

made cubic.
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What was Cardano to make of this equation in the year 15457 In those days
negative numbers were themselves suspect, and a square root of a negative number
was doubly preposterous! Today we know that

2+j)¥=2+j11=2+v-121
Therefore, Cardano’s formula gives
z=(2+j)+(2-j)=4

We can readily verify that z = 4 is indeed a solution of 3 — 15z — 4 = 0. Cardano
tried to explain halfheartedly the presence of +/—121 but ultimately dismissed the
whole enterprise as being “as subtle as it is useless.” A generation later, however,
Raphael Bombelli (1526-1573), after examining Cardano’s results, proposed ac-
ceptance of imaginary numbers as a necessary vehicle that would transport the
mathematician from the real cubic equation to its real solution. In other words,
while we begin and end with real numbers, we seem compelled to move into an
unfamiliar world of imaginaries to complete our journey. To mathematicians of the
day, this proposal seemed incredibly strange.” Yet they could not dismiss the idea
of imaginary numbers so easily because this concept yielded the real solution of an
equation. It took two more centuries for the full importance of complex numbers to
become evident in the works of Euler, Gauss, and Cauchy. Still, Bombelli deserves
credit for recognizing that such numbers have a role to play in algebra.”

In 1799, the German mathematician Karl Friedrich Gauss, at a ripe age
of 22, proved the fundamental theorem of algebra, namely that every algebraic
equation in one unknown has a root in the form of a complex number. He showed
that every equation of the nth order has exactly n solutions (roots), no more and no
less. Gauss was also one of the first to give a coherent account of complex numbers
and to interpret them as points in a complex plane. It is he who introduced the
term complex numbers and paved the way for general and systematic use of complex
numbers. The number system was once again broadened or generalized to include
imaginary numbers. Ordinary (or real) numbers became a special case of generalized
(or complex) numbers.

The utility of complex numbers can be understood readily by an analogy with
two neighboring countries X and Y, as illustrated in Fig. B.1. If we want to travel
from City a to City b (both in Country X ), the shortest route is through Country Y,
although the journey begins and ends in Country X . We may, if we desire, perform
this journey by an alternate route that lies exclusively in X, but this alternate route
is longer. In mathematics we have a similar situation with real numbers (Country
X) and complex numbers (Country Y). All real-world problems must start with real
numbers, and all the final results must also be in real numbers. But the derivation
of results is considerably simplified by using complex numbers as an intermediary.
It is also possible to solve all real-world problems by an alternate method, using
real numbers exclusively, but such procedure would increase the work needlessly.

B.1-2 Algebra of Complex Numbers

A complex number (a, b) or a + jb can be represented graphically by a point
whose Cartesian coordinates are (a, b) in a complex plane (Fig. B.2). Let us denote
this complex number by z so that
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Note that in this plane all real numbers lie on the horizontal axis, and all imaginary
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Complex numbers may also be expressed in terms of polar coordinates. If (r, §)
are the polar coordinates of a point z = a + jb (see Fig. B.2), then

a=r7rcosf

with z=a+jb=rcos @+ jrsin @
'rr;‘;f{ =r{cos § + jsin 8) (B.2)
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6 Background

The Euler formula states that

e9? = cos 0+ jsin 0

To prove the Euler formula, we expand e’ 9 cos 6, and sin 8 using a Maclaurin series

(j6)? N (j6)° N (j6)* N (j6)° N (76)°

JG— j ven
e L LA L TR
62 6% o+ 0> 6°

=1+]0—-2—!—]§!-+'21—!+]5—a—"'
62 9%+ 95 68
c030=1—§i+z_§+§...
: g3 65 97
sm9=0—-3—!+5__7_!+..

Hence, it follows that

% = cos 6+ jsin 6 (B.3)
Using (B.3) in (B.2) yields
z=a+jb
= red? (B.4)

Thus, a complex number can be expressed in Cartesian form a + jb or polar form
red? with

a=rcoséb, b=rsin (B.5)
and

b
r=1+va?+b? 9 =tan™! (;) (B.6)

Observe that r is the distance of the point z from the origin. For this reason,
r is also called the magnitude (or absolute value) of z and is denoted by |z]|.
Similarly 6 is called the angle of z and is denoted by Zz. Therefore

|z] =7, Lz =10

and .
2= |z]edl? (B.7)
Also

1 1 1 _; 1 )
—_—— —_— = — —3j6 = — _]ZZ BS
Z  red® |z|e (B-8)

Conjugate of a Complex Number

We define z*, the conjugate of z = a + jb, as

2* =a—jb=re I (B.9a)

_ |Z|e—j1z (B.9b)
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The graphical representation of a number z and its conjugate z* is depicted in Fig.
B.2. Observe that z* is a mirror image of z about the horizontal axis. To find the
conjugate of any number, we need only to replace j by —j in that number (which
is the same as changing the sign of its angle).

The sum of a complex number and its conjugate is a real number equal to twice
the real part of the number:

z+2* =(a+jb)+ (a — jb) = 2a = 2Rez (B.10a)

The product of a complex number z and its conjugate is a real number |z|2,
the square of the magnitude of the number:

22" = (a + jb)(a — jb) = a® + % = |2|? (B.10b)

Understanding Some Useful Identities

In a complex plane, rel® represents a point at a distance r from the origin and
at an angle # with the horizontal axis, as shown in Fig. B.3a. For example, the
number —1 is at a unit distance from the origin and has an angle = or —= (in fact,
any odd multiple of +r), as seen from Fig. B.3b. Therefore,

leTI™ = —1

In fact,
edinT — 1 n odd integer (B.11)

The number 1, on the other hand, is also at a unit distance from the origin, but
has an angle 27 (in fact, +2nn for any integral value of n). Therefore,

eI — n integer (B.12)

The number j is at unit distance from the origin and its angle is 7 /2 (see Fig. B.3b).

Therefore,
T2 — j
Similarly,
e Im/2 — —j
Thus

etIm/2 = 4 (B.13a)
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In fact,

eﬁ:jnw/Z =4j n=150913,... (B13b)
and

eEInT/2 _ £ n=37 11,15, (B.13c¢)

These results are summarized in Table B.1.

TABLE B.1

S E———

r 0 red?

1 0 el =1

1 +7 PR |

1 +nw etinT = ] n odd integer

1 +27 eti?m =1

1 +2n7 etinm = n integer

1 /2 eTIT/2 = 4

1 +nw/2 erinT/2 — 45 =159,13,...

1 +nr/2 etinT/2 = i pn=3711,15,...

. -

This discussion shows the usefulness of the graphic picture of re/®. This picture
is also helpful in several other applications. For example, to determine the limit of
elatiwlt 45 ¢ — 0o, we note that

e(a+]w)t = Ot piwt

Now the magnitude of e/“* is unity regardless of the value of w or ¢ because e/«t =
red® with 7 = 1. Therefore, e** determines the behavior of e(®+99)t 35 ¢ —» 00 and

) . 0 a<0
lim @+t — Jim eteit = (B.14)
t—oo t—o0 00 a>0

In future discussions you will find it very useful to remember re/® as a number at a
distance r from the origin and at an angle 8 with the horizontal axis of the complex
plane.

A Warning About Using Electronic Calculators in Computing Angles

From the Cartesian form a+ jb we can readily compute the polar form re’? [see
Eq. (B.6)]. Electronic calculators provide ready conversion of rectangular into polar
and vice versa. However, if a calculator computes an angle of a complex number
using an inverse trigonometric function § = tan~'(b/a), proper attention must be
paid to the quadrant in which the number is located. For instance, 8 corresponding
to the number —2 — j3 is tan™!(=3). This result is not the same as tan~1(3).
The former is —123.7°, whereas the latter is 56.3°. An electronic calculator cannot

make this distinction and can give a correct answer only for angles in the first and

5 . § . , \ N NETP

B.1

fourt!
comp
third
obtais
addin
draw

r

lies. "

B Bx
E

(
(

In this
of 56.:

In thi
given
(—26.
same
than .

L T




ad

3b)

3c)

;ure
t of

14)

at a
plex

[see
olar
1ber
t be
ding
®.
1ot
and

B.1 Complex Numbers

T
Im
R p 2+j3
Vi3,
56.3°
2 Re —»
(@
2
Im -2 Re — Im 1 Re —
1237 -71.6°
R 5
10\
—2-j3 -3 =3 {7
© @

Fig. B.4 From Cartesian to polar form.

fourth quadrants. It will read tan™!(=3) as tan_l(%), which is clearly wrong. In
computing inverse trigonometric functions, if the angle appears in the second or
third quadrant, the answer of the calculator is off by 180°. The correct answer is
obtained by adding or subtracting 180° to the value found with the calculator (either
adding or subtracting yields the correct answer). For this reason it is advisable to
draw the point in the complex plane and determine the quadrant in which the point

lies. This issue will be clarified by the following examples.

B Example B.1
Express the following numbers in polar form:
(a) 2+33 (b) —2+3j1 (¢) -2-33 (d) 1-33

(=)
l2| = /22 +32=V13  /z=tan"'(}) =563

In this case the number is in the first quadrant, and a calculator will give the correct value

of 56.3°. Therefore, (see Fig. B.4a)
243 = V130

= V(2P F 2=V Lz=tant () = 1534°

In this case the angle is in the second quadrant (see Fig. B.4b), and therefore the answer
given by the calculator (tan™'(Z;) = —26.6°) is off by 180°. The correct answer is
(—26.6 + 180)° = 153.4° or — 206.6°. Both values are correct because they represent the
same angle. As a matter of convenience, we choose an angle whose numerical value is less
than 180°, which in this case is 153.4°. Therefore,

(b)

—2 4 j1 = VB9
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() ~
ol = V(=22 + (32 = V13 Lz=tan () =-1B7T

In this case the angle appears in the third quadrant (see Fig. B.4c), and therefore the
answer obtained by the calculator (tan™(=3) = 56.3°) is off by 180°. The correct answer
is (56.3 + 180)° = 236.3°or — 123.7°. As a matter of convenience, we choose the latter
and (see Fig. B.4c)

—2_ j3 = V13 BT

(d)
2| = V12 + (-3)2 = V10  /z=tan '(F)=~-T16°

In this case the angle appears in the fourth quadrant (see Fig. B.4d), and therefore the
answer given by the calculator (tan(32) = —71.6°) is correct (see Fig. B.4d).

1-j3=V10e7" W

@ Computer Example CB.1

Express the following numbers in polar form: (a) 2+33 (b) —2+1

MATLAB function cart2pol(a,b) can be used to convert the complex number a + jb
to its polar form.

(a)
[Zangle_in_rad,Zmag]=cart2pol(2,3)
Zangle_in_rad = 0.9828
Zmag =3.6056
Zangle_in_deg=Zangle_in_rad*(180/pi)
Zangle_in _deg=56.31
Therefore
2 =2+ j3 = 3.6056¢7°%%"°
(b)
[Zangle_in_rad,Zmag]=cart2pol(-2,1)
Zangle.in rad = 2.6779
Zmag =2.2361
Zangle-in_deg:Zangle_in_rad*(180/pi)
Zangle_in deg=153.4349
Therefore

2= —2+j1 = 2.23617 15543

Note that MATLAB automatically takes care of the quadrant in which the complex number

lies.

M Example B.2

Represent the following numbers in the complex plane and express them in Cartesian
form: (a) 277/ (b) 4e7737/% (¢) 2¢37/2 (d) 3e773" (e) 26947 (£) 27747

(a) 26773 =2 (cos Z +jsin %) =14jV3 (see Fig. B.5a)

(b) 4e 737/4 =4 (cos 3% — jsin 3—I—) =-2v2-j2V2 (see Fig. B.5b)

(c) 26"/ =2(cos 3 +jsin T) =2(0+j1) =52  (see Fig. B.5c)

(d) 3¢™73™ = 3(cos 37 — jsin 3w) = 3(~1+0) = —3  (see Fig. B.5d)

(€) 2¢7*™ = 2(cos 4w + jsin 4x) = 2(1 + j0) = 2 (see Fig. B.5e)

(F) 27747 = 2(cos 4n — jsin 47) = 2(1 — j0) =2 (see Fig. B.5f) |
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%

() Computer Example CB.2

Represent 4e ™7 % in Cartesian form.
MATLAB function pol2cart(f,r) converts the complex number re?? to Cartesian form.

[Zreal,Zimag)=pol2cart(-3*pi/4,4)
Zreal=-2.8284
Zimag=-2.8284

Therefore

4e77F = _2.8284 — j2.8284 O

Arithmetical Operations, Powers, and Roots of Complex Numbers

To perform addition and subtraction, complex numbers should be expressed in
Cartesian form. Thus, if
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z1=3+j4= 5ed53:1°
and

29 =2 + j3 = V13¢7%6:3°
then

21+ 20 =(3+j4)+(2+33) =5+ 47

If z; and z, are given in polar form, we would need to convert them into Carte-
sian form for the purpose of adding (or subtracting). Multiplication and division,
however, can be carried out in either Cartesian or polar form, although the latter
proves to be much more convenient. This is because if z; and z; are expressed in
polar form as

z1 = r1e?® and 29 = roe’®
then ' A .
2129 = (r167%) (ree?®) = rirged®1162) (B.15a)
and )
zZ1 ’r16~791 T i(8,—6
=== =) (B.15b)
29 roel?2 ro
Moreover, ' '
2" = (reje)n = rned? (B.15¢)
and
Zl/n - (Teje)l/n _ Tl/nej()/n (B.15d)

This shows that the operations of multiplication, division, powers, and roots can be
carried out with remarkable ease when the numbers are in polar form.

B Example B.3
Determine 2122 and z1/z2 for the numbers

21=3+j4= 5(3’453'10

22 = 2 + §3 = V/13€7%6%

We shall solve this problem in both polar and Cartesian forms.

Multiplication: Cartesian Form

sz = (34 j4)(2+43) = (6 — 12) + j(8 +9) = —6 + j17

Multiplication: Polar Form

e = (591°) (VIS = svEBS

Division: Cartesian Form
Z1 3 +j4

z2 2433
In order to eliminate the complex number in the denominator, we multiply both
the numerator and the denominator of the right-hand side by 2 — j3, the denominator’s
conjugate. This yields

[
b
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n_ (3+4)(2-43) _18-41 _18-41 18 1
= (2+j3)(2-43) 22+3 13 13 13

Division: Polar Form

21 _ 5eI531° _ 5 j(s31°-s63°) _ 9 o—93.2°
22 /13e956:3° V13 V13

It is clear from this example that multiplication and division are easier to accom-
plish in polar form than in Cartesian form.

B Example B.4
For z; = 2¢9"/% and 2, = 8¢7™/%, find (a) 221 — 22 (b) % () & (d) ¥z
2

(a) Since subtraction cannot be performed directly in polar form, we convert 21 and
zp to Cartesian form:

21:2ej"/4=2(cos§+jsin %) =vV2+5V2

z2=86j"/3=8(cos % +jsin %) =4+ j4V/3

Therefore,
221 — 22 = 2(V2 + jV2) — (4 4 j4V3)
=(2v2 - 4) +j(2V2 - 4V3)
= —1.17 - j4.1
b
(b) 11 1o
21 T 2ein/4 T 2
(<) , ,
z1 2¢im/4 2e77/4 1 jz_.2m) 1 _jsx
= = _ = —\ 473 = —e /12
23 (Bedm/3)°  64ei?"/3 32 32
(d)

Vo= = (Sej"/s)% — g} (ei"/3)1/3 — 2.7 A

(® Computer Example CB.3

Determine 2122 and z1/22 if 21 = 3 + j4 and 22 =2 + 53
Multiplication and division: Cartesian Form

z1=3+j*4; z22=2+j*3;

z1z2=2z1%z2

z122=-6.000+17.00001

zl_over_z2=z1/72

z1 _over_z2=1.3486-0.0769i
Therefore

(3+4)(2+73) = —6+ 417 and (3+j4)/(2+33) = 13486 - 00769 ()




B Example B.5
Consider F(w), a complex function of a real variable w:

“) = 3 4w

2+ jw)B - j4w)  (6+4w?) —jbw  6+4w® | bw

Background

S (B.16a)

(a) Express F(w) in Cartesian form, and find its real and imaginary parts. (b)
Express F(w) in polar form, and find its magnitude |F(w)| and angle /F(w).

(a) To obtain the real and imaginary parts of F(w), we must eliminate imaginary
terms in the denominator of F/(w). This is readily done by multiplying both the numerator
and denominator of F'(w) by 3 — j4w, the conjugate of the denominator 3 4 j4w so that

YT BT jANB_jaw) | 9+ 16w 9+ 1607 Y9+ w?

T 9+ 16w?’

(B.16b)

This is the Cartesian form of F(w). Clearly the real and imaginary parts Fi.(w) and F;(w)
are given by

Sw

Fw) = 557607

Vitarel s (%)
1

Consider the sinusoid

We know that

cos p = cos (¢ + 2nmw)

ol g s H'. e il e i A

B V9 + 16w2Z e tan” (%)

2 N 1w - w
-, /9‘:_4”1‘6”_26]%3" Hg)-ten ' (42)] (B.16c)
)

This is the polar representation of F'(w). Observe that
4+ w?

F =,/ =T%

P = e,

B.2 Sinusoids

LF(w) = tan™! (%) —tan™! (4?“)) (B.17)
|
f(t) = Ccos (2nFot + 0) (B.18)

n=0+%1,+£2,43,.--

Therefore, cos ¢ repeats itself for every change of 27 in the angle ¢. For the
sinusoid in Eq. (B.18), the angle 2nFot + 6 changes by 27 when ¢ changes by
1/7. Clearly, this sinusoid repeats every 1/F; seconds. As a result, there are

Fo repetitions per second. This is the frequency of the sinusoid, and the repetition
interval Ty given by

1
To= — B.19
b= (B.19)
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is the period. For the sinusoid in Eq. (B.18), C is the amplitude, Fp is the
frequency (in Hertz), and 6 is the phase. Let us consider two special cases of this

sinusoid when § = 0 and ¢ = —x /2 as follows:
(a) f(t) = C cos 2n Fot (6 =0)
(b) F(t) = C cos (2nFot — ) = C sin 2nFot 4 =-n/2)

The angle or phase can be expressed in units of degrees or radians. Although
the radian is the proper unit, in this book we shall often use the degree unit because
students generally have a better feel for the relative magnitudes of angles when
expressed in degrees rather than in radians. For example, we relate better to the
angle 24° than to 0.419 radians. Remember, however, when in doubt, use the
radian unit and, above all, be consistent. In other words, in a given problem or an
expression do not mix the two units.

It is convenient to use the variable wq (radian frequency) to express 2 Fo:

wo — 27Tf0 (BQO)
With this notation, the sinusoid in Eq. (B.18) can be expressed as
f({t) = C cos (wot + 9)
in which the period Ty is given by [see Eqgs. (B.19) and (B.20))
L

Ty = = B.21
0 wo/21  wo ( 2)
and
27
== B.21b
= (B.21b)

In future discussions, we shall often refer to wo as the frequency of the signal
cos (wot + ), but it should be clearly understood that the frequency of this sinusoid
is 7o Hz (Fo = wo/27), and wp is actually the radian frequency.

The signals C cos wpt and C sin wgt are illustrated in Figs. B.6a and B.6b re-
spectively. A general sinusoid C cos (wot + #) can be readily sketched by shifting the
signal C cos wot in Fig. B.6a by the appropriate amount. Consider, for example,

f(t) = C cos (wot — 60°)

This signal can be obtained by shifting (delaying) the signal C cos wot (Fig. B.6a)
to the right by a phase (angle) of 60°. We know that a sinusoid undergoes a 360°
change of phase (or angle) in one cycle. A quarter-cycle segment corresponds to
a 90° change of angle. Therefore, an angle of 60° corresponds to two-thirds of a
quarter-cycle segment. We therefore shift (delay) the signal in Fig. B.6a by two-
thirds of a quarter-cycle segment to obtain C cos (wot — 60°), as shown in Fig. B.6c.

Observe that if we delay C cos wot in Fig. B.6a by a quarter-cycle (angle of 90°
or 7/2 radians), we obtain the signal C sin wot, depicted in Fig. B.6b. This verifies
the well-known trigonometric identity

C cos (wot — §) = C sin wot (B.22a)
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Fig. B.6 Sketching a sinusoid.

Alternatively, if we advance C sin wgt by a quarter-cycle, we obtain C cos wot.
Therefore,

C sin (wot + ) = C cos wot (B.22b)
This observation means sin wgt lags cos wot by 90°(r/2 radians), or cos wgt leads
sin wgt by 90°.
B.2-1 Addition of Sinusoids

Two sinusoids having the same frequency but different phases add to form a
single sinusoid of the same frequency. This fact is readily seen from the well-known
trigonometric identity

C cos (wot + 8) = C cos 8 cos wot — C sin 8 sin wot

= a cos wot + bsin wot (B.23a)
in which

a=Ccos 8, b= —Csin @
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Fig. B.7 Phasor addition of sinusoids.

Therefore,
C = +va? + b2 (B.23b)

—b
9 = tan~? (—) (B.23c)
a

Equations (B.23b) and (B.23c) show that C and 6 are the magnitude and angle,
respectively, of a complex number a — jb. In other words, a —jb=C 7%, Hence, to
find C and 8, we convert a — jb to polar form and the magnitude and the angle of
the resulting polar number are C and 6, respectively.

To summarize,
a cos wot + b sin wot = C cos (wot + 0)

in which C and ¢ are given by Egs. (B.23b) and (B.23c), respectively. These happen
to be the magnitude and angle, respectively, of a — jb.

The process of adding two sinusoids with the same frequency can be clarified
by using phasors to represent sinusoids. We represent the sinusoid C cos (wot + 6)
by a phasor of length C at an angle 6 with the horizontal axis. Clearly, the sinusoid
a cos wot is represented by a horizontal phasor of length a (§ = 0), while bsin wot =
bcos (wot — §) is represented by a vertical phasor of length b at an angle —n /2 with
the horizontal (Fig. B.7). Adding these two phasors results in a phasor of length C
at an angle 6, as depicted in Fig. B.7. From this figure, we verify the values of C
and 8 found in Egs. (B.23b) and (B.23c), respectively.

Proper care should be exercised in computing 6. Recall that tan_l(%b) #
tan~1(L.). Similarly, tan~*(=2) # tan~1(2). Electronic calculators cannot make
this distinction. When calculating such an angle, it is advisable to note the quadrant
where the angle lies and not to rely exclusively on an electronic calculator. A
foolproof method is to convert the complex number a — jb to polar form. The
magnitude of the resulting polar number is C and the angle is 6. The following
examples clarify this point.

B Example B.6
In the following cases, express f(t) as a single sinusoid:
(a) f(t) = cos wot — V/3sin wot
(b) f(t) = —3cos wot + 4sin wet

(a) In this case, a = 1,b = —+/3, and from Egs. (B.23)

C=14/12+(vV3)2 =2

6 =tan~! (—‘{—5) = 60°
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Therefore,
f(t) = 2cos (wot + 60°)

We can verify this result by drawing phasors corresponding to the two sinusoids. The
sinusoid cos wot is represented by a phasor of unit length at a zero angle with the horizontal.
The phasor sin wot is represented by a unit phasor at an angle of —90° with the horizontal.
Therefore, —/3sin wot is represented by a phasor of length /3 at 90° with the horizontal,

as depicted in Fig. B.8a. The two phasors added yield a phasor of length 2 at 60° with
the horizontal (also shown in Fig. B.8a). Therefore,

f(t) = 2cos (wot + 60°)

Alternately, we note that a — jb =1 + j/3 = 2¢97/3, Hence, C =2 and § = /3.
Observe that a phase shift of £« amounts to multiplication by —1. Therefore, f(t)
can also be expressed alternatively as

f(t) = —2cos (wot + 60° + 180°)
= —2cos (wot — 120°)
= —2cos (wot + 240°)

In practice, an expression with an angle whose numerical value is less than 180° is preferred.

(b) In this case, a = —3,b = 4, and from Eqs. (B.23)

C=4/(-32+42=5
6 =tan™" (=5) = -126.9°
Observe that
tan™! (:—;) # tan™! (%) = 53.1°
Therefore,

f(t) = 5cos (wot — 126.97)

This result is readily verified in the phasor diagram in Fig. B.8b. Alternately, a — jb =
—3 — j4 = 5e771269° Hence, C = 5 and 0 = —126.9°. ||

(© Computer Example CB.4

Express f(t) = —3cos wot + 4 sin wot as a single sinusoid.

Recall that a cos wot +bsin wot = C cos [wot +tan~!(—~b/a)]. Hence, the amplitude C
and the angle 6 of the resulting sinusoid are the magnitude and angle of a complex number
a — jb. We use the ‘cart2pol’ function to convert it to the polar form to obtain C and 6.

a=-3;b=4;

[theta,C]=cart2pol(a,-b);

Theta _deg=(180/pi)*theta;

C,Theta_deg

C=5

Theta_deg=-126.8699
Therefore

—3 cos wot + 4sin wot = 5 cos (wot — 126.86990) @
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Fig. B.8 Phasor addition of sinusoids in Example B.6.

We can also perform the reverse operation, expressing

f(t) = C cos (wot + 8)

in terms of cos wot and sin wet using the trigonometric identity

C cos (wot + 0) = C cos 6 cos wot — C sin § sin wot
For example,

10 cos (wot — 60°) = 5 cos wot + 5v/3 sin wot

Sinusoids in Terms of Exponentials: Euler's Formula

Sinusoids can be expressed in terms of exponentials using Euler’s formula [see
Eq. (B.3)]

cos p = % (ej"9 +e77%) (B.24a)
sin ¢ = 21—7 (7 — e77%) (B.24b)
Inversion of these equations yields
e?¥ = cos ¢ +jsin ¢ (B.25a)
e ¥ =cosp—jsingp (B.25b)

B.3 Sketching Signals

In this section we discuss the sketching of a few useful signals, starting with
exponentials.

B.3-1 Monotonic Exponentials

The signal e~ decays monotonically, and the signal e grows monotonically
with ¢t (assuming a > 0) as depicted in Fig. B.9. For the sake of simplicity, we shall
consider an exponential e~% starting at ¢ = 0, as shown in Fig. B.10a.

The signal e~ has a unit value at t = 0. At ¢t = 1/a, the value drops to
1/e (about 37% of its initial value), as illustrated in Fig. B.10a. This time interval
over which the exponential reduces by a factor e (that is, drops to about 37% of
its value) is known as the time constant of the exponential. Therefore, the time

PRHUNT I C RN
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eat /
e—at :
1 1
0 t —- 0 t —-
(a) (b)

Fig. B.9 Monotonic exponentials.

constant of e is 1/a. Observe that the exponential is reduced to 37% of its initial
value over any time interval of duration 1/a. This can be shown by considering any
set of instants ¢; and 2 separated by one time constant so that

to — 11 =
Now the ratio of e™%2 to e 9% is given by

e—atz

=e7oltat) = 1 5037

e——atl

ey (r)

(a) ®)

Fig. B.10 (a) Sketching e~ ** (b) sketching e™2¢.
We can use this fact to sketch an exponential quickly. For example, consider

ft)=e™

The time constant in this case is 1/2. The value of f(t) att = 0is 1. Att = 1/2 (one
time constant) it is 1/e (about 0.37). The value of f(t) continues to drop further by
the factor 1/e (37%) over the next half-second interval (one time constant). Thus
f(t) at t = 1is (1/e)?. Continuing in this manner, we see that f(¢t) = (1/e)3 at
t = 3/2 and so on. A knowledge of the values of f(t) at t = 0, 0.5, 1, and 1.5
allows us to sketch the desired signalf as shown in Fig. B.10b. For a monotonically

If we wish to refine the sketch further, we could consider intervals of half the time constant over
which the signal decays by a factor 1/\/e. Thus, at t = 0.25, f(t) = 1/4/e, and at ¢t = 0.75,
F(t) = 1/ev/e, etc.
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B.3 Sketching Signals
¢

(a)

0 0.5 1 1.5 2

cos (61 — 60°)

(b

42t

42! cos (6f — 60°)

e (©)

Fig. B.11 Sketching an exponentially varying sinusoid
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growing exponential e®, the waveform increases by a factor e over each interval of

1/a seconds.

B.3-2 The Exponentially Varying Sinusoid
We now discuss sketching an exponentially varying sinusoid
f(t) = Ae™* cos (wot + 6)
Let us consider a specific example
f(t) = 4e™* cos (6t — 60°)
We shall sketch 4e~2¢ and cos (6¢ — 60°) separately and then multiply them.

(i) Sketching 4e~2t

(B.26)

This monotonically decaying exponential has a time constant of 1/2 second
and an initial value of 4 at ¢t = 0. Therefore, its values at t = (.5, 1, 1.5, and 2
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are 4/e, 4/€2, 4/€3, and 4/e*, or about 1.47, 0.54, 0.2, and 0.07 respectively. Using
these values as a guide, we sketch 4e =2 as illustrated in Fig. B.11a.

(ii) Sketching cos (6t —60°)

The procedure for sketching cos (6t — 60°) is discussed in Sec. B.2 (Fig. B.6c).
Here the period of the sinusoid is Tp = 27/6 = 1, and there is a phase delay of 60°,
or two-thirds of a quarter-cycle, which is equivalent to about a (60/360)(1) ~ 1/6
second delay (see Fig. B.11b).

(iii) Sketching 4e~2*cos (6t — 60°)

We now multiply the waveforms in (i) and (ii). The multiplication amounts to
forcing the amplitude of the sinusoid cos (6t — 60°) to decrease exponentially with a
time constant of 0.5. The initial amplitude (at t = 0) is 4, decreasing to 4/e (=1.47)
at t = 0.5, to 1.47/e (=0.54) at ¢t = 1, and so on. This is depicted in Fig. B.11c.
Note that at the instants where cos (6t —60°) has a value of unity (peak amplitude),

4e~% cos (6t — 60°) = 4e~ 2 (B.27)

Therefore, 4e~2t cos (6t — 60°) touches 4e 2! at those instants where the sinusoid
cos (6t — 60°) is at its positive peaks. Clearly 4e~% is an envelope for positive
amplitudes of 4e~2¢ cos (6t — 60°). Similarly, at those instants where the sinusoid
cos (6t — 60°) has a value of —1 (negative peak amplitude),

4e~% cos (6t — 60°) = —4e™ (B.28)

and 4e~2t cos (6t — 60°) touches —4e~2¢ at its negative peaks. Therefore, —4e~2*
is an envelope for negative amplitudes of 4e~2¢cos (6t — 60°). Thus, to sketch
4e~2 cos (6t — 60°), we first draw the envelopes 4e~% and —4e~? (the mirror image
of 42t about the horizontal axis), and then sketch the sinusoid cos (6t — 60°), with
these envelopes acting as constraints on the sinusoid’s amplitude (see Fig. B.11c).

In general, K e~ cos (wot+8) can be sketched in this manner, with K e and
—Ke~® constraining the amplitude of cos (wot + 6).

B.4 Cramer’s Rule

This is a very convenient rule used to solve simultaneous linear equations.
Consider a set of n linear simultaneous equations in n unknowns z1, z2, ..., Tn!

a11z1 + aera + -+ aipTn = Y1

2171 + a2z + -+ amTn = Y2
(B.29)

an1T1 +t an222 + -+ GpnZn = Yn

These equations can be expressed in matrix form as
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