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USC Robotics Research Labs, Center for Robotics and Embedded Systems

941 West 37th Place, Mailcode 0781
Los Angeles, CA 90089-0781

{drumwrig|maja}@robotics.usc.edu

Abstract— We introduce a computationally efficient
methodology for generating and recognizing free-space move-
ments for humanoid robots. This methodology operates on
exemplar-based representations of behaviors. Our method
for actuating humanoid robots allows us to perform vari-
ations on a given behavior, resulting in a very human-
like movement appearance. Besides control, this method
also facilitates classification of perceived human and hu-
manoid robot movement. We demonstrate the method on
a physically-simulated humanoid robot with 132 degrees-of-
freedom and evaluate our movement classification method-
ology on two data sets: human motion-capture data and
joint-angle data sampled from the simulated robot.

I. INTRODUCTION

Present humanoid robots are powerful machines with
primitive brains. Such robots can be made to walk, but
are able to perform few tasks in dynamic, human-situated
environments. We aim to mitigate this problem by provid-
ing a methodology for performing and recognizing free-
space movements of humanoid robots. The methodology
we propose also serves to recognize free-space movements
of humans, thereby facilitating human-robot interaction
and communication.

Our system operates on a behavior representation based
on the notion of perceptuo-motor primitives. Proposed by
Matarić [13], these primitives are meant as a potential
solution to the problems of controlling high degree-of-
freedom humanoid robots as well as perceiving human
and humanoid robot motion. In this model, on which
our work is based, primitives serve as a basis set for
generating movements; sequences and combinations of
primitives produce desired behavior. Additionally, primi-
tives also serve as the vocabulary for classifying observed
movements into executable ones. Prediction of movement
is enabled by mapping sequences of observed motions
onto the basis vocabulary.

II. RELATED WORK

The computer vision community has explored the idea
of primitive movements from a different perspective.
Bregler and Malik [2] have proposed the existence of

movemes, primitive motions in images that may be se-
quenced to exhibit complex behavior. Their work operates
at the level of image blobs, and does not appear to be
amenable to synthesizing humanoid movement.

There has been much work to date in the area of
humanoid control. Matarić et al. [14] use three different
control strategies to make a dynamically simulated hu-
manoid dance. Hodgins and Wooten [9] use state-machine
based algorithms for animating dynamically simulated
human running, bicycling, and vaulting. Faloutsos et al.
[6] control dynamically simulated humanoid characters
rolling, rising, and performing other complex activities.
Riley et al. [18] represent joint-angle trajectories with B-
spline wavelets; the trajectories, which code for dancing,
are then executed on a humanoid robot. Ijspeert et al.
[10] use non-linear dynamical systems and locally linear
learning to store and execute trajectories for swinging
a tennis racket on a humanoid robot. Rose et al. [19]
describe a system for interpolating motion data relevant
for both humanoid robots and non-humanoid animated
agents. Jenkins and Matarić [11] demonstrate automatic
derivation of primitive movements from motion data for
use in control of humanoid robots and agents.

Human action recognition from video streams has been
researched by Bobick and Davis [1] use temporal tem-
plates and Petkovic et al. [16] use hidden Markov models
for human action recognition. In contrast to these methods,
our work on human activity classification assumes the
existence of human joint-angle data, which is obtainable
with motion-capture systems. This assumption obviates
the need for human activity detection and simplifies the
classification process.

Little research has been conducted on human action
recognition using joint-angle or joint-position data. Mori
et al. [15] use a fuzzy rule-based system, with rules
determined by human judges, in order to classify human
joint-angle data. Campbell and Bobick [3] successfully
recognize ballet movements by first converting joint-
position trajectories into a high-dimensional phase space
and then operating within that space.
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Fig. 1. Plot of the two exemplars of the jab behavior for a single degree
of freedom in the shoulder.

III. PRIMITIVE REPRESENTATION

We define a behavior as a class of movements that
perform a task in a manner that is semantically equivalent.
Examples of behaviors include throwing a ball overhand,
swinging a golf club, and hitting a forehand stroke in
tennis. Each movement in a class varies according to
environmental conditions and in order to satisfy the goal
of the behavior, but remains semantically equivalent to
the other movements in that behavior class. In the current
work we limit the behaviors to free-space movements to
target postures. A perceptuo-motor primitive is a parame-
terized model of a behavior, and is represented by a set of
exemplars, key examples of that behavior. For example, if
the behavior is a tennis forehand stroke, then exemplars
might consist of swings to different targets. Each exemplar
is represented by a set of joint angle trajectories relevant
to that behavior (see Figure 1). In the tennis forehand
example, the relevant joint angles are those of the shoulder,
elbow, hand, and fingers; all of the other limbs of the robot
can be oriented arbitrarily as long as intra-robot collisions
do not result.

A set of exemplars defines a primitive. We choose
exemplars so as to represent the extents of a behavior.
Again, if the proposed behavior is a tennis forehand, then
we might require only two exemplars which represent
the trajectory of the arm when swinging at the low and
high extremes of the movement range, thus providing
the boundaries of the behavior space. Trajectories that lie
inside of that space can be viewed as mixtures (linear or
non-linear) of the trajectories that lie on the boundaries,
and constitute the instances of that behavior. Variations
are produced by interpolating between exemplars. Clas-
sification is performed by determining whether a given
trajectory lies within this space. Prediction of future move-
ment is done by minimizing the error between a reference
trajectory and the output of the interpolation mechanism

(with respect to the mixture parameters).

A. Representation of joint angle trajectories

We represent the individual joint angle trajectories us-
ing normalized radial basis functions (RBFs) [8] equally
spaced over the interval [0, 1]. To encode a given degree
of freedom of an exemplar, we first time-normalize the
trajectory so that it lies in the interval [0, 1]. We are left
with a vector of n time points T spanning [0, 1] and a
vector of corresponding joint angles Y. Each point t ∈ T

is then transformed into a k-dimensional vector, where K
is the number of radial basis functions. A n× k matrix is
produced using equations 1-4:

j = 1 . . . k : centerj =
j − 1

k − 1
(1)

σ =
1

2(k − 1)
(2)

φi(x) = e
−(x−centeri)

2

σ (3)

i = 1 . . . n, j = 1 . . . k : Xij =
φj(Ti)

∑k

l=1
φl(Ti)

(4)

Above, the center vector stores the location of the kernel
centers while σ is a constant that determines the uniform
width of the kernels. Note that σ varies with the number of
basis functions, so that the basis functions can “specialize”
in smaller regions as k increases.

To perform RBF approximation, we now find multi-
plicative constants that minimize the error between the
original and approximating trajectories. Formally, we need
to find the vector of constants A that minimizes J:

J =

n
∑

i=1

[Yi −

k
∑

j=1

Ajφ(Ti)]
2 (5)

This minimization can be performed by least-squares
linear regression [8].

A = (XT X)−1XT Y (6)

We store the resulting vector, A, as an exemplar of a
joint-angle trajectory.

B. Interpolation

We perform variations on a behavior by interpolating
between exemplars. The interpolation mechanism was
appropriated from the Verbs and Adverbs system of Rose
et al. [19], and functions by combining both linear and
non-linear mixtures of exemplars in proportion to arbitrar-
ily chosen mixing parameters [19]. Additionally, inverse
kinematics can be performed with the Verbs and Adverbs
system [20]; satisfying postures are constrained to the ex-
emplar space. In general, however, the actual interpolation
algorithm is not important to our methodology.
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Fig. 2. Plot of interpolation between two exemplars of the jab behavior
for a single degree of freedom in the shoulder. The exemplars are plotted
with solid lines. The interpolated trajectories are plotted with dashed
lines.

IV. ACTION VIA MOTOR PRIMITIVES

To illustrate the efficacy of our motor primitive repre-
sentation for control of a real-time humanoid robot, we
developed a behavior-based control architecture [12] for a
physically simulated humanoid, Ares, which is similar in
size, mass, and appearance to a male human. Its 44 Euler
joints yield 132 degrees-of-freedom (DOF), including 72
DOF in the spine, 15 DOF in each arm, 12 DOF in
each leg, and 3 DOF in the neck. Each arm is composed
of five joints located at the clavicle, shoulder, elbow,
wrist, and fingers; the fingers are treated as a single unit.
The robot’s legs include joints at the hip, knee, ankle,
and toes. Such detailed articulation comes at the price
of difficulty of control. For example, inverse-kinematics-
based approaches are inherently underconstrained from the
many redundant degrees-of-freedom. These approaches
must constrain the solution in some way (usually via an
optimization criterion), and often result in motion that
appear unnatural.

We developed five motor primitives for Ares:
jab, hook, elbow, shield, and uppercut, based on
martial arts techniques. The represented behaviors
are free-space movements that do not require
interaction with the environment. For illustration,
http://robotics.usc.edu/∼agents/projects/martial-
arts.html contains animations of the five behaviors
during execution.

A. Behavior-based control architecture

The control architecture we used, shown in Figure 3,
is behavior-based, and consists of several concurrently
executing modules responsible for controlling Ares. The
modules determine which primitives can be executed,
perform inverse kinematics, and send motor commands

Director

Jab Hook Elbow Shield UppercutDefensive
posture

Motor
controller

Fig. 3. Diagram of the robot’s behavior-based control architecture

to the simulation. Additionally, each motor primitive (jab,
hook, etc.), is encapsulated within a module.

The director module activates the jab, hook, elbow,
shield, and uppercut behaviors, and acts as a reactive
planner [7]; it is similar to Faloutsos et al.’s supervisor
controller [6]. The defensive posture module continuously
attempts to achieve the posture that serves as a precon-
dition for the five motor primitives. The motor controller
module receives joint commands from the primitive mod-
ules, resolves conflicts via a priority-based arbitration
scheme [17], and sends outputs to the simulated joint
motors. In keeping with the behavior-based control design
philosophy, all modules are capable of perceiving the
environment, almost all are capable of actuation, and all
are simple and fast.

The primitive modules execute movements in the fol-
lowing manner. First, each primitive determines whether
its precondition, described below, is met. Next, the desired
trajectory is generated via interpolation. This trajectory
is selected either directly, by specifying the mixing pa-
rameters of the exemplar trajectories, or by giving a
target location and using inverse kinematics (see below).
According to its reactive plans, the director module selects
a behavior to execute, sets its duration for execution, and
activates it. The behavior then sends joint commands to
the motor controller, using the simulator clock so that
the movement is executed for the precise duration. The
commands are currently given in an open-loop fashion;
our continuing work addresses real-time interactions with
the environment.

B. Preconditions

A single precondition must be satisfied for jab, hook,
elbow, sheild, or uppercut to activate: the defensive posture
module must have achieved its posture. This condition is
necessary because all motor primitives’ sets of exemplars
originate from that posture. However, the motor primitive
representation does not intrinsically require a single orig-
inating point; each jab exemplar could emanate from a



different starting position.

C. Performance

The performance of motor primitives for control can
be evaluated based on the fidelity of the approximated
trajectories to those of the exemplars, the quality of inter-
polated trajectories, and the computational time required
to generate a desired trajectory.

The first factor, fidelity of approximated trajectories, is
influenced directly by the number of radial basis functions
used in the approximation. We have found that using 25
RBFs results in an excellent approximation, producing a
mean-squared error per datapoint on the order of 10−6

radians.
The second factor, quality of interpolated trajectories,

is determined by both the exemplars and the interpolation
mechanism. Adding more exemplars in the region where
artifacts occur [19] or replacing the interpolator is suffi-
cient for improving performance in this area; thus, this
factor is not specific to the primitive representation.

The final factor, computational time required to gen-
erated a desired trajectory, is of key importance in a
real-time system. This factor is also dependent upon the
interolation mechanism. Our interpolator has a running
time on the order of Θ(MN + N 2 + NS), where N is
the number of exemplars, M is the number of degrees-
of-freedom for a given primitive, and S is the number of
mixing parameters. Empirically, the interpolator produces
a trajectory in about 200 µs for a 9-exemplar primitive on
a 500 Mhz computer. We expect that most interpolation
algorithms will produce comparable performance. Trajec-
tory formation from interpolation is only required to start
a movement; the resulting reference trajectory is stored
for the movement’s duration.

V. ACTION RECOGNITION

So far we have shown that we can use motor primitives,
parameterized models of behavior, to facilitate efficient
action. We now show how to use them for action recog-
nition, by constructing a Bayesian classifier from a set of
exemplars.

The Bayesian classifier attempts to determine the prob-
ability that an observed movement is an instance of a
behavior, C. Put another way, it calculates the probability
of C, given a time series X of length n, where Xi is a
vector of joint angle values sampled at time i:

P (C|X) = P (C|Xn, Xn−1, . . . , X1)

By applying Bayes rule we transform the left hand side:

P (C|X) =
P (X |C)P (C)

P (X |C)P (C) + P (X |C)P (C)

In the absence of a priori knowledge, it must be
assumed that a behavior is as likely to occur as not. Thus,

the prior probabilities P (C) and P (C) can be eliminated
from the above equation. What is left are the probability of
seeing behavior C given the time series and the probability
of not seeing C given the time series.

A. Determining the conditional distributions

The primitive representation intrinsically yields the dis-
tribution P (X |C). Unfortunately, the primitive does not
indicate how to model P (X |C). In the absence of better
information, we must make several assumptions. First, we
assume that the time series given C is independent:

P (Xn, Xn−1, . . . , X1|C) =

P (Xn|C)P (Xn−1|C) . . . P (X1|C)

Next, we assume all of the joints involved in C are
independent. Formally, if j joints are involved in behavior
C:

P (Xi|C) = P (Xi,1, Xi,2, . . . , Xi,j |C)

P (Xi,1, Xi,2, . . . , Xi,j |C) =

P (Xi,1|C)P (Xi,2|C) . . . P (Xi,j |C)

Finally, we assume that each joint angle value in time
Xy,z is uniformly distributed over the joint limits for each
degree of freedom. In our humanoid, this corresponds to a
range of [−2π, 2π]. Thus the distribution for every random
variable is Xy,z ∼ U(−2π, 2π). Finally, we evaluate
P (X |C):

P (X |C) =
( ε

2π

)n×j

The base above is a simplified version of the standard
evaluation of continuous uniform distributions. ε is a
constant used for error tolerance, explained below in more
detail.

Calculating P (X |C) is a more difficult endeavor than
that of calculating P (X |C). The joint random variables
of this distribution are not independent; instead, the joint
angles and time series data are tightly coupled. Therefore,
we cannot factor the distribution as we did with P (X |C).
We also have no basis for choosing a parametric distribu-
tion, which could simply the evaluation considerably.

For the purposes of illustrating a part of our determi-
nation procedure, let n = 1 and j = 2. Thus the motor
primitive is composed of two DOF, and we consider only
the current joint angle data. We then need to calculate:

P (Xt,1, Xt,2|C)

We have the means to calculate this distribution. It is
simple to generate samples from the distribution off line.
To perform the classification on-line, numerical integra-
tion over this function must be performed. Unfortunately,
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Fig. 4. Plot of the mixture space between the two exemplars of the jab
behavior for a single DOF in the shoulder. The exemplars are plotted
with solid lines.
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Fig. 5. Histogram produced by sampling the mixture space seen in
Figure 4 over [0, 1].

multidimensional integration is quite slow. Additionally,
the number of dimensions of the general joint distribution
is n × j, making this method intractable except for
toy primitives. In place of this approach, we factor the
distribution into a set of a one-dimensional conditional
distributions using the probability chain rule:

P (Xt,1, Xt,2|C) = P (Xt,1|Xt,2, C)P (Xt,2|C)

The second term, P (Xt,2|C), is trivial to calculate. We
sample the mixture space of the exemplars uniformly (see
Figure 4). We then build a histogram from the samples (see
Figure 5). Normalizing this histogram yields a probability
distribution.

Determining P (Xt,1|Xt,2, C) is only slightly more
complicated. We are conditioning on new information,
namely that Xt,2 = x. For the sake of illustration, assume
that x = −0.9. If we examine Figure 4, it is apparent
that the mixture space can assume this value only during
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Fig. 6. Plot of the mixture space between the two exemplars of the jab
primitive for a second DOF in the shoulder. The exemplars are plotted
with solid lines.

the time interval [0.57, 1]. Samples can then be drawn
from the mixture space in this limited domain, yielding
the distribution P (Xt,1|Xt,2, C).

We have just demonstrated how to evaluate a condi-
tional distribution with the conditioning variable being
another degree of freedom at the same t in the time series.
We now show how to evaluate a conditional distribution
with the conditioning variable being the same degree of
freedom but at a different t. In this case, we evaluate:

P (Xt,1, Xt−1,1|C) = P (Xt,1|Xt−1,1, C)P (Xt−1,1|C)

P (Xt−1,1|C) is conditioned only on the class and can
therefore be calculated in the same manner as P (Xt,2|C).
To calculate P (Xt,1|Xt−1,1, C), we again construct a
hypothesis from our conditioning variable. However, the
hypothesis is constructed in a different manner. Consider
that we observe a joint value that can occur in the interval
[q, r] in a trajectory. Given that information, we know that
the next joint value should occur in the interval [q, 1] of
that trajectory (if the joint value is an instance of C). The
hypothesis construction is based on this idea.

To illustrate the determination of P (Xt,1|Xt−1,1, C),
assume that Xt−1,1 = 0.5. If the mixture space is that
pictured in Figure 6, then the value 0.5 can be found
within the intervals [0.2, 0.5] and [0.74,1]. Thus, given
that q ∈ [0.2, 0.5] ∪ [0.74, 1], the next value of the
trajectory will come from [0.2, 1]. The distribution for
Xt,1 is sampled only in the interval [0.2, 1]. The resulting
distribution is shown in Figure 8.

Finally, we must extend our discussion of evaluation to
handle conditioning on multiple random variables. This
extension is rather simple. We determine set(s) of intervals
for each random variable being conditioned upon in the
manners previously described. If the random variable
comes from the same point in time t in the time series
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Fig. 7. Histogram produced by sampling the interval [0.57, 1] of the
mixture space seen in Figure 6.

0 0.5 1 1.5 2
0

50

100

150

200

250

joint angle (radians)

b
in

 h
e

ig
h

t

Fig. 8. Histogram produced by sampling the interval [0.2, 1] of the
mixture space seen in Figure 6.

as the variable of the distribution that we are trying to
determine, we use the first method. If the random variable
comes from a different point in time, we use the second
method. We take the intersection of all of the sets that have
been produced to determine the interval to be sampled. If
the interval is the null set, then the resulting distribution
is uniform over [−2π, 2π].

B. Accounting for joint error

We previously discussed a constant ε used in computing
the conditional distribution P (X |C). This value is used
to calculate P (X |C) as well. Essentially, whether we are
trying to evaluate P (X = x|C) or P (X = x|C), we want
to compute the following:

∫ x+ε

x−ε

P (Y = y)dy

Larger values of ε allow for some error in joint angle
measurement or controller deviation from the intended
trajectories. Where such errors are minimal, smaller values

TABLE I

CLASSIFICATION ACCURACY

Dataset n = 1 n = 2
Ares movements 96.61% 96.61%
Choreographed animations 99.94% 99.94%
Motion-capture 99.97% 99.98%

of ε should increase classification accuracy. We set ε to
0.75 degrees, a relatively small value.

C. Computational complexity

We require that the perceptual system be fast, so that it,
like the actuation system, can be used in a situated robot.
Our algorithm exhibits a complexity of Θ(knj), where k

is the number of primitives in the robot’s vocabulary, n

is the number of points in the time series, and j is the
number of DOF involved in a behavior. This translates
into a running time of approximately 20ms per primitive
on a 2 Ghz Pentium 4 processor when n = 2 and j =
12. This performance precludes real-time recognition of
multiple primitives, unless multiple, faster processors are
used. Alternatively, speed can be increased significantly at
the expense of accuracy by reducing sampling and interval
search granularities.

D. Evaluation

We evaluated the described classifier using three
datasets consisting of 209,188 data points, where each data
point is a vector of joint positions. The first dataset con-
tained movements performed on our simulated humanoid
robot, generated by the motor primitives (jab, hook, etc.);
it also contained movements required to transition between
primitives. The second dataset consisted of over 50 ani-
mations (e.g., swim, reach, swat bees, etc.) choreographed
by Credo Interactive [4]. Each animation was composed of
many movements, and all animations include substantial
movements of the arm. The third dataset was composed
of 500 motion-capture files that represent behaviors such
as tennis, scrubbing, bowling, and walking; this dataset,
as well as a descriptions of the included motions, is also
available from Credo Interactive [5].

As can be seen in Table I, the classifier performed
very well on all datasets. It is evident that few of the
movements included in the second and third datasets enter
the mixture space of either behavior. This is unfortunate
because we are almost entirely prevented from observing
the additional classification power gained by increasing
n; considering previous joint data is useful only to re-
duce false-positive classifications. The additional power of
greater n might prove to be unnecessary. We synthesized
just five behaviors, which are highly similar semantically
and structurally. Yet there is good separability between
these five behaviors, as evidenced by the high accuracy in
classifying the first dataset. Furthermore, there is almost



complete separability between these behaviors and those
encoded in the second and third datasets, even though they
span much of the same Cartesian space.

VI. CONCLUSIONS

We have introduced a methodology that enables both
real-time action and recognition of free-space movements
for humanoid robots, which requires only a few exemplars
of a behavior. We demonstrated how these exemplars, with
the aid of an interpolation mechanism, can be used to
control a robot. We also demonstrated how to classify
the actions of humanoid robots using only these exem-
plars. Our future work will validate the action recognition
methodology further on motion-capture data exclusively
representing martial arts movements; the apparent sim-
ilarity between movements in this domain should more
rigorously test the discrimination capabilities of our clas-
sifier. We will also investigate sequencing and combining
behaviors to produce more complex movements.
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