Principled Design of the ModernWeb Architecture

Roy T. Fielding and Richard N. Taylor
Information and Computer Science
University of California, Irvine
Irvine, CA 926973425 USA
+1.949.824.4121
{fielding,taylor}@ics.uci.edu

ABSTRACT A software architecture determines how systl@ments are
The World Wide Web has succeeded in large part because itdentified and allocated, how the elements interact to form a
software architecture has been designed to meet the needssfstem, the amount and granularity of communication
an Internet-scale distributed hypermedia system. The needed for interaction, and the interface protocols used for
modern Web architecture emphasizes scalability ofcommunication. An architectural style is an abstraction of
component interactions, generality of interfaces,the key aspects within a set of potential architectures
independent deployment of components, and intermediarfinstantiations of the style), encapsulating important
components to reduce interaction latency, enforce securitgecisions about the architectural elements and emphasizing
and encapsulate legacy systems. In this paper, we introdu@®nstraints on the elements and their relationships [17]. In
the Representational State Transfer (REST) architecturalther words, a style is a coordinated set of architectural
style, developed as an abstract model of the Web architectuo®nstraints that restricts the roles/features of architectural
to guide our redesign and definition of the Hypertextelements and the allowed relationships among those
Transfer Protocol and Uniform Resource Identifiers. Weelements within any architecture that conforms to the style.
describe the softvyare engineering principles gwdmg RES'TREST is a coordinated set of architectural constraints that
and the interaction constraints chosen to retain those L -
S . . attempts to minimize latency and network communication
principles, contrasting them to the constraints of other . : . L .
. while at the same time maximizing the independence and
architectural styles. We then compare the abstract model to . : . o)
. : .. Scalability of component implementations. This is achieved
the currently deployed Web architecture in order to elicit . . .
) - by placing constraints on connector semantics where other
mismatches between the existing protocols and the ;
S . Styles have focused on component semantics. REST enables
applications they are intended to support. . . .)
the caching and reuse of interactions, dynamic
Keywords substitutability of components, and processing of actions by
software architecture, software architectural style, WWW intermediaries, thereby meeting the needs of an Internet-

1 INTRODUCTION scale distributed hypermedia system.

At the beginning of our efforts within the Internet The modern Web is one instance of a REST-style
Engineering Taskforce to define the existing Hypertextarchitecture. Although Web-based applications can include
Transfer Protocol (HTTP/1.0) [5] and design the extensionsaccess to other styles of interaction, the central focus of its
for the new standards of HTTP/1.1 [10] and Uniform protocol and performance concerns is distributed
Resource Identifiers (URI) [6], we recognized the need for ahypermedia. REST elaborates only those portions of the
model of how the World Wide Web (WWW, or simply Web) architecture that are considered essential for Internet-scale
shouldwork. This idealized model of the interactions within distributed hypermedia interaction. Areas for improvement
an overall Web application, what we refer to as theof the Web architecture can be seen where existing protocols
Representational State Transfer (REST) architectural styldail to express all of the potential semantics for component
became the foundation for the modern Web architectureinteraction, and where the details of syntax can be replaced
providing the guiding principles by which flaws in the with more efficient forms without changing the architecture
preexisting architecture could be identified and extensiongapabilities. Likewise, proposed extensions can be compared
validated prior to deployment. to REST to see if they fit within the architecture; if not, it is
more efficient to redirect that functionality to a system
running in parallel with a more applicable architectural style.

This paper presents REST after the completion of six years’
work on architectural standards for the modern (post-1993)
Web. It does not present the details of the architecture itself,
since those are found within the standards. Instead, we focus

on the unpublished rationale behind the modern Web’dransmit each interaction to the components; 4) the time
architectural design and the software engineering principlesequired to process each interaction on those components;
upon which it is based. In the process, we identify areasnd, 5) the time required to complete sufficient transfer and
where the Web protocols have failed to match the style, th@rocessing of the result of the interaction(s) before the user
extent to which these failures can be fixed within theagent is able to begin rendering a usable result. It is
immediate future via protocol enhancements, and the lessomsiportant to note that, although only (3) and (5) represent
learned from using an interaction style to guide the design ofictual network communication, all five points can be

a distributed architecture. impacted by the architectural style. Furthermore, multiple

2 WWW DOMAIN CHARACTERISTICS interactions are additive to latency unless they take place in

In order to understand the REST rationale, we must ﬁrstoarallel.
examine the goals of the WWW project and the informationScalability was also a concern, since the number of
system characteristics needed to achieve those goals. references to a resource would be directly proportional to the

Berners-Lee [4] writes that the “Web’s major goal was to benumber of people interested in that information, and

a shared information space through which people an(1Jr)art|cularly newsworthy information would lead to “flash

- ! Y crowds”: sudden spikes in access attempts.
machines could communicate.” What was needed was a way P P

for people to store and structure their own information,Since participation in the creation and structuring of
whether permanent or ephemeral in nature, such that it coulthfformation was voluntary, a low entry-barrier was necessary
be usable by themselves and others, and to be able to enable sufficient adoption. While simplicity makes it
reference and structure the information stored by others spossible to deploy an initial implementation of a distributed
that it would not be necessary for everyone to keep andystem, extensibility allows us to avoid getting stuck forever
maintain local copies. The people intended to use this systemvith the limitations of what was deployed. Even if it were
were located around the world, at various university andpossible to build a software system that perfectly matches
government high-energy physics research labs connected vihe requirements of its users, those requirements will change
the Internet. Their machines were a heterogeneous collectiawver time just as society changes over time. A long-lived
of terminals, workstations, servers and supercomputersystem like the Web must be prepared for change.
requiring a hodge podge of operating system software an&urthermore, because the components participating in Web
file formats. The information ranged from personal researctapplications often span multiple organizational boundaries,
notes to organizational phone listings. The challenge was tthe system must be prepared for gradual and fragmented
build a system that would provide a universally consistentthange, where old and new implementations co-exist
interface to this structured information, available on as manyvithout preventing the new implementations from making
platforms as possible, and incrementally deployable as newse of their extended capabilities.

people and organizations joined the project All of these project goals and information system

Hypermedia was chosen as the user interface because of itharacteristics fed into the design of the Web’s architecture.
simplicity and generality: the same interface can be used\s the Web has matured, additional goals have been added to
regardless of the information source, the flexibility of support greater collaboration and distributed authoring [11].
hypermedia relationships (links) allows for unlimited The introduction of each new goal presents us with a
structuring, and the direct manipulation of links allows thechallenge: how do we introduce a new set of functionality to
complex relationships within the information to guide the an architecture that is already widely deployed, and how do
reader through an application. Since information within largewe ensure that its introduction does not adversely impact, or
databases is often much easier to access via a searefen destroy, the architectural properties that have enabled
interface rather than browsing, theWeb also incorporated ththe Web to succeed? It was this question that motivated our
ability to perform simple queries by providing user-entereddevelopment of the REST architectural style.

data to a service and rendering the result as hypermedia. 3 REPRESENTATIONAL STATE TRANSFER (REST)

The usability of hypermedia interaction is highly sensitive toThe Representational State Transfer (REST) style is an
user-perceived latency: the time between selecting a link andbstraction of the architectural elements within a distributed
the rendering of a usable result. Since the Web'’s informatiomypermedia system. Perry and Wolf [17] distinguish three
sources would be distributed across the global Internet, thelasses of architectural elements: processing elements
architecture needed to minimize network interactions(a.k.a., components), data elements, and connecting
(round-trips within the protocol). Latency occurs at severalelements (a.k.a., connectors). REST ignores the details of
points in the processing of a distributed application action: 1)xomponent implementation and protocol syntax in order to
the time needed for the user agent to recognize the event th&dcus on the roles of components, the constraints upon their
initiated the action; 2) the time required to setup anyinteraction with other components, and their intetption of
interaction(s) between components; 3) the time required tsignificant data elements. It encompasses the fundamental

constraints upon components, connectors, and data thamains hidden behind the interface. The benefits of the
define the basis of the Web architecture, and thus the esseng®bile object style are approximated by sending a
of its behavior as a network-based application. representation that consists of instructions in the standard

Using the software architecture framework of [17], we firstOlata format of an enpapsulated rendgnng engine (e.g., Java).
REST therefore gains the separation of concerns of the

define the architectural elements of REST and then examine,. : -
. ._Client/server style without the server scalability problem,

sample process, connector, and data views of prototypica . g s o
allows information hiding through a generic interface to

architectures to gain a better understanding of REST'’S . h : :
. o enable encapsulation and evolution of services, and provides
design principles.

for a diverse set of functionality through downloadable

Data Elements feature-engines.
Unlike the distributed object style [7], where all data is
encapsulated within and hidden by the processing Table 1: REST Data Elements
components, the nature and state of an architecture’s dater
elements is a key aspect of REST. The rationale for this Data Element Modern Web Examples
design can be seen in the nature of distributed hypermedia. :
resource the intended conceptual target of a
When a link is selected, information needs to be moved from hypertext reference

the location where it is stored to the location where it will be
used by, in most cases, a human reader. This is in distinctresource identifier | URL, URN
contrast to most distributed processing paradigms [1, 12],
where it is often more efficient to move the “processing
entity” to the data rather than move the data to the processor.representation media type, last-modified time
A distributed hypermedia architect has only three metadata
fundamental options: 1) render the data where it is located
and send a fixed-format image to the recipient; 2) resource metadatq source link, alternates, vary
encapsulate the data with a rendering engine and send both . . .
S . control data if-modified-since, cache-control
to the recipient; or, 3) send the raw data to the recipient along
with metadata that describes the data type, so that the

recipient can choose their own rendering engine. Resources and Resource Identifiers
)) i . The key abstraction of information in REST isr@source
Each option has its advantages and disadvantages. Optlonlgmy information that can be named can be a resource: a

the traditional client/server style [20], allows all information y5cument or image, a temporal service (e.g. “today’s
about the true nature of the data to remain hidden within thg, cather in Los Angeles”), a collection of other resources, a

sender, preventing assumption§ from being mad.e about. R oniker for a non-virtual object (e.g. a person), and so on. In
data structure and making client implementation easi€lyiher words any concept that might be the target of an
However, it also severely restricts the functionality of the 5 ,thqrs hypertext reference must fit within the definition of

recipient and places most of the processing load on thg resource. A resource is a conceptual mapping to a set of

sender, leading to scalability problems. Option 2, the mobilegtities, not the entity that corresponds to the mapping at any
object style [12], provides information hiding while enabling particular point in time.

specialized processing of the data via its unique rendering

engine, but limits the functionality of the recipient to what is More precisely, a resourc® is a temporally varying
anticipated within that engine and may vastly increase thénembership functioMg(t), which for timet maps to a set of
amount of data transferred. Option 3 allows the sender t@ntities, or values, which are equivalent. The values in the set
remain simple and scalable while minimizing the bytesmay beresource representatiorend/orresource identifiers
transferred, but loses the advantages of information hiding\ resource can map to the empty set, which allows

and requires that both sender and recipient understand tHeferences to be made to a concept before any realization of
same data types. that concept exists — a notion that was foreign to most

hypertext systems prior to the Web [14]. Some resources are

REST provides a hybrid of all three options by focusing on agy4iic in the sense that, when examined at any time after their
shared understanding of data types with metadata, byleation, they always correspond to the same value set.
limiting the scope of what is revealed to a standardizedyhers have a high degree of variance in their value over
interface. REST components communicate by transferring §me. The only thing that is required to be static for a

representation of the data in a format matching one of aRegqyrce is the semantics of the mapping, since the semantics
evolving set of standard data types, selected dynamically, what distinguishes one resource from another.
based on the capabilities or desires of the recipient and the

nature of the data. Whether the representation is in the sanfeor example, the “authors’ preferred version” of this paper is
format as the raw source, or is derived from the source@ mapping that has changed over time, whereas the

representation HTML document, JPEG image

“published version in the proceedings” is static. These aralata, and, on occasion, metadata to describe the metadata
two distinct resources, even though they map to the sam@isually for the purpose of verifying message integrity).
value at some point in time. The distinction is necessary sdetadata is in the form of name-value pairs, where the name
that both resources can be identified and referencedorresponds to a standard that defines the value’s structure
independently. A similar example from software engineeringand semantics. Response messages may include both
is the separate identification of a version-controlled sourceepresentation metadata areource metadatanformation

code file when referring to the “latest revision”, “revision about the resource that is not specific to the supplied
number 1.2.7”, or “revision included with the Orange representation.

release. Control data defines the purpose of a message between

This abstract definition of a resource enables key features afomponents, such as the action being requested or the
the Web architecture. First, it provides generality bymeaning of a response. It is also used to parameterize
encompassing many sources of information withoutrequests and override the default behavior of some
artificially distinguishing them by type or implementation. connecting elements. For example, cache behavior can be
Second, it allows late binding of the reference to amodified by control data included in the request or response
representation, enabling content negotiation to take placemessage.

based on characteristics of the request. Finally, it allows arbepending on the message control data, a given

author to reference the concept rather than some singular . -
.) representation may indicate the current state of the requested
representation of that concept, thus removing the need tg .
o . . _rtesource, the desired state for the requested resource, or the

change all existing links whenever the representation

changes (assuming the author used the right identifier) value of some other resource, such as a representation of the
9 9 g ’ input data within a client’s query form, or a representation of

REST uses aesource identifierto identify the particular some error condition for a response. For example, remote
resource involved in an interaction between componentsauthoring of a resource requires that the author send a
REST connectors provide a generic interface for accessingepresentation to the server, thus establishing a value for that
and manipulating the value set of a resource, regardless @ésource that can be retrieved by later requests. If the value
how the membership function is defined or the type ofset of a resource at a given time consists of multiple
software that is handling the request. The naming authorityepresentations, content negotiation may be used to select the
that assigned the resource identifier, making it possible tdest representation for inclusion in a given message.
reference the resource, is responsible for maintaining th
semantic validity of the mapping over time (i.e., ensuring
that the membership function does not change).

The data format of a representation is known asedlia type

[18]. A representation can be included in a message and

processed by the recipient according to the control data of

Traditional hypertext systems [14], which typically operatethe message and the nature of the media type. Some media
in a closed or local environment, use unique node oitypes are intended for automated processing, some are
document identifiers that change every time the informationintended to be rendered for viewing by a user, and a few are

changes, relying on link servers to maintain referencesapable of both. Composite media types can be used to

separately from the content. Since centralized link serverenclose multiple representations in a single message.

r n anathema to its immen I nd multiz
are an anathema to its ense scale and mu The design of a media type can directly impact the user-

organizational domain requirements, the Web relies instead . - .
. ; . , erceived performance of a distributed hypermedia system.
on the author choosing a resource identifier that best fits th : - :
ny data that must be reived before the recipient can begin

nature of th.e concept being |d.ent|f|ed. Naturally, thedy rendering the representation adds to the latency of an
of an identifier is often proportional to the amount of money . : .
o . . . interaction. A data format that places the most important
spent to retain its validity, which leads to broken links as . . . L
rendering information up front, such that the initial

ephemeral (or poorly supported) information moves information can be incrementally rendered while the rest of
disappears over time.

the information is being received, results in much better
Representations user-perceived performance than a data format that must be
REST components perform actions on a resource by using antirely received before rendering can begin.

representation to capture the current or intended state of th
resource and transferring that representation betwe
components. Arepresentations a sequence of bytes, plus

representation metadatdo describe those bytes. Other ~ *. : . :))
waits until the entire document is completely received prior

commonly used but less precise names for a representatichr)l rendering, even though the network performance is the

:rc\lltécrjiz.n?ocument, file, and HTTP message entity, InStancesame. Note that the rendering ability of a representation can

also be impacted by the choice of content. If the dimensions
A representation consists of data, metadata describing thef dynamically-sized tables and embedded objects must be

eia;tor example, a Web browser that can incrementally render a
%rge HTML document while it is being received provides
significantly better user-perieed performance than one that

determined before they can be rendered, their occurrendee invoked before the value of the parameters is completely
within the viewing area of a hypermedia page will increaseknown, thus avoiding the latency of batch processing large
its latency. data transfers.

Connectors The primary connector types are client and server. The
REST uses various connector types to encapsulate thessential difference between the two is thafiant initiates
activities of accessing resources and transferring resourammmunication by making a request, whereassaver
representations. The connectors present an abstract interfaligtens for connections and responds to requests in order to
for component communication, enhancing simplicity by supply access to its services. A component may include both
providing a clean separation of concerns and hiding theslient and server connectors.

underlying implementation of resources and communication, ., .
. . ; A third connector type, theacheconnector, can be located
mechanisms. The generality of the interface also enables : . ;
. O \ . ."0n the interface to a client or server connector in order to
substitutability: if the users’ only access to the system is via

. . . Vi heable r n [i
an abstract interface, the implementation can be replace%ia e cacheable responses to current interactions so that they

. . . . can be reused for later requested interactions. A cache may
without impacting the users. Since a connector manage,

L . : Be used by a client to avoid repetition of network
network communication for a component, information can L7) .
S :) . communication, or by a server to avoid repeating the process
be shared across multiple interactions in order to improve) . -
- . of generating a response, with both cases serving to reduce
efficiency and responsiveness.

interaction latency. A cache is typically implemented within
All REST interactions are stateless. That is, each requeshe address space of thennector thatises it.

contains all of the information necessary for a connector tOSome cache connectors are shared, meaning that its cached

understand the request, independent of any requests that ma) :
! : - . responses may be used in answer to a client other than the

have preceded it. This restriction accomplishes four . - :
LR . one for which the response was originally obtained. Shared
functions: 1) it removes any need for the connectors to retain . : .) .
caching can be effective at reducing the impact of “flash

lication st tween r t i :
application state betwee equests, thus reducm%rowds,, on the load of a popular server, particularly when

consumption of physical resources and improving S ! .
o .) . .“the caching is arranged hierarchically to cover large groups
scalability; 2) it allows interactions to be processed in o D
of users, such as those within a company’s intranet, the

parallel without requiring that the processing mechanism . .) -
; : o ; customers of an Internet service provider, or Universities
understand the interaction semantics; 3) it allows an =~ :
) : . L . sharing a national network backbone. However, shared
intermediary to view and understand a request in isolation . .
.) . taching can also lead to errors if the cached response does
which may be necessary when services are dynamicall

rearranged; and, 4) it forces all of the information that might}40t match what would have been obtained by a new request.

. . I?EST attempts to balance the desire for transparency in
factor into the reusability of a cached response to be presen . : . -
in each request, cache behavior with the desire for efficient use of the

network, rather than assuming that absolute transparency is

Table 2: REST Connector Types always required.
A cache is able to determine the cacheability of a response
Connector | Modern Web Examples because the interface is generic rather than specific to each
: - - resource. By default, the response to a retrieval request is
client libwww, libwww-perl cacheable and the responses to other requests are non-
server libwww, Apache API, NSAPI cacheable. If some form of user authentication is part of the
request, or if the response indicates that it should not be
cache browser cache, Akamai cache network shared, then the response is only cacheable by a non-shared
)) cache. A component can override these defaults by including
resolver bind (DNS lookup library) control data that marks the interaction as cacheable, non-

tunnel SOCKS, SSL after HTTP CONNECT cacheable or cacheable for only a limited time.

A resolvertranslates partial or complete resource identifiers

The connector interface is similar to procedura] in\/ocation,into the network address information needed to establish an
but with important differences in the passing of parameterdnter-component connection. For example, most URI include
and results. The in-parameters consist of request contrédé DNS hostname as the mechanism for identifying the
data, a resource identifier indicating the target of the requesfiaming authority for the resource. In order to initiate a

and an optional representation. The out-parameters consigtduest, a Web browser will extract the hostname from the
of response control data, optional resource metadata, and 4RI and make use of a DNS resolver to obtain the Internet
0pti0na| representaﬁon_ From an abstract Viewpoint thé3r0t0C0| address for that authority. Another example is that
invocation is synchronous, but both in and out-parameter§ome identification schemes (e.g., URN [21]) require an

can be passed as data streams. In other words, processing ¢ai¢rmediary to translate a permanent identifier to a more

transient address in order to access the identified resourcgateway is that a client determines when it will use a proxy.
Use of one or more intermediate resolvers can improve theA . .

. S rchitectural Views
longevity of resource references through indirection, thoug

doing so adds to the request latency. r}\Iow that we have an understanding of the REST

architectural elements in isolation, we can use architectural
The final form of connector type is mnne| which simply views [17] to describe how the elements work together to
relays communication across a connection boundary, such germ an architecture. All three types of view—process,

a firewall or lower-level network gateway. The only reason it connector, and data—are useful for illuminating the design
is modeled as part of REST and not abstracted away as paptinciples of REST.

of the network infrastructure is that some REST component%,rocess View

may dynamically switch from active component behavior toA rocess view of an architecture is primarily effective at
that of a tunnel. The primary example is an HTTP proxy that P P y

switches to a tunnel in response to a CONNECT methoaehcmng the interaction relationships among components by

N . g . revealing the path of data as it flows through the system.
request, thus allowing its client to directly communicate with nfortunatelv. the interaction of a real svstem usuall
a remote server using a different protocol, such as TLS, thagfJ Y. y y

; . . nvolves an extensive number of components, resulting in an
doesn't allow proxies. The tunnel disappears when both ends
. . . overall view that is obscured by the details. Figure 1 provides
terminate their communication.

a sample of the process view from a REST-based
Component Types architecture at a particular instance during the processing of
REST components (processing elements) are typed by thefhree parallel requests.

roles in an overall application action. . . L
P The client/server [1] separation of concerns simplifies

Table 3: REST Component Types component implementation, reduces the complexity of
connector semantics, improves the effectiveness of
Component | Modern Web Examples performance tuning, and increases the scalability of pure

server components.

origin server | Apache httpd, Microsoft IIS Since the components are connected dynamically, their

gateway Squid, CGI, Reverse Proxy arrangement and function for a particular application action
has characteristics similar to a pipe-and-filter style. Although
proxy CERN Proxy, Netscape Proxy, Gauntlet ~REST components communicate via bidirectional streams,

the processing of each direction is independent and therefore
susceptible to stream transducers (filters). The generic
connector interface allows components to be placed on the
A user agenuses a client connector to ifdte a request and stream based on the properties of each request or response.

becomes the ultimate recipient of the response. The mo:g
. . i ervices may be implemented using a complex hierarchy of
common example is a Web browser, which provides access

.) . . intermediaries and multiple distributed origin servers. The
to information services and renders service responses) .
according to the application needs. ;tateless nature of REST allows e_ach interaction to be
independent of the others, removing the need for an
An origin server uses a server connector to govern theawareness of the overall component topology, an impossible
namespace for a requested resource. It is the definitiveask for an Internet-scale architecture, and allowing
source for representations of its resources and must be tlr@mponents to act as either destinations or intermediaries,
ultimate recipient of any request that intends to modify thedetermined dynamically by the target of each request.
value of its resources. Each origin server provides a generi€onnectors need only be aware of each other’'s existence
interface to its services as a resource hierarchy. The resouraturing the scope of their communication. A connector may

implementation details are hidden behind the interface. cache the existence and capabilities of other components for

user agent Netscape Navigator, Lynx, MOMspider

Intermediary components act as both a client and a server iHerformance reasons.

order to forward, with possible translation, requests andConnector View

responses. Airoxycomponent is an intermediary selected by A connector view of an architecture concentrates on the
a client to provide interface encapsulation of other servicesmechanics of the communication between components. For a
data translation, performance enhancement, or securitREST-based architecture, we are particularly interested in
protection. Agateway(a.k.a.,reverse proxy component is the constraints that define the generic resource interface.

n intermediary im he network or origin server . . .

a .te eglay posed by t N etwork or o gin serve toCl|ent connectors examine the resource identifier in order to

provide an interface encapsulation of other services, for data) o .

translation erformance enhancement. or securitseleCt an appropriate communication mechanism for each
P . ' ¥equest. For example, a client may be configured to connect

enforcement. Note that the difference between a proxy and & a specific proxy component, perhaps one acting as an

Proxy Gateway Origin Servers

User Agent

Client Connector:()) Client+Cache:(®) Server Connector_ () Server+Cache:(®

Figure 1: Process view of a REST-based architecture at one instance in time. A user agent is portrayenidstioé

three parallel interactions: a, b, and c. The interactions were not satisfied by the user agent’s client connector cache,
so each request has been routed to the resource origin according to the properties of each resource identifier and the
configuration of the client connector. Request (a) has been sent to a local proxy, which in turn accesses a caching
gateway found by DNS lookup, which forwards the request on to be satisfied by an origin server whose internal
resources are defined by an encapsulated object request broker architecture. Request (b) is sent directigio an o
server, which is able to satisfy the request from its own caRleguest (c) is sent to a proxy that ispedle of directly
accessing WAIS, an information service that is separate from the Web architecture, and translating the WAIS response
into a format recognized by the generic connector interface. Each component is only aware of the interaction with their
own client or server connectors; the overall process topology is an artifact of our view.

annotation filter, when the identifier indicates that itis a localComponent interactions occur in the form of dynamically
resource. Likewise, a client can be configured to rejectsized messages. Small or medium-grain messages are used
requests for some subset of identifiers. for control semantics, but the bulk of application work is
accomplished via large-grain messages containing a

Although the Web'’s primary transfer protocol is HTTP, the .
X . cc%mplete resource representation. The most frequent form of
architecture includes seamless access to resources tha

- . . . request semantics is that of retrieving a representation of a
originate on many pre-existing network servers, mcIudmgIresOUIrce (e.g.. the “GET” method in HTTP), which can often
FTP [19], Gopher [2], and WAIS [8]. However, interaction o '
with these services is restricted to the semantics of a RESIPe cached for later reuse.
connector. This constraint sacrifices some of the advantageREST concentrates all of the control state into the
of other architectures, such as the stateful interaction of @aepresentations received in response to interactions. The goal
relevance feedback protocol likeWAIS, in order to retain theis to improve server scalability by eliminating any need for
advantages of a single, generic interface for connectothe server to maintain an awareness of the client staterige
semantics. This generic interface makes it possible to acceske current request. An application’s state is therefore
a multitude of services through a single proxy connection. Ifdefined by its pending requests, the topology of connected
an application needs the additional capabilities of anothecomponents (some of which may be filtering buffered data),
architecture, it can implement and invoke those capabilitieshe active requests on those connectors, the data flow of
as a separate system running in parallel, similar to how theepresentations in response to those requests, and the
Web architecture interfaces with “telnet” and “mailto” processing of those representations as they are received by
resources. the user agent.

Data View An application reaches a steady-state whenever it has no
A data view of an architecture reveals the application state asutstanding requests; i.e., it has no pending requests and all
information flows through the components. Since REST isof the responses to its current set of requests have been
specifically targeted at distributed information systems, itcompletely received or received to the point where they can
views an application as a cohesive structure of informatiorbe treated as a representation data stream. For a browser
and control alternatives through which a user can perform application, this state corrpends to a “web page,” including
desired task. For example, an on-line dictionary is onghe primary representation and ancillary representations,
application, as is a museum tour or a set of class notes. such as in-line images, embedded applets, and style sheets.
The significance of application steady-states is seen in their

impact on both user-perceived performance and theriteria in REST, such as the use of URI [6] as resource
burstiness of network request traffic. identifiers and the use of Internet media types [18] to
.identify representation data formats. However, there are also
The user-perceived performance of a browser application is o .
. ' . Some aspects of the modern Web protocols that exist in spite
determined by the latency between steady-states: the perid : . .
) . o of the architectural design, due to legacy experiments that
of time between the selection of a hypermedia link on one,_. ; o

: . . ailed (but must be retained for backwards compatibility) and
web page and the point when usable information has been

rendered for the next web page. The optimization ofbrowserXtenSIons deployed by developers unaware of the

. . -architectural style. REST provides a model not only for the
performance is therefore centered around reducing thi .
. : L evelopment and evaluation of new features, but also for the
latency, which leads to the following observations:

identification and undersmaling of broken features.

e Them fficient network r isone th n’ . .
& most efficient netwo equest. s one that does tuS(?—iTTP [10] has a central role in determining the caifitsbs
the network. In other words, reusing a cached response

. and limitations of the Web architecture. HTTP is designed to
results in the best performance. Although use of a cache) i
s extend the generic connector interface across a network

adds some latency to each individual request due to ; S
.connection. As such, it is intended to match the

lookup overhead, the average request latency is

o haracteristics of that interface, including the delineation of
significantly reduced when even a small percentage o X
. . parameters as control data, metadata, and representation.
requests result in usable cache hits.

T]) However, two of the most significant limitations of the

* The next control state of the application resides in theqTTp/1 x protocol family are that it fails to syntactically
representation of the first requested resource, S@jistinguish between representation metadata and message
obtaining that first representation is a priority. control information (both transmitted as header fields) and

» Incremental rendering of the first non-redirect responsedoes not allow metadata to be effectively layered for
representation can considerably reduce latency, sincmessage integrity checks. REST identified these as
then the representation can be rendered as it is beinimitations in the protocol early in the standardization
received rather than after the response has beeprocess, anticipating that they would lead to problems in the
completed. Incremental rendering is impacted by thedeployment of other features, such as persistent connections
design of the media type and the early availability of and digest authentication. Workarounds were developed,
layout information (visual dimensions of in-line objects). including a new header field to identify per-connection

The application state is controlled and stored by the usefontrol data that is unsafe to be forwarded by intermediaries
agent and can be composed of representations from muItipI@nd an algorithm for canonical treatment of header field
servers. In addition to freeing the server from the scalabilitydigests, but more efficient solutions must wait until an HTTP
problems of storing state, this allows the user to direc“ywithout backwards compatibility restraints can be deployed.

manipulate the state (e.g., a Web browsers history)an example of where an inappropriate extension has been
anticipate changes to that state (e.g,, link maps anghade to the protocol to support features that contradict the
prefetching of representations), and jump from onegesijred properties of the generic irftee is the intoduction
application to another (e.g., bookmarks and URI-entryof site-wide state information in the form of HTTP cookies
dialogs). [15]. Cookie interaction failed to match REST’s model of

The model application is therefore an engine that movedlistributed application state, resulting in substantial
from one state to the next by examining and choosing fronfonfusion for the typical browser application. A cookie
among the alternative state transitions in the current set dould be assigned by the origin server as opaque data,
representations. Not surprisingly, this exactly matches théypically containing an array of user-specific configuration
user interface of a hypermedia browser. However, the styl€hoices or a token to be matched against the server's
does not assume that all applications are browsers. In facflatabase on future requests. The problem is that a cookie is
the application details are hidden from the server by thelefined as being attached to any future requests for a given
generic connector interface, and thus a user agent couf€t of resource identifiers, usually encompassing an entire
equally be an automated robot performing informationsite, rather than being associated with the particular
retrieval for an indexing service, a personal agent looking fo@PPplication — state (the set of currently rendered
data that matches certain criteria, or a maintenance spidégpresentations) on the browser. When the browser’s history
busy patrolling the information for broken references orfunctionality (the “Back” button) is subsequently used to

modified content [9]. back-up to a view prior to that reflected by the cookie, the
browser’s application state no longer matches the stored state
4 MATCHING AN ARCH ITECTURETOITS STYLE represented within the cookie. Therefore, the next request

In an ideal world, the implementation of a software systemgent to the same server will contain a cookie that

would exactly match its design. Some features of the modergisrepresents the current application context, leading to
Web architecture do correspond exactly to their design.onfusion on both sides.

Architectural mismatches are not limited to HTTP. style, but REST messages are targeted at a conceptual
Introduction of “frames” to the Hypertext Markup Language resource rather than an implementation identifier.

HTML imilar confusion within an licati

() caused similar co usio t an app cat N several attempts have been made to model the Web
state. Frames allow a browser window to be partitioned into

i I I . architecture as a form of distributed file system (e.g.,
subwindows, each with its own navigational state. Link o)

; L . LS WebNFS) or as a distributed object system [16]. However,
selections within a subwindow are indistinguishable from

. . . th xcl vari i i
normal transitions, but the resulting response representatlot ey exclude various Web resource types or implementation

. e . . r}l’tl ing “not interesting,” when in f heir
is rendered within the subwindow instead of the full browser>. .c9'¢S as pe g no eresting, € act. the
o .) . . presence invalidates the assumptions that underlie such
application workspace. This was fine provided that no link . -
! : .) models. REST works well because it does not limit the
exited the realm of information that was intended for.

. . implem i i i
subwindow treatment, but as soon as that did occur the user, plementation of resources to certain predefined models,

would find themselves viewina one application wed edallowing each application to choose an implementation that
o 9 © app 98%)est matches its own needs and enabling the replacement of

within the subcontext of another application. implementations without impacting the user.

In both these cases, the failure was in providing indirect_l_he

application state that could not be managed or interpreted byesou

h r agent. A design th isi [ithi) . X .
the user agent dqsg that placed this information within &vent-based integration (EBI) styles. The key difference is
primary representation that informed the user agent on ho

to manage the hypermedia workspace for a specified realvtvhat EBI styles are push-based. The component containing

of resources could have accomplished the saslestvithout The state (equivalent to an origin server in REST) issues an
L . : event whenever the state changes, whether or not any
violating the REST constraints, leading to both a better user . : . . .
. . ; . component is actually interested in or listening for such an
interface and less interference with caching. .

event. In the REST style, consuming components usually
5 RELATED WORK pull representations. Although this is less efficient when
Garlan and Shaw [13] provide an introduction to softwareviewed as a single client wishing to monitor a single
architecture research and describe several “pure” stylesesource, the scale of the Web makes an unregulated push

Their work differssignificantly from the framevork of Perry model infeasible.

and .WO" .[17] used in this paper due to a lack of The principled use of the REST style in the Web, with its
consideration for data elements. As observed above, theI . .
Clear notion of componentspnnectors, and repsentations,

characteristics of data elements are fundamental tQ .
understanding the modern Web architecture — it SirnplyreIates closely to the C2 architectural style [22]. The C2 style

: ; rts th vel istri i
cannot be adequately described without them. The samg_ PPOrs e de gopment of distributed, dynamic

, ; . . applications by focusing on structured use of connectors to
conclusion can be seen in the comparison of mobile code

paradigms by Fuggetta, et al. [12], where the analysis 0{;)btam substrate independence. C2 applications rely on

.) . ._asynchronous notification of state changes and request
when to go mobile depends on active comparison of the size . .

messages. As with other event-based schemes, C2 is
of the code that would be transferred versus the pre-

) .) nominally push-based, though a C2 architecture could
processed information that would otherwise be transferred. :) . L
operate in REST's pull style by only emitting a notification

Bass, et al. [3] devote a chapter on architecture for the Worldpon receipt of a request. However, the C2 style lacks the
Wide Web, but their description only encompasses théntermediary-friendly constraints of REST, such as the
implementation architecture within the CERN/W3C- generic resource interface, guaranteed stateless interactions,
developed libwww (client and server libraries) and Jigsawand intrinsic support for caching.

software. Although those implementations reflect some of6 CONCLUSIONS AND EUTURE WORK

the design .c.onst.raints C.Jf REST, havi.ng been developed b¥he World Wide Web is arguably the world’s largest
people familiar with the intended architectural style, the realdistributed application. Understanding the key architectural

WWW architecture is independent of any single > . : 2)
implementation. The Web is defined by its standardprlnCIpleS underlying the Web can help explain its technical

. . nd may | to improvements in other distri
interfaces and protocols, not how those interfaces anguccess a d may lead to improvements in other distributed

. : . : applications, particularly those that are amenable to the same
protocols are implemented in a given piece of software. - .)
or similar methods of interaction.

interaction method of sending representations of
rces to consuming components has some parallels with

The REST style draws from many preexisting distributed C .
. . For network-based applications, system performance is
process paradigms [1, 12], communication protocols, and

:) : ominated by network communication. For a distributed
software fields. REST component interactions are structure
in a layered client-server style, but the added constraints o ypermedia system, component interactions consist of large-

.) . rain data transfers rather than computation-intensive tasks.
the generic resource interface create the opportunity fo

substitutability and inspection by intermediaries. Request he REST style was developed in response to those needs,

. Its focus upon the generic connector interface of resources
and responses have the appearance of a remote invocation) . ; :
and representations has enabled intermediate processing,

caching, and substitutability of components, which in turn5.
has allowed Web-based applications to scale from 100,000
requests/day in 1994 ®00,000,000 requests/day i899.

The REST architectural style has been validated through sig'
years of development of the HTTP/1.0 and HTTP/1.1

standards, elaboration of the URI and relative URL

standards, and successful deployment of several dozen
independently developed, commercial-grade software
systems within the modern Web architecture. Future WOI’l%
will focus on extending the architectural guidance toward the™
development of a replacement for the HTTP/1.x protocol,

using a more efficient tokenized syntax, but without losing

the desirable properties identified by REST. There has also’
been some interest in extending REST to consider variable
request priorities, differentiated quality-of-service, and
representations consisting of continuous data streams, su
as those generated by broadcast audio and video sources.

ACKNOWLEDGEMENTS
The Web'’s architectural style was developed iteratively over

Berners-Lee, T., R.T. Fielding, and H.F. Nielsen.
Hypertext Transfer Protocol — HTTP/1.Diternet RFC
1945 May 1996.

Berners-Lee, T., R.T. Fielding, and L. Masinter. Uniform
Resource lIdentifiers (URI): Generic syntakternet
RFC 2396 Aug. 1998.

Chin, R.S., and S.T. Chanson. Distributed object-based
programming systemsACM Computing Surveys 23
(Mar. 1991), pp. 91-124.

Davis, F., et. al. WAIS interface protocol prototype
functional specification (v.1.5). Thinking Machines
Corporation, Apr. 1990.

Fielding, R.T. Maintaining distributed hypertext
infostructures: Welcome to MOMspider's web.
Computer Networks and ISDN Systems, 27 (Nov.
1994), pp. 193}-204.

ilb.Fielding, R.T., J. Gettys, J.C. Mogul, H.F. Nielsen,

L. Masinter, P. Leach, and T. Berners-Lee. Hypertext
Transfer Protocol — HTTP/1.1nternet RFC 2616June
1999. [Obsoletes RFC 2068, Jan. 1997.]

a four year period, but primarily during the first six months 11. Fielding, R.T., E.J. Whitehead Jr., K.M. Anderson,

of 1995. It has been influenced by countless discussions with
researchers at UCI, staff at the World Wide Web Consortium
(W3C), and engineers within the HTTP and URI working

G. Bolcer, P. Oreizy, and R.N. Taylor. Web-based
development of complex information produdBmm. of
the ACM 41 8 (Aug. 1998), pp. 84-92.

groups of the IETF. We would particularly like to thank Tim 12- Fuggetta, A., G.P. Picco, and G. Vigna. Understanding

Berners-Lee, Henrik Frystyk Nielsen, Dan Connolly, Dave
Raggett, Rohit Khare, Jim Whitehead, Larry Masinter, and

code mobility. IEEE Transactions on Software

Engineering 245 (May 1998), pp. 342-361.

Dan LaLiberte for many thoughtful conversations regardingl3: Garlan, D., and M. Shaw. An introduction to software

the nature and goals of the WWW architecture. We also
thank the anonymous reviewers for their comments.

architecture. Ambriola & Tortola (eds.dvances in
Software Engineering & Knowledge Engineering, vo]. Il
World Scientific Pub Co., 1993, pp. 1-39.

Effort sponsored by the Defense Advanced Research4. Grgnbaek, K., and R.H. Trigg. Design issues for a

Projects Agency, and Airforce Research Laboratory, Air
Force Materiel Command, USAF, under agreement number

Dexter-based hypermedia syste@ommunications of
the ACM 37 2 (Feb. 1994), pp. 41-49.

F30602-97-2-0021. The U.S. Government is authorized tq 5. Kristol, D., and L. Montulli. HTTP State Management

reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon.

The views and conclusions contained herein are those of the

MechanismInternet RFC 2109Feb. 1997.

16. Manola, F. Technologies for a Web object modieEE

Internet Computing 3L (Jan.-Feb. 1999), pp. 38-47.

authors and should not be interpreted as necessarily7- Perry, D.E., and A. Wolf. Foundations for the study of
representing the official policies or endorsements, either ~Software —architecture. ACM ~ SIGSOFT Software
expressed or implied, of the Defense Advanced Research ENgineering Notes 17 (Oct. 1992), pp. 40-52.

Projects Agency, Airforce Research Laboratory or the U.S18. Postel, J. Media type registration procedurgernet

Government.

REFERENCES

1. Andrews, G. Paradigms for process interaction in distrib-
uted programsACM Computing Surveys 23 (Mar.
1991), pp. 49-90.

2. Anklesaria, F., et al. The Internet Gopher protocol (a
distributed document search and retrieval protocol).
Internet RFC 1436Mar. 1993.

3. Bass, L., P. Clements, and R. KazmaS8oftware
Architecture in PracticeAddison Wesley, 1998.

4. Berners-Lee, T. WWW: Past, present, and future.
Computer 2910 (Oct. 1996), pp. 69—77.

22. Taylor,

RFC 1590 Nov. 1996.

19. Postel, J., and J. Reynolds. File Transfer Protocol.

Internet STD 9, RFC 95%ct. 1985.

20. Sinha, A. Client-server computinG@ommunications of

the ACM 35 7 (July 1992), pp77-98.

21. Sollins, K., and L. Masinter. Functional requirements for

Uniform Resource Namesnternet RFC 1737 Dec.
1994.

R.N., N. Medvidovic, K.M. Anderson,
E.J. Whitehead Jr., J.E. Robbins, K.A. Nies, P. Oreizy,
and D.L. Dubrow. A component- and message-based
architectural style for GUI softwaréEEE Transactions
on Software Engineering 28 (Jun. 1996), pp. 390-406.

	Principled Design of the Modern Web Architecture
	ABSTRACT
	Keywords

	1 INTRODUCTION
	2 WWW DOMAIN CHARACTERISTICS
	3 REPRESENTATIONAL STATE TRANSFER (REST)
	Data Elements
	Resources and Resource Identifiers
	Representations

	Connectors
	Component Types
	Architectural Views
	Process View
	Connector View
	Data View

	4 MATCHING AN ARCHITECTURE TO ITS STYLE
	5 RELATED WORK
	6 CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

