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Abstract 

The mathematical definition of clique has never been entirely satisfactory when it comes 
to providing a procedure for defining human social groups. This paper shows how the 
Galois structure of containment among cliques and actors can be used to produce an 
intuitively appealing characterization of groups--one that is consistent with ethnographic 
descriptions. Two examples, using 'classical' social network data sets, are provided. 

1. Introduction 

From the outset, sociologists have pretty much agreed that one of their primary 
concerns is with human groups. They were, and still are, particularly interested in 
the relatively small, often face-to-face, groups that T6nnies (1887/1940) called 
gemeinschaft  and Cooley (1909/1962) called primary. According to tradition, such 
groups have three main features: (1) they are collections of individuals who are 
linked to one another by regular interaction and by sentimental ties, (2) they are 
more or less bounded; they show little if any overlap, and (3) they are internally 
differentiated; some of their members are more involved with the group than are 
others (Freeman, 1992). 

For the most part, this notion of group has been used in the field in an informal 
intuitive, or 'sensitizing', way. Ethnographers and participant observers seem to 
have had little trouble in 'seeing' groups and in assigning members to them. But 

1 Another version of this paper has appeared in French in the Bulletin de Methodologie Soci- 
ologique (Freeman, 1993). 
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systematic attempts to develop formal models of group structure, and thus to 
define them in precise terms, have found the going tough. 

Attempts to model group structure in formal terms began in the 1940s and 
continue still. But none of the models proposed so far is entirely successful in 
capturing the intuitive notion of groups. All the models can be used to find 
group-like structures, but the structures that they find simply do not match groups 
as reported by ethnographers. 

The aim of the present paper is to propose a new solution to the problem of 
defining groups. I will draw upon the earliest group model, the clique, and show 
that group structure is displayed, not in the cliques themselves, but in the 
patterning of their overlap. And that patterning is revealed by organizing cliques 
into a Galois lattice. I will show that when a collection of cliques is recast as a 
Galois lattice, the lattice reveals precisely the kind of interpersonal patterning that 
is reported in ethnographic accounts of group structure. 

In Section 2 below I will review the clique model. Following that, in Section 3, I 
will outline some elementary principles of Galois lattices. Then, in Section 4, I will 
show how the two formalisms can be tied together to reveal group structure. And 
finally, in Sections 5 and 6, I will show how the results of this clique-lattice analysis 
produce results that are consistent with ethnographic reports. 

2. Cliques and social groups 

A formal definition of cliques was simultaneously introduced by Luce and Perry 
(1949) and by Festinger (1949). This definition was proposed (Luce and Perry, 
1949) in order " to  determine group structure" in a way that was "both  faster and 
more certain than less systematic methods". Thus, it was intended to provide a 
formal model for existing intuitive ideas about the organization of groups. 

The Luce-Per ry  definition of the clique begins by designating a set of actors A 
along with a symmetric binary social relation R in A x A  that links pairs of actors. 
Then a clique C is a maximal  subset containing three or more actors among whom 
all pairs are linked by R. The term 'maximal' in this context simply means that no 
clique may be contained in a larger clique. 

This formal definition of cliques captured the imagination of social scientists 
right from the beginning. It can be applied to data that recorded either interaction 
or sentimental ties linking pa i r s  of individuals, and it does specify subsets of 
individuals who are densely interlinked. 

Although the clique definition has intuitive appeal, from the outset it was 
apparent that it failed when it came to representing group structure as it was 
conceived by sociologists. 

The cliques that are uncovered from actual data on human relationships 
typically fail to reflect intuitive group structure in four ways: (1) The cliques that 
are found are too small to satisfy intuition. (2) There are usually too many cliques 
to satisfy intuition. (3) The cliques that are found often overlap to a degree that 
violates intuition. (4) Since the clique definition requires that each clique member 
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Table 1 
Data on playing games in the Bank Wiring Room 
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I1 13 Wl W2 W3 W4 W5 W6 W7 W8 W9 S1 $2 $4 

11 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Wl 1 0 0 1 1 1 1 0 0 0 0 1 0 0 
w2 1 0 1 0 1 1 0 0 0 0 0 1 0 0 
w3 1 0 1 1 0 1 1 0 0 0 0 1 0 0 
w4 1 0 1 1 1 0 1 0 0 0 0 1 0 0 
w5 0 0 1 0 1 1 0 0 1 0 0 1 0 0 
w6 0 0 0 0 0 0 0 0 1 1 1 0 0 0 
w7 0 0 0 0 0 0 1 1 0 1 1 0 0 1 
w8 0 0 0 0 0 0 0 1 1 0 1 0 0 1 
w9 0 0 0 0 0 0 0 1 1 1 0 0 0 1 
s1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 
$2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
$4 0 0 0 0 0 0 0 0 1 1 1 0 0 0 

be  l inked  di rec t ly  to every o t h e r  cl ique me mbe r ,  the i r  form hides  the  impor t an t  

' i n t e rna l  s t ruc tu re '  tha t  social  g roups  a re  a s sumed  to possess.  
A s  an example ,  cons ider  a da t a  set tha t  was col lec ted  by Roe th l i sbe rge r  and  

Dixon (1939) among  some employees  in a W e s t e r n  Elec t r ic  C o m p a n y  factory.  
Subjects  were  14 m e n  who worked  in a ' B a n k  Wir ing  R o o m ' .  The i r  job  was to 
p r o d u c e  swi tchboard  banks.  Two of  these  m e n  were  inspec tors  (I1 and  I3), t h ree  
were  so lde re r s  (S1, $2 and  $4) and  the  r ema in ing  n ine  were  wirers  ( W l  th rough  

W9).  
A n  obse rve r  r e c o r d e d  d a t a  on several  d i f fe ren t  k inds  of  social  r e la t ionsh ips  tha t  

l inked  these  m e n  toge ther .  A m o n g  the  da ta  co l lec ted  were  records  of  which  pa i rs  
of  m e n  p layed  var ious  games  and  engaged  in horsep lay  with each  other .  These  
da t a  p r o d u c e d  the  symmetr ic  b inary  mat r ix  shown in Tab le  1. There ,  only those  
pa i rs  of  individuals  who had  been  obse rved  playing games  t oge the r  were  ass igned a 
va lue  of  1 in the i r  cell in the  matr ix;  o the r s  were  t a b u l a t e d  as 0. 

E thnograph ica l ly ,  R o e t h l i s b e r g e r  and  Dixon (1939) desc r ibed  these  men  as 
d iv ided  up  into two dis t inct  groups.  G r o u p  A con ta ined  W1,  W2, W3, W4, S1 and  
I1. They  desc r ibed  W3 as the  ' l e a d e r '  o f  G r o u p  A (p. 465) and  W2 as a marg ina l  
m e m b e r .  G r o u p  B inc luded  W6, W7, W8,  W9 and  $4. W6, they  said (p. 509) was 
" n o t  en t i re ly  accep t ed  by the  g roup"  and $4 was "socia l ly  r e g a r d e d  as in fer ior"  (p. 
483). T h e  o the r  three ,  W5,  $2 and  13, they  cha rac t e r i zed  as " o u t s i d e  e i the r  G r o u p  
A or  G r o u p  B" (p. 510). 

Al l  the  c l iques  con ta ined  in the  da t a  of  Tab le  1 are  shown in Tab le  2. They  
i l lus t ra te  each  of  the  p r o b l e m s  with  c l ique  analysis  l i s ted  above: (1) The  cl iques  are  
all smal le r  t han  the groups;  the  la rges t  clique, for  example ,  conta ins  only five 
individuals ,  while  R o e t h l i s b e r g e r  and  Dixon ' s  G r o u p  A has  six member s .  (2) T h e r e  
are  five c l iques  bu t  only two groups ,  so t he re  is no way to choose  which combina -  
t ion of  cl iques bes t  r ep r e sen t s  the  group  s t ructure .  (3) Many  of  the  c l iques  over lap ,  
while  the  groups  do  not;  (C1 and C3, for  example ,  share  4 of  the i r  5 members ) .  (4) 
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Table 2 
Cliques formed by 
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game playing in the Bank Wiring Room 

C1 C2 C3 C4 C5 

I1 1 0 0 0 0 
13 0 0 0 0 0 
W1 1 1 1 0 0 
W2 1 1 0 0 0 
W3 1 1 1 0 0 
W4 1 1 1 0 0 
W5 0 0 1 0 0 
W6 0 0 0 1 0 
W7 0 0 0 1 1 
W8 0 0 0 1 1 
W9 0 0 0 1 1 
S1 0 1 1 0 0 
$2 0 0 0 0 0 
$4 0 0 0 0 1 

If  we do select a pair of these cliques (say C2 and C5) as an approximation of the 
structure of the two groups, we are unable to distinguish between group leaders 
(like W3), and peripheral  members  (like W2). 

For one or another  of these reasons, then, most analysts concluded that cliques 
were unsatisfactory as a way to characterize the structure of groups (Luce 1950; 
Alba, 1973; Peay, 1976; Alba and Moore, 1978; Seidman and Foster, 1978; 
Mokken, 1979; Doreian,  1982; King and Nakornchai,  1982; Seidman, 1983; Yan, 
1988; Arabie and Carroll, 1989). Nevertheless, the clique idea has continued to 
interest investigators. Over the years, its mathematical  simplicity and intuitive 
appeal have kept bringing investigators back to it, but its tendency to uncover 
groups that do not match observers '  descriptions keeps driving them away again. 

As I suggested above, one solution to these problems with cliques rests in 
organizing them in terms of Galois lattices. In the next section, therefore, I will 
review some of the elementary principles of Galois lattices. 

3. Galois lattices 

Consider a finite non-empty set X = (x, y, z , . . . )  along with a binary relation 
< in X x X. We take the relation < to be reflexive, antisymmetric and transitive 
and the set X, therefore, is partially ordered. 

Given a pair of  elements x and y in a partially ordered set, a lower bound of x 
and y is an element m such that m < x  and m <y .  A lower bound m is the 
greatest  lower bound, or meet when there is no other element b such that b < x 
and b < y and m < b. Similarly, an upper bound j is an element such that x < j ,  
y < j .  If  there is no element b such that x < b, y < b, and b <j ,  j is the least upper  
bound, or join. 
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Any partially ordered set in which every pair of elements has both a meet and a 
join is a lattice. Consider, for example, the power set P (X)  of a set X. P ( X )  
contains of all the subsets of X including X itself and the null set ¢. The elements 
of the power set form a partial order, based on inclusion, where, if S, S' _c X, then 

Sc~S' ~S ,  S' and S, S' c_Sc~S', 

and S n S', S U S' are the meet and join of S and S'. 
Now consider a triple (A, C, M)  where A and C are finite non-empty sets and 

M ___A × C is a binary relation. The relation M can be used to define a mapping 
t :  B ~ B  $ from P(A) to P(C):  

B $ = { c ~ C l ( a , c ) ~ M  fora l l  a ~ B } .  

Similarly, M can be used to define another mapping $: D ~ D $ from P(C) to 
P(A):  

D $ = { a ~ A l ( a , c ) ~ M  fora l l  c e D } .  

Let S ( A ) = { A I ~ ,  Azq" . . . .  }, the collection of images of $, and S ( C ) =  
{C l +, C 2 $ . . . .  }, the collection of images of $. Since the two mappings, t and $, 
are both constructed from the same pairs in the relation M they are inverses of 
one another. In fact, the subscripts on these subsets can be assigned in such a way 
that A i $ = C i and C i $ =A i for all subscripts i. 

The subsets that make up S(C) form a lattice under inclusion, as do the subsets 
that make up S(A). These two lattices are dual inverse, 

( C i , ~ c_ C j ,~ ¢:*. A i " ~ ~_ Z j '~ ) , 

and they can be represented in a single lattice S(C) × S(A) in which each element 
is identified with a subset in S(C) and with a subset in S(A). Thus, 

(Ci,~ , A i ~  ) <_ ( C j $ ,  A j ~ )  ¢ * C i ~  c_Cj~  & A i $  ~_Ajt ,  

and an element (C~ $, A i ?)  of this dual lattice is a lower bound of another 
(Cj $, Aj t )  when C i 3, is contained in Cj $, or equivalently, when Aj ? contains 
Zi 'r. A dual lattice of this sort, where each element is a pair, is called Galois. 

A complete Galois lattice may be displayed pictorially by a labeled line diagram. 
In such a diagram, each element is represented as a point and points are linked by 
ascending and descending lines to show their ordering. Each point is assigned two 
labels, one indicating the subset of elements in A it includes and the other 
indicating the subset of elements in C it includes. 

These, then, are the elementary principles of Galois lattices. They were intro- 
duced by Birkhoff (1940) and expanded first by Barbut and Monjardet (1970) and 
later by Wille (1982, 1984, 1985, 1987, 1989) and by Duquenne (1987). Here, 
concern is focused on the application of these ideas to the analysis of cliques. That  
issue will be examined in the next section. 
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4. Galois lattices of network cliques 

The application of Galois lattices to cliques is straightforward. The form of the 
clique data as it was described above is precisely that required to define a Galois 
lattice. It consists of a triple (A,  C, M )  in which A is a set of human actors, C is a 
collection of cliques and M is a binary relation in A x C. In this case, (a, c) ~ M 
may be read 'actor a is a member  of clique c'. 

To illustrate, let us return to the cliques we found in Roethlisberger and 
Dixon's (1939) Bank Wiring Room data. Fig. 1 is a Galois lattice that displays the 
structure of both actors and cliques. Note that, since actors 13 and $2 were not 
involved in playing games, the lattice display includes only those 12 individuals who 
were organized into five cliques of game players. 

All of the paired subset elements of S ( A )  and S(C)  can be seen in the figure. 
The top-most point represents the pair of subsets containing the set of all 12 
individuals and no cliques at all. The bottom-most  point represents the pair 
containing the set of all five cliques and no individuals. Intermediate  points are 
labeled to show which subsets of cliques and which subsets of individuals they 
represent.  

In practice, it is usually easier to make sense of a lattice in which the labeling is 
reduced. Each point is labeled only with the names of actors for which it is the 

Q 
W l  W 2  W 3  W 4  W 5  W6 W7 W 8  W 9  $ 1  $ 4  I1 

5 1 I1 

$ 4  W 2  
W 7  W1 
W 8  w 3  
W 9  W 4  

W 2  
W l  
W 3  
W 4  

w 1  
W7 W3 

1 2 3 4 5  

® 

Fig. 1. Galois lattice of cliques in the Roethlisberger and Dixon (1939) data on games. 
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5 111 

w2 

Wl 
w3 

Fig. 2. The lattice of Fig. 1 with reduced labeling. 

smallest element containing those actors. Similarly, each point gets the names of 
any cliques for which it is the greatest  element containing those cliques. Points that 
are neither the smallest element containing any actor nor the greatest  element 
containing any clique remain unlabeled. The clique lattice of Fig. 1 with reduced 
labeling is shown in Fig. 2. 

Fig. 2 provides a pictorial image of the way clique memberships divide actors up 
into groups. It displays the relation between individuals and cliques as well as the 
containments both among individuals and among cliques. But it does not produce 
a systematic procedure that can be used to define groups. That  is the problem of 
the next section. 

5. Overlapping cliques and bounded groups 

One key intuitive feature of groups is that they are generally assumed not to 
overlap (Freeman,  1992). This suggests a natural way of defining them in terms of 
the patterning of overlap among cliques. Individuals who are members  of overlap- 
ping cliques can be defined as members  of a common group, and individuals who 
are members  of cliques that are distinctly separated can be defined as members  of 
different groups. Such a definition of groups is based on establishing an external 
boundary that separates them from one another. 

Let C = {c i, ci . . . .  } be the collection of cliques. In the lattice diagram cliques 
are shown across the top of the picture, directly descended from the universal 
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upper bound. I will define overlap o among the cliques as a binary relation in 
C × C that meets three conditions: 

(1) (c i, ci) ~ o ,  

(2) ci n cj :~ O :::~ ( Ci, Cj) GO.  

(3) (ci, ck) c o  cj) c o = ( c i ,  s o .  

Every clique overlaps with itself. Two cliques that share one or more common 
members overlap. And whenever a clique overlaps with another and that other 
overlaps with a third, the first and the third are viewed as overlapping. 

Defined in this way, overlap is reflexive, symmetric and transitive; it is an 
equivalence relation. Thus, the relation o partitions the set of cliques C, into 
subsets C', C" , . . .  Each of the cliques in any of these subsets overlaps with at least 
one other clique in that subset, and no two cliques from different subsets overlap 
at all. 

This suggests a natural way to define a bounded group, F. If A' is the union of 
all members of a set of overlapping cliques, C'. Then, 

r (c ' )  =A'. 

A bounded group, then, is simply the union of individuals who are members of 
some maximal set of overlapping cliques. Since the cliques have been partitioned 
into non-overlapping sets on the basis of their membership, the individual mem- 
bers associated with these sets are partitioned also. 

It is easy to see the bounded groups in the line diagram of a Galois lattice. As I 
indicated above, the cliques in a line diagram are all lined up at the second level of 
the lattice. Two cliques that overlap will be linked by descending lines that 
converge at some labeled point lower in the lattice. And two cliques that do not 
overlap will be linked only at the unlabeled universal lower bound. Indeed, if the 
universal lower bound is labeled, one or more individuals must be members of all 
the cliques in C and A, therefore, must be a single bounded group. 

Clique 1 and clique 2 in Fig. 2, for example, share members W2, W1, W3 and 
W4. Cliques 1 and 3 share W1, W2 and W3 and cliques 2 and 3 share S1, W1, W3 
and W4. Similarly, cliques 4 and 5 have members W7, W8 and W9 in common. But 
cliques 1 and 5, 2 and 5, 3 and 5, 1 and 4, 2 and 4, and 3 and 4 have no common 
members; they are distinct and non-overlapping. In Fig. 2, then, cliques 1, 2 and 3 
overlap and form a single bounded group containing W1, W2, W3, W4, WS, S1 and 
I1. Similarly, cliques 4 and 5 overlap and form another bounded group containing 
W6, W7, W8, W9 and $4. 

The first of these groups corresponds almost exactly to Roethlisberger and 
Dixon's Group A. In their original report, Roethlisberger and Dixon specified the 
membership of Group A as W1, W2, W3, W4, S1 and I1. W5 they described as an 
isolate. But the present results suggest that W5 should have been included in their 
Group A. 
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The second group uncovered here is exactly Roethlisberger and Dixon's Group 
B. Overall, then, the patterning of overlap among these cliques reveals a group 
structure that is strikingly similar to that described in the original report. 

This lattice representat ion also suggests a natural way to define the internal 
structure of bounded groups. Intuitively, each individual has a position in a group, 
either at the core, in the periphery, or somewhere in between. What  we need is a 
way of specifying individual positions in a lattice diagram. 

Consider a lattice that has been parti t ioned into groups. Each group defines a 
sublattice consisting of the universal upper  bound, the collection of overlapping 
cliques that make up the group, all of the elements descending from those cliques 
and the universal lower bound. 

Except for the universal upper  and lower bounds, each element in the group 
sublattice is linked to one or more others that fall above it by ascending lines and 
one or more others that fall below it by descending lines. The universal upper  
bound is, of course, connected to other elements only by descending lines, and the 
universal lower bound is connected only by ascending lines. 

Now a chain is a sequence made up entirely of ascending lines or entirely of 
descending lines leading from one element to another. The length of that chain is 
the number  of lines it contains. 

An individual may, of course, be associated with several elements in the lattice, 
but for the analysis of people 's  pos i t ions- -as  in reduced label ing--we associate 
each individual only with the lowest element at which he or she appears. 

Now consider the lengths the chains ascending from the universal lower bound 
to some individual in the lattice; this is the height of that individual. Alternatively, 
we can consider the lengths of the chains descending from the universal upper  
bound to an individual; call this the depth of that individual. For the moment ,  we 
will restrict our attention to those clique lattices where the height of an individual 
is the same along every ascending chain and that individual's depth is the same 
along every descending chain. 

Height  and depth, defined in this way, provide intuitively appealing as indexes 
of an individual's position in a group. An individual who first appears  near  the 
bot tom of the l a t t i ce - -one  who is directly connected to the universal lower bound 
- - i s  deeply embedded in that group. Such an individual may be involved in several 
cliques, but his or her membership  in any clique is never dependent  on the 
membership  of any other individual. W1, W3 and W4 in Fig. 2, for example, are all 
at height = 1. They are members  of all three cliques that can be reached by chains 
ascending from them. S1 and W2, however, first appear  above W1, W3 and W4 at 
a height of 2. S1 and W2, therefore, are members  of cliques only when W1, W3 
and W4 are also members.  In an important sense, then, Wl ,  W3 and W4 are at the 
core of the group and S1 and W2 are peripheral to them. 

W5 and I1 are, of course, even more peripheral in that same sense. W5 is 
involved only if W1, W3, W4 and S1 are all involved, and I1 is involved only if W1, 
W3, W4 and W2 are involved. Among the members  of the first group, then, Wl ,  
W3 and W4 are at a height of 1 and are at the core, S1 and W2 are at a height of 2 
and are somewhat peripheral,  and W5 and 11 are only at a height of 3 and are still 
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more peripheral. A similar t reatment  of the second group shows that W7, W8 and 
W9 at a height of 1 are core members,  while W6 and $4 at a height of 2 are 
relatively peripheral.  

These results are consistent with the descriptions reported by Roethlisberger 
and Dixon. They (1939, p. 464) described W3 as a leader of Group A. And they 
(p. 510) suggested that W2, though an affiliate of group A, was not a stable 
member  of the group. Similarly, they (p. 509) reported that W6 participated in 
Group B but was not entirely accepted by its members.  The present analysis yields 
more detail, but it does not contradict the ethnographic report. 

Thus, at least in this case, examining the pat tern of overlap among cliques 
reveals bounded groups that are internally differentiated. There  are, however, 
circumstances in which the boundaries between the groups are less clear cut. In 
the next section we will take up another  example and see how lattices of cliques 
can be used to find groups even when the boundaries are not clear. 

6. Finding groups when bridges are present 

Although the intuitive conception of groups stresses the idea that they do not 
overlap, it is generally recognized that in some cases groups may do just that. 
Granovet ter  (1973), in particular, argued for the existence of bridging ties that cut 
across group boundaries and link members  of different groups. In this section, I 
will introduce a procedure that permits groups to be specified even when bridging 
ties are present. To do so, I will define the notion of bridging cliques. 

A group, as defined above, is a collection of individuals who are tied together by 
their participation in a set of overlapping cliques. Such a group is bounded and all 
of the members  of each of the cliques that define it are members  of that group. 
But if two or more groups are linked by bridging ties, then there must be at least 
one clique that contains individuals who are members  of different groups. The 
problem of finding bridging ties, then, is the same as the problem of finding 
bridging cliques. 

What  we need is a way to distinguish between the cliques that link the members  
of a single group to one another and those that serve as bridges and link members  
of different groups. To make such a distinction, we will have to look again at the 
internal structure of groups. 

Intuition suggests that a person who was a member  of a single group would have 
a clear structural position, or level, in that g r o u p - - a t  the core, in the periphery, or 
somewhere in between. But if a person bridged two groups, he or she would be 
unlikely to find a position at exactly the same level in each of those groups. 

This suggests that a clique that simply linked the members  of a single group 
would assign individuals unambiguous positions in that clique. But a clique that 
bridged between two groups might include at least one individual whose position 
was not clearly defined. 

Consider a sublattice made up of some clique c i and all the elements descend- 
ing from it. Now assume that the lattice N 5 shown in Fig. 3 is a such a clique-based 
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x 

Fig. 3. The lattice N5. 
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sublattice in which the labeled points are individuals. If we evaluate this sublattice 
on the basis of our intuitions about individual positions, we face an ambiguity. 
Individuals x and y are both connected directly to the universal lower bound at 
the bot tom (height = 1), so we must define them as core members.  But, at the 
same time, individuals z and y are both close (depth = 1) to the clique at the top, 
so we must think of them as relatively peripheral  members  of this clique. This 
presents no problem so far as x and z are concerned; z is peripheral  and x is at 
the core. But individual y is both peripheral  and at the core; that individual is in 
an ambiguous position. 

Let Z = {z i} be the collection of chains connecting the universal lower bound to 
the clique in a clique sublattice. Associated with each chain z i will be a length l r 
In Fig. 3, for example, there are two such chains. The one on the right has a length 
of 2 while the one on the left has a length of 3. The ambiguity described above is a 
direct consequence of this variability in chain length. Indeed, whenever the chains 
connecting the universal lower bound to some clique are not homogeneous in 
length, that clique contains some individual who is in an ambiguous position. 

A bridging clique, then, may be defined as one in which 

3 ( Z i ,  Zj)  I li --/= l#, 

where there is variability in the lengths of the chains connecting the clique with the 
universal lower bound. 

When we find such bridging cliques in the lattice we can delete them. Since they 
are bridging, the result when they are deleted will be that some single groups will 
be decomposed into two or more groups that were previously linked by the bridges. 
Each of these new groups will be bounded. 

We can see how this works by considering some data collected by Sampson 
(1968) in a monastery. Sampson collected these data during a period in which 
there was considerable conflict over the ecumenicism of Vatican II. This conflict 
was reflected in relationships among the novices in this monastery. 

Sampson focused his attention on 18 novices. Seven of these novices (4, 5, 6, 8, 
9, 10 and 11) who had arrived earlier, he defined as a group and labeled the 
"Loyal  Opposition". Of  these, he characterized 4, 6, 9 and 11 as leaders. The later 
arrivals, he divided into two groups. Seven (1, 2, 7, 12, 14, 15 and 16) were called 
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Table 3 
Sampson's 
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(1968) data on reported liking (last ranking) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 
2 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 
3 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 
4 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 
5 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 
6 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 
7 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 
8 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 
9 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 

10 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 
11 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 
12 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
13 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 
14 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 
15 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 
16 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 
17 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
18 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

"Young Turks" and their leaders were 1, 2 and possibly 12 (Arabie and Carroll, 
1989, p. 380). And three (3, 17 and 18) were characterized as "Outcasts". 

But Sampson went on to describe bridges between these groups. One novice, 13, 
was not clearly assignable to any group; he was a "Waverer"  who drifted between 
and linked the Loyal Opposition and the Outcasts. Moreover, the Outcasts 
apparently were linked to the Young Turks. As Sampson (1968, p. 372) described 
them, members of these two groups were bridged by "sympathetic ties". 

Sampson collected systematic data by asking each of the novices to name three 
others with whom they had various kinds of relationships. Specifically they were 
asked to rank their top three choices in terms of liking, esteem, influence, praise, 
disliking, negative esteem, negative influence and blame. 

The vagueness and subjectivity of these questions, along with the restriction to 
three choices, are all unfortunate. Nevertheless, the data on who liked whom seem 
comparatively straightforward, and they were used for the present analysis. They 
are shown in Table 3. For this analysis, the rankings were collapsed by assigning 1 
when any individual reported liking another at all, and 0 otherwise. 

The resulting matrix is quite sparse, but more important in the present context, 
it is not symmetrical. It was symmetrized by taking the union, so that any pair of 
novices was linked if either or both of them reported liking the other. 

Seventeen cliques were extracted and they produced a Galois lattice containing 
45 elements. It is shown in Fig. 4. 

The lattice in Fig. 4 shows that all these novices are all linked into a single 
bounded group. This is consistent with Sampson's report  that the Outcasts and the 
Young Turks were linked by sympathetic ties and that novice 13 linked the Loyal 
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4 11 

4 

Fig. 4. Oalois lattice of the Sampson (1968) data on friendship. 

Opposi t ion  to the Outcasts.  The  problem, then, is to uncover  the three groups 
described by Sampson in this lattice. 

The  lattice of  Fig. 4 contains three bridging cliques as they were defined above. 
They  involve six lines that  represent  bridging ties in the lattice. The  new structure,  

IX X X I \ I  /' !11;~.I \~ II\ I\ I\I \I ,' ~I X~l ! \ I\I\IAI I\I\II\/\I 

£ V . k / ~  ~L,,' ~_i.~ I ~ , o ~ k ~ ~  '~ 
V i" /'T,,'3 /'f/ ? F ~I I / / ~ ~ \  I 

Fig. 5. The lattice of Fig. 4 showing the bridging cliques. 
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with bridging cliques indicated by hollow circles and bridging ties by dashed lines, 
is shown in Fig. 5. 

According to Sampson, the Young Turks were novices 1, 2, 7, 12, 14, 15 and 16, 
the group on the left in the figure. The Outcasts were 3, 17 and 18, the next group. 
And the Loyal Opposition were 4, 5, 6, 8, 9, 10 and 11, the group on the right. 
Moreover, the Waverer, 13, who was described as switching back and forth 
between the Loyal Opposition and the Outcasts is the individual who must be 
dropped because he serves only as a bridge in this lattice. Overall, then, the results 
of this analysis of cliques yield exactly the group structure described by Sampson. 

At the level of core and periphery the correspondence is close, but not exact. 
According to Sampson the leaders of the Young Turks were 1, 2 and 12. The 
present analysis determined that the core members were 2, 12 and 15. Sampson 
listed the leaders of the Loyal Opposition as 4, 6, 8 and 11. Here the core was 4, 5, 
6, 8 and 9. These differ, but the agreement is still considerable. 

We see, then, that bounded groups can be uncovered even in the presence of 
bridging ties. Thus, the Galois lattice provides a general way to use cliques to 
reveal groups. And the groups that are revealed embody a form that is consistent 
with traditional intuitive ideas about group structure. Moreover, the groups that 
turn up with this approach are virtually identical to those described by ethnogra- 
phers. The clique formalism, it seems, produces exactly the desired result when it 
is used in conjunction with a Galois lattice. 

7. Summary and conclusions 

This paper has addressed an old problem, the difficulty of specifying exactly the 
conditions under which a set of individuals may be considered to be a social group. 
From the earliest days, sociologists have had an intuitive conception of groups. 
Moreover, they have had very little trouble in using their intuition to designate 
groups and assign individuals to them. But attempts to set down exact conditions 
under which a collection of individuals is or is not a group have failed. The notion 
of 'group' has remained an elusive concept in the field. 

Here I have taken one formalism, cliques, and tied it to another, Galois lattices. 
Linking these two models suggested a way to define social groups based on the 
patterning of overlap among cliques. In addition, the structure of containment 
displayed in the lattice suggested a way to define people's positions in groups. 
These definitions were designed to embody traditional intuitive ideas about 
groups, and they turn out to uncover groups and positions that are consistent with 
ethnographic descriptions. Perhaps the most remarkable result of the present 
exercise is that the analyses described here are based on only the most minimal 
binary records of who is linked to whom. 
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