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Abstract
This paper describes an experiment to use the Spin model
checking system to support automated verification of time
partitioning in the Honeywell DEOS real-time scheduling
kernel. The goal of the experiment was to investigate
whether model checking could be used to find a subtle im-
plementation error that was originally discovered and fixed
during the standard formal review process. To conduct the
experiment, a core slice of the DEOS scheduling kernel was
first translated without abstraction from C++ into Promela
(the input language for Spin). We constructed an abstract
“test-driver” environment and carefully introduced several
abstractions into the system to support verification. Several
experiments were run to attempt to verify that the system
implementation adhered to the critical time partitioning re-
quirements. During these experiments, the known error was
rediscovered in the time partitioning implementation. We
believe this case study provides several insights into how to
develop cost-effective methods and tools to support the soft-
ware design and implementation review process.

1 INTRODUCTION
The Honeywell Dynamic Enforcement Operating System
(DEOS) is a real-time operating system for integrated mod-
ular avionics systems. Due to the inherent complexity and
safety critical nature of the system, the developers under-
stood from the beginning of the DEOS development that
testing was going to be inadequate for ensuring the correct-
ness of the scheduler. Currently, the primary means to ensure
FAA software certification is to develop and test the software
in accordance with the guidelines in RTCA document DO-
178B [19] which uses structural coverage as a measure of
testing adequacy. However, the structural coverage require-
ments specified in DO-178B are expensive and ineffective in
identifying certain classes of errors, especially those involv-
ing timing or race conditions.

To verify the DEOS scheduler, Honeywell employed a col-
lection of techniques including the specification of semi-
formal pre-conditions, post-conditions and invariants on
C++ functions, data structures, and abstract system states.
The formal software development review included checking
manually that the pre-conditions, post-conditions and invari-
ants were satisfied by the implementation. During several of

these reviews, very subtle errors were detected that the devel-
opers believed would have been impossible to detect without
these techniques. The developers are confident that intro-
duction of these techniques greatly increased the safety of
the DEOS implementation and they became interested in in-
creasing the formality, reliability and efficiency of the review
process by using automation.

This paper describes a collaboration between NASA Ames
and Honeywell to investigate techniques that might enable
automated tools to be employed as part of the software de-
velopment process. To determine the efficacy of automated
techniques, a “slice” of the scheduler code including one of
the most subtle errors detected during the DEOS develop-
ment was selected by Honeywell and delivered to NASA for
analysis. The slice contained 10 classes and over 1000 lines
of actual code, without comments. A one-day overview of
DEOS was made to the NASA and it was indicated that the
given system failed to maintain the time partitioning in the
presence of dynamic threads. However, this did not provide
insight into where the fault might be in the code.

The specific technique investigated wasmodel checking, a
formal verification technique for finite-state concurrent sys-
tems [4, 6, 14, 18]. Model checking shares some character-
istics with testing in the sense that it is highly automated, but
unlike testing, it examines all possible behaviors of a system
in search of errors. Model checking is specifically designed
to find errors in concurrent software that are difficult to find
using traditional testing, such as race conditions and dead-
locks. This report details the process and results of applying
model checking to the DEOS scheduler slice.

There are several hurdles that must be overcome to make
model-checking practical for program verification. First, any
inputs to the model checker must have a direct and eas-
ily maintainable correspondence with standard software de-
velopment artifacts. Second, an environment must be con-
structed to drive the program. Finally, the size of the model’s
state space must be reduced, usually via abstraction, to per-
mit exhaustive verification within practical memory limita-
tions.

Common practice in model checking is to hand translate the
original software to a form that can be handled by a model
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checker. This translation usually incorporates a significant
amount of manual abstraction to reduce the size and com-
plexity of the software. To more closely integrate model
checking with the software development process, we pro-
pose to have model checkers take program source code as in-
put, removing the time/effort spent on translation [13]. This
also increases the level of assurance in the translation, which
is a weak link in the verification process. The first step to-
ward automated translation is the development of a system-
atic translation process. Section 3 describes a systematic
source level translation of part of the DEOS operating system
kernel into Promela, the input language for the Spin model
checker.

To model check (or test) a system, an environment must
be constructed that drives the program [10]. In the case of
DEOS, it was necessary to construct models of the possible
behaviors of user threads, the system clock and the system
timer. Section 4 describes the environment that was con-
structed for verification of the kernel. To reduce the size of
the state space, the environment model used for verification
contains a significant amount of abstraction with respect to
the modeling of time.

A fundamental barrier for model checking is that the size of
the state space that needs to be searched during verification
grows exponentially with the number of processes in the sys-
tem. In practice, this means that only limited coverage can
be achieved when checking for errors. Section 5 shows that,
even in cases where verification cannot be done exhaustively,
useful analysis can be done on the system.

One approach to managing state space explosion is abstrac-
tion. It is imperative to understand how abstractions effect
the validity of the property under investigation, so abstrac-
tion should be applied in a controlled framework [5]. In
this experiment, we separated translation from abstraction
as much as possible, to provide a cleaner framework for ex-
perimenting with different abstractions. We perform abstrac-
tion on the program (as opposed to the model) and then per-
form translation. This approach allows information about
the program and program abstraction and specialization tech-
niques [11, 12, 20] to be used to support the method. We
think this approach is more likely to be usable by program-
mers who are familiar with the application being verified but
unfamiliar with formal specification languages. Section 6
describes our application of predicate abstraction [11] to al-
low exhaustive verification of the DEOS kernel. We believe
that our abstractions of timer and counter variables in DEOS
may be applicable in other real-time software.

2 OVERVIEW OF DEOS
DEOS is a portable microkernel-based real-time operating
system used in Honeywell’s Primus Epic avionics product
line. DEOS supports flexible, integrated modular avionics
applications by providing both space partitioning at the pro-
cess level, and time partitioning at the thread level. Space

partitioning ensures that no process can modify the memory
of another process without authorization, while time parti-
tioning ensures that a thread’s access to its CPU time budget
cannot be impaired by the actions of any other thread.

The combination of space and time partitioning makes it pos-
sible for applications of different criticalities to run on the
same platform at the same time, while ensuring that low-
criticality applications do not interfere with the operation
of high-criticality applications. This noninterference guar-
antee reduces system verification and maintenance costs by
enabling a single application to be changed and re-verified
without re-verifying all of the other applications in the sys-
tem. DEOS itself is certified to DO-178B Level A, the high-
est possible level of safety-critical certification.

The DEOS scheduler enforces time partitioning using a Rate
Monotonic Analysis (RMA) scheduling policy. Figure 1
shows an example DEOS scheduling timeline. In the ex-
ample, the system contains a main thread, two user threads
and the special idle thread which runs when no other threads
are schedulable. The main thread runs in the fastest period,
and therefore also at the highest priority, with a budget of 5
out of 20 time units. The user threads run in a period 3 times
as long at the main thread, each with a budget of 20/60 time
units. In the example, all of the threads are scheduled and ap-
propriately allocated their requested budget within their re-
spective periods. Threads are interrupted when they use all
of their budget (timer interrupt) or when a thread of higher
priority becomes schedulable (preemption). The idle thread
runs at the end of the sequence to take up the slack time in
the system that is not requested by any thread.

Many real-time operating systems are at least partially stat-
ically scheduled, which makes it relatively easy to analyze
the possible execution sequences in the system. DEOS, how-
ever, supports fully dynamic creation and deletion of threads
and processes at runtime. When threads are created within
a process, they receive some budget from the main thread
for that process. When they are deleted, the budget is re-
turned to the main thread [2]. DEOS also provides a rich
set of thread synchronization and inter-process communica-
tion primitives. As a result of this complexity, the number
of possible interleavings of program execution in DEOS is
enormous, and calculations such as schedulability analyses
must often be made at runtime. This makes systematic veri-
fication of time partitioning a difficult task.

3 DEOS TO PROMELA TRANSLATION
The DEOS Kernel is written in an object-oriented style us-
ing C++. In contrast, Promela is a process based impera-
tive language which uses shared memory and message pass-
ing for communication. The fundamental translation prob-
lem we had to overcome was modeling objects within the
framework of processes. The most intuitive approach is to
model classes as processes: each object is an instantiation of
the corresponding process and method calls are synchronous
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Figure 1: Thread Scheduling in DEOS

messages passed between processes. This is simple and ele-
gant, but is incorrect with respect to the “semantics” of C++
(or JAVA) where more than one thread can call a method of a
shared object simultaneously. There is also a state explosion
problem with this approach because it introduces an interpro-
cess communication for each method call, which are treated
as a points of potential interleaving by Spin.

These problems eventually led us to develop an approach
which involved extending Spin [21]. However, we per-
formed the majority of the verification activity using a trans-
lation that stored object data in arrays of records. We believe
that this translation is of more general interest, so we fo-
cus on it here. A more detailed comparison of the different
translation approaches is described in an extended technical
report [16].

The translation we used is based on modeling classes as
records and using arrays of these records to store object
data1. Using this method, the index to an entry in the array is
a reference to an object of the class. An object reference (or
pointer) is therefore an integer value, and are declared to be
of typebyte2. The translation requires all object variables to
be references because it is not possible to get the index (ad-
dress) of an object. The number of instances of each class
must be determined statically to provide array bounds. We
also use the array bound as a NULL pointer, which provides
an array bounds error in the case of a null pointer derefer-
ence. Anystatic data members are declared as global
variables.

The methods of a class are modeled by macro expansion with
the inline construct of Promela, because Promela does not
support functions. This provided several challenges. Inline
commands do not return values, so it is necessary to pass in
the variable that would normally be assigned the return value
and do the assignment within the inline. It was also neces-
sary to pass in the index to reference the object data. Promela
does not support recursion, because inlines are macro ex-

1A similar technique was used by Havelund and Pressburger for
Java [13].

2In general, we translate every integer type used within DEOS to the
byte type of Promela that uses only 8 bits. This is one of the few abstractions
that must occur in the translation.

panded. We worked around this problem by expanding the
recursion by hand. This worked in the case of DEOS be-
cause the ’recursion’ was only used to call the same method
in a different object in a non-cyclic pattern.

Using this translation scheme was generally straightfor-
ward and did not require understanding the original code.
However, we did encounter a problem with inheritance be-
cause there was no means to determine the class of an
object. For example, suppose class B inherits methods
and data from a superclass A. If an object is referenced
by a pointer of type A, it may be an A or a B, so we
need to keep track of the class of these objects to deter-
mine which array contains the object’s data. In DEOS,
the problem was in the classes that implement the dou-
bly link lists used throughout the system. There is a su-
per class calledDoubleLinkListNode with previous
andnext pointers, and two subclasses:threadList that
represents a list andthreadListNode that represents the
container nodes that point to the actual objects in the list.
Initially it appeared that the two types of nodes were distin-
guishable. However, we failed to consider the dynamic be-
havior of the lists, where it was no longer possible to know
whether anext or previous pointer of a node points to a
threadList or athreadListNode .

Our first approach to solving this problem was to extend
references to objects to also contain aClass field. How-
ever, this resulted in code blowup. For example, within
mergeList the statement

previous->next = otherList->next

translates to 32 lines of Promela to handle all of the poten-
tial combinations of object types. We also found the code
produced by this translation to be difficult to read.

In our second approach, we noticed we could flatten the
inheritance hierarchy in the case ofthreadlist and
threadListNode : i.e. we made the two classes one by
adding the data pointer to thethreadList class and re-
moving most references to thethreadListNode class3.

3The constructor needed to be retained since threadLists and thread-
ListNodes are initialized differently.



This removed the ambiguity as to where the object’s data
was stored, and the type correctness of the C++ program as-
sured that athreadListNode method could not be called
by athreadList .

Both alternatives suffer from using excess space. With flat-
tening, there are unused fields in objects (corresponding to
member data of other types) that increase the size of the state
vector. Using class fields requires additional information
in the state vector. However, the class fields approach also
requires additional code to determine the appropriate array
to access, which increases the state space by adding control
state in the program. In the DEOS kernel, the amount of ad-
ditional code required caused the state space to be increased
significantly, leading us to prefer the flattening solution.

4 ENVIRONMENT MODELING
The most difficult task in the experiment was constructing
an adequate environment for DEOS to execute in. The ker-
nel must receive calls from the threads that run on the ker-
nel as well as system ticks and timer interrupts from the
hardware. The environment turned out to be of crucial im-
portance for achieving meaningful results during the model
checking. Specifically, the modeling of time provided chal-
lenges in trading off result validity versus state space size.

Figure 2 illustrates the Promela environment we constructed
to model check the DEOS kernel. There is a box for each
concurrently executing process: the kernel, the idle thread,
the main thread,n user threads to be scheduled by DEOS,
the system tick generator and the timer process. The dot-
ted box around the last two indicate that we eventually com-
bined the system tick generator and the timer into one pro-
cess. Communication between the processes is achieved us-
ing synchronous message passing, which is illustrated by the
labeled arrows in the figure, as well as the Promela code of
the kernel. Dotted arrows indicate values being returned to
the calling process. In the following sections, we discuss the
different components of the DEOS kernel and its environ-
ment in detail.

The DEOS Kernel
To allow the kernel code to interact with its environment, we
built a wrapper to map messages from the environment to
methods in the translated code. The code inside the DEOS
kernel box in Figure 2 is nearly the precise Promela wrapper
executed. The code in uppercase indicates code added for
environment communication.STARTA THREADstarts the
thread currently considered running by the scheduler. The
exact code istoThread!resume(Scheduler_itsRunningThread) .
STOPA THREADstops a thread that has run for longer
than its budget will allow, corresponding to the mes-
sagetoThread!stop(id) . Note thattoThread is a chan-
nel on which all messages from the Kernel is sent to
all possible threads, hence theid needs to be sent
along so that the appropriate thread receives the message.
STARTTHE TIMERsends a start message to the timer with

the remaining budget of a starting thread using the message
toTimer!start(Timer_time) .

The three messages that the kernel can receive from a thread,
create , delete and finishedForPeriod , corre-
spond directly to DEOS API calls. The other two messages
that the kernel can receive, the system tick interrupt and the
timer interrupt, correspond to the interrupt handler methods
of the Scheduler class. The figure does not contain the
code forgetTimeRemaining and its corresponding re-
turn message, because they are called by the kernel from
within several methods.

Within the DEOS Kernel, the first code to execute is
coldStartKernel() , which initializes the kernel data
structures. Then, the process for the idle thread is started
and the timer is started with the idle thread’s budget. In our
model, all threads (except idle) are created dynamically with
an API call tocreateThread . The main thread must be
created first because, in DEOS, all threads are allocated time
from the main thread in a process’ budget.

The rest of the code for the DEOS kernel follows the typ-
ical structure of a reactive system: it sits in a loop and re-
acts to messages it receives from its environment. When
thecreate message is received, thecreateThread API
call is made which returns theid of a thread (the index of
theThread object that is created for the thread). The id is
used by the thread process to distinguish messages sent and
received by it. When a user thread is created its budget is
taken from that of the main thread.

When a thread decides to terminate it sends thedelete
message to the kernel. In DEOS, only the currently run-
ning thread can delete itself, so a new thread must be sched-
uled as part of thedeleteThread call. A thread can
yield the CPU before its budget has run out by sending
the finishedForPeriod message. The kernel then per-
forms thewaitUntilNextPeriod call for the thread,
which also involves scheduling a new thread to execute.

Whenever asystemTickInterrupt message is re-
ceived, a thread of higher priority than the currently exe-
cuting thread may become schedulable. Therefore, DEOS
records the id of the currently running thread (old ) and
checks whether a new thread has been scheduled during the
call to handleSystemTickInterrupt . If this is the
case, astop message is sent to theold thread and start the
newly scheduled thread and start the timer. Note that if a
thread was preempted it is important to find out how much
time is still remaining from its budget, since it might get
another chance within the current period. This is achieved
by sending agetTimeRemaining message to the timer,
which returns the value in a reply message.

A timerInterrupt message indicates that a thread has
exceeded its budget and must be stopped immediately. The
call to handleTimerInterrupt stops a thread and
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fi;
START_THE_TIMER();

od;
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Figure 2: DEOS Kernel and its Environment

schedules a new one. However, when the idle thread is
the only thread in the system then it cannot be stopped
(since there will be nothing else to run), so the timer is only
restarted in this case.

Threads
We distinguish three types of threads: the idle thread, the
main thread and user threads. TheUser threads have most
functionality: they can be stopped, yield the CPU and de-
cide to terminate. The Promela code for the user threads
is shown in Figure 3. A non-deterministic if statement is
used to provide an environment where all possible thread be-
haviors are examined. Only theUserThread can make
create calls, because the other threads are created during
initialization. The idle thread can only receive a message
to stop while the main thread can also decide to yield the
CPU. We use synchronization to ensure that when the ker-
nel sends aresume(id) message only the thread with the
corresponding id will receive it.

proctype UserThread(chan fromScheduler, toScheduler;
byte myBudget, periodIndex)

{
byte id;

byte threadState = threadStatusNotCreated;
toScheduler!create(myBudget,periodIndex);
fromScheduler?getId(id);
threadState = threadStatusDormant;

do
::fromScheduler?resume(eval(id)) ->

threadState = threadStatusActive;
if
::fromScheduler?stop(eval(id));
::toScheduler!finishedforperiod,0,0;
::toScheduler!delete,id,0 -> goto terminate;
fi;
threadState = threadStatusDormant;

od;
terminate: skip;
}

Figure 3: The DEOS User Thread Model.



Interrupts
Modeling the generation of interrupts was the most difficult
part of constructing the environment for DEOS. Promela and
Spin do not handle real-time, so the passing of time had to
be modeled explicitly. When time must be modeled without
tool or language support, the challenge is to determine the
level of abstraction at which real-time is modeled.

We started with a simplistic view of both the system tick
and the timer interrupts, by creating two processes that could
generate interrupts at any time. To determine how long a
thread had executed, we did not maintain a timer, but simply
picked a nondeterministic value between0 and the thread’s
available budget. While this environment was suitable for
simulation, it did not take long to realize it was not suitable
for verification; When checking properties, we constantly
found counter-examples due to some “impossible” behavior
by the interrupts. For example, system tick interrupts would
occur several times, each indicating that 20 time units had
passed, but the timer, set for 10 time units, would never go
off. This lack of coordination between the time-related in-
terrupts made it impossible to verify the time partitioning
features of the kernel.

To allow the necessary level of coordination, we combined
the SystemTickGenerator and Timer into one pro-
cess. The timer model keeps track of the time that has been
used in a period and makes sure that a system tick interrupt
only occurs when the appropriate amount of time has been
used (and vice versa).

To limit the number of potential execution paths and avoid
state space explosion, we limited the choices as to the
amount of time that a thread could execute. In cases where
the interrupts do not constrain the amount of time that has
passed during thread execution, the timernondeterministi-
cally chooses how much time a thread uses. It chooses from
three possibilities: either it used no time, or it used all of its
time (or all of the time left in the period, if that is smaller), or
it used half of the time between the current time and the end
of the period. We picked these cases based on intuition sim-
ilar to that used in selecting boundary cases during testing,
with the middle value included for good measure. We con-
ducted several experiments that varied this abstraction and
found that the middle value increased the state space by ap-
proximately twofold, but did not effect the validity of the
verification results.

5 VERIFICATION
Verification in Spin involves systematic execution of all pos-
sible process interleavings in a program. It supports assertion
violation detection, deadlock detection and model checking
of linear temporal logic (LTL) formulae. The main aspect
of DEOS that we were interested in verifying was the tem-
poral partitioning property: that each thread in the kernel is
guaranteed to have access to its complete CPU budget dur-
ing each scheduling period. In order to verify this desired

property is an actual property of the program, it is necessary
to describe the property in terms of the program. For some
properties this is non-trivial, because the parts of the pro-
gram that impact the property may be numerous and difficult
to identify. Therefore, specifying these properties can be dif-
ficult for people other than the original developers, such as
code reviewers or independent verification teams.

We tried two approaches to analyzing the time partitioning
properties in the DEOS kernel. The first was to place asser-
tions in the code to identify potential errors. If the model
checker finds an assertion violation, the reported error trace
can be simulated and it can be determined whether or not the
trace is really an error. If it is not an error (i.e. the assertion
is too strong) then the assertion can be altered. Addition-
ally, if exhaustive verification is possible, the absence of the
assertion violation can be verified with respect to some envi-
ronment.

A second approach to verifying time partitioning in the ker-
nel is through the use of liveness properties. A liveness
property states that some event (or sequence of events) will
eventuallyoccur in the system. Within Spin, verification of
liveness properties is supported using linear temporal logic
(LTL). To state a liveness property in terms of program
events, labels are placed into the code and referred to from
within an LTL property specification.

Assertion Verification: Remaining Budget
In the first verification experiment, we conjectured that any
value assigned to a thread’s remaining budget should be
smaller than the total budget for the thread; otherwise the
thread would have access to use too much CPU time. There-
fore, we placed an assertion into the code where this value is
assigned, in thesetRemainingBudgetInUsec method
of theBudget class.

We attempted to verify this assertion with the simplest sys-
tem configuration, one with only one user thread in addition
to the main thread and without dynamic thread creation and
deletion. With this configuration, Spin was able to exhaus-
tively verify that the assertion is not violated. This verifi-
cation searched 8.8 million states with a maximum depth of
199628, requiring 322MB of memory and just over 10 min-
utes on a Sparc Ultra60.

With dynamic thread creation turned on, Spin found a viola-
tion of the assertion in less than a second. It reports a sce-
nario where the main thread (Thread 1) begins executing and
the timer is set to 20. Then, a user thread gets created, chang-
ing the main thread’s budget from 20 to 13. Next, the main
thread yields by callingfinishedForPeriod . The ker-
nel reads the remaining time from the timer (20) and sets this
as the main thread’s remaining budget. The next step is the
assertion, which is violated because the remaining time (20)
is more than the main thread’s budget (13). This specific er-
ror trace is slightly suspect, because the main thread did not
use any time. However, any amount of time usage less than



7 would lead to the same assertion violation. Therefore, this
execution trace seems to be a valid example of a potential
system execution.

The real question is whether this is a valid example of the
intendedsystem execution. It was not obvious (to the NASA
team doing the verification) whether the violation of this as-
sertion would necessarily lead to a violation of time parti-
tioning. If both the main thread and the user thread attempt
to execute in the period where the user thread is created, then
the CPU budgeting allocation will total over 100%. How-
ever, this cannot happen because of a design constraint that
the main thread must have the shortest period of all threads.
When the user thread is created and becomes ready, it sits
waiting for the start of its next period. The main thread, hav-
ing a equal or shorter period, will have reached the end of its
period by this time, and its remaining budget will get reset to
the reduced value (13). Therefore, both threads cannot exe-
cute in the current period, and the violation of this assertion
is safe with respect to time partitioning.

The interesting outcome of this part of the experiment is that
it indicates precisely how maintenance of time partitioning
by the kernel depends on the main thread running in the
shortest period of all threads in a process. To verify that
this dependency exists, we changed the code so that the user
thread that gets created is in a shorter period than the main
thread, and observed that time partitioning was violated. To
do this, an assertion was placed in thestartTimer method
of Budget to detect when a thread is started while its re-
maining budget is greater than its total budget. This assertion
was used to find situations where the remaining budgets of
schedulable threads were greater than 100% CPU utilization,
meaning that not every thread could run, and thus violating
time partitioning.

Liveness Properties: Idle Execution
If time partitioning is maintained in the system, then we be-
lieved that the following liveness property would hold: if
there is slack in the system (i.e. the main thread does not
have 100% CPU utilization) then the idle thread should run
during every longest period4.

To specify this property, labels were placed in the program
to identify when the idle thread starts running and where the
longest period begins and ends. The property is then speci-
fied as:

[]( beginperiod -> (!endperiod U idle))

This says it is always ([] ) the case that, when the longest
period begins, it will not end until (U) the idle thread runs.
That is, idle will always run between the begin and end of
the longest period.

4Note, this is a necessary condition of time partitioning, and is not suffi-
cient to guarantee time partitioning.
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Spin automatically generates a finite state automaton that
monitors the system for violations of the LTL property. Veri-
fication is done over the combination of the property automa-
ton and the system model. This causes a potential increase
of the state space by a factor of 4 in this example, because
the property monitor has 4 states. In practice, the increase is
approximately 2 fold, because not all of the states are reach-
able.

One pragmatic difficulty encountered with this verification
was that, in order to make the event labels globally visible,
it was necessary to remove a large number ofatomic con-
structs from the model5. This increases the number of pro-
cess interleavings that Spin must consider, making the veri-
fication less efficient.

Verification was run for several system configurations. With
2 user threads and dynamic thread creation and deletion en-
abled, Spin reported the error scenario partially shown in
Figure 4. In this configuration, the main thread runs in pe-
riod 0 with an initial budget of 19/20. Two user threads are
created to run in period 1 with budgets of 20/60. For each
user thread, 7/20 is taken from the main thread, leaving it
with a budget of 5/20. The total budget in this configuration
is 55/60, leaving 5 units for the idle thread to fill at the end
of period 1.

Figure 4 shows a scheduling sequence where user thread 1
deletes itself (before being interrupted) at the end of the first
period 0. At this point, its budget (20/60 or 7/20) is given
back to the main thread, giving it 12/20. The scheduling
then continues normally to the end of the period 1 boundary.
At this point, Spin signals an error because the idle thread
did not run between the two period one boundaries. Notice
that user thread 2 only ran for 16 (8+8) and not the 20 it re-
quested, so time partitioning was violated. The error stems
from the fact that when user thread 1 deleted itself, it imme-
diately returned its budget to the main thread. This leaves
the main thread with a remaining budget of 24 (12+12) and
user thread 2 with 20, with only 40 left in period 1. The re-
sult is that user thread 2 does not get all of the CPU time it
requested.

This bug was, in fact, the same bug that Honeywell had dis-

5The Promelaatomic construct is used to group statements together
to prevent interleaving. It was used to model DEOS critical sections where
interrupts are disabled



covered during code inspections. Therefore, it would seem
that model checking can provide a systematic and automated
method for discovering errors. However, it is unclear as to
how “lucky” we were in configuring a model that allowed
the bug to be discovered. In addition, with dynamic thread
creation and deletion enabled, the state space was too large
to be exhaustively verified. Therefore, at this point it was not
apparent that the model could be searched exhaustively to a
depth necessary to guarantee that the error was discovered.
In addition, after adding the fix to the code, we were not able
to perform exhaustive verification6. The following section
describes how abstraction was used to guarantee that the er-
ror would be discovered and to permit exhaustive verification
of the fix.

6 PROGRAM ABSTRACTION
During the initial process of verification, the state space of
the DEOS model was very large if dynamic thread creation
and deletion was enabled. Experiments using Spin in super-
trace mode suggested that the number of states in the system
was on the order of 20 million states, which was 2-4 times
too large to handle within the 512MB of available RAM.
Therefore, we needed a way to reduce the state space by this
small factor.

The first step in abstracting a program is to identify some part
of the program as a good target for abstraction. The second
step is to introduce the abstraction. We describe below how
we used information about the program to identify a part of
the program to be abstracted. We believe that the program
pattern that we applied abstraction to is widely used, and
therefore this abstraction may be useful in many other appli-
cations. We then introduce the abstraction usingpredicate
abstraction, a formal technique based on abstract interpreta-
tion.

In identifying part of the program to abstract, we were guided
by several experiments showing traces through the system
that were 2,000,000 steps long. Intuitively, this seemed too
large considering that the system’s behavior is cyclic in na-
ture: at the end of the longest scheduling period, the sys-
tem should return to a state where all threads are available
to be scheduled with all of their budget available. These
long traces indicated that some data was being carried over
these longest period boundaries. We were able to identify
this data by running a simulation and observing the Spin
data values panel; TheitsPeriodId data member for the
StartOfPeriodEvent class was operating as a counter,
incrementing every time the end of the corresponding pe-
riod was reached. In addition, theitsLastExecution
variable in the Thread class was also climbing, because it
is periodically assigned the value of theitsPeriodId
counter for theStartOfPeriodEvent corresponding to
the thread’s scheduling period.

6The fix involves keeping track of the budget of deleted threads and re-
turning them to the main thread at the end of the deleted thread’s period.

void StartOfPeriodEvent::pulseEvent() {
countDown = countDown - 1;
if (countDown == 0) {

itsPeriodId = itsPeriodId + 1;
...

}

void Thread::startChargingCPUTime() {
// Cache current period for multiple uses here.
periodIdentification cp;
cp = itsPeriodicEvent->currentPeriod();
...
// Has this thread run in this period?
if (cp == itsLastExecution) {

// Not a new period. Use whatever budget is remaining.
...

}
else {

// New period, get fresh budgets.
...
// Record that we have run in this period.
itsLastExecution = cp;
...

}
...

}

Figure 5: Slice foritsPeriodId

A slice of DEOS with respect toitsPeriodId and
itsLastExection is shown in Figure 5. These vari-
ables are used to determine whether or not a thread has
executed in the current period; If it has not, then its
budget can be safely reset.itsLastExecution is
assigned the value ofitsPeriodId (the return value
of itsPeriodicEvent->currentPeriod() ) when-
ever the two are not equal.

The information that actually needs to be maintained is sim-
ply a boolean variable that indicates whether a thread has
executed in the current period. These flags would then be
reset at every period boundary. However, this approach can
not be implemented in the system for efficiency reasons: all
kernel algorithms must be O(1), where as resetting the flags
is O(n), where n is the number of threads.

This realization led us to try a technique called predi-
cate abstraction, where program variables are replaced by
a predicate (or set of predicates) that describe some rela-
tion over the variables. In this case, we replaced the vari-
ablesitsPeriodId anditsLastExecution by a sin-
gle boolean variable,executedThisPeriod , defined by
the predicateitsPeriodId == itsLastExecution .

To generate an abstract program, the statements that manip-
ulate the variables must map to statements that properly up-
date the predicate variable. In this case, it is obvious that
the statementitsLastExecution = itsPeriodId
should be mapped toexecutedThisPeriod = TRUE .
However, the mapping for the statementitsPeriodId
= itsPeriodId + 1 is nontrivial because, depend-
ing on the previous values ofitsPeriodId and
itsLastExecution , the value of the predicate after the



Concrete Program Abstract Program

int itsPeriodId; bool executedThisPeriod;
int itsLastExecution;
itsPeriodId = itsPeriodId + 1; executedThisPeriod = FALSE;
itsLastExecution = itsPeriodId; executedThisPeriod = TRUE;

Table 1: Abstraction ofitsPeriodId anditsLastExectution to a single boolean

increment could be eitherTRUEor FALSE. However, in
the real system,itsPeriodId is always incremented, and
itsLastExecution is only ever assigned the value of
itsPeriodId . Therefore, it is easy to prove (by inspec-
tion of the code in Figure 5) thatitsPeriodId will al-
ways be greater than or equal toitsLastExecution and
therefore the result of incrementingitsPeriodId will be
that the predicate becomesFALSE. This abstraction map-
ping is shown in Table 1.

In practice, the case whereitsPeriodId rolls over (at
MAXINT) is an exception to the above assumption. How-
ever, the correct behavior of the real system also depends on
this assumption (specifically, thatitsPeriodId does not
roll over and catch up withitsLastExecution , mean-
ing that a thread will not wait MAXINT periods). This is
precisely the case where the above predicate abstraction will
become invalid. Therefore, this abstraction does not intro-
duced any stronger assumptions on the system than those
imposed by the implementation, meaning it is sound.

The actual abstraction used is slightly more complex than the
mapping in Table 1 because there is a one-to-many relation-
ship betweenStartOfPeriodEvents and Threads .
Therefore, whenitsPeriodId is incremented, a predicate
must be updated foreverythread in the period. This corre-
sponds exactly to the O(n) updating algorithm that could not
be used in the implementation. However, the O(1) real-time
constraint does not apply to the verification model.

With this abstraction in place, there was a reduction in the
size of the state space by several orders of magnitude. As a
result, we were able to guarantee that we could find the live-
ness property violation and perform exhaustive verification
within 512MB after adding the fix.

7 RELATED WORK
Although model checking is becoming popular for the anal-
ysis of software specifications and designs [1, 3, 7], it is not
commonly used for analyzing implementations. Holzmann
and Smith developed a system whereby a Promela model
is constructed directly from stylized C code [15]. There
technique differs from ours since abstraction is done during
translation, whereas we abstract the source before transla-
tion. An approach closer to our own is used within the Java
PathFinder tool that automatically translates Java programs
to Promela [13]. An alternative is to extend the expressibility

of model checking languages with programming language
features [9, 21].

The technique of predicate abstraction was developed by
Graf and Saidi [11] and extended by others [8, 20]. We use
predicate abstraction in conjunction with techniques devel-
oped by Hatcliff et al. that use abstraction and specialization
techniques to reduce Java programs for verification [12].

Dwyer and Pasareanu are developing automatic ways of gen-
erating environments for software systems to allow efficient
model checking [10, 17]. Although we experimented with
their filtering techniques, we found that the timer model con-
straints were more easily expressed operationally in Promela
rather than declaratively as LTL constraints. However, fur-
ther study is warranted because this is a critical problem.

8 CONCLUSIONS AND FUTURE WORK
The results of this experiment indicate that it could be highly
beneficial to continue to pursue the research and develop-
ment necessary to provide model checking support directly
for programming languages, and to explore the use of model
checking in the formal design and code review processes.
We believe that the fact that model checking could be ap-
plied effectively to the source code implementation of the
DEOS scheduler represents one of the most significant ap-
plications of model checking to date7. We used abstraction
in a controlled and minimal fashion, which helped to pro-
vide an understanding of exactly what must can be done to
avoid state space explosion. However, further research is still
needed to increase the ease of automated translation and for
automated support for program abstractions.

The most difficult part of defining the environment of DEOS
was to develop a model for the interrupt generation that
would allow us to check the properties of interest. We be-
lieve that if this problem is not addressed, it will seriously
hamper the adoption of model checking as a tool to find er-
rors in programs. One solution might be for a programmer to
develop an abstract environment in parallel with the system.
However, this is a paradigm shift from the current approach
of plugging the system into the real environment for testing.
We believe that a closer integration of model checking and
testing may aid in the adoption of the technology.

7The majority of our research colleagues to whom this project was men-
tioned expressed, at a minimum, high levels of skepticism that this problem
was tractable.



We are continuing to extend the model of the DEOS ker-
nel with additional features. We have recently extended the
model to include a new feature of DEOS that allows threads
to request slack time from the system. One effect of this
change is that it is no longer necessary for the idle thread
to execute in every longest period. Therefore, we develop a
new formulation of the time partitioning property in terms
of an invariant, which we believe is a sufficient condition for
the maintenance of time partitioning.
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