
Appears in SIGOPS Operating Systems Review, Vol. 43, No. 4, December 2009, pp. 92-105

The Case for RAMClouds:
Scalable High-Performance Storage Entirely in DRAM

John Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis, Jacob Leverich, David Mazières,

Subhasish Mitra, Aravind Narayanan, Guru Parulkar, Mendel Rosenblum, Stephen M. Rumble, Eric Stratmann, and
Ryan Stutsman

Department of Computer Science

 Stanford University

Abstract
Disk-oriented approaches to online storage are becoming increasingly problematic: they do not scale grace-
fully to meet the needs of large-scale Web applications, and improvements in disk capacity have far out-
stripped improvements in access latency and bandwidth. This paper argues for a new approach to datacenter
storage called RAMCloud, where information is kept entirely in DRAM and large-scale systems are created
by aggregating the main memories of thousands of commodity servers. We believe that RAMClouds can
provide durable and available storage with 100-1000x the throughput of disk-based systems and 100-1000x
lower access latency. The combination of low latency and large scale will enable a new breed of data-
intensive applications.

1 Introduction
For four decades magnetic disks have provided the
primary means of storing online information in com-
puter systems. Over that period disk technology has
undergone dramatic improvements, and it has been
harnessed by a variety of higher-level storage systems
such as file systems and relational databases. However,
the performance of disk has not improved as rapidly as
its capacity, and developers are finding it increasingly
difficult to scale disk-based systems to meet the needs
of large-scale Web applications. Many people have
proposed new approaches to disk-based storage as a
solution to this problem; others have suggested replac-
ing disks with flash memory devices. In contrast, we
believe that the solution is to shift the primary locus of
online data from disk to random access memory, with
disk relegated to a backup/archival role.

In this paper we argue that a new class of storage called
RAMCloud will provide the storage substrate for many
future applications. A RAMCloud stores all of its in-
formation in the main memories of commodity servers,
using hundreds or thousands of such servers to create a
large-scale storage system. Because all data is in
DRAM at all times, a RAMCloud can provide 100-
1000x lower latency than disk-based systems and 100-
1000x greater throughput. Although the individual
memories are volatile, a RAMCloud can use replication
and backup techniques to provide data durability and
availability equivalent to disk-based systems.

We believe that RAMClouds will fundamentally
change the storage landscape in three ways. First, they
will simplify the development of large-scale Web ap-

plications by eliminating many of the scalability issues
that sap developer productivity today. Second, their
extremely low latency will enable richer query models
that enable a new class of data-intensive applications.
Third, RAMClouds will provide the scalable storage
substrate needed for “cloud computing” and other data-
center applications [3]: a RAMCloud can support a
single large application or numerous smaller applica-
tions, and allow small applications to grow rapidly into
large ones without additional complexity for the devel-
oper.

The rest of this paper is divided into five parts. Section
2 describes the RAMCloud concept and the scale and
performance that we believe are achievable in a RAM-
Cloud system. Section 3 offers two motivations for
RAMClouds, one from the standpoint of applications
and one from the standpoint of the underlying storage
technologies; it also discusses the benefits of extremely
low latency and compares RAMClouds with two alter-
native approaches (caching and flash memory). In order
to build a practical RAMCloud numerous research is-
sues will need to be addressed; Section 4 introduces a
few of these issues. Section 5 discusses the disadvan-
tages of RAMClouds, such as high cost/bit and high
energy usage. Finally, Section 6 summarizes related
work.

2 RAMCloud Overview
RAMClouds are most likely to be used in datacenters
containing large numbers of servers divided roughly
into two categories: application servers, which imple-
ment application logic such as generating Web pages or
enforcing business rules, and storage servers, which

- 1 -

Appears in SIGOPS Operating Systems Review, Vol. 43, No. 4, December 2009, pp. 92-105

provide longer-term shared storage for the application
servers. Traditionally the storage has consisted of files
or relational databases, but in recent years a variety of
new storage mechanisms have been developed to im-
prove scalability, such as Bigtable [4] and memcached
[16]. Each datacenter typically supports numerous ap-
plications, ranging from small ones using only a frac-
tion of an application server to large-scale applications
with thousands of dedicated application and storage
servers.

RAMCloud represents a new way of organizing storage
servers in such a system. There are two key attributes
that differentiate a RAMCloud from other storage sys-
tems. First, all information is kept in DRAM at all
times. A RAMCloud is not a cache like memcached
[16] and data is not stored on an I/O device, as with
flash memory: DRAM is the permanent home for data.
Disk is used only for backup. Second, a RAMCloud
must scale automatically to support thousands of sto-
rage servers; applications see a single storage system,
independent of the actual number of storage servers.

Information stored in a RAMCloud must be as durable
as if it were stored on disk. For example, failure of a
single storage server must not result in data loss or
more than a few seconds of unavailability. Section 4.2
discusses techniques for achieving this level of dura-
bility and availability.

Keeping all data in DRAM will allow RAMClouds to
achieve performance levels 100-1000x better than cur-
rent disk-based storage systems:
• It should be possible to achieve access latencies of 5-

10 microseconds, measured end-to-end for a process
running in an application server to read a few hun-
dred bytes of data from a single record in a single
storage server in the same datacenter. In compari-
son, disk-based systems offer access times over the
network ranging from 5-10ms (if disk I/O is re-
quired) down to several hundred microseconds (for
data cached in memory).

• A single multi-core storage server should be able to
service at least 1,000,000 small requests per second.
In comparison, a disk-based system running on a
comparable machine with a few disks can service
1000-10000 requests per second, depending on
cache hit rates.

These goals represent what we believe is possible, but
achieving them is by no means guaranteed; Section 4
discusses some of the obstacles that will have to be
overcome.

Table 1 summarizes a RAMCloud configuration that is
feasible today. This configuration assumes 64GB of
DRAM on each server, which is the largest amount that

is cost-effective today (memory prices rise dramatically
for larger memory sizes). With 1000 servers the confi-
guration offers 64TB of storage at $60/GB. With addi-
tional servers it should be possible to build RAM-
Clouds with capacities as large as 500TB today. Within
5-10 years, assuming continued improvements in
DRAM technology, it will be possible to build RAM-
Clouds with capacities of 1-10 Petabytes at a cost less
than $5/GB.

3 Motivation

3.1 Application scalability
The motivation for RAMClouds comes from two
sources: applications and technology. From the stand-
point of applications, relational databases have been the
storage system of choice for several decades but they
do not scale to the level required by today's large-scale
applications. Virtually every popular Web application
has found that a single relational database cannot meet
its throughput requirements. As the site grows it must
undergo a series of massive revisions, each one intro-
ducing ad hoc techniques to scale its storage system,
such as partitioning data among multiple databases.
These techniques work for a while, but scalability is-
sues return when the site reaches a new level of scale or
a new feature is introduced, requiring yet more special-
purpose techniques.

For example, as of August 2009 the storage system for
Facebook includes 4000 MySQL servers. Distribution
of data across the instances and consistency between
the instances are handled explicitly by Facebook appli-
cation code [13]. Even so, the database servers are in-
capable of meeting Facebook’s throughput require-
ments by themselves, so Facebook also employs 2000
memcached servers, which cache recently used query
results in key-value stores kept in main memory. Un-
fortunately, consistency between the memcached and
MySQL servers must be managed by application soft-

servers 1000
Capacity/server 64 GB
Total capacity 64 TB
Total server cost $4M
Cost/GB $60
Total throughput 109 ops/sec

Table 1. An example RAMCloud configuration using
currently available commodity server technology. Total
server cost is based on list prices and does not include
networking infrastructure or racks.

- 2 -

hissar
Sticky Note
Why more latency for the data cached in memory as compared to the data in DRAM ?

Appears in SIGOPS Operating Systems Review, Vol. 43, No. 4, December 2009, pp. 92-105

ware (e.g., cached values must be flushed explicitly
when the database is updated), which adds to applica-
tion complexity.

Numerous new storage systems have appeared in recent
years to address the scalability problems with relational
databases; examples include Bigtable [4], Dynamo [8],
and PNUTS [6] (see [23] for additional examples). Un-
fortunately, each of these is specialized in some way,
giving up some of the benefits of a traditional database
in return for higher performance in certain domains.
Furthermore, most of the alternatives are still limited in
some way by disk performance. One of the motivations
for RAMCloud is to provide a general-purpose storage
system that scales far beyond existing systems, so ap-
plication developers do not have to resort to ad hoc
techniques.

3.2 Technology trends
The second motivation for RAMClouds comes from
disk technology evolution (see Table 2). Disk capacity
has increased more than 10000-fold over the last 25
years and seems likely to continue increasing in the
future. Unfortunately, though, the access rate to infor-
mation on disk has improved much more slowly: the
transfer rate for large blocks has improved “only” 50-
fold, and seek time and rotational latency have only
improved by a factor of two.

As a result of this uneven evolution the role of disks
must inevitably become more archival: it simply isn't
possible to access information on disk very frequently.
Table 2 illustrates this in two ways. First, it computes
the capacity/bandwidth ratio: if the disk is filled with
blocks of a particular size, how often can each block be

accessed, assuming random accesses? In the mid-
1980s 1-Kbyte records could be accessed on average
about every 10 minutes; with today's disks each record
can only be accessed about 6 times per year on average,
and this rate will drop with each future improvement in
disk capacity. Larger blocks allow more frequent ac-
cesses, but even in the best case data on disk can only
be accessed 1/300th as frequently as 25 years ago.

If data is accessed in large blocks the situation is not
quite as dire: today's disks can support about one access
every 1.5 hours to each block. However, the definition
of “large block” is changing. In the mid-1980s blocks
of 400 Kbytes achieved 90% of the maximum transfer
rate; today, blocks must contain at least 10 Mbytes to
achieve 90% of the maximum transfer rate, and large
blocks will need to be even larger in the future. Video
data meets this threshold, as do data for bulk-
processing applications such as MapReduce [7], but
most forms of on-line data do not; even photos and
songs are too small to use the full bandwidth of today's
disks.

A second way of understanding disk trends is to apply
Jim Gray’s Rule [12]: if portions of the disk are left
unused then the remaining space can be accessed more
frequently. As the desired access rate to each record
increases, the disk utilization must decrease, which
increases the cost per usable bit; eventually a crossover
point is reached where the cost/bit of disk is no better
than DRAM. The crossover point has increased by a
factor of 360x over the last 25 years, meaning that data
on disk must be used less and less frequently.

 Mid-
1980s 2009 Improvement

Disk capacity 30 MB 500 GB 16667x
Maximum transfer rate 2 MB/s 100 MB/s 50x
Latency (seek + rotate) 20 ms 10 ms 2x
Capacity/bandwidth (large blocks) 15 s 5000 s 333x worse
Capacity/bandwidth (1KB blocks) 600 s 58 days 8333x worse
Jim Gray’s Rule [11] (1KB blocks) 5 min. 30 hours 360x worse

Table 2. A comparison of disk technology today versus 25 years ago, based on typical personal computer disks.
Capacity/bandwidth measures how long it takes to read the entire disk, assuming accesses in random order to blocks
of a particular size; this metric also indicates how frequently each block can be accessed on average (assuming the
disk is full). For large blocks (>10 Mbytes today) capacity/bandwidth is limited by the disk transfer rate; for small
blocks it is limited by latency. The last line assumes that disk utilization is reduced to allow more frequent accesses to
a smaller number of records; it uses the approach of Gray and Putzolu [11] to calculate the access rate at which mem-
ory becomes cheaper than disk. For example, with today’s technologies, if a 1KB record is accessed at least once
every 30 hours, it is not only faster to store it in memory than on disk, but also cheaper (to enable this access rate
only 2% of the disk space can be utilized).

- 3 -

hissar
Sticky Note
Give a brief about the various specific domains for these applications

Appears in SIGOPS Operating Systems Review, Vol. 43, No. 4, December 2009, pp. 92-105

3.3 Caching
Historically, caching has been viewed as the answer to
problems with disk latency: if most accesses are made
to a small subset of the disk blocks, high performance
can be achieved by keeping the most frequently ac-
cessed blocks in DRAM. In the ideal case a system
with caching can offer DRAM-like performance with
disk-like cost.

However, the trends in Table 2 are diluting the benefits
of caching by requiring a larger and larger fraction of
data to be kept in DRAM. Furthermore, some new Web
applications such as Facebook appear to have little or
no locality, due to complex linkages between data (e.g.,
friendships in Facebook). As of August 2009 about
25% of all the online data for Facebook is kept in main
memory on memcached servers at any given point in
time, providing a hit rate of 96.5%. When additional
caches on the database servers are counted, the total
amount of memory used by the storage system equals
approximately 75% of the total size of the data (exclud-
ing images). Thus a RAMCloud would only increase
memory usage for Facebook by about one third.

In addition, the 1000x gap in access time between
DRAM and disk means that a cache must have excep-
tionally high hit rates to avoid significant performance
penalties: even a 1% miss ratio for a DRAM cache
costs a factor of 10x in performance. A caching ap-
proach makes the deceptive suggestion that “a few
cache misses are OK” and lures programmers into con-
figurations where system performance is poor.

For these reasons we believe that caches in the future
will have to be so large that they will provide little cost
benefit while still introducing significant performance
risk. RAMClouds may cost slightly more than caching
systems, but they will provide guaranteed performance
independent of access patterns or locality.

3.4 Does latency matter?
The most unique aspect of RAMClouds relative to oth-
er storage systems is the potential for extraordinarily
low latency. On the one hand, 5-10 µs latency may
seem unnecessary, and it is hard to point to Web appli-
cations that require this level of latency today. Howev-
er, we believe that low latency is one of the most im-
portant features of RAMClouds.

There may not be many Web applications that require
5-10 µs latency today, but this is because there are no
storage systems that can support such a requirement. In
contrast, traditional applications expect and get latency
significantly less than 5-10 µs (see Figure 1). In these
applications the data for the application resides in main-
memory data structures co-located with the applica-
tion's front end. Such data can be explored with very
low latency by the application. In Web applications the
data is stored on separate storage servers. Because of
high data latency, Web applications typically cannot
afford to make complex unpredictable explorations of
their data, and this constrains the functionality they can
provide. If Web applications are to replace traditional
applications, as has been widely predicted, then they
will need access to data with latency much closer to
what traditional applications enjoy.

UI

App.
Logic

UI

Bus.
Logic

Data
Structures

Application
Servers

Storage
Servers

Traditional
Application

(a) (b)
Figure 1. In a traditional application (a) the application’s data structures reside in memory on the same machine containing
the application logic and user interface code. In a scalable Web application (b) the data is stored on separate servers from the
application's user interface and business logic. Because of the high latency of data access, it is expensive for a Web applica-
tion to perform iterative explorations of the data; typically the application server must fetch all of the data needed for a Web
page in a small number of bulk requests. Lower latency will enable more complex data explorations.

- 4 -

Appears in SIGOPS Operating Systems Review, Vol. 43, No. 4, December 2009, pp. 92-105

Today's Web applications are already using data in
complex ways and struggling with latency issues. For
example, when Facebook receives an HTTP request for
a Web page, the application server makes an average of
130 internal requests (inside the Facebook site) as part
of generating the HTML for the page [13]. These re-
quests must be issued sequentially, since later requests
depend on results produced by earlier requests. The
cumulative latency of the internal requests is one of the
limiting factors in overall response time to users, so
considerable developer effort is expended to minimize
the number and size of requests. Amazon has reported
similar results, with 100-200 requests to generate
HTML for each page [8].

High latency data access has also caused problems for
database applications. Queries that do not match the
layout of data on disk, and hence require numerous
seeks, can be intolerably slow. Iterative searches such
as tree walks, where the nth data item cannot be identi-
fied until the n-1th item has been examined, result in
too many high latency queries to be practical. In recent
years numerous specialized database architectures have
appeared, such as column stores, stream processing
engines, and array stores. Each of these reorganizes
data on disk in order to reduce latency for a particular
style of query; each produces order-of-magnitude spee-
dups for a particular application area, but none is gen-
eral-purpose. Stonebraker et al. have predicted the end
of the “one size fits all” database because there is no
disk layout that is efficient for all applications [23].
However, with sufficiently low latency none of these
specialized approaches are needed. RAMClouds offer
the hope of a new “one size fits all” where performance
is independent of data placement and a rich variety of
queries becomes efficient.

By providing random access with very low latency to
very large datasets, RAMClouds will not only simplify
the development of existing applications, but they will
also enable new applications that access large amounts
of data more intensively than has ever been possible.
One example is massive multiplayer games involving
interactions between thousands of players. More gener-
ally, RAMClouds will be well-suited to algorithms that
must traverse large irregular graph structures, where the
access patterns are so unpredictable that the full latency
of the storage system must be incurred for each item
retrieved. RAMClouds will allow a single sequential
agent to operate much more quickly on such a struc-
ture, and they will also permit thousands of agents to
operate concurrently on shared graphs.

Low latency also offers other benefits, such as enabling
a higher level of consistency; we will describe these

benefits when discussing RAMCloud implementation
issues in Section 4.

3.5 Use flash memory instead of DRAM?
Flash memory offers another alternative with lower
latency than disk. Today it is most commonly used in
devices such as cameras and media players, but it is
receiving increasing attention for general-purpose on-
line storage [1]. A RAMCloud could be constructed
with flash memory as the primary storage technology
instead of DRAM (“FlashCloud”), and this would be
cheaper and consume less energy than a DRAM-based
approach. Nonetheless, we believe a DRAM-based
implementation is more attractive because it offers
higher performance.

The primary advantage of DRAM over flash memory is
latency. Flash devices have read latencies as low as 20-
50 µs, but they are typically packaged as I/O devices,
which adds additional latency for device drivers and
interrupt handlers. Write latencies for flash devices are
200 µs or more. Overall, a RAMCloud is likely to have
latency 5-10x lower than a FlashCloud, which will in-
crease the benefits discussed in Section 3.4. Also, from
a research standpoint RAMCloud encourages a more
aggressive attack on latency in the rest of the system;
with FlashCloud the device latency will dominate, re-
moving the incentive to improve latency of other sys-
tem components.

RAMClouds also provide higher throughput than
FlashClouds, which can make them attractive even in
situations where latency isn’t important. Figure 2, re-
produced from Andersen et al. [1], generalizes Jim
Gray's Rule. It indicates which of disk, flash, and
DRAM is cheapest for a given system, given its re-

10

100

1000

10000

1.0

0.1 1.0 10 100 1000
0.1

D
at

as
et

 S
iz

e
(T

B
) Disk

Flash

DRAM

Query Rate (Millions/sec)

Figure 2. This figure (reproduced from Andersen et al.
[1]) indicates which storage technology has the lowest
total cost of ownership over 3 years, including server
cost and energy usage, given the required dataset size
and query rate for an application (assumes random
access workloads).

- 5 -

Appears in SIGOPS Operating Systems Review, Vol. 43, No. 4, December 2009, pp. 92-105

quirements in terms of dataset size and operations/sec.
For high query rates and smaller dataset sizes DRAM is
cheapest; for low query rates and large datasets disk is
cheapest; and flash is cheapest in the middle ground.

Interestingly, the dividing lines in Figure 2 are all shift-
ing upwards with time, which will increase the cover-
age of RAMClouds in the future. To understand this
effect, consider the dividing line between flash and
DRAM. At this boundary the cost of flash is limited by
cost/query/sec, while the cost of DRAM is limited by
cost/bit. Thus the boundary moves upwards as the
cost/bit of DRAM improves; it moves to the right as the
cost/query/sec. of flash improves. For all three storage
technologies cost/bit is improving much more rapidly
than cost/query/sec, so all of the boundaries are moving
upwards.

In the future it is possible that the latency of flash
memory may improve to match DRAM; in addition,
there are several other emerging memory technologies
such as phase-change memory that may ultimately
prove to be better than DRAM for storage. Even if this
happens, many of the implementation techniques de-
veloped for RAMClouds will carry over to other ran-
dom access memory technologies. If RAMClouds can
be implemented successfully they will take memory
volatility out of the equation, allowing storage technol-
ogy to be selected based on performance, cost, and
energy consumption.

3.6 RAMCloud applicability today
RAMClouds are already practical for a variety of appli-
cations today:
• As of August 2009 all of the non-image data for Fa-

cebook occupies about 260TB [13], which is proba-
bly near the upper limit of practicality for RAM-
Cloud today.

• Table 3 estimates that customer data for a large-scale
online retailer or airline would fit comfortably in a
small fraction of the RAMCloud configuration in
Table 1. These applications are unlikely to be the
first to use RAMClouds, but they illustrate that many

applications have historically been considered
“large” can be accommodated easily by a RAM-
Cloud.

• The cost of DRAM today is roughly the same as the
cost of disk 10 years ago ($10-30/Gbyte), so any da-
ta that could be stored cost-effectively on disk then
can be stored cost-effectively in DRAM today.

It is probably not yet practical to use RAMClouds for
large-scale storage of media such as videos, photos, and
songs (and these objects make better use of disks be-
cause of their large size). However, RAMClouds are
practical for almost all other online data today, and
future improvements in DRAM technology will proba-
bly make RAMClouds attractive for media within a few
years.

4 Research Issues
There are numerous challenging issues that must be
addressed before a practical RAMCloud system can be
constructed. This section describes several of those
issues, along with some possible solutions. Some of
these issues, such as data model and concurrency con-
trol, are common to all distributed storage systems, so
there may be solutions devised by other projects that
will also work for RAMClouds; others, such as low
latency RPC and data durability, may require a unique
approach for RAMClouds.

4.1 Low latency RPC
Although latencies less than 10µs have been achieved
in specialized networks such as Infiniband and Myrinet,
most existing datacenters use networking infrastructure
based on Ethernet/IP/TCP, with typical round-trip times
for remote procedure calls of 300-500 µs. We believe it
is possible to reduce this to 5-10 µs, but doing so will
require innovations at several levels. The greatest ob-
stacle today is latency in the network switches. A large
datacenter is likely to have a three-tier switching struc-
ture, so each packet traverses five switches as it moves
up through the switching hierarchy and back down to
its destination. Typical switches today introduce delays

Online Retailer Airline Reservations
 Revenues/year: $16B Flights/day: 4000
 Average order size $40 Passengers/flight: 150
 Orders/year 400M Passenger-flights/year: 220M
 Data/order 1000 - 10000 bytes Data/passenger-flight: 1000 - 10000 bytes
 Order data/year: 400GB - 4.0TB Passenger data/year: 220GB - 2.2 TB
 RAMCloud cost: $24K-240K RAMCloud cost: $13K-130K

Table 3. Estimates of the total storage capacity needed for one year’s customer data of a hypothetical online retailer and
a hypothetical airline. In each case the total requirements are no more than a few terabytes, which would fit in a modest-
sized RAMCloud. The last line estimates the purchase cost for RAMCloud servers, using the data from Table 1.

- 6 -

hissar
Sticky Note
What about the large amounts of BigData being produced ... will it scale well ?

hissar
Sticky Note
Study about these as they are not present in the paper.

Appears in SIGOPS Operating Systems Review, Vol. 43, No. 4, December 2009, pp. 92-105

of 10’s of microseconds each, for a total switching la-
tency of 100 µs or more in each direction. Newer
10GB switches such as the Arista 7100S [13] use cut-
through routing and claim latencies of less than 1 µs,
but this will still produce a total network delay of near-
ly 5 µs in each direction. Additional improvements in
switching latency will be required to achieve RPC
times less than 10 µs.

In order to achieve 5-10 µs latency and 1 million re-
quests/second/server, RAMCloud servers will need to
process each request in 1 µs or less; this will require
significant reductions in software overheads. General-
purpose operating systems introduce high overheads for
interrupt processing, network protocol stacks, and con-
text switching. In RAMCloud servers it may make
sense to use a special-purpose software architecture
where one core is dedicated to polling the network in-
terface(s) in order to eliminate interrupts and context
switches. The network core can perform basic packet
processing and then hand off requests to other cores
that carry out the requests. RAMCloud servers will
make good use of multi-core architectures, since differ-
ent requests can be handled in parallel on different
cores.

On application server machines virtualization is becom-
ing more and more popular as a mechanism for manag-
ing applications. As a result, incoming packets must
first pass through a virtual machine monitor and then a
guest operating system before reaching the application.
Achieving low latency will require these overheads to
be reduced, perhaps by passing packets directly from
the virtual machine monitor to the application. Another
approach is to use network interfaces that can be
mapped directly into an application's address space so
that applications can send and receive packets without
the involvement of either the operating system or the
virtual machine monitor.

In order to achieve the most efficient network commu-
nication, it may be necessary to modify the TCP proto-
col or use a different reliable-delivery protocol based
on UDP:
• TCP retransmission timeouts are typically hundreds

of milliseconds or more; this is necessary to manage
congestion in long-haul networks, but it interferes
with efficient operation inside a datacenter: even a
low rate of packet loss will significantly degrade av-
erage latency.

• The flow-oriented nature of TCP offers little advan-
tage for RAMClouds, since individual requests will
be relatively small. Flows introduce additional state
and complexity in packet processing without provid-
ing much benefit in an environment like RAMCloud.

• A custom protocol can use an acknowledgment
scheme optimized for the request-response nature of
RAMCloud communication, resulting in fewer ac-
knowledgment packets than TCP.

Although 5-10 µs RPC latency seems like the best that
can be achieved in the near future, lower latency would
be even better. It is an open question whether further
improvements are possible; for example, is it possible
eventually to achieve RPC latency within a datacenter
of 1 µs? At this level, even speed-of-light delays will
be significant.

In addition to low latency, RAMClouds will also re-
quire high bandwidth from the networking infrastruc-
ture. Most current datacenter networks are oversub-
scribed by 10x or more at the upper levels, meaning
that the system cannot support random communication
patterns at the full bandwidth of the lowest-level links.
It is not clear that there will be much locality in the
communication patterns for RAMCloud servers, so
bisection bandwidth may need to be increased in the
upper levels of datacenter networks.

4.2 Durability and availability
For RAMClouds to be widely used they must offer a
high level of durability and availability (at least as good
as today's disk-based systems). At a minimum this
means that a crash of a single server must not cause
data to be lost or impact system availability for more
than a few seconds. RAMClouds must also offer rea-
sonable protection against power outages, and they may
need to include cross-datacenter replication. We as-
sume that any guarantees about data durability must
take effect at the time a storage server responds to a
write request.

One approach to durability is to replicate each object in
the memories of several server machines and update all
of the replicas before responding to write requests. At
least 3 copies of each object will probably be needed to
assure an adequate level of durability and availability,
so this approach would triple the cost of memory,
which is the dominant factor in overall system cost. It
would also increase energy usage significantly. The
cost of main-memory replication can be reduced by
using coding techniques such as parity striping [17],
but this makes crash recovery considerably more ex-
pensive. In any case, replication in memory would de-
pend on a reliable power source, so power outages do
not take down all of the replicas simultaneously. For
these reasons, we believe RAMClouds will probably
use a technology other than DRAM for backup copies
of data.

- 7 -

hissar
Sticky Note
Study about virtualization.

hissar
Sticky Note
What is bisection bandwidth ?

Appears in SIGOPS Operating Systems Review, Vol. 43, No. 4, December 2009, pp. 92-105

An alternative approach to durability is to keep a single
copy of each object in DRAM, but have each server
back up new data on its local disk as part of every write
operation. However, this approach is undesirable be-
cause it ties write latency to disk latency and still leaves
data unavailable if the server crashes. At the very least,
data must be replicated on multiple server machines.

Figure 3 outlines an alternative called buffered logging
that uses both disk and memory for backup. In this ap-
proach a single copy of each object is stored in DRAM
of a primary server and copies are kept on the disks of
two or more backup servers; each server acts as both
primary and backup. However, the disk copies are not
updated synchronously during write operations. In-
stead, the primary server updates its DRAM and for-
wards log entries to the backup servers, where they are
stored temporarily in DRAM. The write operation re-
turns as soon as the log entries have been written to
DRAM in the backups. Each backup server collects log
entries into batches that can be written efficiently to a
log on disk. Once log entries have been written to disk
they can be removed from the backup’s DRAM.

If a server crashes in the buffered logging approach, the
data in its DRAM can be reconstructed on any of the
backup servers by processing the disk logs. However,
two optimizations will be required in order to recover
quickly enough to avoid service disruption. First, the
disk logs must be truncated to reduce the amount of
data that must be read during recovery. One approach
is to create occasional checkpoints, after which the log
can be cleared. Another approach is to use log cleaning
techniques like those developed for log-structured file
systems [21], where portions of the log with stale in-

formation are occasionally rewritten to squeeze out the
stale data and reduce the log size.

write

Even with log truncation, the total amount of data to
read will be at least as large as the size of the crashed
server's DRAM; at current disk transfer speeds it will
take ten minutes or more to read this much data from a
single disk. The second optimization is to divide the
DRAM of each primary server into hundreds of shards,
with each shard assigned to different backup servers.
After a crash, one backup server for each shard reads
its (smaller) log in parallel; each backup server acts as a
temporary primary for its shard until a full copy of the
lost server’s DRAM can be reconstructed elsewhere in
the RAMCloud. With this approach it should be possi-
ble to resume operation (using the backup servers)
within a few seconds of a crash.

Buffered logging allows both reads and writes to pro-
ceed at DRAM speeds while still providing durability
and availability. However, the total system throughput
for writes will be limited by the disk bandwidth availa-
ble for writing log entries. Assuming typical updates of
a few hundred bytes, a log-cleaning approach for trun-
cation, and a single disk per server with 100 MB/sec
throughput, we estimate that each server can support
around 50,000 updates/second (vs. 1M reads/sec). It
may make sense to use flash memory instead of disk for
backup copies, if flash memory can be packaged in a
way that supports higher write throughput than disk.
For the highest update rates the only solution is to keep
replicas in DRAM.

Power failures can be handled in one of three ways in a
RAMCloud:
• Servers continue operating long enough after receiv-

ing warning of an impending power outage to flush
data to disk. With buffered logging a few seconds is
sufficient to flush buffered log entries. With replica-
tion in DRAM at least 10 minutes will be required.

• Applications tolerate the loss of unwritten log data in
an unexpected power failure (this option exists only
for the buffered logging approach).

• All data must be committed to stable storage as part
of each write operation; this will degrade write la-
tency and system throughput.

As previously mentioned, some applications may re-
quire data to be replicated in multiple datacenters. A
multi-datacenter approach offers two advantages: it can
continue operation even if a single datacenter becomes
completely unavailable, and it can also reduce the la-
tency of communication with geographically distri-
buted users as well as long-haul network bandwidth. A
RAMCloud can still provide high performance for
reads in this environment, but write performance will

DRAM

disk

DRAM

disk

log log

DRAM

disk

Storage Servers

Figure 3. In the buffered logging approach to durability,
a single copy of each object is stored in DRAM. When an
object is modified, the changes are logged to 2 or more
other servers. Initially the log entries are stored in the
DRAM of the backup servers; they are transferred to disk
asynchronously in batches in order to utilize the full disk
bandwidth.

- 8 -

Appears in SIGOPS Operating Systems Review, Vol. 43, No. 4, December 2009, pp. 92-105

be significantly degraded. The bandwidth between da-
tacenters will limit aggregate write throughput, and
applications will have to accept higher latency for write
operations (10’s or 100’s of milliseconds) in order to
update remote datacenters synchronously. An alterna-
tive is to allow write operations to return before remote
datacenters have been updated (meaning some “com-
mitted” data could be lost if the originating datacenter
crashes). In this case, if the links between datacenters
have enough bandwidth, then it may be possible to
achieve the same write performance in a multi-
datacenter RAMCloud as a single-datacenter imple-
mentation.

If a RAMCloud system is to ensure data integrity, it
must be able to detect all significant forms of corrup-
tion; the use of DRAM for storage complicates this in
several ways. First, bit error rates for DRAM are rela-
tively high [22] so ECC memory will be necessary to
avoid undetected errors. Even so, there are several oth-
er ways that DRAM can become corrupted, such as
errors in peripheral logic, software bugs that make stray
writes to memory, and software or hardware errors re-
lated to DMA devices. Without special attention, such
corruptions will not be detected. Thus RAMClouds will
probably need to augment stored objects with check-
sums that can be verified when objects are read. It may
also make sense to scan stored data periodically to
detect latent errors.

4.3 Data model
Another issue for RAMClouds is the data model for the
system. There are many possible choices, and existing
systems have explored almost every imaginable combi-
nation of features. The data model includes three over-
all aspects. First, it defines the nature of the basic ob-
jects stored in the system. In some systems the basic
objects are just variable-length “blobs” of bytes where
the storage system knows nothing about their internal
structure. At the other extreme, the basic objects can
have specific structure enforced by the system; for ex-
ample, a relational database requires each record to
consist of a fixed number of fields with prespecified
types such as integer, string, or date. In either case we
expect most objects to be small (perhaps a few hundred
bytes), containing information equivalent to a record in
a database or an object in a programming language
such as C++ or Java.

The second aspect of a data model is its support for
aggregation: how are basic objects organized into high-
er-level structures? In the simplest case, such as key-
value stores, the storage system provides no aggrega-
tion: the only operations are reads and writes of basic

objects. Most systems provide some sort of aggrega-
tion; for example, in a relational database the rows are
organized into tables and tables can be augmented with
indices to accelerate queries.

The third aspect of a data model is its mechanisms for
naming and indexing: when retrieving or modifying
basic objects, how are the objects named? In the sim-
plest case, such as a key-value store, each object has a
single unique identifier that must be used in all refer-
ences to the object. At the other extreme, relational
databases use content-based addressing: rows are se-
lected by specifying the values of one or more fields in
the row. Any field or combination of fields can serve
as a “name” for the row when looking it up, and a po-
werful query language can be used to combine the rows
from different tables in a single query.

The highly-structured relational data model has been
the dominant one for storage systems over the last four
decades, and it provides extraordinary power and con-
venience. However, it does not appear practical to scale
the relational structures over large numbers of servers;
we know of no RDBMS that includes thousands of
server machines (or even hundreds) in a single unified
system. In order to achieve scalability, some of the
relational features, such as large-scale joins and com-
plex transactions, will probably have to be sacrificed
(most large-scale Web applications have already made
these sacrifices).

At the opposite extreme, unstructured models such as
key-value stores appear highly scalable, but they may
not be rich enough to support a variety of applications
conveniently. For example, most applications need
tables or some other form of aggregation, plus index-
ing; these operations may be difficult or expensive for
an application to implement without support from the
underlying storage system.

One approach that seems promising to us is an interme-
diate one where servers do not impose structure on data
but do support aggregation and indexing. In this ap-
proach the basic objects are blobs of bytes. The storage
servers never interpret the contents of the objects, so
different applications can structure their objects diffe-
rently; some applications may use relational-style struc-
tures, while others may use more loosely-structured
data such as JSON or XML. The servers do provide a
table mechanism for grouping objects; among other
things, tables make it easier to share a RAMCloud
among multiple applications (access controls can be
specified for tables, and administrative operations such
as deleting all of the data for a defunct application be-
come simpler).

- 9 -

hissar
Sticky Note
What is ECC ?

Appears in SIGOPS Operating Systems Review, Vol. 43, No. 4, December 2009, pp. 92-105

In this approach objects can be named either using
unique identifiers or using indices. The servers allow
any number of indices to be associated with each table.
Clients must manage indices with explicit requests
(“associate key k with object o in index i”, or “delete
the association between key k and object o in index i”),
but can piggyback index updates with object updates;
the servers will guarantee that either all or none of the
updates complete. This allows well-formed applica-
tions to maintain consistency between tables and their
indices without requiring servers to understand the
structure of objects. The complexity of managing in-
dices can be hidden in client-side libraries (see Section
4.7).

4.4 Distribution and scaling
A RAMCloud must provide the appearance of a single
unified storage system even though it is actually im-
plemented with thousands of server machines. The dis-
tribution of the system should not be reflected in the
APIs it provides to application developers, and it
should be possible to reconfigure the system (e.g. by
adding or removing servers) without impacting running
applications or involving developers. This represents
one of the most important advantages of RAMCloud
over most existing storage systems, where distribution
and scaling must be managed explicitly by developers.

The primary issue in the distribution and scaling of the
system is data placement. When a new data object is
created it must be assigned to one or more servers for
storage. Later on, the object may need to be moved
between servers in order to optimize the performance
of the system or to accommodate the entry and exit of
servers. Given the scale and complexity of a RAM-
Cloud system, the decisions about data placement and
movement will need to be made automatically, without
human involvement.

For example, assume that a RAMCloud provides a ta-
ble mechanism for grouping related objects. For small
tables it is most efficient to store the entire table on a
single server. This allows multiple objects to be re-
trieved from the table with a single request to a single
server, whereas distributing the table may require mul-
tiple requests to different servers. The single-server
approach also minimizes the amount of configuration
information that must be managed for the table. If the
system supports indices, it will be most efficient to
keep each index on the same server as the table for the
index, so that an indexed lookup can be performed with
a single RPC.

However, some tables will eventually become too large
or too hot for a single server, in which case they will

need to be partitioned among multiple servers. It may
make sense to scatter the table's data as randomly as
possible in order to balance load among the servers, or
it may be preferable to partition the table based on an
index, so that adjacent objects in the index are co-
located on the same server and can be manipulated with
a single RPC. It may also make sense to partition in-
dices along with their tables, so that index entries are
located on the same servers as the corresponding table
objects.

Because of the high throughput of its servers, a RAM-
Cloud is unlikely to need data replication for perfor-
mance reasons; replication will be needed only for data
durability and availability. If a server becomes over-
loaded then some of its tables can be moved to other
servers; if a single table overloads the server then the
table can be partitioned to spread the load. Partitioning
is already needed to handle large tables, so it makes
sense to use this mechanism for load balancing as well.
Replication for performance will only be needed if the
access rate to a single object exceeds the 1M
ops/second throughput of a single server; this situation
may be so rare that it can be handled with special tech-
niques in the affected applications.

Given the size of a RAMCloud system, its configura-
tion is likely to change frequently, both because of
changes in the underlying hardware (server crashes,
new server additions, etc.) and because of changes in
the applications. Thus it will be important for RAM-
Clouds to move data between servers efficiently and
transparently. It must be possible to carry out data mi-
gration while applications are running, without impact-
ing their performance or availability. The logging ap-
proach used for data durability makes data movement
relatively straightforward: data can be copied at leisure
from source to destination while continuing to serve
requests at the source; then the update log can be rep-
layed on the destination to incorporate any changes
made during the copy; finally a short synchronized op-
eration between source and destination can be used to
apply any final updates and transfer ownership.

4.5 Concurrency, transactions, and con-
sistency

One of the most challenging issues for RAMCloud is
how to handle interactions between requests that are
being serviced simultaneously. For example, can an
application server group a series of updates into a
transactional unit so that other application servers either
see all of the updates or none of them? The ACID
guarantees provided by relational database systems
handle concurrency in a clean and powerful way that

- 10 -

Appears in SIGOPS Operating Systems Review, Vol. 43, No. 4, December 2009, pp. 92-105

simplifies the construction of applications [19]. How-
ever, the ACID properties scale poorly: no one has yet
constructed a system with ACID properties at the scale
we envision for RAMClouds. Many Web applications
do not need full ACID behavior and do not wish to pay
for it.

Because of this, recent storage systems have explored a
variety of alternative approaches that give up some of
the ACID properties in order to improve scalability. For
example, Bigtable [4] does not support transactions
involving more than a single row and Dynamo [8] does
not guarantee immediate and consistent updates of rep-
licas. These restrictions improve some system proper-
ties, such as scalability or availability, but they also
complicate life for developers and cause confusing be-
havior for users. For example, in a system that doesn't
guarantee consistency of replicas, if a user reads a val-
ue that he or she wrote recently (“read after write”) it is
possible for the read to return the old value.

One potential benefit of RAMCloud’s extremely low
latency is that it may enable a higher level of consisten-
cy than other systems of comparable scale. ACID
properties become expensive to implement when there
are many transactions executing concurrently, since this
increases the likelihood of conflicts. Concurrency is
determined by (a) the amount of time each transaction
spans in the system and (b) the overall rate at which
transactions enter the system. Longer execution times
for transactions increase the degree of concurrency, as
does greater system throughput. By reducing latency,
RAMClouds reduce the length of time each transaction
stays in the system, which reduces aborted transactions
(for optimistic concurrency control) and lock wait times
(for pessimistic concurrency control). As a result, a
low latency system can scale to much higher overall
throughput before the cost of ACID becomes prohibi-
tive.

However, the potential for stronger consistency will be
harder to realize for applications that require replication
across datacenters. In these applications inter-
datacenter wire delays will force high write latencies,
which will increase the degree of concurrency and
make stronger consistency more expensive.

In addition, as discussed in Section 4.4, the high
throughput of a RAMCloud makes data replication un-
necessary. This eliminates the consistency issues and
overhead associated with replication, and it creates a
simpler programming model for application developers.

4.6 Multi-tenancy
A single large RAMCloud system must support shared
access by hundreds of applications of varying sizes. A
small application should get all of the performance and
durability advantages provided by RAMCloud at a cost
proportional to its memory usage. For example, it
should be possible to provide a few gigabytes of sto-
rage to an application for only a few hundred dollars
per year, since this represents just a small fraction of
one server. If an application suddenly becomes popular
it should be able to scale quickly within its RAMCloud
to achieve high performance levels on short notice.
Because of its scale, a RAMCloud can efficiently
amortize the cost of spare capacity over many applica-
tions.

In order to support multiple tenants, RAMClouds will
need to provide access control and security mechanisms
reliable enough to allow mutually antagonistic applica-
tions to cohabitate in the same RAMCloud cluster.
RAMClouds may also need to provide mechanisms for
performance isolation, so that one application with a
very high workload does not degrade performance of
other applications. Performance isolation is a difficult
challenge, and could require partitioning of both data
and network bandwidth in the system.

4.7 Server-client functional distribution
A RAMCloud system is distributed in two different
ways: application code runs on separate machines from
storage servers, and the stored data is spread across
thousands of servers. We have already discussed the
distribution between storage servers; we now turn to
the distribution between applications and storage serv-
ers, which raises interesting questions about where var-
ious functions in the system should be implemented.

Applications will access RAMCloud storage using a
library package resident on the application servers. The
library might be as simple as a thin wrapper layer on
top of the RAMCloud RPC calls, but it will probably
implement more significant functionality. For example,
the library is likely to include a cache of configuration
information so that RPCs can be directed immediately
to the correct server for the desired data. There are
several other functions whose implementation probably
belongs in the client library as well. For example, sup-
pose the storage system implements a query that re-
trieves several objects from a table and returns them in
sorted order. The objects themselves may reside on
multiple servers, so it is most efficient for the client
library to collect partial results from each of the servers
and combine and sort them locally (otherwise all of the
entries would have to be collected on a single server

- 11 -

hissar
Sticky Note
Study a bit about ACID properties

hissar
Sticky Note
Read about optimistic/pessimistic concurrency controls

hissar
Sticky Note
Why does high-throughput makes replication unnecessary.

hissar
Sticky Note
Meaning ? http://www.tutor2u.net/blog/index.php/business-studies/comments/qa-operations-what-is-spare-capacity-and-does-it-matter

Appears in SIGOPS Operating Systems Review, Vol. 43, No. 4, December 2009, pp. 92-105

machine for sorting and then retransmitted to the client,
resulting in extra network traffic). If the object model
provided by storage servers consists of blobs of bytes,
the client library is a natural place to implement a par-
ticular data model within objects, as well as higher lev-
el queries and support for indexing as described in Sec-
tion 4.3. Different client libraries can implement differ-
ent data models and query languages.

It is also possible that some system management func-
tions could be implemented in the client library, such as
orchestrating recovery after server crashes. However,
this would complicate the system's recovery model,
since an ill-timed client crash might impact the system's
recovery after a server crash. It probably makes sense
for the storage servers to be self-contained, so that they
manage themselves and can meet their service level
agreements without depending on any particular beha-
vior of client machines.

Certain functions, such as access control, cannot be
implemented safely on the clients. There is no way for
a server to tell whether a particular request came from
the client library or from the application itself; since the
application isn't trusted to make access control deci-
sions, the client library cannot be trusted either.

It may also make sense to migrate functionality from
the clients to the servers. For example, in bulk-
processing applications such as MapReduce [7] it may
be attractive for an application to upload code to the
servers so that data can be processed immediately on
the servers without shipping it over the network. This
approach makes sense for simple operations that reduce
network traffic, such as counting records with particu-
lar attributes. Of course, uploading code to the servers
will introduce additional security issues; the servers
must ensure that malicious code cannot damage the
storage system. If a RAMCloud can return data over
the network with very high efficiency, then there will
be less need for code uploading.

4.8 Self-management
For RAMClouds to be successful they must manage
themselves automatically. With thousands of servers,
each using hundreds of its peers for a sharded backup
scheme, the overall system complexity will be far too
great for a human operator to understand and manage.
In addition, a single RAMCloud may support hundreds
of applications with competing needs; it will need to
monitor its own performance and adjust its configura-
tion automatically as application behavior changes.
Fortunately, building a new storage system from
scratch provides an opportunity to get this essential

functionality done right, thereby reducing operational
cost compared to current storage systems.

Instrumentation will be a key element in RAMCloud
systems. The servers will need to gather significant
amounts of data to drive system management decisions,
and data from different servers will need to be inte-
grated to form a cohesive overall picture of system be-
havior. Furthermore, data gathering must not signifi-
cantly degrade the latency or throughput of the system.

5 RAMCloud Disadvantages
The most obvious drawbacks of RAMClouds are high
cost per bit and high energy usage per bit. For both of
these metrics RAMCloud storage will be 50-100x
worse than a pure disk-based system and 5-10x worse
than a storage system based on flash memory (see [1]
for sample configurations and metrics). A RAMCloud
system will also require more floor space in a datacen-
ter than a system based on disk or flash memory. Thus,
if an application needs to store a large amount of data
inexpensively and has a relatively low access rate,
RAMCloud is not the best solution.

However, RAMClouds become much more attractive
for applications with high throughput requirements.
When measured in terms of cost per operation or ener-
gy per operation, RAMClouds are 100-1000x more
efficient than disk-based systems and 5-10x more effi-
cient than systems based on flash memory. Thus for
systems with high throughput requirements a RAM-
Cloud can provide not just high performance but also
energy efficiency. It may also be possible to reduce
RAMCloud energy usage by taking advantage of the
low-power mode offered by DRAM chips, particularly
during periods of low activity.

In addition to these disadvantages, some of RAM-
Cloud's advantages will be lost for applications that
require data replication across datacenters. In such en-
vironments the latency of updates will be dominated by
speed-of-light delays between datacenters, so RAM-
Clouds will have little or no latency advantage. In addi-
tion, cross-datacenter replication makes it harder for
RAMClouds to achieve stronger consistency as de-
scribed in Section 4.5. However, RAMClouds can still
offer exceptionally low latency for reads even with
cross-datacenter replication.

6 Related Work
The role of DRAM in storage systems has been steadily
increasing over a period of several decades and many
of the RAMCloud ideas have been explored in other
systems. For example, in the mid-1980s there were

- 12 -

hissar
Sticky Note
How ??

Appears in SIGOPS Operating Systems Review, Vol. 43, No. 4, December 2009, pp. 92-105

numerous research experiments with databases stored
entirely in main memory [9, 11]; however, main-
memory databases were not widely adopted, perhaps
because of their limited capacities. The latency benefits
of optimizing a storage system around DRAM have
also been demonstrated in projects such as Rio Vista
[15].

In recent years there has been a surge in the use of
DRAM, driven by the performance requirements of
large-scale Web applications. For example, both
Google and Yahoo! store their search indices entirely in
DRAM. Memcached [16] provides a general-purpose
key-value store entirely in DRAM, and it is widely used
to offload back-end database systems (however, mem-
cached makes no durability guarantees so it must be
used as a cache). The Bigtable storage system allows
entire column families to be loaded into memory, where
they can be read without any disk accesses [4]. Bigta-
ble has also explored many of the issues in federating
large numbers of storage servers.

The limitations of disk storage have been noted by
many. For example, Jim Gray has predicted the migra-
tion of data from disk to random access memory [14],
and the H-store project has reintroduced the notion of
main-memory databases as a solution to database per-
formance problems [20]. Several projects, such as [5]
and [10], have explored mechanisms for very low la-
tency RPC communication.

7 Conclusion
In the future, both technology trends and application
requirements will dictate that a larger and larger frac-
tion of online data be kept in DRAM. In this paper we
have argued that the best long-term solution for many
applications may be a radical approach where all data is
kept in DRAM all the time. The two most important
aspects of RAMClouds are (a) their extremely low la-
tency and (b) their ability to aggregate the resources of
large numbers of commodity servers. Together, these
allow RAMClouds to scale to meet the needs of the
largest Web applications. In addition, low latency also
enables richer query models, which will simplify appli-
cation development and enable new kinds of applica-
tions. Finally, the federated approach makes RAM-
Clouds an attractive substrate for cloud computing en-
vironments that require a flexible and scalable storage
system.

Numerous challenging issues must be addressed before
a practical RAMCloud can be constructed. At Stanford
University we are initiating a new research project to
build a RAMCloud system. Over the next few years we
hope to answer some of the research questions about

how to build efficient and reliable RAMClouds, as well
as to observe the impact of RAMClouds on application
development.

8 Acknowledgments
The following people made helpful comments on drafts
of this paper, which improved both the presentation in
the paper and our thinking about RAMClouds: David
Andersen, Michael Armbrust, Jeff Dean, Robert John-
son, Jim Larus, David Patterson, Jeff Rothschild, and
Vijay Vasudevan.

9 References
[1] Andersen, D., Franklin, J., Kaminsky, M., et al.,

“FAWN: A Fast Array of Wimpy Nodes”, Proc.
22nd Symposium on Operating Systems Principles,
2009, to appear.

[2] Arista Networks 7100 Series Switches,
http://www.aristanetworks.com/en/7100Series.

[3] Armbrust, M., Fox, A., Griffith, R., et al., Above
the Clouds: A Berkeley View of Cloud Computing,
Technical Report UCB/EECS-2009-28, Electrical
Engineering and Computer Sciences, U.C. Berke-
ley, February 10, 2009, http://www.eecs.berkeley.
edu/Pubs/TechRpts/2009/EECS-2009-28.pdf.

[4] Chang, F., Dean, J, Ghemawat, S., et al., “Bigtable:
A Distributed Storage System for Structured Data”,
ACM Transactions on Computer Systems, Vol. 26,
No. 2, 2008, pp. 4:1 - 4:26.

[5] Chun, B., Mainwaring, A., and Culler, D., “Virtual
Network Transport Protocols for Myrinet,” IEEE
Micro, Vol. 18, No. 1 (January 1998), pp. 53-63.

[6] Cooper, B., Ramakrishnan, R., Srivastava, U., et.
al., “PNUTS: Yahoo!’s Hosted Data Serving Plat-
form,” VLDB ’08, Proc. VLDB Endowment, Vol.
1, No. 2, (2008), pp. 1277-1288.

[7] Dean, J., and Ghemawat, S., “MapReduce: Simpli-
fied Data Processing on Large Clusters,” Proc. 6th
USENIX Symposium on Operating Systems Design
and Implementation, 2004, pp. 137-150.

[8] DeCandia, G., Hastorun, D., Jampani, M., et al.,
“Dynamo: Amazon's Highly Available Key-value
Store”, Proc. 21st ACM Symposium on Operating
Systems Principles, October 2007, pp. 205-220.

[9] DeWitt, D., Katz, R., Olken, F., et al., “Implemen-
tation Techniques for Made Memory Database
Systems,” Proc. SIGMOD 1984, pp. 1-8.

[10] Dittia, Z., Integrated Hardware/Software Design of
a High-Performance Network Interface, Ph.D. dis-
sertation, Washington University in St. Louis,
2001.

[11] Garcia-Molina, H., and Salem, K., “Main Memory
Database Systems: An Overview,” IEEE Transac-

- 13 -

Appears in SIGOPS Operating Systems Review, Vol. 43, No. 4, December 2009, pp. 92-105

- 14 -

tions on Knowledge and Data Engineering, Vol. 4,
No. 6, December 1992, pp. 509-516.

[12] Gray, J., and Putzolu, G.F., “The Five-minute Rule
for Trading Memory for Disc Accesses, and the 10
Byte Rule for Trading Memory for CPU Time,”
Proc. SIGMOD 1987, June 1987, pp. 395-398.

[13] Johnson, R., and Rothschild, J., personal commu-
nications, March 24, 2009 and August 20, 2009.

[14] Kallman, R., Kimura, H., Natkins, J., et al., “H-
store: a High-Performance, Distributed Main
Memory Transaction Processing System,” VLDB
’08, Proc. VLDB Endowment, Vol. 1, No. 2,
(2008), pp. 1496-1499.

[15] Lowell, D., and Chen, P., “Free Transactions With
Rio Vista,” 16th ACM Symposium on Operating
Systems Principles, October, 1997, pp. 92-101.

[16] memcached: a distributed memory object caching
system, http://www.danga.com/memcached/.

[17] Patterson, D., Gibson, G., and Katz, R., “A Case
for Redundant Arrays of Inexpensive Disks,” Proc.
SIGMOD 1988, June 1988, pp. 109-116.

[18] Ramakrishnan, R., and Gehrke, J., Database Man-
agement Systems, Third Edition, McGraw-Hill,
2003.

[19] Reuter, A., and Haerder, T., “Principles of Trans-
action-Oriented Database Recovery,” ACM Com-
puting Surveys, Vol. 15, No. 4, December 1983,
pp. 287-317.

[20] Robbins, S., RAM is the new disk…,
http://www.infoq.com/news/2008/06/ram-is-disk.

[21] Rosenblum, M. and Ousterhout, J., “The Design
and Implementation of a Log-Structured File Sys-
tem,” ACM Transactions on Computer Systems,
Vol. 10, No. 1, February 1992, pp. 26-52.

[22] Schroeder, B., Pinheiro, E., and Weber, W-D.,
“DRAM Errors in the Wild: A Large-Scale Field
Study,” SIGMETRICS/Performance’09, pp. 193-
204.

[23] Stonebraker, M., Madden, S., Abadi, D., et al.,
“The End of an Architectural Era (It's Time for a
Complete Rewrite)”, Proc. VLDB ’07, pp. 1150-
1160.

	1 Introduction
	2 RAMCloud Overview
	3 Motivation
	3.1 Application scalability
	3.2 Technology trends
	3.3 Caching
	3.4 Does latency matter?
	3.5 Use flash memory instead of DRAM?
	3.6 RAMCloud applicability today

	Research Issues
	4.1 Low latency RPC
	4.2 Durability and availability
	4.3 Data model
	4.4 Distribution and scaling
	4.5 Concurrency, transactions, and consistency
	4.6 Multi-tenancy
	4.7 Server-client functional distribution
	4.8 Self-management

	5 RAMCloud Disadvantages
	6 Related Work
	7 Conclusion
	8 Acknowledgments
	9 References

