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Abstract 
Disk-oriented approaches to online storage are becoming increasingly problematic: they do not scale grace-
fully to meet the needs of large-scale Web applications, and improvements in disk capacity have far out-
stripped improvements in access latency and bandwidth.  This paper argues for a new approach to datacenter 
storage called RAMCloud, where information is kept entirely in DRAM and large-scale systems are created 
by aggregating the main memories of thousands of commodity servers.  We believe that RAMClouds can 
provide durable and available storage with 100-1000x the throughput of disk-based systems and 100-1000x 
lower access latency.  The combination of low latency and large scale will enable a new breed of data-
intensive applications. 

1 Introduction  
For four decades magnetic disks have provided the 
primary means of storing online information in com-
puter systems.  Over that period disk technology has 
undergone dramatic improvements, and it has been 
harnessed by a variety of higher-level storage systems 
such as file systems and relational databases.  However, 
the performance of disk has not improved as rapidly as 
its capacity, and developers are finding it increasingly 
difficult to scale disk-based systems to meet the needs 
of large-scale Web applications. Many people have 
proposed new approaches to disk-based storage as a 
solution to this problem; others have suggested replac-
ing disks with flash memory devices. In contrast, we 
believe that the solution is to shift the primary locus of 
online data from disk to random access memory, with 
disk relegated to a backup/archival role. 

In this paper we argue that a new class of storage called 
RAMCloud will provide the storage substrate for many 
future applications. A RAMCloud stores all of its in-
formation in the main memories of commodity servers, 
using hundreds or thousands of such servers to create a 
large-scale storage system. Because all data is in 
DRAM at all times, a RAMCloud can provide 100-
1000x lower latency than disk-based systems and 100-
1000x greater throughput. Although the individual 
memories are volatile, a RAMCloud can use replication 
and backup techniques to provide data durability and 
availability equivalent to disk-based systems. 

We believe that RAMClouds will fundamentally 
change the storage landscape in three ways. First, they 
will simplify the development of large-scale Web ap-

plications by eliminating many of the scalability issues 
that sap developer productivity today. Second, their 
extremely low latency will enable richer query models 
that enable a new class of data-intensive applications.  
Third, RAMClouds will provide the scalable storage 
substrate needed for “cloud computing” and other data-
center applications [3]: a RAMCloud can support a 
single large application or numerous smaller applica-
tions, and allow small applications to grow rapidly into 
large ones without additional complexity for the devel-
oper. 

The rest of this paper is divided into five parts. Section 
2 describes the RAMCloud concept and the scale and 
performance that we believe are achievable in a RAM-
Cloud system. Section 3 offers two motivations for 
RAMClouds, one from the standpoint of applications 
and one from the standpoint of the underlying storage 
technologies; it also discusses the benefits of extremely 
low latency and compares RAMClouds with two alter-
native approaches (caching and flash memory). In order 
to build a practical RAMCloud numerous research is-
sues will need to be addressed; Section 4 introduces a 
few of these issues. Section 5 discusses the disadvan-
tages of RAMClouds, such as high cost/bit and high 
energy usage. Finally, Section 6 summarizes related 
work. 

2 RAMCloud Overview 
RAMClouds are most likely to be used in datacenters 
containing large numbers of servers divided roughly 
into two categories: application servers, which imple-
ment application logic such as generating Web pages or 
enforcing business rules, and storage servers, which 
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provide longer-term shared storage for the application 
servers. Traditionally the storage has consisted of files 
or relational databases, but in recent years a variety of 
new storage mechanisms have been developed to im-
prove scalability, such as Bigtable [4] and memcached 
[16]. Each datacenter typically supports numerous ap-
plications, ranging from small ones using only a frac-
tion of an application server to large-scale applications 
with thousands of dedicated application and storage 
servers. 

RAMCloud represents a new way of organizing storage 
servers in such a system.  There are two key attributes 
that differentiate a RAMCloud from other storage sys-
tems.  First, all information is kept in DRAM at all 
times. A RAMCloud is not a cache like memcached 
[16] and data is not stored on an I/O device, as with 
flash memory: DRAM is the permanent home for data. 
Disk is used only for backup. Second, a RAMCloud 
must scale automatically to support thousands of sto-
rage servers; applications see a single storage system, 
independent of the actual number of storage servers. 

Information stored in a RAMCloud must be as durable 
as if it were stored on disk. For example, failure of a 
single storage server must not result in data loss or 
more than a few seconds of unavailability.  Section 4.2 
discusses techniques for achieving this level of dura-
bility and availability. 

Keeping all data in DRAM will allow RAMClouds to 
achieve performance levels 100-1000x better than cur-
rent disk-based storage systems: 
• It should be possible to achieve access latencies of 5-

10 microseconds, measured end-to-end for a process 
running in an application server to read a few hun-
dred bytes of data from a single record in a single 
storage server in the same datacenter.  In compari-
son, disk-based systems offer access times over the 
network ranging from 5-10ms (if disk I/O is re-
quired) down to several hundred microseconds (for 
data cached in memory). 

• A single multi-core storage server should be able to 
service at least 1,000,000 small requests per second.  
In comparison, a disk-based system running on a 
comparable machine with a few disks can service 
1000-10000 requests per second, depending on 
cache hit rates. 

These goals represent what we believe is possible, but 
achieving them is by no means guaranteed; Section 4 
discusses some of the obstacles that will have to be 
overcome. 

Table 1 summarizes a RAMCloud configuration that is 
feasible today.  This configuration assumes 64GB of 
DRAM on each server, which is the largest amount that 

is cost-effective today (memory prices rise dramatically 
for larger memory sizes). With 1000 servers the confi-
guration offers 64TB of storage at $60/GB.  With addi-
tional servers it should be possible to build RAM-
Clouds with capacities as large as 500TB today. Within 
5-10 years, assuming continued improvements in 
DRAM technology, it will be possible to build RAM-
Clouds with capacities of 1-10 Petabytes at a cost less 
than $5/GB. 

3 Motivation 

3.1 Application scalability 
The motivation for RAMClouds comes from two 
sources: applications and technology.  From the stand-
point of applications, relational databases have been the 
storage system of choice for several decades but they 
do not scale to the level required by today's large-scale 
applications. Virtually every popular Web application 
has found that a single relational database cannot meet 
its throughput requirements.  As the site grows it must 
undergo a series of massive revisions, each one intro-
ducing ad hoc techniques to scale its storage system, 
such as partitioning data among multiple databases. 
These techniques work for a while, but scalability is-
sues return when the site reaches a new level of scale or 
a new feature is introduced, requiring yet more special-
purpose techniques. 

For example, as of August 2009 the storage system for 
Facebook includes 4000 MySQL servers.  Distribution 
of data across the instances and consistency between 
the instances are handled explicitly by Facebook appli-
cation code [13]. Even so, the database servers are in-
capable of meeting Facebook’s throughput require-
ments by themselves, so Facebook also employs 2000 
memcached servers, which cache recently used query 
results in key-value stores kept in main memory. Un-
fortunately, consistency between the memcached and 
MySQL servers must be managed by application soft-

# servers 1000 
Capacity/server 64 GB 
Total capacity 64 TB 
Total server cost $4M 
Cost/GB $60 
Total throughput 109 ops/sec 

 
Table 1. An example RAMCloud configuration using 
currently available commodity server technology. Total 
server cost is based on list prices and does not include 
networking infrastructure or racks. 
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ware (e.g., cached values must be flushed explicitly 
when the database is updated), which adds to applica-
tion complexity. 

Numerous new storage systems have appeared in recent 
years to address the scalability problems with relational 
databases; examples include Bigtable [4], Dynamo [8], 
and PNUTS [6] (see [23] for additional examples). Un-
fortunately, each of these is specialized in some way, 
giving up some of the benefits of a traditional database 
in return for higher performance in certain domains.  
Furthermore, most of the alternatives are still limited in 
some way by disk performance.  One of the motivations 
for RAMCloud is to provide a general-purpose storage 
system that scales far beyond existing systems, so ap-
plication developers do not have to resort to ad hoc 
techniques. 

3.2 Technology trends 
The second motivation for RAMClouds comes from 
disk technology evolution (see Table 2).  Disk capacity 
has increased more than 10000-fold over the last 25 
years and seems likely to continue increasing in the 
future. Unfortunately, though, the access rate to infor-
mation on disk has improved much more slowly: the 
transfer rate for large blocks has improved “only” 50-
fold, and seek time and rotational latency have only 
improved by a factor of two. 

As a result of this uneven evolution the role of disks 
must inevitably become more archival: it simply isn't 
possible to access information on disk very frequently.  
Table 2 illustrates this in two ways. First, it computes 
the capacity/bandwidth ratio: if the disk is filled with 
blocks of a particular size, how often can each block be 

accessed, assuming random accesses?  In the mid-
1980s 1-Kbyte records could be accessed on average 
about every 10 minutes; with today's disks each record 
can only be accessed about 6 times per year on average, 
and this rate will drop with each future improvement in 
disk capacity.  Larger blocks allow more frequent ac-
cesses, but even in the best case data on disk can only 
be accessed 1/300th as frequently as 25 years ago. 

If data is accessed in large blocks the situation is not 
quite as dire: today's disks can support about one access 
every 1.5 hours to each block.  However, the definition 
of “large block” is changing. In the mid-1980s blocks 
of 400 Kbytes achieved 90% of the maximum transfer 
rate; today, blocks must contain at least 10 Mbytes to 
achieve 90% of the maximum transfer rate, and large 
blocks will need to be even larger in the future. Video 
data meets this threshold, as do data for bulk-
processing applications such as MapReduce [7], but 
most forms of on-line data do not; even photos and 
songs are too small to use the full bandwidth of today's 
disks. 

A second way of understanding disk trends is to apply 
Jim Gray’s Rule [12]: if portions of the disk are left 
unused then the remaining space can be accessed more 
frequently. As the desired access rate to each record 
increases, the disk utilization must decrease, which 
increases the cost per usable bit; eventually a crossover 
point is reached where the cost/bit of disk is no better 
than DRAM.  The crossover point has increased by a 
factor of 360x over the last 25 years, meaning that data 
on disk must be used less and less frequently. 

 Mid-
1980s 2009  Improvement 

Disk capacity 30 MB 500 GB 16667x 
Maximum transfer rate 2 MB/s 100 MB/s 50x 
Latency (seek + rotate) 20 ms 10 ms 2x 
Capacity/bandwidth (large blocks) 15 s 5000 s 333x worse 
Capacity/bandwidth (1KB blocks) 600 s 58 days 8333x worse 
Jim Gray’s Rule [11] (1KB blocks) 5 min. 30 hours 360x worse 

Table 2.  A comparison of disk technology today versus 25 years ago, based on typical personal computer disks.  
Capacity/bandwidth measures how long it takes to read the entire disk, assuming accesses in random order to blocks 
of a particular size; this metric also indicates how frequently each block can be accessed on average (assuming the 
disk is full).  For large blocks (>10 Mbytes today) capacity/bandwidth is limited by the disk transfer rate; for small 
blocks it is limited by latency. The last line assumes that disk utilization is reduced to allow more frequent accesses to 
a smaller number of records; it uses the approach of Gray and Putzolu [11] to calculate the access rate at which mem-
ory becomes cheaper than disk.  For example, with today’s technologies, if a 1KB record is accessed at least once 
every 30 hours, it is not only faster to store it in memory than on disk, but also cheaper (to enable this access rate 
only 2% of the disk space can be utilized). 
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3.3 Caching 
Historically, caching has been viewed as the answer to 
problems with disk latency: if most accesses are made 
to a small subset of the disk blocks, high performance 
can be achieved by keeping the most frequently ac-
cessed blocks in DRAM. In the ideal case a system 
with caching can offer DRAM-like performance with 
disk-like cost.   

However, the trends in Table 2 are diluting the benefits 
of caching by requiring a larger and larger fraction of 
data to be kept in DRAM. Furthermore, some new Web 
applications such as Facebook appear to have little or 
no locality, due to complex linkages between data (e.g., 
friendships in Facebook). As of August 2009 about 
25% of all the online data for Facebook is kept in main 
memory on memcached servers at any given point in 
time, providing a hit rate of 96.5%. When additional 
caches on the database servers are counted, the total 
amount of memory used by the storage system equals 
approximately 75% of the total size of the data (exclud-
ing images). Thus a RAMCloud would only increase 
memory usage for Facebook by about one third. 

In addition, the 1000x gap in access time between 
DRAM and disk means that a cache must have excep-
tionally high hit rates to avoid significant performance 
penalties: even a 1% miss ratio for a DRAM cache 
costs a factor of 10x in performance.  A caching ap-
proach makes the deceptive suggestion that “a few 
cache misses are OK” and lures programmers into con-
figurations where system performance is poor. 

For these reasons we believe that caches in the future 
will have to be so large that they will provide little cost 
benefit while still introducing significant performance 
risk.  RAMClouds may cost slightly more than caching 
systems, but they will provide guaranteed performance 
independent of access patterns or locality. 

3.4 Does latency matter? 
The most unique aspect of RAMClouds relative to oth-
er storage systems is the potential for extraordinarily 
low latency.  On the one hand, 5-10 µs latency may 
seem unnecessary, and it is hard to point to Web appli-
cations that require this level of latency today. Howev-
er, we believe that low latency is one of the most im-
portant features of RAMClouds. 

There may not be many Web applications that require 
5-10 µs latency today, but this is because there are no 
storage systems that can support such a requirement. In 
contrast, traditional applications expect and get latency 
significantly less than 5-10 µs (see Figure 1). In these 
applications the data for the application resides in main-
memory data structures co-located with the applica-
tion's front end.  Such data can be explored with very 
low latency by the application. In Web applications the 
data is stored on separate storage servers. Because of 
high data latency, Web applications typically cannot 
afford to make complex unpredictable explorations of 
their data, and this constrains the functionality they can 
provide. If Web applications are to replace traditional 
applications, as has been widely predicted, then they 
will need access to data with latency much closer to 
what traditional applications enjoy. 
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Figure 1. In a traditional application (a) the application’s data structures reside in memory on the same machine containing 
the application logic and user interface code.  In a scalable Web application (b) the data is stored on separate servers from the 
application's user interface and business logic.  Because of the high latency of data access, it is expensive for a Web applica-
tion to perform iterative explorations of the data; typically the application server must fetch all of the data needed for a Web 
page in a small number of bulk requests. Lower latency will enable more complex data explorations. 
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Today's Web applications are already using data in 
complex ways and struggling with latency issues. For 
example, when Facebook receives an HTTP request for 
a Web page, the application server makes an average of 
130 internal requests (inside the Facebook site) as part 
of generating the HTML for the page [13]. These re-
quests must be issued sequentially, since later requests 
depend on results produced by earlier requests. The 
cumulative latency of the internal requests is one of the 
limiting factors in overall response time to users, so 
considerable developer effort is expended to minimize 
the number and size of requests.  Amazon has reported 
similar results, with 100-200 requests to generate 
HTML for each page [8]. 

High latency data access has also caused problems for 
database applications. Queries that do not match the 
layout of data on disk, and hence require numerous 
seeks, can be intolerably slow.  Iterative searches such 
as tree walks, where the nth data item cannot be identi-
fied until the n-1th item has been examined, result in 
too many high latency queries to be practical.  In recent 
years numerous specialized database architectures have 
appeared, such as column stores, stream processing 
engines, and array stores.  Each of these reorganizes 
data on disk in order to reduce latency for a particular 
style of query; each produces order-of-magnitude spee-
dups for a particular application area, but none is gen-
eral-purpose.  Stonebraker et al. have predicted the end 
of the “one size fits all” database because there is no 
disk layout that is efficient for all applications [23].  
However, with sufficiently low latency none of these 
specialized approaches are needed. RAMClouds offer 
the hope of a new “one size fits all” where performance 
is independent of data placement and a rich variety of 
queries becomes efficient. 

By providing random access with very low latency to 
very large datasets, RAMClouds will not only simplify 
the development of existing applications, but they will 
also enable new applications that access large amounts 
of data more intensively than has ever been possible.  
One example is massive multiplayer games involving 
interactions between thousands of players. More gener-
ally, RAMClouds will be well-suited to algorithms that 
must traverse large irregular graph structures, where the 
access patterns are so unpredictable that the full latency 
of the storage system must be incurred for each item 
retrieved. RAMClouds will allow a single sequential 
agent to operate much more quickly on such a struc-
ture, and they will also permit thousands of agents to 
operate concurrently on shared graphs. 

Low latency also offers other benefits, such as enabling 
a higher level of consistency; we will describe these 

benefits when discussing RAMCloud implementation 
issues in Section 4. 

3.5 Use flash memory instead of DRAM? 
Flash memory offers another alternative with lower 
latency than disk.  Today it is most commonly used in 
devices such as cameras and media players, but it is 
receiving increasing attention for general-purpose on-
line storage [1].  A RAMCloud could be constructed 
with flash memory as the primary storage technology 
instead of DRAM (“FlashCloud”), and this would be 
cheaper and consume less energy than a DRAM-based 
approach. Nonetheless, we believe a DRAM-based 
implementation is more attractive because it offers 
higher performance. 

The primary advantage of DRAM over flash memory is 
latency.  Flash devices have read latencies as low as 20-
50 µs, but they are typically packaged as I/O devices, 
which adds additional latency for device drivers and 
interrupt handlers. Write latencies for flash devices are 
200 µs or more.  Overall, a RAMCloud is likely to have 
latency 5-10x lower than a FlashCloud, which will in-
crease the benefits discussed in Section 3.4. Also, from 
a research standpoint RAMCloud encourages a more 
aggressive attack on latency in the rest of the system; 
with FlashCloud the device latency will dominate, re-
moving the incentive to improve latency of other sys-
tem components. 

RAMClouds also provide higher throughput than 
FlashClouds, which can make them attractive even in 
situations where latency isn’t important.  Figure 2, re-
produced from Andersen et al. [1], generalizes Jim 
Gray's Rule. It indicates which of disk, flash, and 
DRAM is cheapest for a given system, given its re-
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Figure 2.  This figure (reproduced from Andersen et al. 
[1]) indicates which storage technology has the lowest 
total cost of ownership over 3 years, including server 
cost and energy usage, given the required dataset size 
and query rate for an application (assumes random 
access workloads).  
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quirements in terms of dataset size and operations/sec.  
For high query rates and smaller dataset sizes DRAM is 
cheapest; for low query rates and large datasets disk is 
cheapest; and flash is cheapest in the middle ground. 

Interestingly, the dividing lines in Figure 2 are all shift-
ing upwards with time, which will increase the cover-
age of RAMClouds in the future. To understand this 
effect, consider the dividing line between flash and 
DRAM. At this boundary the cost of flash is limited by 
cost/query/sec, while the cost of DRAM is limited by 
cost/bit. Thus the boundary moves upwards as the 
cost/bit of DRAM improves; it moves to the right as the 
cost/query/sec. of flash improves.  For all three storage 
technologies cost/bit is improving much more rapidly 
than cost/query/sec, so all of the boundaries are moving 
upwards. 

In the future it is possible that the latency of flash 
memory may improve to match DRAM; in addition, 
there are several other emerging memory technologies 
such as phase-change memory that may ultimately 
prove to be better than DRAM for storage.  Even if this 
happens, many of the implementation techniques de-
veloped for RAMClouds will carry over to other ran-
dom access memory technologies.  If RAMClouds can 
be implemented successfully they will take memory 
volatility out of the equation, allowing storage technol-
ogy to be selected based on performance, cost, and 
energy consumption. 

3.6 RAMCloud applicability today 
RAMClouds are already practical for a variety of appli-
cations today: 
• As of August 2009 all of the non-image data for Fa-

cebook occupies about 260TB [13], which is proba-
bly near the upper limit of practicality for RAM-
Cloud today. 

• Table 3 estimates that customer data for a large-scale 
online retailer or airline would fit comfortably in a 
small fraction of the RAMCloud configuration in 
Table 1. These applications are unlikely to be the 
first to use RAMClouds, but they illustrate that many 

applications have historically been considered 
“large” can be accommodated easily by a RAM-
Cloud. 

• The cost of DRAM today is roughly the same as the 
cost of disk 10 years ago ($10-30/Gbyte), so any da-
ta that could be stored cost-effectively on disk then 
can be stored cost-effectively in DRAM today. 

It is probably not yet practical to use RAMClouds for 
large-scale storage of media such as videos, photos, and 
songs (and these objects make better use of disks be-
cause of their large size). However, RAMClouds are 
practical for almost all other online data today, and 
future improvements in DRAM technology will proba-
bly make RAMClouds attractive for media within a few 
years. 

4 Research Issues 
There are numerous challenging issues that must be 
addressed before a practical RAMCloud system can be 
constructed.  This section describes several of those 
issues, along with some possible solutions.  Some of 
these issues, such as data model and concurrency con-
trol, are common to all distributed storage systems, so 
there may be solutions devised by other projects that 
will also work for RAMClouds; others, such as low 
latency RPC and data durability, may require a unique 
approach for RAMClouds. 

4.1 Low latency RPC 
Although latencies less than 10µs have been achieved 
in specialized networks such as Infiniband and Myrinet, 
most existing datacenters use networking infrastructure 
based on Ethernet/IP/TCP, with typical round-trip times 
for remote procedure calls of 300-500 µs. We believe it 
is possible to reduce this to 5-10 µs, but doing so will 
require innovations at several levels. The greatest ob-
stacle today is latency in the network switches.  A large 
datacenter is likely to have a three-tier switching struc-
ture, so each packet traverses five switches as it moves 
up through the switching hierarchy and back down to 
its destination. Typical switches today introduce delays 

Online Retailer  Airline Reservations 
 Revenues/year: $16B Flights/day: 4000 
 Average order size $40 Passengers/flight: 150 
 Orders/year 400M Passenger-flights/year: 220M 
 Data/order 1000 - 10000 bytes Data/passenger-flight: 1000 - 10000 bytes 
 Order data/year: 400GB - 4.0TB Passenger data/year: 220GB - 2.2 TB 
 RAMCloud cost: $24K-240K RAMCloud cost: $13K-130K 

Table 3. Estimates of the total storage capacity needed for one year’s customer data of a hypothetical online retailer and 
a hypothetical airline. In each case the total requirements are no more than a few terabytes, which would fit in a modest-
sized RAMCloud.  The last line estimates the purchase cost for RAMCloud servers, using the data from Table 1. 
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of 10’s of microseconds each, for a total switching la-
tency of 100 µs or more in each direction.  Newer 
10GB switches such as the Arista 7100S [13] use cut-
through routing and claim latencies of less than 1 µs, 
but this will still produce a total network delay of near-
ly 5 µs in each direction. Additional improvements in 
switching latency will be required to achieve RPC 
times less than 10 µs. 

In order to achieve 5-10 µs latency and 1 million re-
quests/second/server, RAMCloud servers will need to 
process each request in 1 µs or less; this will require 
significant reductions in software overheads.  General-
purpose operating systems introduce high overheads for 
interrupt processing, network protocol stacks, and con-
text switching. In RAMCloud servers it may make 
sense to use a special-purpose software architecture 
where one core is dedicated to polling the network in-
terface(s) in order to eliminate interrupts and context 
switches. The network core can perform basic packet 
processing and then hand off requests to other cores 
that carry out the requests.  RAMCloud servers will 
make good use of multi-core architectures, since differ-
ent requests can be handled in parallel on different 
cores. 

On application server machines virtualization is becom-
ing more and more popular as a mechanism for manag-
ing applications. As a result, incoming packets must 
first pass through a virtual machine monitor and then a 
guest operating system before reaching the application. 
Achieving low latency will require these overheads to 
be reduced, perhaps by passing packets directly from 
the virtual machine monitor to the application. Another 
approach is to use network interfaces that can be 
mapped directly into an application's address space so 
that applications can send and receive packets without 
the involvement of either the operating system or the 
virtual machine monitor. 

In order to achieve the most efficient network commu-
nication, it may be necessary to modify the TCP proto-
col or use a different reliable-delivery protocol based 
on UDP: 
• TCP retransmission timeouts are typically hundreds 

of milliseconds or more; this is necessary to manage 
congestion in long-haul networks, but it interferes 
with efficient operation inside a datacenter: even a 
low rate of packet loss will significantly degrade av-
erage latency. 

• The flow-oriented nature of TCP offers little advan-
tage for RAMClouds, since individual requests will 
be relatively small. Flows introduce additional state 
and complexity in packet processing without provid-
ing much benefit in an environment like RAMCloud. 

• A custom protocol can use an acknowledgment 
scheme optimized for the request-response nature of 
RAMCloud communication, resulting in fewer ac-
knowledgment packets than TCP. 

Although 5-10 µs RPC latency seems like the best that 
can be achieved in the near future, lower latency would 
be even better. It is an open question whether further 
improvements are possible; for example, is it possible 
eventually to achieve RPC latency within a datacenter 
of 1 µs? At this level, even speed-of-light delays will 
be significant. 

In addition to low latency, RAMClouds will also re-
quire high bandwidth from the networking infrastruc-
ture.  Most current datacenter networks are oversub-
scribed by 10x or more at the upper levels, meaning 
that the system cannot support random communication 
patterns at the full bandwidth of the lowest-level links. 
It is not clear that there will be much locality in the 
communication patterns for RAMCloud servers, so 
bisection bandwidth may need to be increased in the 
upper levels of datacenter networks. 

4.2 Durability and availability 
For RAMClouds to be widely used they must offer a 
high level of durability and availability (at least as good 
as today's disk-based systems).  At a minimum this 
means that a crash of a single server must not cause 
data to be lost or impact system availability for more 
than a few seconds. RAMClouds must also offer rea-
sonable protection against power outages, and they may 
need to include cross-datacenter replication. We as-
sume that any guarantees about data durability must 
take effect at the time a storage server responds to a 
write request.  

One approach to durability is to replicate each object in 
the memories of several server machines and update all 
of the replicas before responding to write requests.  At 
least 3 copies of each object will probably be needed to 
assure an adequate level of durability and availability, 
so this approach would triple the cost of memory, 
which is the dominant factor in overall system cost.  It 
would also increase energy usage significantly. The 
cost of main-memory replication can be reduced by 
using coding techniques such as parity striping [17], 
but this makes crash recovery considerably more ex-
pensive. In any case, replication in memory would de-
pend on a reliable power source, so power outages do 
not take down all of the replicas simultaneously. For 
these reasons, we believe RAMClouds will probably 
use a technology other than DRAM for backup copies 
of data. 
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An alternative approach to durability is to keep a single 
copy of each object in DRAM, but have each server 
back up new data on its local disk as part of every write 
operation. However, this approach is undesirable be-
cause it ties write latency to disk latency and still leaves 
data unavailable if the server crashes. At the very least, 
data must be replicated on multiple server machines. 

Figure 3 outlines an alternative called buffered logging 
that uses both disk and memory for backup. In this ap-
proach a single copy of each object is stored in DRAM 
of a primary server and copies are kept on the disks of 
two or more backup servers; each server acts as both 
primary and backup.  However, the disk copies are not 
updated synchronously during write operations. In-
stead, the primary server updates its DRAM and for-
wards log entries to the backup servers, where they are 
stored temporarily in DRAM. The write operation re-
turns as soon as the log entries have been written to 
DRAM in the backups. Each backup server collects log 
entries into batches that can be written efficiently to a 
log on disk. Once log entries have been written to disk 
they can be removed from the backup’s DRAM. 

If a server crashes in the buffered logging approach, the 
data in its DRAM can be reconstructed on any of the 
backup servers by processing the disk logs. However, 
two optimizations will be required in order to recover 
quickly enough to avoid service disruption.  First, the 
disk logs must be truncated to reduce the amount of 
data that must be read during recovery.  One approach 
is to create occasional checkpoints, after which the log 
can be cleared. Another approach is to use log cleaning 
techniques like those developed for log-structured file 
systems [21], where portions of the log with stale in-

formation are occasionally rewritten to squeeze out the 
stale data and reduce the log size. 

write

Even with log truncation, the total amount of data to 
read will be at least as large as the size of the crashed 
server's DRAM; at current disk transfer speeds it will 
take ten minutes or more to read this much data from a 
single disk.  The second optimization is to divide the 
DRAM of each primary server into hundreds of shards, 
with each shard assigned to different backup servers.  
After a crash, one backup server for each shard reads 
its (smaller) log in parallel; each backup server acts as a 
temporary primary for its shard until a full copy of the 
lost server’s DRAM can be reconstructed elsewhere in 
the RAMCloud. With this approach it should be possi-
ble to resume operation (using the backup servers) 
within a few seconds of a crash. 

Buffered logging allows both reads and writes to pro-
ceed at DRAM speeds while still providing durability 
and availability. However, the total system throughput 
for writes will be limited by the disk bandwidth availa-
ble for writing log entries.  Assuming typical updates of 
a few hundred bytes, a log-cleaning approach for trun-
cation, and a single disk per server with 100 MB/sec 
throughput, we estimate that each server can support 
around 50,000 updates/second (vs. 1M reads/sec).  It 
may make sense to use flash memory instead of disk for 
backup copies, if flash memory can be packaged in a 
way that supports higher write throughput than disk. 
For the highest update rates the only solution is to keep 
replicas in DRAM. 

Power failures can be handled in one of three ways in a 
RAMCloud: 
• Servers continue operating long enough after receiv-

ing warning of an impending power outage to flush 
data to disk. With buffered logging a few seconds is 
sufficient to flush buffered log entries. With replica-
tion in DRAM at least 10 minutes will be required. 

• Applications tolerate the loss of unwritten log data in 
an unexpected power failure (this option exists only 
for the buffered logging approach). 

• All data must be committed to stable storage as part 
of each write operation; this will degrade write la-
tency and system throughput. 

As previously mentioned, some applications may re-
quire data to be replicated in multiple datacenters. A 
multi-datacenter approach offers two advantages: it can 
continue operation even if a single datacenter becomes 
completely unavailable, and it can also reduce the la-
tency of communication with geographically distri-
buted users as well as long-haul network bandwidth. A 
RAMCloud can still provide high performance for 
reads in this environment, but write performance will 

DRAM

disk

DRAM

disk

log log

DRAM

disk

Storage Servers

Figure 3. In the buffered logging approach to durability, 
a single copy of each object is stored in DRAM. When an 
object is modified, the changes are logged to 2 or more 
other servers.  Initially the log entries are stored in the 
DRAM of the backup servers; they are transferred to disk 
asynchronously in batches in order to utilize the full disk 
bandwidth. 
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be significantly degraded. The bandwidth between da-
tacenters will limit aggregate write throughput, and 
applications will have to accept higher latency for write 
operations (10’s or 100’s of milliseconds) in order to 
update remote datacenters synchronously.  An alterna-
tive is to allow write operations to return before remote 
datacenters have been updated (meaning some “com-
mitted” data could be lost if the originating datacenter 
crashes).  In this case, if the links between datacenters 
have enough bandwidth, then it may be possible to 
achieve the same write performance in a multi-
datacenter RAMCloud as a single-datacenter imple-
mentation. 

If a RAMCloud system is to ensure data integrity, it 
must be able to detect all significant forms of corrup-
tion; the use of DRAM for storage complicates this in 
several ways. First, bit error rates for DRAM are rela-
tively high [22] so ECC memory will be necessary to 
avoid undetected errors. Even so, there are several oth-
er ways that DRAM can become corrupted, such as 
errors in peripheral logic, software bugs that make stray 
writes to memory, and software or hardware errors re-
lated to DMA devices. Without special attention, such 
corruptions will not be detected. Thus RAMClouds will 
probably need to augment stored objects with check-
sums that can be verified when objects are read. It may 
also make sense to scan stored data periodically to 
detect latent errors. 

4.3 Data model 
Another issue for RAMClouds is the data model for the 
system.  There are many possible choices, and existing 
systems have explored almost every imaginable combi-
nation of features.  The data model includes three over-
all aspects. First, it defines the nature of the basic ob-
jects stored in the system. In some systems the basic 
objects are just variable-length “blobs” of bytes where 
the storage system knows nothing about their internal 
structure. At the other extreme, the basic objects can 
have specific structure enforced by the system; for ex-
ample, a relational database requires each record to 
consist of a fixed number of fields with prespecified 
types such as integer, string, or date.  In either case we 
expect most objects to be small (perhaps a few hundred 
bytes), containing information equivalent to a record in 
a database or an object in a programming language 
such as C++ or Java. 

The second aspect of a data model is its support for 
aggregation: how are basic objects organized into high-
er-level structures?  In the simplest case, such as key-
value stores, the storage system provides no aggrega-
tion:  the only operations are reads and writes of basic 

objects.  Most systems provide some sort of aggrega-
tion; for example, in a relational database the rows are 
organized into tables and tables can be augmented with 
indices to accelerate queries. 

The third aspect of a data model is its mechanisms for 
naming and indexing: when retrieving or modifying 
basic objects, how are the objects named?  In the sim-
plest case, such as a key-value store, each object has a 
single unique identifier that must be used in all refer-
ences to the object. At the other extreme, relational 
databases use content-based addressing: rows are se-
lected by specifying the values of one or more fields in 
the row.  Any field or combination of fields can serve 
as a “name” for the row when looking it up, and a po-
werful query language can be used to combine the rows 
from different tables in a single query. 

The highly-structured relational data model has been 
the dominant one for storage systems over the last four 
decades, and it provides extraordinary power and con-
venience. However, it does not appear practical to scale 
the relational structures over large numbers of servers; 
we know of no RDBMS that includes thousands of 
server machines (or even hundreds) in a single unified 
system.  In order to achieve scalability, some of the 
relational features, such as large-scale joins and com-
plex transactions, will probably have to be sacrificed 
(most large-scale Web applications have already made 
these sacrifices). 

At the opposite extreme, unstructured models such as 
key-value stores appear highly scalable, but they may 
not be rich enough to support a variety of applications 
conveniently. For example, most applications need 
tables or some other form of aggregation, plus index-
ing; these operations may be difficult or expensive for 
an application to implement without support from the 
underlying storage system. 

One approach that seems promising to us is an interme-
diate one where servers do not impose structure on data 
but do support aggregation and indexing.  In this ap-
proach the basic objects are blobs of bytes. The storage 
servers never interpret the contents of the objects, so 
different applications can structure their objects diffe-
rently; some applications may use relational-style struc-
tures, while others may use more loosely-structured 
data such as JSON or XML. The servers do provide a 
table mechanism for grouping objects; among other 
things, tables make it easier to share a RAMCloud 
among multiple applications (access controls can be 
specified for tables, and administrative operations such 
as deleting all of the data for a defunct application be-
come simpler).  
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In this approach objects can be named either using 
unique identifiers or using indices. The servers allow 
any number of indices to be associated with each table. 
Clients must manage indices with explicit requests 
(“associate key k with object o in index i”, or “delete 
the association between key k and object o in index i”), 
but can piggyback index updates with object updates; 
the servers will guarantee that either all or none of the 
updates complete.  This allows well-formed applica-
tions to maintain consistency between tables and their 
indices without requiring servers to understand the 
structure of objects.  The complexity of managing in-
dices can be hidden in client-side libraries (see Section 
4.7). 

4.4 Distribution and scaling 
A RAMCloud must provide the appearance of a single 
unified storage system even though it is actually im-
plemented with thousands of server machines. The dis-
tribution of the system should not be reflected in the 
APIs it provides to application developers, and it 
should be possible to reconfigure the system (e.g. by 
adding or removing servers) without impacting running 
applications or involving developers.  This represents 
one of the most important advantages of RAMCloud 
over most existing storage systems, where distribution 
and scaling must be managed explicitly by developers. 

The primary issue in the distribution and scaling of the 
system is data placement. When a new data object is 
created it must be assigned to one or more servers for 
storage. Later on, the object may need to be moved 
between servers in order to optimize the performance 
of the system or to accommodate the entry and exit of 
servers. Given the scale and complexity of a RAM-
Cloud system, the decisions about data placement and 
movement will need to be made automatically, without 
human involvement. 

For example, assume that a RAMCloud provides a ta-
ble mechanism for grouping related objects. For small 
tables it is most efficient to store the entire table on a 
single server.  This allows multiple objects to be re-
trieved from the table with a single request to a single 
server, whereas distributing the table may require mul-
tiple requests to different servers. The single-server 
approach also minimizes the amount of configuration 
information that must be managed for the table.  If the 
system supports indices, it will be most efficient to 
keep each index on the same server as the table for the 
index, so that an indexed lookup can be performed with 
a single RPC. 

However, some tables will eventually become too large 
or too hot for a single server, in which case they will 

need to be partitioned among multiple servers.  It may 
make sense to scatter the table's data as randomly as 
possible in order to balance load among the servers, or 
it may be preferable to partition the table based on an 
index, so that adjacent objects in the index are co-
located on the same server and can be manipulated with 
a single RPC.  It may also make sense to partition in-
dices along with their tables, so that index entries are 
located on the same servers as the corresponding table 
objects. 

Because of the high throughput of its servers, a RAM-
Cloud is unlikely to need data replication for perfor-
mance reasons; replication will be needed only for data 
durability and availability. If a server becomes over-
loaded then some of its tables can be moved to other 
servers; if a single table overloads the server then the 
table can be partitioned to spread the load.  Partitioning 
is already needed to handle large tables, so it makes 
sense to use this mechanism for load balancing as well.  
Replication for performance will only be needed if the 
access rate to a single object exceeds the 1M 
ops/second throughput of a single server; this situation 
may be so rare that it can be handled with special tech-
niques in the affected applications. 

Given the size of a RAMCloud system, its configura-
tion is likely to change frequently, both because of 
changes in the underlying hardware (server crashes, 
new server additions, etc.) and because of changes in 
the applications. Thus it will be important for RAM-
Clouds to move data between servers efficiently and 
transparently. It must be possible to carry out data mi-
gration while applications are running, without impact-
ing their performance or availability.  The logging ap-
proach used for data durability makes data movement 
relatively straightforward: data can be copied at leisure 
from source to destination while continuing to serve 
requests at the source; then the update log can be rep-
layed on the destination to incorporate any changes 
made during the copy; finally a short synchronized op-
eration between source and destination can be used to 
apply any final updates and transfer ownership. 

4.5 Concurrency, transactions, and con-
sistency 

One of the most challenging issues for RAMCloud is 
how to handle interactions between requests that are 
being serviced simultaneously. For example, can an 
application server group a series of updates into a 
transactional unit so that other application servers either 
see all of the updates or none of them? The ACID 
guarantees provided by relational database systems 
handle concurrency in a clean and powerful way that 
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simplifies the construction of applications [19].  How-
ever, the ACID properties scale poorly: no one has yet 
constructed a system with ACID properties at the scale 
we envision for RAMClouds.  Many Web applications 
do not need full ACID behavior and do not wish to pay 
for it. 

Because of this, recent storage systems have explored a 
variety of alternative approaches that give up some of 
the ACID properties in order to improve scalability. For 
example, Bigtable [4] does not support transactions 
involving more than a single row and Dynamo [8] does 
not guarantee immediate and consistent updates of rep-
licas.  These restrictions improve some system proper-
ties, such as scalability or availability, but they also 
complicate life for developers and cause confusing be-
havior for users. For example, in a system that doesn't 
guarantee consistency of replicas, if a user reads a val-
ue that he or she wrote recently (“read after write”) it is 
possible for the read to return the old value. 

One potential benefit of RAMCloud’s extremely low 
latency is that it may enable a higher level of consisten-
cy than other systems of comparable scale.  ACID 
properties become expensive to implement when there 
are many transactions executing concurrently, since this 
increases the likelihood of conflicts.  Concurrency is 
determined by (a) the amount of time each transaction 
spans in the system and (b) the overall rate at which 
transactions enter the system. Longer execution times 
for transactions increase the degree of concurrency, as 
does greater system throughput.  By reducing latency, 
RAMClouds reduce the length of time each transaction 
stays in the system, which reduces aborted transactions 
(for optimistic concurrency control) and lock wait times 
(for pessimistic concurrency control).  As a result, a 
low latency system can scale to much higher overall 
throughput before the cost of ACID becomes prohibi-
tive. 

However, the potential for stronger consistency will be 
harder to realize for applications that require replication 
across datacenters. In these applications inter-
datacenter wire delays will force high write latencies, 
which will increase the degree of concurrency and 
make stronger consistency more expensive. 

In addition, as discussed in Section 4.4, the high 
throughput of a RAMCloud makes data replication un-
necessary. This eliminates the consistency issues and 
overhead associated with replication, and it creates a 
simpler programming model for application developers. 

4.6 Multi-tenancy 
A single large RAMCloud system must support shared 
access by hundreds of applications of varying sizes. A 
small application should get all of the performance and 
durability advantages provided by RAMCloud at a cost 
proportional to its memory usage.  For example, it 
should be possible to provide a few gigabytes of sto-
rage to an application for only a few hundred dollars 
per year, since this represents just a small fraction of 
one server.  If an application suddenly becomes popular 
it should be able to scale quickly within its RAMCloud 
to achieve high performance levels on short notice.  
Because of its scale, a RAMCloud can efficiently 
amortize the cost of spare capacity over many applica-
tions. 

In order to support multiple tenants, RAMClouds will 
need to provide access control and security mechanisms 
reliable enough to allow mutually antagonistic applica-
tions to cohabitate in the same RAMCloud cluster.  
RAMClouds may also need to provide mechanisms for 
performance isolation, so that one application with a 
very high workload does not degrade performance of 
other applications. Performance isolation is a difficult 
challenge, and could require partitioning of both data 
and network bandwidth in the system. 

4.7 Server-client functional distribution 
A RAMCloud system is distributed in two different 
ways: application code runs on separate machines from 
storage servers, and the stored data is spread across 
thousands of servers. We have already discussed the 
distribution between storage servers; we now turn to 
the distribution between applications and storage serv-
ers, which raises interesting questions about where var-
ious functions in the system should be implemented.  

Applications will access RAMCloud storage using a 
library package resident on the application servers. The 
library might be as simple as a thin wrapper layer on 
top of the RAMCloud RPC calls, but it will probably 
implement more significant functionality. For example, 
the library is likely to include a cache of configuration 
information so that RPCs can be directed immediately 
to the correct server for the desired data.  There are 
several other functions whose implementation probably 
belongs in the client library as well. For example, sup-
pose the storage system implements a query that re-
trieves several objects from a table and returns them in 
sorted order. The objects themselves may reside on 
multiple servers, so it is most efficient for the client 
library to collect partial results from each of the servers 
and combine and sort them locally (otherwise all of the 
entries would have to be collected on a single server 
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machine for sorting and then retransmitted to the client, 
resulting in extra network traffic). If the object model 
provided by storage servers consists of blobs of bytes, 
the client library is a natural place to implement a par-
ticular data model within objects, as well as higher lev-
el queries and support for indexing as described in Sec-
tion 4.3. Different client libraries can implement differ-
ent data models and query languages. 

It is also possible that some system management func-
tions could be implemented in the client library, such as 
orchestrating recovery after server crashes. However, 
this would complicate the system's recovery model, 
since an ill-timed client crash might impact the system's 
recovery after a server crash.  It probably makes sense 
for the storage servers to be self-contained, so that they 
manage themselves and can meet their service level 
agreements without depending on any particular beha-
vior of client machines. 

Certain functions, such as access control, cannot be 
implemented safely on the clients. There is no way for 
a server to tell whether a particular request came from 
the client library or from the application itself; since the 
application isn't trusted to make access control deci-
sions, the client library cannot be trusted either. 

It may also make sense to migrate functionality from 
the clients to the servers. For example, in bulk-
processing applications such as MapReduce [7] it may 
be attractive for an application to upload code to the 
servers so that data can be processed immediately on 
the servers without shipping it over the network.  This 
approach makes sense for simple operations that reduce 
network traffic, such as counting records with particu-
lar attributes.  Of course, uploading code to the servers 
will introduce additional security issues; the servers 
must ensure that malicious code cannot damage the 
storage system.  If a RAMCloud can return data over 
the network with very high efficiency, then there will 
be less need for code uploading. 

4.8 Self-management 
For RAMClouds to be successful they must manage 
themselves automatically. With thousands of servers, 
each using hundreds of its peers for a sharded backup 
scheme, the overall system complexity will be far too 
great for a human operator to understand and manage. 
In addition, a single RAMCloud may support hundreds 
of applications with competing needs; it will need to 
monitor its own performance and adjust its configura-
tion automatically as application behavior changes.  
Fortunately, building a new storage system from 
scratch provides an opportunity to get this essential 

functionality done right, thereby reducing operational 
cost compared to current storage systems. 

Instrumentation will be a key element in RAMCloud 
systems. The servers will need to gather significant 
amounts of data to drive system management decisions, 
and data from different servers will need to be inte-
grated to form a cohesive overall picture of system be-
havior. Furthermore, data gathering must not signifi-
cantly degrade the latency or throughput of the system. 

5 RAMCloud Disadvantages 
The most obvious drawbacks of RAMClouds are high 
cost per bit and high energy usage per bit. For both of 
these metrics RAMCloud storage will be 50-100x 
worse than a pure disk-based system and 5-10x worse 
than a storage system based on flash memory (see [1] 
for sample configurations and metrics). A RAMCloud 
system will also require more floor space in a datacen-
ter than a system based on disk or flash memory. Thus, 
if an application needs to store a large amount of data 
inexpensively and has a relatively low access rate, 
RAMCloud is not the best solution. 

However, RAMClouds become much more attractive 
for applications with high throughput requirements. 
When measured in terms of cost per operation or ener-
gy per operation, RAMClouds are 100-1000x more 
efficient than disk-based systems and 5-10x more effi-
cient than systems based on flash memory. Thus for 
systems with high throughput requirements a RAM-
Cloud can provide not just high performance but also 
energy efficiency. It may also be possible to reduce 
RAMCloud energy usage by taking advantage of the 
low-power mode offered by DRAM chips, particularly 
during periods of low activity. 

In addition to these disadvantages, some of RAM-
Cloud's advantages will be lost for applications that 
require data replication across datacenters. In such en-
vironments the latency of updates will be dominated by 
speed-of-light delays between datacenters, so RAM-
Clouds will have little or no latency advantage. In addi-
tion, cross-datacenter replication makes it harder for 
RAMClouds to achieve stronger consistency as de-
scribed in Section 4.5.  However, RAMClouds can still 
offer exceptionally low latency for reads even with 
cross-datacenter replication. 

6 Related Work 
The role of DRAM in storage systems has been steadily 
increasing over a period of several decades and many 
of the RAMCloud ideas have been explored in other 
systems. For example, in the mid-1980s there were 
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numerous research experiments with databases stored 
entirely in main memory [9, 11]; however, main-
memory databases were not widely adopted, perhaps 
because of their limited capacities. The latency benefits 
of optimizing a storage system around DRAM have 
also been demonstrated in projects such as Rio Vista 
[15]. 

In recent years there has been a surge in the use of 
DRAM, driven by the performance requirements of 
large-scale Web applications. For example, both 
Google and Yahoo! store their search indices entirely in 
DRAM. Memcached [16] provides a general-purpose 
key-value store entirely in DRAM, and it is widely used 
to offload back-end database systems (however, mem-
cached makes no durability guarantees so it must be 
used as a cache).  The Bigtable storage system allows 
entire column families to be loaded into memory, where 
they can be read without any disk accesses [4].  Bigta-
ble has also explored many of the issues in federating 
large numbers of storage servers. 

The limitations of disk storage have been noted by 
many. For example, Jim Gray has predicted the migra-
tion of data from disk to random access memory [14], 
and the H-store project has reintroduced the notion of 
main-memory databases as a solution to database per-
formance problems [20].  Several projects, such as [5] 
and [10], have explored mechanisms for very low la-
tency RPC communication. 

7 Conclusion 
In the future, both technology trends and application 
requirements will dictate that a larger and larger frac-
tion of online data be kept in DRAM. In this paper we 
have argued that the best long-term solution for many 
applications may be a radical approach where all data is 
kept in DRAM all the time.  The two most important 
aspects of RAMClouds are (a) their extremely low la-
tency and (b) their ability to aggregate the resources of 
large numbers of commodity servers.  Together, these 
allow RAMClouds to scale to meet the needs of the 
largest Web applications.  In addition, low latency also 
enables richer query models, which will simplify appli-
cation development and enable new kinds of applica-
tions. Finally, the federated approach makes RAM-
Clouds an attractive substrate for cloud computing en-
vironments that require a flexible and scalable storage 
system. 

Numerous challenging issues must be addressed before 
a practical RAMCloud can be constructed. At Stanford 
University we are initiating a new research project to 
build a RAMCloud system. Over the next few years we 
hope to answer some of the research questions about 

how to build efficient and reliable RAMClouds, as well 
as to observe the impact of RAMClouds on application 
development. 
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