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Abstract—Mixed Flash and JavaScript content has become increasingly prevalent; its purveyance of dynamic features unique to each platform
has popularized it for myriad web development projects. Although Flash and JavaScript security has been examined extensively, the security of un-
trusted content that combines both has received considerably less attention. This article considers this fusion in detail, outlining several practical sce-
narios that threaten the security of web applications. The severity of these attacks warrants the development of new techniques that address the se-
curity of Flash-JavaScript content considered as a whole, in contrast to prior solutions that have examined Flash or JavaScript security individually.
Toward this end, the article presents FlashJaX, a cross-platform solution that enforces fine-grained, history-based policies that span both Flash and
JavaScript. Using in-lined reference monitoring, FlashJaX safely embeds untrusted JavaScript and Flash content in web pages without modifying
browser clients or using special plug-ins. The architecture of FlashJaX, its design and implementation, and a detailed security analysis are
exposited. Experiments with advertisements from popular ad networks demonstrate that FlashJaX is transparent to policy-compliant advertisement
content, yet blocks many common attack vectors that exploit the fusion of these web platforms.
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1 INTRODUCTION

JAVASCRIPT (JS) and Adobe ActionScript (AS) (the lan-
guage for authoring Flash applet content) are two widely

used platforms for developing web content. According to
recent surveys on w3techs.com, 92% of all websites use JS
and 23% of them use AS, demonstrating the popularity of
these platforms for web development.

Due to these two platforms’ popularity, much of today’s
web contains mixed JS-AS content—untrusted code that
combines AS and JS. Such code is extensively used in inter-
active advertisements, embedded third-party videos, and
plugins for content-management systems such as WordPress
and Joomla. The popularity of such content stems in part
from interactive and multimedia features that are uniquely
available through each platform. Mixed AS-JS content lever-
ages the benefits of both: the interactive features of JS for
click-tracking and context customization, and the multimedia
features of Flash for improving user experience.

Hosting sites that include such third-party content must
deal with the security and privacy issues that such inclu-
sions introduce. Major concerns include confidentiality of
private client data (e.g., cookies), integrity of host- and
user-owned content, and availability of hosting site services
(e.g., ads must not deter users from visiting the site).

The prior literature includes extensive research on secur-
ing third-party web inclusions, but most solutions focus on
JS content. These include transformation of untrusted code
(e.g., [1], [2]), security reference monitors (e.g., [3], [4], [5], [6],
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[7], [8]), and safe subsets of JS (e.g. [9], [10], [11], [12], [13],
[14]). To a lesser extent, there have also been efforts to secure
Flash/AS inclusions [15]. But in spite of these efforts, the
security of mixed AS-JS content is relatively less researched.

Meanwhile, the abuse of mixed AS-JS content for ma-
licious campaigns constitutes a significant rising threat
for content currently in circulation [16]. For example, a
Gmail vulnerability allowed attackers to steal sessions by
exploiting the AS-JS interface [17]. A WordPress attack
(CVE-2012-3414) exploits vulnerable AS-to-JS interface calls.
A recent study found that 64 of over 1000 top sites contain
Flash applications vulnerable to JS XSS attacks [18]. (Our
evaluation discusses other real-world attacks).

A deeper examination of these attacks reveals that any
defense against attacks arising from AS-JS interactions must
adopt a holistic view of the security-relevant events on both
platforms. Prior work developed for JS or Flash has not
been designed with this holistic perspective, and therefore
does not satisfactorily address security issues arising from
mixed AS-JS content. The problem of preventing malicious
behaviors that exploit combined AS-JS technologies has
therefore remained open.

Problem Scenario: To illustrate the security challenges out-
lined above, consider a page publisher P who supports
her site via embedded advertisements purveyed by an ad
network N . Publisher P trusts neither the ads (some of
which may be malicious) nor N (which may fail to filter
some malicious ads, and whose ad-loading code might
contain exploitable vulnerabilities). To protect the integrity
and reputation of her site and retain clientele, P wishes to
protect her clients from this potential malicious content.

Unfortunately, P cannot assume that all her clients take all
available steps to protect themselves from the dangers that
malvertisements pose. For example, some clients probably
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use un-patched browsers with known vulnerabilities. Finally,
some of the policies P must enforce are specific to P ’s site or
page content. For example, on a page that uses pop-up win-
dows for legitimate navigation, P may wish to disallow all
ad-generated pop-ups, which could fool clients with phishing
attacks that impersonate the legitimate pop-ups. P wishes to
protect her clients as much as possible given these realities.

To host ads, N requires P to copy N ’s JS ad-loading code
onto her published pages. When this code is served to
clients and executed, it dynamically modifies the hosting
page within the browser to display dynamically chosen ads
(implemented in JS, Flash, or both) served either by N or
directly from advertisers. Since the ad-loading code requires
dynamic read and write access to the hosting page, it must
not be placed in a protected iframe, nor may it be enclosed
in any page element that disallows scripting. Such measures
effectively deactivate ads, depriving P of most or all ad
revenue. Likewise, many ads heavily use Flash-JS interaction
(e.g., for click-tracking, contextual customization, and multi-
media); therefore P must not disable such interaction lest it
block many legitimate ads, losing significant ad revenue.

Our Approach: FlashJaX provides publisher P a means to
enforce custom security policies on untrusted third-party ad
and ad network content without deactivating the critical
functionalities, like scripting and JS-Flash interaction, re-
quired by most ads. To use FlashJaX, P adds a 〈script〉 tag
near the top of her published pages, which dynamically
loads the FlashJaX IRM on client browsers before any other
scripts run. She also statically labels any trusted, protected
page content (e.g., publisher-authored JS code or Flash
objects) with the owning principal (expressed as a principal-
identifying html class attribute). Unlabeled Flash and JS code
is, by default, fully untrusted by FlashJaX. Finally, she may
write page-specific policies (detailed in §4) that define the
events and event-traces that each principal may exhibit. To
secure untrusted Flash content, P also hosts or accesses
a trusted ad-proxy service that dynamically installs the
FlashJaX IRM into untrusted Flash ads served to clients.

At runtime, the FlashJaX IRM dynamically monitors all
untrusted JS and Flash code executed on client machines to
enforce P ’s policies. As an example of such monitoring,
consider the pop-up prevention policy mentioned above,
which prohibits ad principals from exhibiting pop-ups but
permits trusted publisher code from doing so. Pop-ups are
implemented via a limited collection of JS Document Object
Model (DOM) and Flash runtime API services. FlashJaX
monitors these services by intercepting calls and checking
the impending operation against the acting principal’s policy.
FlashJaX passes the call through to the browser’s underlying
JS/Flash VM only if the principal’s policy permits it.

To track the current principal, FlashJaX enforces history-
based policies that constrain dynamically generated code
and the events it exhibits. For example, a Flash ad owned by
principal A that dynamically generates JS code that creates a
new script within a region of the page owned by principal
B must be successfully monitored by FlashJaX and con-
strained by policy A, not B. Such dynamic script generation
is extremely common; almost all real-world ads and ad

networks perform many layers of dynamic script generation
and html tree manipulation as they execute. Therefore, moni-
toring and constraining history-based policies (i.e., those that
constrain event histories rather than just individual events in
isolation) over dynamically generated, cross-platform code is
a critical challenge addressed by our framework.

The remainder of the paper is organized as follows:
Section 2 sketches some attack scenarios that motivate
securing the AS-JS interface. Section 3 outlines the FlashJaX
architecture and technical approach. Design and imple-
mentation details are described in §4, and a security analysis
is summarized in §5. Section 6 evaluates the implementation
in terms of effectiveness, compatibility, and performance.
Related work is discussed in §7. Section 8 discusses the
relevance of FlashJaX to web security, and §9 concludes.

2 AS-JS INTERFACE ATTACKS
This section describes the AS-JS interface, and details several
motivating attack scenarios that exploit it.
2.1 The AS-JS interface
AS-JS interaction is implemented by the call and add-
Callback methods of Flash’s ExternalInterface run-
time class. AS calls JS method f(a1, . . . , an) by invoking
call(f, a1, . . . , an), where f is a string that is passed uncen-
sored to the JS VM and evaluated as JS code to obtain a JS func-
tion reference, and where arguments a1, . . . , an are passed
as values. The evaluation of f as JS code at global scope
is a root of many vulnerabilities in AS-JS cross-language
scripts. To permit JS to call AS, the AS code may invoke
addCallback(n, c), which registers AS function closure c as
callable by JS under the pseudonym n (a name that is added
to the JS namespace of the html object that embeds the AS
script). Closure c may return a value, which is marshaled
and passed by value back to the JS caller. Together, these
facilitate two-way communication between AS and JS.

Security for this interface is provided by the
allowScriptAccess property of the object and
embed tags of the embedding page, which may be set to
always (full access), sameDomain (same origin access), or
never (none). Same origin access is the default. Addition-
ally, by default JS may only call an AS closure registered
with addCallback if the caller and callee originate from the
same domain. AS callees may adjust this restriction using the
allowDomain method of the Flash runtime’s Security class.

While useful in some settings, these security features are
too coarse to distinguish malicious from non-malicious
behavior in many contexts. Disallowing all AS-JS interaction
or limiting it to same origin access breaks a large percentage
of legitimate advertisement scripts. Therefore many ads and
publishers resort to allowing all access, inviting attacks.

The following subsections introduce several attacks that
exploit the AS-JS interface. Such attacks can only be pre-
vented by defenses that span both domains. While the
examples focus on AS-JS interface attacks, FlashJaX also
prevents attacks launched purely from JS or AS. However, to
highlight the novelty of our system over prior works that
can only guard each platform in isolation, we focus our
discussion here on attacks that involve the interface.
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2.2 Threat Model
Publishers such as Gmail that display third-party content on
client browsers are exposed to a wide variety of threats. It is
therefore important to clarify our threat model, specifically
on the nature of the protections we offer and the threats that
are outside our scope.

In-scope threats. Our broad goal in this effort is to equip
publishers with the ability to place restrictions on third-party
content. Publishers need this ability, for instance, to ensure
that third party content would not cause harm by compro-
mising the integrity of first-party content. For instance, we
would like to empower a publisher such as NY Times to
place restrictions on third party ads in their ability to modify
site-owned content. We also would like to give publishers the
ability to use our framework to enforce content confidential-
ity policies. For instance, a publisher like Gmail can enforce a
policy that prohibits ads that read email messages from subse-
quently communicating with any other untrusted principals.

Although the system we describe in this paper is capable
of enforcing a broad range of content restriction policies, we
primarily discuss its relation to the new attack surface
explored in this paper—the AS-JS interface—for reasons of
novelty and to explore this vector in depth. The remainder
of this section motivates the importance of this threat vector
with a discussion of attacks.

Out-of-scope threats. We omit threats for which publishers
can readily deploy strong protections based on prior work,
or for which appropriate policies are client browser-specific
and therefore not amenable to specification or enforcement
by publishers. Such threats include behavioral tracking
attacks that abuse cookies (which clients can address by
configuring their browsers’ cookie policies to desired privacy
levels), cross-site request forgery (CSRF), or attacks through
side channels (such as visited links or timing channels).

2.3 Motivating attack scenarios

Attack #1: Circumvention of SOP
The AS and JS VMs both enforce Same Origin Policies

(SOPs) that prohibit cross-domain interactions. However, AS
and JS SOPs have slightly different semantics [19] due to
their differing computation models, and these can presently
be exploited to circumvent SOP on either side.

For example, a malicious Flash ad can circumvent AS’s
SOP to contact a victim third-party site by dynamically
crafting a malicious JS script and passing it to the JS VM via
Flash’s external interface. The malicious JS script accesses the
browser’s DOM API to create a new 〈script〉 node (e.g., us-
ing appendChild or document.write). This new node
has a src attribute whose URL references the third-party
victim site. The URL can additionally contain information
passed from the AS applet to the third-party site. The new
node is not subject to AS’s SOP, so it successfully contacts
the remote site and retrieves the result, which is communi-
cated back to the AS side using the external interface. The
attacker thereby escapes AS’s SOP to perform two-way
communication with the victim, which can be exploited to
launch click forgery, resource theft, or flooding attacks.

This malicious behavior cannot be recognized by single-
platform detection on either the AS or JS side, since AS
permits (and ads regularly use) AS-to-JS communication, and
JS permits (and ads regularly use) dynamic script generation.
A cross-platform solution is required to link these two steps
together and detect the SOP violation.

Attack #2: Malicious Payload Injection From Flash
Heap-spraying is a form of code injection attack that first

allocates large regions of malicious payload code into a
victim VM’s heap, and then exploits a control-flow hijack
vulnerability (e.g., buffer overflow) to branch to the injected
payload. Address space randomization and other protections
prevent attackers from reliably learning the addresses of
these injected payloads, but if the payload is large enough
and has enough entry points, a randomly corrupted control-
transfer targets it with high probability.

Since some vulnerabilities are previously unknown (i.e.,
zero-day), signature-matching malware protections often
attempt to detect the payload injector instead, because it is
larger and easier to identify using monitoring mechanisms.
However, malware authors have been frustrating these
defense efforts by using cross-language heap-spraying at-
tacks [20]. In this scenario, the attacker implements AS code
that sprays the JS VM’s address space. The exploit is then
implemented separately in JS. Identification of such attacks
requires cross-platform solutions that can piece together the
two separate halves of the attack implementation.

Attack #3: Cross-Principal Resource Abuse
Publishers often embed ads from multiple ad networks.

This exposes the publisher and ad network to attacks from
the (possibly less trustworthy) ads hosted by another net-
work if those ads abuse AS-JS interaction to hijack shared
DOM resources or functions exposed by victim scripts.

Although Flash scripts may control access to their exposed
functions, such as by calling allowDomain(〈domains〉) to
admit only JS callers from 〈domains〉, the coarse granularity
of these facilities makes it extremely common for ad develop-
ers to use them imprudently, such as by supplying wildcard
“*” for 〈domains〉, which permits universal access [21]. This
makes the AS functions accessible in the JS global scope,
allowing them to be invoked by all untrusted JS code.

Hosting sites cannot effectively filter ads by the quality
of their underlying implementations, so inevitably some
vulnerable ads become embedded in the served pages on the
client side, exposing the clients to attack. For example, a
malicious JS advertisement, even if sandboxed in the JS
domain, can call such exported functions. This affords the
ad illegitimate access to DOM objects if the exposed AS
functions access or manipulate those objects in the DOM.
Prevention of this attack requires the ability to attribute
principals to actions across the AS-JS interface.

The above scenarios illustrate the need for cross-language
monitoring. It is clear that JS sandboxing methods alone
cannot prevent the attacks in scenarios #1–3. These scenarios
involve the AS-JS boundary, which is typically outside the
scope of approaches aimed at sandboxing purely JS or AS
code. The next section describes how FlashJaX’s architecture
prevents these malicious scenarios.
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Fig. 1: FlashJaX architecture. Trusted components are shaded; untrusted
(monitored) components are unshaded.

3 ARCHITECTURE

3.1 Overview

FlashJaX affords publishers a fine-grained mechanism to
safely embed untrusted JS and AS content in their web
pages. To avoid modifying the client browser or VMs (which
would introduce significant deployment barriers), we adopt
an in-lined reference monitoring approach. In-lined Reference
Monitors (IRMs) [22] modify untrusted code to enforce
security policies from the inside. The resulting code is self-
monitoring, and can therefore be safely executed on standard
browsers and VMs without additional client-side monitoring.

FlashJaX’s IRM consists of JS and AS code introduced by
the embedding page. The IRM mediates security-relevant
events exhibited on the client, permitting or denying them
based on a provider-specified policy.

A naı̈ve design implements separate IRMs for JS and AS;
however, this approach has many drawbacks. To enforce
policies involving a global event history, separate IRMs must
ensure that their security states are synchronized at every
decision point. This raises difficult race condition and TOCT-
TOU vulnerability challenges, and impairs performance.

To avoid this, FlashJaX centralizes security state-tracking
to the JS half of the IRM, and implements an AS side that
shifts the significant policy decisions to the JS side. This is
efficient because most security-relevant AS events include
AS-JS communication as a sub-component; the IRM therefore
couples its AS-JS communications atop these existing ones to
avoid unnecessary context-switches.

Figure 1 summarizes the resulting architecture. The Flash-
JaX components (shaded) consist of JS and AS event media-
tors, and a JS policy engine. The former intercept events
from untrusted JS and AS, respectively, whereas the latter
tracks event history and makes policy decisions.

Step 1 of the figure depicts the exhibition of a security-
relevant event op by the untrusted JS or AS code, which
is intercepted by the IRM. If the event occurs on the AS
side, the AS IRM implementation consults the JS side in
step 2. The JS-side IRM intercepts the event or AS-to-JS
communication and consults a principal-specific policy in
step 3. The policy engine updates the security state and
yields a true/false answer in step 4, causing the operation to
be permitted or suppressed.

As an example, an embedded AS ad might exhibit an op
that spawns JS code that tries to overwrite the publisher’s
DOM. In a typical browser environment, there is nothing to

prevent a malicious ad from successfully attacking its embed-
ding page in this way. However, on a page equipped with
FlashJaX, the ad’s JS code is intercepted by the IRM and
executed at a lower privilege level than the publisher. When
the unprivileged write-operation is intercepted, the policy
engine determines that the acting principal lacks write-access
to publisher-owned content, and suppresses the operation.

3.2 Technical approach
The example above illustrates three essential capabilities of
the IRM: It must (1) protect its programming and other
publisher-provided page content from harm, (2) guard
access to all security-relevant operations, and (3) attribute
guarded events and page content to acting/owning princi-
pals. We henceforth refer to these three capabilities as IRM
tamper-proofing (i.e., integrity enforcement), complete mediation,
and principal-tracking, respectively. In addition, to enforce
multi-principal, history-based policies, the IRM must track
both principal-specific and global security states. This section
discusses our technical approach to achieving these goals.

FlashJaX implements a JS/AS cross-language IRM that con-
strains untrusted script access to the DOM API—functions
and data properties that JS scripts access to manipulate the
page and browser. AS code cannot access the DOM directly;
instead, it submits strings to the JS VM via Flash’s external
interface, which are executed as JS code at global scope. The
heart of our IRM is therefore a JS-side implementation that
guards access to the DOM and tracks security state, while
the AS half redirects external interface accesses to the JS half.

In addition to tamper-proofing and complete media-
tion, which are established challenges for any IRM, our
enforcement of multi-principal policies introduces significant
challenges associated with principal-tracking. Accurate
principal-tracking is challenging because modern ad scripts
are highly dynamic, performing many layers of event-driven
runtime code generation as they execute. Solutions that con-
servatively reject or lose principal information for dynamic
code are therefore impractical because they break most ads.

We now describe each of these capabilities of FlashJaX at
a high level. Section 4 discusses implementation details.

3.2.1 Tamper-proofing
Tamper-proofing ensures that the IRM’s internals are unavail-
able to untrusted content. This is enforced differently at the
JS and AS layers as described below.

At the JS layer, tamper-proofing is achieved by placing
most of the IRM’s implementation inside an anonymous JS
function closure, as illustrated in Listing 1. Declarations
beginning with the var keyword are strictly local to the
closure’s scope, and therefore cannot be accessed by JS code
outside that scope unless the local scope explicitly exports
global aliases to them. This enables the IRM to enforce a
protected interface for its internal implementation.

A similar approach suffices to tamper-proof the AS half of
the IRM. The majority of the AS IRM is implemented as a
sealed, final, monitor class in a dedicated namespace. AS type-
safety and object encapsulation therefore prevent untrusted
code from accessing the monitor class’s private members.
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(function(){ // begin local scope
var principal = "bottom"; // protected principal-tracking var
getPrincipal = function(){ // export global get-accessor

return principal; };
var wrap_window = function(w) { // wrap security-relevant op

var o_open = w.open;
w.open = function() {

if (isAllowed(principal, "open", arguments))
return wrap_window(o_open.apply(this, arguments));

else return null; }
return w; }

wrap_window(window);
})(); // close and execute local scope

Listing 1: A tamper-proof local scope.

3.2.2 JavaScript Mediation
FlashJaX mediates DOM API events by wrapping them with
guard functions that consult the policy before forwarding the
request to the DOM. To achieve complete mediation, the
IRM assigns wrappers to all aliases of these security-relevant
functions before any untrusted code runs. Aliases include
static names and properties of dynamically created window
objects (e.g., frame and iframe). Although some static
aliases are browser-specific, all aliases of a given security-
relevant operation can typically be captured by wrapping
the properties of a single root object atop the JS prototype
inheritance chain [23]. The wrapper assignment code is
placed first on the page so that it is guaranteed to run
prior to any untrusted code. Dynamically generated aliases
are captured by mediating all DOM functions that can
generate window objects, and wrapping any fresh aliases
they introduce before returning control to untrusted code.

Data property accesses are guarded using JS setters and
getters, which trigger specified handler code whenever an
operation would otherwise read or write a given property.

3.2.3 ActionScript Mediation
The AS half of our IRM guards AS-to-JS control-flows by
statically in-lining an external interface wrapper class into
untrusted AS code at the binary level. FlashJaX’s binary
rewriter automatically, statically replaces all bytecode opera-
tions that access the external interface with ones that access
the wrapper class instead. This affords the wrapper class
complete mediation of all AS-to-JS flows.

Static identification of class member references can be
complicated by the fact that AS binaries frequently generate
references dynamically (e.g., from strings). Malicious code
can use such dynamic generation to obfuscate references,
concealing them from static analyses.

To avoid these complications, our rewriter therefore guards
references to the external interface’s namespace rather than its
classes or members. The namespace part of a reference is al-
most never generated dynamically. (The only AS mechanism
for doing so requires a static reference, making it statically
identifiable.) This approach greatly reduces the amount of
in-lined code, improving performance and providing a
natural resistance to reference obfuscation attacks.

Thus, all JS events invoked by AS are labeled with the
originating principal and mediated by the JS IRM, so that
the policy engine can apply the correct policy for each

principal. For example, to block attack scenario #1 (Flash
circumvention of SOP), the AS IRM labels each AS-to-JS
communication with the acting principal, allowing the JS
IRM to enforce a whitelist policy that maps each principal to
the domains it may access.

Rewriting AS binaries changes their origins; but this is not
a problem because, as discussed in §2, communicating
Flash applets can opt-out of SOP enforcement whenever the
sender and receiver agree. This allows the IRM to enforce a
different SOP that constrains communications as if the
applets had their original origins. If an ad must open direct
communication channels back to the advertiser’s server, the
advertiser can unobtrusively accommodate this via a cross-
domain policy [24]. (Note that this is transparent to ad net-
works, since their communications with ads are facilitated by
network-served JS code, not advertiser-authored AS code.)

3.2.4 Principal Tracking and Event Attribution

On pages with multiple ads, each ad principal is governed
by a distinct policy. Enforcing such multi-principal policies
is necessary to prevent scenarios such as cross-principal
resource abuse (scenario #3 of §2).

FlashJaX therefore deploys multi-principal tracking and
event attribution as follows. Whenever trusted code (e.g., the
page publisher content) introduces untrusted code (e.g., by
loading an ad), the untrusted code is launched using the
IRM’s runAs method, which defines and maintains the
code’s principal in a protected shadow stack. The shadow
stack stores a list of principal identifiers, one for each runAs
frame on the JS VM’s call stack. The IRM’s runAs method
is the only means by which the privilege level changes, and
is strictly local to the IRM; untrusted code may not call it
directly. The policy manager can read the shadow stack to
identify the principal responsible for each event exhibited by
the code, and thus apply a principal-specific policy.

Dynamic runtime code generation is a great challenge for
principal tracking. FlashJaX addresses this by catching all
runtime code generation channels and wrapping them in
new calls to runAs. We discuss this in more detail in §4.3.

3.2.5 Policy Engine

FlashJaX enforces publisher-specified policies on third party
content, and therefore requires a policy language that sup-
ports the following.

Multi-principal, cross-language policies: Attack scenario
#1 of §2 entails a sequence of inter-principal, cross-language
communications. To enforce such policies, FlashJaX must
track policy-relevant actions within and across both the AS
and JS platforms, and attribute actions to acting principals.

Stateful policies: Scenario #1 also has the characteristic
that although each step is permitted in isolation, the full
sequence of steps is impermissible. Such policies cannot be
expressed as a static list of access control rules [25], [26], [27];
an adequate policy language must capture the evolving secu-
rity state of the system. Such policies are most commonly
expressed as finite state automata (FSAs) [22], [26], [28].
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Fine-grained control: Many security-relevant page re-
sources are stored within a single, monolithic data structure—
the document tree. To guard such resources, the policy
language must support fine-grained controls. For example,
publishers may restrict a principal’s access to entire element
subtrees, individual elements, or both.

Custom policies: We also require first-class support for pub-
lishers to author custom policies based on emerging threats.
Although a fixed list of rules might support the specific pol-
icy instances described in this article, it will not generalize
to the needs of all publishers and to future threats. For
example, to block heap-sprays (scenario #2 of §2), publishers
may need to write custom content-filtering predicates that
mine binary data for newly discovered malware indicators.

To meet these requirements, FlashJaX expresses policies as
FSAs that track security state based on past events. The
FSAs recognize languages of permissible traces, where a trace
is a sequence of principal-event pairs, and each event is a
DOM operation parameterized by its argument values. Our
policies are powerful enough to detect and prevent a wide
range of attacks, including the attack scenarios described
earlier. A detailed exposition of policy specifications and
their expressiveness is provided in §4.4.

4 IMPLEMENTATION
This section describes implementation details of FlashJaX
that have been briefly introduced in the previous section.

4.1 JavaScript Wrappers
FlashJaX implements wrappers to mediate DOM API
access. Listing 1 illustrates a wrapper that guards the
window.open DOM function, which creates a pop-up win-
dow, by assigning window.open = f , where f is a func-
tion that creates the requested window if and only if the
current principal’s policy permits it. Thereafter, all calls to
window.open call wrapper f instead.

Naı̈ve JS wrapper implementations are known to be
vulnerable to a variety of attacks, including prototype poison-
ing and caller-chain abuse [4], [7], [23]. FlashJaX therefore
employs secure wrapper implementations advanced by prior
work [23]. In summary, these safe wrappers:

1) wrap all aliases of each security-relevant operation,
2) coerce all untrusted inputs to expected types, and
3) only call securely stored copies of JS API methods

(e.g., those of Function and Array), which are carefully
protected from attacker corruption.

FlashJaX augments these secure wrappers to additionally
mediate events from AS, and to precisely attribute events to
the correct principal, even if the event-exhibiting code was
generated dynamically. As a result, FlashJaX is tamper-proof
against common exploits such as those described in [7].

For data property access mediation, FlashJaX leverages
ECMAScript 5’s defineProperty function [29, §15.2.3.6]
to define setters and getters for a given property.1 The

1. Safari does not currently comply with this part of the ECMAScript 5
standard, preventing protection of data properties on Safari. However, the
rest of the DOM remains protected.

getters and setters read and store values to protected, locally-
scoped, principal-specific copies of each guarded property.
The guarded properties are set non-configurable so that un-
trusted JS code cannot remove or change the guards. Global
variables introduced by scripts are similarly protected from
abuse by other scripts by adding non-configurable getters
and setters to such variables during privilege-changes (i.e.,
within runAs from §3.2.4).

A special approach is required to adequately guard the
DOM’s document.cookie property, for which writes
have the side-effect of creating or modifying browser cookies
that may persist across sessions, and reads yield lists of pre-
viously written cookies (possibly some from prior sessions).
FlashJaX employs two browser-dependent techniques to
protect cookies: On browsers that support cloning of the
document node (e.g., FireFox and IE), FlashJaX creates a
local, protected copy of document, which the IRM’s wrap-
pers henceforth exclusively access to safely read and write
cookies. On browsers that implement cookie facilities as
browser-specific getters and setters of document.cookie
(e.g., Opera), FlashJaX creates local, protected copies of these
getters and setters to mediate access to them.

In both cases, FlashJaX adds custom getters and setters to
the global document.cookie property to provide filtered,
principal-specific views of the cookie store for each un-
trusted principal. (The trusted hosting origin’s access is not
filtered.) This confines each untrusted principal’s cookie
accesses to its own cookies.

One browser we tested (Chrome) currently admits neither
approach due to a known browser bug,2 preventing us from
protecting cookies on that browser. However, once this
bug is fixed, FlashJaX’s cookie-protection is expected to be
compatible with all major browsers.

4.2 ActionScript Rewriter
Our AS binary rewriter automatically in-lines wrappers
around all AS-to-JS flows within AS bytecode applets. The
in-lined wrapper class redirects all such flows to a JS method
named fromAS exposed by the JS IRM. For example, a JS call
originally of the form f(a1, . . . , an) is translated by the wrap-
per into a JS call of the form fromAS(id , s, f, a1, . . . , an),
where id identifies the principal, s is a one-time secret (dis-
cussed below), f is a JS expression identifying the callee, and
a1, . . . , an are the arguments to f . The fromAS method
then executes f(a1, . . . , an) at privilege id .

Impersonation Attack & Defense. The fromAS function
must protect itself from impersonation attacks in which a
malicious JS principal calls it with a false id. JS callees cannot
reliably identify their callers; incoming calls are essentially
anonymous. Therefore, the fromAS implementation calls-
back the AS applet from which each incoming AS call claims
to originate, asking it to confirm the call. The AS-side IRM
confirms by validating secret s. Secret s is freshly chosen for
each AS-to-JS call, exists only for the lifetime of the confirma-
tion process (just a few AS/JS instructions), is temporarily
stored on the AS side in a private field, and exists on the JS

2. http://code.google.com/p/chromium/issues/detail?id=45277

http://code.google.com/p/chromium/issues/detail?id=45277
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var shadowStack = [ ]; // Implement a shadow stack as a list.

// Other code may read (but not write) the current principal.
thisPrincipal = function(){

return (shadowStack.length < 1) ? "bottom" :
shadowStack[shadowStack.length − 1];

}

// Execute closure f at a specified privilege level.
var runAs = function(principal,f) {
shadowStack.push(principal);
f.apply = js.Function.apply;
var r = f.apply(this,
js.Array.prototype.slice.call(arguments,2));

shadowStack.pop();
flush_write(principal);
if (typeof r !== "undefined") return r;
}

Listing 2: Shadow stack code. Object js stores original native JS objects.
Exception-handling is not shown.

side only as a local argument to fromAS. This keeps it safe
from interception during the limited window when it is valid.

4.3 Principal Tracking and Event Attribution

Listing 2 sketches FlashJaX’s shadow stack implementation,
by which it tracks principals.

Principal-tracking Algorithm. To execute an untrusted
function f at privilege level p, the IRM invokes runAs(p, f),
which pushes principal identifier p onto the shadow stack,
runs f to completion, pops p off the shadow stack, and
returns the result. Note that since f is a closure with its own
context, calling f within the lexical scope of the monitor
does not give it access to anything in the IRM’s local scope.
Its scope is whatever context it had at creation.

As f executes, it may exhibit security-relevant events,
which are intercepted by the IRM. The IRM’s guards consult
thisPrincipal() to determine the principal to whom
each event should be attributed. Based on the result, a
principal-specific policy is then consulted to determine
whether to grant or deny each event.

The (trusted) embedding page may label static code f
with a principal identifier p, causing the IRM to execute f at
privilege p. Trusted (non-ad), static code is therefore typically
labeled with identifier top (>), which grants full privileges.
Untrusted, static code for ads is labeled with ad principals
so that it executes with lesser privileges. Unlabeled code
runs with bottom (⊥) privileges by default—i.e., the intersec-
tion of all privileges granted to all the principals.

Dynamically Generated Code. As callee f runs, it might
modify the page, such as by adding new elements with
event-handlers containing code. The DOM provides sev-
eral mechanisms for dynamic page modification (e.g.,
Node.appendChild), all of which are monitored by Flash-
JaX. No special monitoring is required for eval, since the
code it generates inherits the context of the eval, preserv-
ing the shadow stack. Thus, FlashJaX handles all dynami-
cally generated code channels. To illustrate, we here consider
the most common and most general one: document.write.

1 var flush_write = function(principal){
2 var i = document.createElement("ins");
3 i.innerHTML = write_buffer[principal];
4 write_buffer[principal] = "";

6 foreach element e within i do {
7 // Enclose handlers in principal-preserving closures.
8 foreach attribute a of e do
9 if (typeof e.a == "function") {

10 var oldHandler = e.a;
11 e.a = function() {
12 var r = runAs(principal, oldHandler);
13 if (typeof r !== "undefined") return r; };
14 }

16 // Execute scripts at generating principal’s privileges.
17 if (e is a 〈script〉 element) {
18 var newScript = makeFunction(e.textContent);
19 e.textContent = "";
20 runAs(principal, newScript);
21 }

23 // Wrap any fresh aliases of security-relevant functions.
24 if (e is a 〈frame〉 or 〈iframe〉 element) {
25 wrap_window(e.contentWindow);
26 wrap_document(e.contentWindow.document);
27 }
28 }

30 i.owner = principal;
31 document.lastChild.appendChild(i); // Append i to page.
32 }

Listing 3: Wrapping dynamically-generated code.

Operation document.write(s) pushes string s directly
onto the head of the browser’s input stream during page-
loading. Browsers execute scripts as soon as they are parsed
during the page-loading process, so these dynamic scripts
run sometime after the generating script writes them but
before the page is fully loaded. (The exact time of execution
is browser-specific.) Ads depend on this behavior, so it is
important to support and preserve it.

To do so, FlashJaX intercepts and buffers strings passed
to document.write (by storing them in the write buffer

variable in Listing 3) without immediately committing them
to the page. Once f completes, runAs calls the algorithm
sketched in Listing 3 to parse these buffered strings, label
the resulting HTML and JS code with the contributing
principal’s identifier, and commit it to the page. To avoid
writing our own parser, we use a trick: Assigning to the
innerHTML property in line 3 leverages the browser’s
built-in parser to convert the string into an HTML tree
stored in the body of an 〈ins〉 node object.

Listing 3 replaces all code in the new content with clo-
sures that recursively call runAs, so they will run at the
proper privilege level when triggered. For example, lines 11–
13 replace event-handler e.a with such a closure. The JS clo-
sure semantics guarantee that when this closure is executed,
principal will equal the principal that generated the
code, and oldHandler will execute at its original scope
(not the IRM’s scope). Thus, dynamically contributed code
inherits the privileges of its creator.

Line 18 processes JS code contributed in the body of
a dynamically generated 〈script〉 element. IRM subrou-
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Policy Engine Controller

Policy Definitions:

Principal1 Principal2 GlobalPolicy

FSM Lib GlobalFSM Lib

Fig. 2: Policy enforcement system architecture

Ctrl.checkPolicy = function(principal, event, obj, flags){
localFSM = Ctrl.policies[principal][FSM_CTRL];
return localFSM.checkPolicy(event, obj, flags) &&

globalFSM.checkPolicy(principal, event, obj, flags);
}

Listing 4: Policy engine controller

tine makeFunction (implementation not shown) uses JS’s
Function constructor to convert its string argument into a
closure that can be called by runAs. Closures created with
Function always have global lexical scope, and therefore
safely exclude the IRM’s local scope. The new closure is
executed immediately, since that is how most browsers treat
dynamically contributed scripts.

In addition to the local 〈script〉 content handled by
Listing 3, the full FlashJaX implementation also handles
remote scripts (specified as a URL in a src attribute) by
loading them through a proxy via XMLHttpRequest and
processing the resulting string as a local script. This step is
omitted from the listing for brevity.

Finally, any dynamically generated window objects intro-
duce fresh, unguarded aliases to security-relevant operations
protected by the IRM, and are therefore wrapped with
suitable guards by lines 24–27.

4.4 Policy Definition and Enforcement
FlashJaX’s policy engine is implemented in three layers of JS
as depicted in Fig. 2. The bottom layer provides two library
classes, FSM and GlobalFSM, which are built on the FSMJS
library [30]. They provide tools for defining and accessing
policy files within the policy engine.

The next layer defines global and per-principal policies. In
a typical policy file, page publishers define security states,
the initial state, forbidden states (i.e., those rejected by the
security automaton) and the transition relation. There is typi-
cally one policy file per principal, plus a global policy file
that constrains all untrusted principals and their interactions.

The third layer is the Policy Engine Controller, illustrated in
Listing 4, which interfaces the policy engine to the monitor.
Publishers assign policies by adding policy class instances
to the Ctrl.policies array in the controller. At run-
time, the controller calls checkPolicy to test whether the
global FSM and acting principal’s local FSM accept the
impending event. If so, the controller updates the FSM states;
otherwise it rejects.

This design accommodates history-based, stateful policies
over events exhibited by multiple principals. Events include
API calls with various arguments (e.g., DOM objects), and
global variable accesses. Some expressive policy examples
are illustrated below.

〈p, send(x)〉
i+ |x| ≤ n

i i+|x|

Fig. 3: A local FSA for a policy preventing heap-sprays.

Formal Description. FlashJaX defines and enforces safety
policies expressible as security automata [25] or edit au-
tomata [26] that intervene by suppressing policy-violating
events. (Other interventions are possible, but we have found
suppression to be the most useful and practical for our poli-
cies.) Formally, a FlashJaX policy is a quadruplet 〈P,E, S,G〉
where P is the universe of principal identifiers, E is the uni-
verse of events, S : P → RE is a mapping from principals
p ∈ P to regular expressions over alphabet {p} × E, and
G is a regular expression over alphabet P ×E. Regular
expression S(p) specifies the language of permissible traces
for principal p, and G specifies the language of globally
permissible traces. The system-wide policy is therefore
given by regular expression

⋂
p∈P S(p) ∩G. Intuitively, the

policy identifies the set S(p) of event sequences that each
individual principal p may exhibit, and an additional set G
that all untrusted principals as a collective may exhibit.

Policy Example. Fig. 3 shows a policy that prevents cross-
platform heap-spraying attacks (scenario #2 of §2). Such
attacks conceal themselves by implementing the spray in AS
so that it is not visible to JS analysis tools. The sprayed
payload is then passed across the AS-JS boundary, allowing
malicious JS code to branch to the payload via a JS-side
exploit not visible to AS analysis tools.

The FSA in Fig. 3 prevents such behavior by tracking
the cumulative size of data passed from AS to JS by each
untrusted principal p. When the cumulative transmission
size reaches bound n, future transmissions are rejected. The
policy therefore conservatively rejects applets that pass suspi-
ciously large quantities of data from AS to JS. Our experience
is that only malicious ads exhibit such behavior, but a more
refined policy could additionally apply malware detection
heuristics to the passed payloads to support non-malicious
ads that pass large quantities of legitimate data to JS.

The FSA for this policy consists of n+ 1 states, where
n is the maximum cumulative transmission bound. (The
number of states is not an implementation burden, since all
n+ 1 can be expressed as a single integer whose values
range from 0 to n.) For brevity, we draw the FSA using the
notation of extended finite automata (XFAs) [31] in Fig. 3.

A global policy can likewise be defined to limit the total
cumulative transmission size of all principals by using *
(denoting any principal) on the edges. This blocks heap
spraying through collusion.

Multi-principal Policies. FlashJaX’s label-based attesta-
tion (§4.3) facilitates enforcement of some sophisticated
write-protection policies, which can be leveraged to block
cross-principal resource abuses (e.g., scenario #3 of §2). Fig. 4
shows an example with three principals: an ad network
p1, and two ads p2 and p3 served by the network. Event
read(e, p) denotes a read from element e labeled p. The
label is assigned dynamically by the IRM’s attestation mecha-
nism. The FSA on the left allows p2 to read p1’s data and its
own data, but not p3’s data. Similarly, the FSA on the right
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〈p2, read(∗, p1)〉
〈p2, read(∗, p2)〉

FSA for p2

〈p3, read(∗, p1)〉
〈p3, read(∗, p3)〉

FSA for p3
Fig. 4: Local FSAs for a policy that permits ads p2 and p3 to read data
owned by ad network p1 but not data owned by each other.

ElementWhitelist = ['p1', 'p2','p3'];
fsm = new FSM();
t.init = function(){
fsm.setState( 's0'); fsm.setInitialState( 's0' );
fsm.setState( 's1'); fsm.setFinalState( 's1' );
fsm.setEdge( 's0', 's1', 'readDOM', 'p3');
currentState = fsm.getInitial();
}

Listing 5: Policy definition for p2 in Fig. 4

prohibits p3 from reading p2. Thus, ads may consult the ad
network but not each other. Wildcard ∗ is used to denote
edge labels ranging over all principals and event arguments
ranging over all values. Self-edges for events that do not
affect the security state are not shown.

Listing 5 shows the policy definition for p2’s FSA, where
s1 is the final state that rejects p2’s attempts to read p3.

Other Policy Examples. Using this policy language, we
designed and implemented policies that address several at-
tack scenarios, including the three attack scenarios described
in §2, which abuse AS-JS interactions. These are described
below. As mentioned earlier, these attacks cannot be pre-
vented by mechanisms in JS or AS alone. Other policies are
discussed in §6.3.

To stop Flash circumvention of SOP (scenario #1), FlashJaX
enforces a principal-based whitelist policy: Each principal may
only communicate with sites defined in a whitelist. FlashJaX’s
principal-tracking and event attribution mechanisms attribute
all JS code called from AS. Therefore, FlashJaX identifies
whether the JS event originates from an AS principal, and
applies an appropriate policy. The policy enforces SOP by
only permitting communications with whitelisted sites.

To inhibit cross-language heap sprays (scenario #2), Flash-
JaX enforces a multi-principal, history-based, resource-bound
policy: The cumulative AS-JS data transmission by each principal
may not exceed a per-principal bound defined by the policy, and
the total transmission by all principals may not exceed a global
bound defined by the policy. The size of transmissions by each
AS principal is tallied by the policy engine. If it exceeds
the limit, FlashJaX destroys the violating Flash object by
removing it from the page to prevent the attack.

To block cross-principal resource abuse (scenario #3), Flash-
JaX enforces principal-based access control policies: Each prin-
cipal may only access particular page elements. The legitimate ac-
cesses for each principal are defined by a whitelist of DOM
objects. The IRM monitors all DOM tree accesses and disal-
lows accesses that originate from unauthorized principals.

5 SECURITY ANALYSIS
FlashJaX enforces rewrite-enforceable safety policies [27]—i.e.,

trace properties that stipulate that some observable, decid-
able “bad thing” (possibly contingent upon the history of
past events) must not happen. Security-relevant events
consist of JS API calls and member accesses, parameterized
by their arguments and a principal identifier. Prior work has
shown that such policies can be formalized as aspect-oriented
security automata [28]. Principals are defined by the embed-
ding page, which provides a trusted mapping from un-
trusted scripts to principal identifiers. Dynamically generated
scripts inherit the identifier of the code that generates them.

The IRM’s ability to enforce these policies is contingent
upon its ability to (1) maintain IRM integrity (i.e., tamper-
proofing), (2) completely mediate security-relevant events,
and (3) accurately attribute events to principals. The enforce-
ment strategy for each of these goals forms the foundation
for enforcing the next, as depicted in Figure 5. Each tier of
security is described below.

INTEGRI
TY

MEDIATION
ATTRI

BUTION

Fig. 5: Three tiers of FlashJaX security.

IRM Integrity follows from two core language features:
lexical scoping on the JS side, and object encapsulation
(type-safety) on the AS side. That is, on the JS side, all
security-critical data and code are stored within the lo-
cal scope of an anonymous JS closure. This prevents any
outside access except via accessors explicitly exported as
global variables. This accessor collection constitutes the
protected interface to the IRM. Similarly, on the AS side, all
security-critical data and code are stored as private members
of a final, sealed AS class. Integrity of the AS portion of
the IRM therefore follows from the type-safety and object
encapsulation guarantees of the AS bytecode language.

Complete Mediation of JS API calls is achieved by mov-
ing all security-relevant API method pointers inside the
protected lexical scope before any untrusted code runs. For a
given security-relevant API method, FlashJaX systematically
explores and wraps all its aliases, including static names and
dynamic aliases (§3.2.2). Furthermore, FlashJaX also wraps
all channels generating JS code at runtime (§4.3). Thus, IRM
integrity implies complete mediation of these events; once
they are inside the local scope, they can only be accessed via
the protected IRM interface.

Mediation of data property accesses is via non-configurable
JS getters and setters, whose complete mediation is guaran-
teed by the JS VM [29, §8.7]. It is impossible for untrusted
code to change or delete the properties of wrapped objects.3

Complete mediation on the AS side is achieved by stat-
ically rewriting all references to the flash.external,

3. In earlier versions of Mozilla browsers, deleting a wrapped object
could silently restore the original object [3]; however, this is no longer
possible with ECMAScript 5’s non-configurable feature [29].
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flash.net, and flash.utils namespaces (except those
within the trusted IRM class) before any AS code runs. This
makes it impossible for any untrusted AS code to acquire a
direct reference to any external interface member; all JS
accesses therefore use the AS IRM.

Accurate Event Attribution follows from complete media-
tion of security-relevant events, which include all page- and
code-write operations. The IRM’s write-mediation labels all
dynamically written content with the authoring principal. JS
code is labeled by dynamically replacing it with a closure
that preserves the principal. Thus, when it runs, it inherits
the privileges of its author.

For this labeling to succeed, the IRM must account for all
possible locations where JS code can be dynamically submit-
ted and stored. For example, if the JS setTimeout method
is inadvertently omitted from the list of mediated methods,
scripts could use it to escape the labeling mechanism and
run unlabeled code. Since in practice the JS API has a broad,
browser-specific, and ever evolving surface, we consider this
to be the most attackable portion of our system. To make
FlashJaX robust against such omissions, unlabeled code
therefore always runs at the lowest privilege level (defined
as the intersection of permissions granted to all principals in
the system). Thus, a principal-tracking failure could lead to
conservative rejection, but never a policy violation.

Correctness of the guard code that enforces each princi-
pal’s policy is facilitated by our choice of an automaton-based
policy formalism whose semantics, expressive power, and
correct implementation are extremely well-established in the
literature (cf., [22], [26], [27], [28], [32]). Our implementation
leverages these solid design principles for high assurance.

6 EVALUATION

6.1 Code and Experiment Settings

The core JS IRM is a 300-line static script atop the hosting
page that wraps DOM functions before untrusted code runs.
The wrappers consist of about 600 more lines that mediate
security-relevant events, including dynamic writes, by con-
sulting the policy engine. The policy engine implements
FSMs using an adaptation of the fsmjs library [30] (about
9K LOC). Each individual FSM-controller contributes less
than 100 LOC.

Our AS binary rewriter is a small (< 1K SLOC) stand-
alone Java application that uses no external libraries except
the Java standard libraries. It injects the wrapper class (about
700 bytes of pre-compiled AS bytecode) and redirects all
external interface references to the injected wrapper methods.
Rewriting is fast; the median rewriting time is 0.62ms/K
(averaged across 57 Flash ads on a 2.93 GHz, Intel quad core
desktop running 64-bit JDK 1.7.0 atop Windows 7 SP1 with 4
GB ram), and rewriting increases the binary size of ads by
just 1.24%.

FlashJaX code and experiments described in this section
are available at http://securemashups.net/flashjax. (The site
does not collect any information regarding its visitors.)

TABLE 1: Attack scenarios and FlashJaX prevention
Attacks Policy applied FlashJaX prevents?

AS Circum- vention
of SOP Principal-specific whitelist X

Cross-language
Heap-spraying

Principal-specific and
history-based X

Cross-Principal
Resource Abuse

Principal-specific access
control X

Wrapper
vulnerabilities Wrapping all aliases X

Confidentiality and
integrity

Principal-specific & fine-
grained access control X

Ad-specific Principal-specific & fine-
grained access control X

6.2 Compatibility
Our compatibility experiments test whether FlashJaX pre-
serves existing, policy-adherent content in JS, AS, and mixed
AS-JS ads. We performed two sets of experiments to test a
cross-section of ads from various sources:

First, we deployed FlashJaX with ad scripts from four
popular ad networks: Google AdSense, Yahoo! Network,
Microsoft Media Network, and Clicksor. The first three
of these were among the top 15 networks in U.S. market
reach in April 2012, with market reach of 92.2%, 80.3%,
and 76.9%, respectively [33]. We ran these ads with and
without FlashJaX to observe their rendering results. All
render correctly with no visible distinctions introduced by
monitoring. No user interactions were visibly affected. This
shows that our prototype can be deployed with real-world
ad networks without loss of functionality.

Second, we tested our AS binary rewriter on 57 Flash ads
harvested from browsing sessions on popular browsers over
several weeks, intended to reflect ads observed by typical
users. Of the 57 ads, 32 interact with JS using Flash’s exter-
nal interface to perform tasks such as cookie manipulation,
pop-up creation, click tracking, or information exchange
with JS-side ad network support code. Our AS rewriter
successfully injected IRMs into all 57 samples.

6.3 Security
To evaluate FlashJaX’s resilience against attacks, FlashJaX
was deployed and tested against several malicious JS and AS
programs. These include real-world attacks reported on
CVE (http://cve.mitre.org), the attack scenarios introduced
throughout the paper, and other attacks related to wrapper
corruption, confidentiality, integrity, and ad-specific attacks.
Each experiment was conducted by first running the mali-
cious code without FlashJaX to verify that the attack is
successful. Then the same script was run with FlashJaX to
test whether it is blocked. The attacks and defenses are cate-
gorized and described below, and summarized in Table 1.

6.3.1 Real-world attacks
We studied two recent real-world attacks reported on CVE:
CVE-2012-3414 (“XSS vulnerability in SWFUpload 2.2.0.1 and
earlier”) and CVE-2012-2904 (“XSS vulnerability in LongTail
JW Player 5.9”).

CVE-2012-3414 is a vulnerability in Wordpress 3.3.2 that
allows reflected XSS via a Flash parameter derived from

http://securemashups.net/flashjax
http://cve.mitre.org
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user input. The attacker can inject arbitrary JS code by
passing it to the applet as a malicious URL string, resulting
in execution of the injected code at the privileges of the
hosting page. However, with FlashJaX added to the content
produced by WordPress, the attack fails. The JS code injected
by the attacker is labeled and executed with the lower
privilege of the untrusted Flash, disallowing attacker access
to protected JS functions and page content.

CVE-2012-2904 is a vulnerability in LongTail JW Player 5.9,
which is active on over one million web sites. Exploits inject
script text as a parameter of the Flash, executing the payload
at the privileges of the hosting page. FlashJaX, however,
successfully labels the injected code with the untrusted Flash
principal, causing it to execute at the lower (untrusted)
privilege level and denying it access to publisher-protected
resources. Thus, all prohibited JS operations in the payload
are suppressed by the monitor, foiling the attack.

6.3.2 Simulated Attacks

Attack scenarios. We implemented and validated the poli-
cies discussed in §4.4. These policies address all three attack
scenarios described in §2, preventing the attacks.

Wrapper Attacks. We implemented wrapper attacks identi-
fied by prior works [4], [7], [23], which defeat naı̈ve JS
wrapper implementations by abusing static aliases, dynamic
aliases, and caller-chains. When successful, the attacks pop
up an unmediated alert box. All the attacks failed since
FlashJaX wraps these channels.

Script injection. FlashJaX does not prohibit script injections;
it downgrades them to an untrusted privilege level so that
they cannot perform policy-violating actions. We tested all
script injection channels, including remote script files, script
code, event handlers via document.write, eval, and
script inclusion via appendChild and insertBefore.
The experiments show that our principal-tracking mecha-
nism attributes correct privileges to all the dynamically-
generated code. We note here again that scripts with an
unidentified principal run with lowest privileges, and there-
fore never violate any principal’s policy.

Confidentiality and integrity attacks. These attacks steal
or modify sensitive data of the hosting page, such as cook-
ies and protected content. To evaluate these attacks, we
deployed a web email page with a fine-grained access
control policy that prohibits ads from reading the contact list
or changing the email content. Ads that try to do so are
successfully blocked by FlashJaX in the experiment.

Cookie protection. FlashJaX does not prohibit cookie access,
but each principal may only read and write its own cookies.
Malicious code that attempts to steal cookies belonging to an-
other principal was evaluated and found to be unsuccessful.

Ad-specific attacks. We tested numerous attacks specific to
web ads, including clickjacking, oversized/arbitrary ad position-
ing, and resource abuse. Each is described below.

Clickjacking attacks create an invisible iframe that in-
jects a remote page with an invisible click button [34]. Flash-
JaX prevents this by enforcing a policy that disallows creat-
ing invisible iframes.
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Fig. 6: Rendering overheads of unmonitored vs. FlashJaX-monitored ads.

Malicious ads often generate content that is larger than the
maximum allowed by the ad network, or that is positioned
inappropriately on the page (e.g., covering other content).
These actions are prevented by FlashJaX by placing the ad in
a fixed-sized 〈div〉 element whose size it write-protects. The
policy additionally forces the offset of any ad-generated con-
tent to 0×0 and write-protects the offset, preventing the ad
from popping up misplaced or mis-sized dynamic content.

In addition, we enforced other fine-grained policies that
disallow or limit calls, and that filter call arguments to a
whitelist of API methods that are frequently targets of
resource abuse attacks. These include pop-up creators like
window.alert and window.open. FlashJaX correctly
prevented these resource abuse attacks.

6.4 Performance

Macro-benchmarks. Figure 6 evaluates the performance
overhead by measuring the total render time to load pages
with and without FlashJaX. The test machine is a 1.6 GHz
AMD Athlon Neo MV-40 Processor laptop with 2 GB RAM
running Chrome 19.0.1084.52m on Windows 7.

The observed rendering overhead varies widely based
on the content from various ad networks. For Microsoft
Media Network and Yahoo! Ads, the additional overhead is
around 55%. However, for Google Adsense and Clicksor, we
consistently observe rendering times that are actually faster
with FlashJaX than without. We investigated this and found
that Microsoft and Yahoo! generate Flash content, whereas
Google and Clicksor generate iframes that make heavy
use of runtime-generated JS content. Our buffering of dy-
namic write operations (see §4.3) improves the performance
of these dynamic writes, speeding rendering.

Micro-benchmarks. We additionally performed a set of
microbenchmark experiments that measure the overhead of
five monitored JS operations called from AS. Each test
ran a tight loop for 1000 iterations, and we averaged the
results over five trials. Reading and writing of JS properties
(e.g., document.cookie) was tested using eval, since
the AS-JS interface only supports JS method access.

Table 2 shows the slow-down ratio of the rewritten Flash
without (column 2) and with (column 3) JS-side monitor-
ing. The table shows a 3.07–4.47 times overhead for AS-JS
boundary communications. This range compares favorably
with similar microbenchmarks reported by related works
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TABLE 2: FlashJaX micro-benchmarks measuring the ratio of the runtimes
of FlashJaX-rewritten Flashes to originals without (column 2) and with
(column 3) JS-side monitoring.

Operation
Rewritten

Flash FlashJaX

document.appendChild 3.52 3.59
document.getElementById 4.47 5.17
toString() 4.26 4.47
eval("document.cookie='test'") 3.67 5.91
eval("document.cookie") 3.07 6.33

(e.g., overheads of 1–324 times [35], or 0.09–19.54 times [3]).
The inclusion of the JS IRM (column 3) results in a small
additional overhead that is similar, except for the two eval
tests. The overhead is higher for the eval tests because each
iteration invokes the JS IRM twice (once for the eval and
once for its content).

7 RELATED WORK

Behavioral sandboxing. Our FlashJaX framework adopts a
reference monitor approach, which monitors the behavior of
web pages to detect and prevent attacks. There are a number
of such methods in the recent literature [3], [5], [6], [7], [13],
[36], [37], [38]. These works explore many subtle scenarios
that arise when considering security issues in JS. For in-
stance, JSand [36] isolates untrusted JS by loading it into a
sandbox environment that can only interact with a virtual
DOM. Thus, the policy definition and enforcement are imple-
mented in a virtual DOM implementation. In contrast, Flash-
JaX keeps track of principals for untrusted scripts within a
shadow stack in order to enforce an appropriate policy at
runtime. FlashJaX can therefore handle JS script actions
from AS while JSand cannot, since the latter requires full
source codes of untrusted scripts. Virtual Browser (VB) [37]
mediates third-party JS accesses to the browser via a virtual
browser expressed in JS. The implementation is a variant of
a security reference monitor. Unlike FlashJaX, VB does not
support multi-principal or fine-grained policies for multi-
party web applications, and does not support Flash content.

Isolating third-party content into (often invisible) iframes
and providing a mechanism for cross-domain communication
is an alternative approach to constraining untrusted scripts.
Examples include Adjail [39], Webjail [40], and Subspace [41].
This technique is unsuitable for Flash content for perfor-
mance reasons—transporting Flash content through browser-
supported communication channels is prohibitively slow.

Configurable Origin Policy (COP) [42] is a recent proposal
that allows web developers to associate web pages with a
security principal via a configurable ID in the browser, so
that web applications having a common ID are treated as
same-origin even when hosted from different domains,
such as gmail.com vs. docs.google.com. This clean-slate
approach is a promising one in the design space of browser
security. In contrast to a clean-slate approach such as COP,
FlashJaX follows a design that is compatible with today’s
browsers and Flash interpreters. In general, since these
methods only focus on the JS side, they cannot prevent
attacks exploiting JS-AS interactions.

Similarly, there are several protection methods focusing
on privacy and behavioral targeting, such as Privads [43],

Adnostic [44], and RePriv [45], which address user privacy
issues from behavioral targeting. These rely on specialized,
in-browser systems that support contextual placement of ads
while preventing behavioral profiling of users. In contrast,
our work mainly focuses on a different, publisher-centric
problem of protecting confidentiality and integrity of pub-
lisher and user-owned content. Our work is also aimed at pro-
viding compatibility with existing ad networks and browsers.

Restricting content languages. There have been a num-
ber of works in the area of JS analysis that restrict content
from untrusted sources to provide security protections [9],
[10], [11], [12], [14], [46]. These works focus on limiting the
JS language features that untrusted scripts may use. Only
those language features that are statically deterministic and
amenable to analysis are allowed. Since these methods
restrict content at a language level, they do not impose
the runtime penalty of reference monitors. In the cases of
FBJS [9] and ADsafe [47], untrusted scripts are confined to
an access-controlled DOM interface, which incurs some
overhead but affords additional control.

The disadvantage of a restricted JS subset is that many
ads are unlikely to conform to it, and will therefore require
re-development. In contrast, FlashJaX neither imposes the
burden of new languages nor places restrictions on JS lan-
guage features used in ad scripts. The only effort required
from a publisher that incorporates FlashJaX is to specify
policies that reflect site security practices.

Code transformation approaches. Many recent works
have transformed untrusted JS code to interpose runtime
policy enforcement checks [1], [2], [8], [35], [48], [49]. These
works cover many diverse attack vectors by which third-
party content may subvert the checks. Since these works are
aimed at general JS security, they do not consider the security
of the JS-AS interface and attacks that target this interface.

Browser-enforced protection. A modified browser can be
instructed to enforce security policies, as illustrated by
BEEP [50], CoreScript [51], End-to-End Web Application Se-
curity [52], Content Security Policies [53], and ConScript [4].
Other works, such as AdSentry [54], JCShadow [55], ES-
CUDO [56], and Tahoma [57], have taken this approach to
prevent attacks by untrusted content. The main advantage of
this approach is that it can enforce fine-grained policies with
low overhead. However, the primary drawback is that
today’s browsers do not agree on a standard for publisher-
browser collaboration, leaving a large void in the near-term
for protecting users from malicious third-party content.

Safety of ActionScript content. Jang et al. [24] point out
the pervasive nature of misconfigured AS content, particu-
larly with reference to cross-domain policies. Ford et al. [58]
describe a malware identification approach for Flash ads.

The work that is closest to ours is FIRM [15], which uses
an IRM approach for prevention of Flash-related attacks.
FIRM is strictly limited to AS mediation, whereas FlashJaX
tackles a much broader class, that of mixed AS-JS content. As
a result, our monitor is able to address a much broader class
of attack vectors that target JavaScript as well as ActionScript
(as discussed in §2), especially those that exploit the interface
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boundary. Since FIRM focuses purely on AS-side monitoring,
it adopts a less conservative threat model that assumes that
some parts of the JS namespace can be read-protected from
adversaries. This relaxed model admits a capability-based ap-
proach, which FIRM implements using secret tokens that are
maintained by the reference monitor. In contrast, FlashJaX’s
threat model acknowledges that protection of secrets in a JS
environment is hard. There are many different ways through
which an attacker can get read access to the JS namespace
(cf., [59]) in order to gain access to secret tokens. We therefore
conservatively assume that adversaries may have the ability
to read the complete JS namespace, and therefore developed
a more robust approach whose security is argued in §5.

8 DISCUSSION

This section discusses the relevance of FlashJaX to the larger
landscape of web application security.

Context and Relevance. A plethora of threats are faced by
web applications today; the most common include script
injection attacks, heap spraying, drive-by downloads, UI
spoofing, and clickjacking. Extensive research in both server-
and browser-side defenses seek to mitigate these threats. The
work presented in this paper exposes a relatively unexplored
threat vector (compared to the threats mentioned above,
which have been well explored).

We have also developed a systematic defense for this
threat using the principled approach of IRMs. Our work can
be seen as a defense that sits in conjunction with existing
browser defenses, including those for JS (e.g., [4]), XSS
attacks, and heap-spraying. FlashJaX strengthens those
defenses by adding protection against a significant attack
vector that these defenses do not address.

Other related browser plugins. Recent surveys indicate
that Flash is the most commonly used browser plugin.4

FlashJaX provides a systematic way to enforce security on
Flash-JS content. Similar content can be authored in other
plugins, such as Java and Silverlight. Our work could be
extended to Silverlight via similar IRM-based techniques that
have been used for .NET binary rewriting [60].

Deployment. Research efforts such as FlashJaX point out
that the nature of attack surfaces will continue to evolve as
browsers evolve to support new features. As a result, the
nature of policies that security engineers want to enforce is
continuously evolving as well, and there will always be
a need to enforce policies that current browsers do not
universally support. FlashJaX’s approach to security through
IRM enforcement allows for a principled defense mechanism
that can be flexibly adapted to address future threats, while
remaining compatible with existing browsers.

9 CONCLUSION

In this paper, we presented FlashJaX, a solution for enforcing
security policies on third-party mixed JS/AS web content
using an IRM approach. FlashJaX allows publishers to define

4. http://www.statowl.com/plugin overview.php

and enforce fine-grained, multi-principal access policies
on JS-AS third party content and runtime-generated code.
Moreover, it can be easily deployed in practice without
requiring browser modification. Experiments show that
FlashJaX is effective in preventing attacks related to AS-JS
communication, and its lightweight IRM approach exhibits
low overhead for mediations. It is also compatible with
advertisements from leading ad networks.
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