
Lecture 1: Introduction to bordism

Overview

Bordism is a notion which can be traced back to Henri Poincaré at the end of the 19th century, but

it comes into its own mid-20th century in the hands of Lev Pontrjagin and René Thom [T]. Poincaré

originally tried to develop homology theory using smooth manifolds, but eventually simplices were

used instead. Recall that a singular q-chain in a topological space S is a formal sum of continuous

maps ∆q → S from the standard q-simplex. There is a boundary operation ∂ on chains, and a

chain c is a cycle if ∂c = 0; a cycle c is a boundary if there exists a (q + 1)-chain b with ∂b = c. If

S is a point, then every cycle of positive dimension is a boundary. In other words, abstract chains

carry no information. In bordism theory one replaces cycles by closed1 smooth manifolds mapping

continuously into S. A chain is replaced by a compact smooth manifold X and a continuous

map X → S; the boundary of this chain is the restriction ∂X → S to the boundary. Now there is

information even if S = pt. For not every closed smooth manifold is the boundary of a compact

smooth manifold. For example, Y = RP
2 is not the boundary of a compact 3-manifold. (It is

the boundary of a noncompact 1-manifold with boundary—which? In fact, show that every closed

smooth manifold Y is the boundary of a noncompact manifold with boundary.)

A variation is to consider smooth manifolds equipped with a tangential structure of a fixed type.

One type of a tangential structure you already know is an orientation, which we review in Lecture 2.

We give a general discussion in a few weeks.

One main idea of the course is to extract various algebraic structures of increasing complexity

from smooth manifolds and bordism. Today we will use bordism to construct an equivalence

relation, and so construct sets of bordism classes of manifolds. We will introduce an algebraic

structure to obtain abelian groups and even a commutative ring. These ideas date from the 1950s.

The modern results concern more intricate algebraic gadgets extracted from smooth manifolds and

bordism: categories and their more complicated cousins. Some of the main theorems in the course

identify these algebraic structures explicitly. For example, an easy theorem asserts that the bordism

group of oriented 0-manifolds is the free abelian group on a single generator, that is, the infinite

cyclic group (isomorphic to Z). One of the recent results which is a focal point of the course, the

cobordism hypothesis [L1, F1], is a vast generalization of this easy classical theorem.

We will also study bordism invariants. These are homomorphisms out of a bordism group or

category into an abstract group or category. Such homomorphisms, as all homomorphisms, can be

used in two ways: to extract information about the domain or to extract information about the

codomain. In the classical case the codomain is typically the integers or another simple number

system, so we are typically using bordism invariants to learn about manifolds. A classic example

of such an invariant is the signature of an oriented manifold, and Hirzebruch’s signature theorem

equates the signature with another bordism invariant constructed from characteristic numbers. On

the other hand, a typical application of the cobordism hypothesis is to use the structure of manifolds

to learn about the codomain of a homomorphism. Incidentally, a homomorphism out of a bordism

category is called a topological quantum field theory [A1].
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(1.1) Convention. All manifolds in this course are smooth, or smooth manifolds with boundary

or corners, so we omit the modifier ‘smooth’ from now on. In bordism theory the manifolds are

almost always compact, though we retain that modifier to be clear.

Review of smooth manifolds

Definition 1.2. A topological manifold is a paracompact, Hausdorff topological space X such that

every point of X has an open neighborhood which is homeomorphic to an open subset of affine

space.

Recall that n-dimensional affine space is

(1.3) A
n = {(x1, x2, . . . , xn) : xi ∈ R}.

The vector space R
n acts transitively on A

n by translations. The dimension dimX : X → Z
≥0

assigns to each point the dimension of the affine space in the definition. (It is independent of

the choice of neighborhood and homeomorphism, though that is not trivial.) The function dimX

is constant on components of X. If dimX has constant value n, we say X is an n-dimensional

manifold, or n-manifold for short.

(1.4) Smooth structures. For U ⊂ X an open set, a homeomorphism x : U → A
n is a coordinate

chart. We write x = (x1, . . . , xn), where each xi : U → R is a continuous function. To indicate

the domain, we write the chart as the pair (U, x). If (U, x) and (V, y) are charts, then there is a

transition map

(1.5) y ◦ x−1 : x(U ∩ V ) −→ y(U ∩ V ),

which is a continuous map between open sets of An. We say the charts are C∞-compatible if the

transition function (1.5) is smooth (=C∞).

Definition 1.6. Let X be a topological manifold. An atlas or smooth structure on X is a collection

of charts such that

(i) the union of the charts is X;

(ii) any two charts are C∞-compatible; and

(iii) the atlas is maximal with respect to (ii).

A topological manifold equipped with an atlas is called a smooth manifold.

We usually omit the atlas from the notation and simply notate the smooth manifold as ‘X’.

(1.7) Empty set. The empty set ∅ is trivially a manifold of any dimension n ∈ Z
≥0. We use ‘∅n’

to denote the empty manifold of dimension n.
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(1.8) Manifolds with boundary. A simple modification of Definition 1.2 and Definition 1.6 allow

for manifolds to have boundaries. Namely, we replace affine space with a closed half-space in affine

space. So define

(1.9) A
n
− = {(x1, x2, . . . , xn) ∈ A

n : x1 ≤ 0}

and ask that coordinate charts take values in open sets of An
−. Then if p ∈ X satisfies x1(p) = 0 in

some coordinate system (x1, . . . , xn), that will be true in all coordinate systems. In this way X is

partitioned into two disjoint subsets, each of which is a manifold: the interior (consisting of points

with x1 < 0 in every coordinate system) and the boundary ∂X (consisting of points with x1 = 0 in

every coordinate system).

Remark 1.10. I remember the convention on charts by the mnemonic ‘ONF’, which stands for

’Outward Normal First’. The fact that it also stands for ‘One Never Forgets’ helps me remember!

An outward normal in a coordinate system is represented by the first coordinate vector field ∂/∂x1,

and it points out of the manifold at the boundary.

(1.11) Tangent bundle at the boundary. At any point p ∈ ∂X of the boundary there is a canonical

subspace Tp(∂X) ⊂ TpX; the quotient space is a real line νp. So over the boundary ∂X there is a

short exact sequence

(1.12) 0 −→ T (∂X) −→ TX −→ ν −→ 0

of vector bundles. In any boundary coordinate system the vector ∂/∂x1(p) projects to a nonzero

element of νp, but there is no canonical basis independent of the coordinate system. However, any

two such vectors are in the same component of νp \ {0}, which means that ν carries a canonical

orientation. (We review orientations in Lecture 2.)

Definition 1.13. Let X be a manifold with boundary. A collar of the boundary is an open

set U ⊂ X which contains ∂X and a diffeomorphism (−ǫ, 0] × ∂X → U for some ǫ > 0.

Theorem 1.14. The boundary ∂X of a manifold X with boundary has a collar.

This is not a trivial theorem. We only need it when X, hence also ∂X, is compact, in which case

it is somewhat simpler.

Exercise 1.15. Prove Theorem 1.14 assuming X is compact. (Hint: Cover the boundary with a

finite number of coordinate charts; use a partition of unity to glue the vector fields −∂/∂x1 in each

coordinate chart into a smooth vector field; and use the fundamental existence theorem for ODEs,

including smooth dependence on initial conditions.)

(1.16) Disjoint union. Let {X1,X2, . . . } be a countable collection of manifolds. We can form a

new manifold, the disjoint union of X1,X2, . . . , which we denote X1 ∐X2 ∐ · · · . As a set it is the

disjoint union of the sets underlying the manifolds X1,X2, . . . . One may wonder how to define the

disjoint union. For example, what is X∐X? This is ultimately a question of set theory, and we will
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meet such problems again. One solution is to fix an infinite dimensional affine space A∞ and regard

all manifolds as embedded in it. (This is no loss of generality by the Whitney Embedding Theorem.)

Then we can replace Xi (embedded in A
∞) by {i} ×Xi (embedded in A

∞ = A
1 ×A

∞) and define

the disjoint union to be the ordinary union of subsets of A∞. Another way out is to characterize

the disjoint union by a universal property: a disjoint union of X1,X2, . . . is a manifold Z and a

collection of smooth maps ιi : Xi → Z such that for any manifold Y and any collection fi : Xi → Y

of smooth maps, there exists a unique map f : Z → Y such that for each i the diagram

(1.17) Xi
ιi

fi

Z

f

Y

commutes. (The last statement means f ◦ ιi = fi.) If you have not seen universal properties before,

you might prove that ιi is an embedding and that any two choices of
(

Z, {ιi}
)

are canonically

isomorphic. (You should also spell out what ‘canonically isomorphic’ means.) We will encounter

such categorical notions more later in the course.

(1.18) Terminology. A manifold is closed if it is compact without boundary. By contrast, many

use the term ‘open manifold’ to mean a noncompact manifold without boundary, but I am not

particularly fond of that usage.

Bordism

We now come to the fundamental definition. Fix an integer n ≥ 0.

Definition 1.19. Let Y0, Y1 be closed n-manifolds. A bordism
(

X , (∂X)0∐(∂X)1 , θ0 , θ1
)

from Y0

to Y1 consists of a compact (n+1)-manifold X with boundary, a decomposition ∂X = (∂X)0∐(∂X)1
of its boundary, and embeddings

θ0 : [0,+1) × Y0 −→ X(1.20)

θ1 : (−1, 0] × Y1 −→ X(1.21)

such that θi(Yi) = (∂X)i, i = 0, 1.

Each of (∂X)0, (∂X)1 is a union of components of ∂X; note that there is a finite number of

components since X, and so too ∂X, is compact. The map θi is a diffeomorphism onto its image,

which is a collar neighborhood of (∂X)i. The collar neighborhoods are included in the definition

to make it easy to glue bordisms. Without them we could as well omit the diffeomorphisms and

give a simpler informal definition: a bordism X from Y0 to Y1 is a compact (n + 1)-manifold with

boundary Y0 ∐ Y1. But we will keep the slightly more elaborate Definition 1.19. The words ‘from’

and ‘to’ in the definition distinguish the roles of Y0 and Y1, and indeed the intervals in (1.20)

and (1.21) are different. But not that different—for the moment that distinction is only one of

semantics and not any mathematics of import. For example, in the informal definition just given



Bordism: Old and New (Lecture 1) 5

Figure 1. X is a bordism from Y0 to Y1

the manifolds Y0, Y1 play symmetric roles. We picture a bordism in Figure 1. In the older literature

a bordism is called a “cobordism”. If the context is clear, we notate a bordism
(

X , (∂X)0 ∐

(∂X)1 , θ0 , θ1
)

as ‘X’.

Definition 1.22. Let
(

X , (∂X)0 ∐ (∂X)1 , θ0 , θ1
)

be a bordism from Y0 to Y1. The dual bordism

from Y1 to Y0 is
(

X∨ , (∂X∨)0 ∐ (∂X∨)1 , θ
∨
0 , θ∨1

)

, where: X∨ = X; the decomposition of the

boundary is swapped, so (∂X∨)0 = (∂X)1 and (∂X∨)1 = (∂X)0; and

(1.23)
θ∨0 (t, y) = θ1(−t, y), t ∈ [0,+1), y ∈ Y1,

θ∨1 (t, y) = θ0(−t, y), t ∈ (−1, 0], y ∈ Y0.

More informally, we picture the dual bordism X∨ as the original bordism X “turned around”.

Remark 1.24. We should view the dual bordism as a bordism from Y ∨
1 to Y ∨

0 where for naked

manifolds we set Y ∨
i = Yi. When we come to manifolds with tangential structure, such as an

orientation, we will not necessarily have Y ∨
i = Yi.

We use Definition 1.19 to extract our first algebraic gadget from compact manifolds: a set.

Namely, define closed n-manifolds Y0, Y1 to be equivalent if there exists a bordism from Y0 to Y1.

Lemma 1.25. Bordism defines an equivalence relation.

Proof. For any closed manifold Y , the manifold X = [0, 1]×Y determines a bordism from Y to Y :

set (∂X)0 = {0} × Y , (∂X)1 = {1} × Y , and use simple diffeomorphisms [0, 1) → [0, 1/3) and

(−1, 0] → (2/3, 1] to construct (1.20) and (1.21). So bordism is a reflexive relation. Definition 1.22

shows that the relation is symmetric: if X is a bordism from Y0 to Y1, then X∨ is a bordism
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from Y1 to Y0. For transitivity, suppose
(

X , (∂X)0 ∐ (∂X)1 , θ0 , θ1
)

is a bordism from Y0 to Y1

and
(

X ′ , (∂X ′)0 ∐ (∂X ′)1 , θ
′
0 , θ

′
1

)

a bordism from Y1 to Y2. Then Figure 2 illustrates how to

glue X and X ′ together along Y1 using θ1 and θ′0 to obtain a bordism from Y0 to Y2. �

Figure 2. Gluing bordisms

Exercise 1.26. Write out the details of the gluing argument. Show carefully that the glued space

is a manifold with boundary. Note that (∂X)1 ≈ (∂X ′)0 is a submanifold of the glued manifold,

and the maps θ1 and θ′0 combine to give a diffeomorphism (−1, 1) × Y1 onto an open tubular

neighborhood. This is sometimes called a bi-collaring.

Exercise 1.27. Show that diffeomorphic manifolds are bordant.

Let Ωn denote the set of equivalence classes of closed n-manifolds under the equivalence relation

of bordism. We use the term bordism class for an element of Ωn. Note that the empty manifold ∅0

is a special element of Ωn, so we may consider Ωn as a pointed set.

Remark 1.28. Again there is a set-theoretic worry: is the collection of closed n-manifolds a set?

One way to make it so is to consider all manifolds as embedded in A
∞, as in (1.16). We will not

make such considerations explicit.

Disjoint union and the abelian group structure

Simple operations on manifolds—disjoint union and Cartesian product—give Ωn more structure.

Definition 1.29.

(i) A commutative monoid is a set with a commutative, associative composition law and iden-

tity element.

(ii) An abelian group is a commutative monoid in which every element has an inverse.
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Typical examples: Z≥0 is a commutative monoid; Z and R/Z are abelian groups.

Disjoint union is an operation on manifolds which passes to bordism classes: if Y0 is bordant

to Y ′
0 and Y1 is bordant to Y ′

1 , then Y0 ∐ Y1 is bordant to Y ′
0 ∐ Y ′

1 . So (Ωn,∐) is a commutative

monoid.

Lemma 1.30. (Ωn,∐) is an abelian group. In fact, Y ∐ Y is null-bordant.

The identity element is represented by ∅n. A null bordant manifold is one which is bordant to ∅n.

Proof. The manifold X = [0, 1] × Y provides a null bordism: let (∂X)0 = ∂X = Y ∐ Y and

(∂X)1 = ∅n and define θ0, θ1 appropriately. �

Figure 3. 1 point is bordant to 3 points

It is also true that the abelian group (Ωn,∐) is finitely generated, though we do not prove that

here. It follows that it is isomorphic to a product of cyclic groups of order 2. We denote this abelian

group simply by ‘Ωn’.

Proposition 1.31. Ω0
∼= Z/2Z with generator pt.

Proof. Any 0-manifold has no boundary, and a compact 0-manifold is a finite disjoint union of

points. Lemma 1.30 implies that the disjoint union of two points is a boundary, so is zero in Ω0.

It remains to prove that pt is not the boundary of a compact 1-manifold with boundary. That

follows from the classification theorem for compact 1-manifolds with boundary: any such is a finite

disjoint union of circles and closed intervals, so its boundary has an even number of points. �

The bordism group in dimensions 1,2 can also be computed from elementary theorems.

Proposition 1.32. Ω1 = 0 and Ω2
∼= Z/2Z with generator the real projective plane RP

2.

Proof. The first statement follows from the classification theorem in the previous proof: any closed

1-manifold is a finite disjoint union of circles, and a circle is the boundary of a 2-disk, so is

null bordant. The second statement follows from the classification theorem for closed 2-manifolds.

Recall that there are two connected families. The oriented surfaces are boundaries (of 3-dimensional

handlebodies, for example). Any unoriented surface is a connected sum2 of RP2’s, so it suffices to

prove that RP
2 does not bound and RP

2#RP
2 does bound. A nice argument emerged in lecture

for the former. Namely, if X is a compact 3-manifold with boundary ∂X = RP
2, then the double

D = X∪
RP

2 X has Euler characteristic 2χ(X)−1, which is odd. But D is a closed odd dimensional

manifold, so has vanishing Euler characteristic. This contradiction shows X does not exist. We

2The connected sum is denoted ‘#’. We do not pause here to define it carefully. The definition depends on choices,
but the diffeomorphism class, hence bordism class, does not depend on the choices.
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give a different argument in the next lecture. For the latter, recall that RP2#RP
2 is diffeomorphic

to a Klein bottle K, which has a map K → S1 which is a fiber bundle with fiber S1. There is an

associated fiber bundle with fiber the disk D2 which is a compact 3-manifold with boundary K. �

Figure 4. Constructing the Klein bottle by gluing

There is a separate set of notes on fiber bundles. For now recall that we can construct K by

gluing together the ends of a cylinder [0, 1] × S1 using a reflection on S1. Then projection onto

the first factor, after gluing, is the map K → S1. The disk bundle is formed analogously starting

with [0, 1] ×D2. This is depicted in Figure 2.

Cartesian product and the ring structure

Now we bring in another operation, Cartesian product, which takes an n1-manifold and an

n2-manifold and produces an (n1 + n2)-manifold.

Definition 1.33.

(i) A commutative ring R is an abelian group (+, 0) with a second commutative, associative

composition law (·) with identity (1) which distributes over the first: r1 · (r2 + r3) =

r1 · r2 + r1 · r3 for all r1, r2, r3 ∈ R.

(ii) A Z-graded commutative ring is a commutative ring S which as an abelian group is a direct

sum

(1.34) S =
⊕

n∈Z

Sn

of abelian subgroups such that Sn1
· Sn2

⊂ Sn1+n2
.

Elements in Sn ⊂ S are called homogeneous of degree n; the general element of S is a finite sum of

homogeneous elements.

The integers Z form a commutative ring, and for any commutative ring R there is a polynomial

ring S = R[x] in a single variable which is Z-graded. To define the Z-grading we must assign an

integer degree to the indeterminate x. Typically we posit deg x = 1, in which case Sn is the abelian
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group of homogeneous polynomials of degree n in x. More generally, there is a Z-graded polynomial

ring R[x1, . . . , xk] in any number of indeterminates with any assigned integer degrees degxk ∈ Z.

Define

(1.35) Ω =
⊕

n∈Z≥0

Ωn.

We formally define Ω−m = 0 for m > 0. The Cartesian product of manifolds is compatible with

bordism, so passes to a commutative, associative binary composition law on Ω.

Proposition 1.36. (Ω,∐,×) is a Z-graded ring. A homogeneous element of degree n ∈ Z is

represented by a closed manifold of dimension n.

We leave the proof to the reader. The ring Ω is called the unoriented bordism ring.

In his Ph.D. thesis Thom [T] proved the following theorem (among many other foundational

results).

Theorem 1.37 ([T]). There is an isomorphism of Z-graded rings

(1.38) Ω ∼= Z/2Z[x2, x4, x5, x6, x8, . . . ]

where there is a polynomial generator of degree k for each positive integer k not of the form 2i − 1.

Furthermore, Thom proved that if k is even, then xk is represented by the real projective mani-

fold RP
k. Dold later constructed manifolds representing the odd degree generators: they are fiber

bundles3 over RPm with fiber CPℓ.

Exercise 1.39. Work out Ω10. Find manifolds which represent each bordism class.

Thom proved that the Stiefel-Whitney numbers determine the bordism class of a closed manifold.

The Stiefel-Whitney classes wi(Y ) ∈ H i(Y ;Z/2Z) are examples of characteristic classes of the

tangent bundle; we will discuss them later, and we will also give a quick review of cohomology later

as well. Any closed n-manifold Y has a fundamental class [Y ] ∈ Hn(Y ;Z/2Z). If x ∈ H•(Y ;Z/2Z),

then the pairing 〈x, [Y ]〉 produces a number in Z/2Z.

Theorem 1.40 ([T]). The Stiefel-Whitney numbers

(1.41) 〈wi1(Y ) ⌣ wi2(Y ) ⌣ · · · ⌣ wik(Y ) , [Y ]〉 ∈ Z/2Z,

determine the bordism class of a closed n-manifold Y .

That is, if closed n-manifolds Y0, Y1 have the same Stiefel-Whitney numbers, then they are bordant.

Notice that not all naively possible nonzero Stiefel-Whitney numbers can be nonzero. For example,

〈w1(Y ), [Y ]〉 vanishes for any closed 1-manifold Y . Also, the theorem implies that a closed n-

manifold is the boundary of a compact (n+1)-manifold iff all of the Stiefel-Whitney numbers of Y

vanish. If it is a boundary, it is immediate that the Stiefel-Whitney numbers vanish; the converse

is hardly obvious.

3They are the quotient of Sm
× CP

ℓ by the free involution which acts as the antipodal map on the sphere and
complex conjugation on the complex projective space.



10 D. S. Freed

Remark 1.42. The modern developments in bordism use disjoint union heavily, so generalize the

study of classical abelian bordism groups. However, they do not use Cartesian product in the same

way.
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