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Abstract

Client software for modern service-oriented web architectures is often implemented as mobile code applets made available by
service-providers. Protecting clients from malicious mobile code is therefore an important concern in these architectures; however,
the burden of security enforcement is typically placed entirely on the client. This approach violates the service-oriented paradigm.

A method of realizing mobile code security as a separate service in a service-oriented web architecture is proposed. The
security service performs in-lined reference monitoring of untrusted Java binaries on-demand for client-specified security policies.
An XML format for specifying these policies is outlined, and preliminary experiments demonstrate the feasibility of the approach.
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1. Introduction

Mobile code is an important implementation component of many modern web services. For example, geospatial
web servers provide clients mobile bytecode applets that filter, analyze, and graphically render geospatial data obtained
from the service within a local web browser. The use of mobile code in these contexts is motivated by the need for
high efficiency and quality of service in service-oriented architectures (SOAs). That is, mobile code can reduce
communication and processing overhead for the service-provider by shifting some of that overhead to the client.

Mobile code security, however, is typically not provided as a distinct service; clients must protect themselves
from malicious or misbehaved mobile code by implementing their own local protection systems. These are typically
realized as a fixed part of the client’s mobile code execution environment. For example, Java bytecode applets undergo
both static validation and dynamic monitoring by the Java Virtual Machine (JVM) to protect the client from potentially
malicious code provided by untrusted service-providers. This arrangement results in a relatively inflexible collection
of security policies available to typical code-consumers. For example, the JVM enforces basic memory-safety and
object-encapsulation properties, but it does not enforce user- or application-specific policies, such as a policy that
prohibits untrusted applets from opening more than 3 pop-up windows per run, or prohibits them from sending data
to the network after they have received private data as input from the user. While enforcing such custom policies is

*This material is based upon work supported by the U.S. AFOSR under Young Investigator Award FA9550-08-1-0044.
Email addresses: micah.jones1Qutdallas.edu (Micah Jones), hamlen@utdallas.edu (Kevin W. Hamlen)



M. Jones et al. | Procedia Computer Science 00 (2011) 000-000

possible, it typically requires developing and installing new client-side VM or OS extensions for each new policy to
be enforced—an impractical undertaking for many organizations and users.

As a more flexible alternative, we consider a service-oriented approach to securing mobile binary code. Our
approach is based on in-lined reference monitors IRMs) [1], which implement security monitors by automatically in-
lining runtime security checks into the untrusted application’s binary text before it is executed. Code-consumers in our
framework submit untrusted Java bytecode and a desired security policy to a trusted in-lining service that instruments
the bytecode with an IRM that enforces the policy. The resulting self-monitoring code is then digitally signed and
returned to the code-consumer, who can verify the signature and safely execute it.

Numerous IRM systems have been developed for traditional mobile code architectures (e.g., [2—4]), though not for
SOAs to our knowledge. Extending the technology to SOAs allows mobile code security to become a separate service
in such an architecture, rather than an obligation that each client must satisfy for itself individually. The significant
complexity of policy enforcement implementation is shifted to a trusted third party, affording code-consumers the
flexibility of enforcing a wide array of potentially organization- and application-specific policies without implement-
ing that functionality themselves. Lightweight devices that lack the computational resources necessary to analyze and
instrument arbitrary bytecode binaries can therefore enforce these rich policies by leveraging the power of the SOA.

The service-oriented approach has numerous potential security advantages, including improved deployment speed
and wider client coverage than traditional patching approaches. For example, a web client that is configured by default
to always pass untrusted bytecode through an in-lining service before execution receives the benefits of security
updates implemented by that service instantly, without needing to download and install security updates or patches
for its OS or VM. Moreover, as new vulnerabilities are discovered and new enforcement strategies are invented,
third-party in-lining services can often be updated and adapted more rapidly than typical OS/VM patches can be
developed. This is because software patches can usually only be developed by a relatively small collection of experts
who have access to the OS/VM source code, whereas IRM implementations depend only bytecode language standards
available to the public (e.g., [S]). The service-oriented approach therefore provides defenders a means to quickly and
comprehensively react to zero-day attacks for which no patch yet exists, and to protect users of legacy software who
may be slow to apply patches.

The remainder of the paper proceeds as follows. Section 2 provides a brief overview of our bytecode rewriting
system architecture. Security policies for our system are expressed as SPoX (Security Policy XML) documents [6],
whose syntax is described in §3. Finally, §4 describes a prototype deployment of our system as a Java web service
and some preliminary performance statistics. Section 5 concludes.

2. System Overview

Our in-lining service accepts as input an untrusted Java bytecode binary and a client-specified security policy. The
service returns a modified binary that has been instrumented with code that enforces the policy when the modified
binary is executed. The in-lining service never executes the untrusted code directly (which would be both prohibitively
inefficient and unsafe), and the transformation process consists of a purely linear traversal of the untrusted bytecode
rather than a more sophisticated static code analysis (many of which are worst-case exponential). This keeps runtimes
for the service tractable.

Security policies are specified by the client as SPoX (Security Policy XML) [6] documents, which express mobile
code policies as temporal properties that define the set of all permissible event sequences that may be exhibited by
the untrusted applet. Security-relevant events are typically Java system API calls and their arguments, which are the
means by which Java programs read or affect the external computing environment. Other program operations can be
identified as security-relevant as well, as discussed in §3.

The alphabet of all program events deemed security-relevant is specified in SPoX using pointcuts, a concept de-
rived from aspect-oriented programming (AOP). A pointcut is a declarative expression that describes a set of matching
program operations, similar to how a regular expression describes a set of string values. The SPoX pointcut language
is a binary adaptation of the one implemented by Aspect] [7] for Java source code, allowing policy-writers to develop
policies that statically and/or dynamically regard binary-level method calls and their arguments, object pointers, and
lexical contexts, among other properties.

The language of permissible event sequences is expressed by encoding it as a security automaton [8]—a finite-
or infinite-state machine that accepts all and only those sequences that satisfy the security policy. Security automata
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| <state name="s" />
2 <edge name="fileAccess">

3 <nodes var="s">0,1</nodes>

4 <and><call>java.io.File*.*</call>

5 <argval num="1">

6 <streg>.*windows\\.*</streq>

7 </argval></and>

s </edge>

9 <edge name="illegalSocketOutputStream">

10 <nodes var="s">1,#</nodes>

1 <call>java.net.Socket.getOutputStream</call>
12 </edge>

Figure 1. Policy that prohibits network sends after sensitive file reads

express safety policies, which essentially say that some “bad thing” must not happen.! The “bad thing” can be a
collection of individual prohibited events or it can include particular orderings of events, in which case the policy is
said to be history-based. For example, a policy that permits at most 10 simultaneously open files is history-based
because each file-open is permitted contingent on the history of events that preceded it.

SPoX policies can be enforced as binary-level IRMs [9, 10]. Security checks are inserted at appropriate points
around security-relevant instructions in an untrusted target program, causing impending policy violations to be dy-
namically detected and prevented. This instrumentation process is similar to aspect-weaving in AOP, except that in
AOQP both aspects and target programs are typically specified as source code, whereas our rewriter synthesizes binary
code from a purely declarative policy specification and injects it into an untrusted binary program. This allows SPoX
policies to be enforced by code-consumers on binaries without source code.

SPoX does not specify how to enforce a given policy; instead, it declaratively describes how security-relevant
events affect an abstract security automaton state. There are therefore many ways to implement any given SPoX
policy, affording enforcement mechanisms a great deal of flexibility.

State-transitions can be specified in terms of information gleaned from the current program state, such as method
argument values, the call stack, and the current lexical scope. For example, the SPoX policy in Figure 1 encodes a
policy that prevents network send operations after a program has read a private file. There is one state variable s,
declared on Line 1. The first of two automaton edges is described by the fileAccess definition on Lines 2—-8, which
matches calls to java.io.File methods whose first arguments are strings containing the substring “windows\”.
Such operations change security automaton state s from 0 to 1. The i1legalSocketOutputStream edge beginning
at Line 9 matches network send operations. When the current state satisfies s = 1, such operations violate the security
policy, as indicated by postcondition #.

In order to instrument this policy in an untrusted target program as an IRM, our rewriter locates all code points that
match pointcuts in the policy and injects guard code around them to simulate the two-state security automaton. There
are many correct guard code implementations of any given policy, affording rewriters a broad array of enforcement
strategies. Our rewriter takes the approach of reifying the security state s into the program itself as a global variable.
Immediately before calls to member methods of any class beginning with java.io.File, it injects guard code that
tests whether s = 0 and compares the first argument’s toString form to regular expression .*windows\\.x*. If
these dynamic tests succeed then s is assigned 1. Likewise, it injects guard code immediately before each call to
java.net.Socket.getOutputStrean that checks whether s = 1. If not, the operation is permitted; otherwise the
program self-aborts to prevent the impending violation.

The surrounding untrusted binary code must also be prevented from maliciously circumventing the new guards or
corrupting reified state variable s. To achieve this, the rewriter redirects any jumps that previously targeted security-
relevant instructions to the injected guard code that surrounds them.? In addition, reified security states are imple-

I'This is in contrast to liveness policies, which say that some “good thing” must eventually happen (cf. [3]).
2The only form of computed jump in Java bytecode is dynamic method dispatch. Thus, unrestricted computed jumps need not be supported,
greatly simplifying the control-flow analysis.
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neN natural numbers ceC class names
sv eSSV state variables ivelV iteration variables
id €eID object identifiers ed e ED edge names
pcn € PCN pointcut names
pol ::=spc*sd”edg” policies
spc ::=<pointcut name="pcn">pcd<pointcut> stored pointcuts
sd ::=<state name="sv">[c]</state> state declarations
edg = edges
<edge name="ed">pcd ep*</edge> edgesets
|<forall var="iv" from="a;" iteration

to="a,">edg"</forall>

ep ::=<nodes [obj="id"] var="sv"> edge endpoints
a,a
</nodes>
az=n|iv|a*a | a;-ay | ay*ar | ai/ax | (a) arithmetic

Figure 2. SPoX core language syntax

mented as private class fields so that malicious code cannot corrupt the reified security state and thereby defeat the
in-lined monitor.

The correctness (i.e., soundness) of the approach follows from an inductive argument that injected variable s
correctly tracks the security automaton state throughout the execution of the rewritten code [11]. Since s is never
assigned #, executing the rewritten code never violates the policy. The proof can be informally summarized as follows:
Reified state s is initially equal to the security automaton’s start state label. This value is only subsequently modified
by in-lined IRM guard code (because s is implemented as a private field that is inaccessible by other code). Each
such modification is immediately preceded or succeeded by a security-relevant operation that changes the security
automaton state likewise. Thus, the two remain synchronized with respect to one another.

3. Security Policies

The general syntax of a SPoX specification is provided in Figures 2 and 3. Each specification consists of a list of
security automaton edge declarations. Each edge declaration consists of three parts:

e Pointcut expressions (Figure 3) identify sets of security-relevant events that programs might exhibit at runtime.

e Security-state variable declarations (sd in Figure 2) are used to construct the overall security automaton state.
The security state is defined by the set of mappings of all state variables to their integer® values.

o Security-state transitions (ep in Figure 2) describe how events cause the security automaton’s state to change at
runtime.

Edges are specified by <edge> structures, each of which defines a (possibly infinite) set of edges in the security
automaton. Each <edge> structure consists of a pointcut expression and at least one <nodes> declaration. The
pointcut expression defines a common label for the edges, while each <nodes> declaration imposes a transition
precondition and postcondition for a particular state variable. The precondition constrains the set of source states to
which the edge applies, and the postcondition describes how the state changes when an event matching the pointcut
expression occurs.

In general, state variables come in two varieties:

3Binary operator / in Figure 2 denotes integer division.
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neN natural numbers ceC class names
re €ERE regular expressions md € MD method names
fd € FD field names id eID object identifiers
pcn € PCN pointcut names mo € MO modifiers
ped = pointcuts
<mtag>mo*c.md</mtag> method accesses
|<get>mo®c.fd</get> | <set>mo’c.fd</set> field accesses
|<argval num="n" [obj="id"]>vp</argval> stack args (values)
|<argtyp num="n">c</argtyp> stack args (types)
| <handler>c</handler> exception handler executions
|<this [obj="id"]>[c]</this> this pointer references
|<target [obj="id"]>[c]</target> target object references
| <cflow>pcd</cflow> control flows
|<pointcutid name="pcn" /> predefined pointcuts
| <and>pcd*</and> | <or>pcd </or> | <not>pcd</not> logical operators
|<true /> | <false /> constants

mtag ::=call | execution | withincode
vp i=<isnull /> | <streq>re</streq> value predicates
|<integ>n</inteq> | <intle>n</intle>

Figure 3. SPoX pointcut syntax

e [Instance security-state variables describe the security state of an individual runtime object. They can be thought
of as hidden field members of security-relevant classes.

e Global security-state variables describe the state of the overall system. They can be thought of as hidden,
global, static program variables.

Instance state variables allow SPoX specifications to express per-object security properties. For example, a policy can
require that each File object may be read at most ten times by defining an instance security-state variable associated
with File objects and defining state transitions that increment each object’s security-state variable each time that
individual File object is read (up to ten times). In contrast, global security-state variables are used to express instance-
independent security properties. For example, a policy can require that at most ten File objects may be created during
the lifetime of the program by defining a global security-state variable that gets incremented each time any File object
is created (up to ten times).

Counters and other repetitive automaton structures can be succinctly expressed in SPoX as <forall> structures
that introduce a set of edges for each integer state in a range. For example, a resource bound policy might be expressed
a security state s with edges from s = i to s = i + 1 for each integer i in some interval [0, n], where n is the resource
bound. In SPoX, such a policy could be succinctly expressed as follows:

<forall var="i" from="0" to="9">
<edge name="count">
<nodes var="s">i,i+1</nodes>
p
</edge>
</forall>
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This specifies a policy that permits operations matching pointcut p to occur at most 10 times. More complex config-
urations can be achieved by nesting <forall> structures and by using more complex arithmetic expressions as pre-
and post-conditions of the <nodes> elements within them.

3.1. Pointcuts

A syntax for SPoX’s pointcut language is given in Figure 3. We support all regular expression operators available
in Aspect] for specifying class and member names. Since SPoX policies are applied to Java bytecode binaries rather
than to source code, the meaning of each pointcut expression is reflected down to the bytecode level. We here describe
the language informally; a formal denotational semantics is provided in [6].

Atomic pointcuts (i.e., those that do not recursively contain other pointcuts) can be categorized into those whose
criteria are statically decidable and those that can only be decided dynamically (in general). Statically decidable
pointcuts, such as <call>, can be matched against code points through a direct, static inspection of the bytecode.
For example, the set of all bytecode instructions that match a <call> pointcut are exactly the call instructions
that specify a method name that matches the pointcut’s regular expression content. The binary format of Java call
instructions specify the method name statically. In contrast, dynamically decidable pointcuts, such as <argval>,
cannot be matched through purely static analysis because they depend on information that can only be determined
at runtime, such as the values of items on the stack. Practical policies invariably demand an in-lining service that
supports both types, and that therefore implement a combination of static and dynamic code analysis.

Static pointcuts include method accesses (<mrag>), field accesses (<get> and <set>), argument type constraints
(<argtyp>), and exception handlers (<handler>). Method accesses are usually of greatest practical significance in
real policies, so we support several different kinds of pointcuts for matching them. Instructions that call methods
are matched by <call> pointcuts, whereas the entry points of the methods they call are matched by <execution>
pointcuts. This distinction is important because when a security-relevant method m is part of the untrusted binary
itself, using <execution> leads to a more efficient IRM implementation because the guard code is injected at the
entry point of m instead of at every instruction that calls m. However, when m is external to the binary (e.g., it is a
system API method), <call> is required since m itself cannot be rewritten. The <withincode> pointcut matches all
code points within a given method, and is typically used within a conjunction to identify all instances of a particular
operation within a given lexical scope.

Dynamic pointcuts include argument value tests (<argval>), and dynamic typing tests (<this> and <target>).
The first of these tends to be the most important, and allows dynamic checking of method call arguments and field as-
signments. Value predicates vp compare these values to integers, string regular expressions, or simply null. Types and
subtypes of the target object of a method call or field access can be dynamically matched by <this> and <target>
pointcuts, respectively.

We anticipate that realistic policies that exhaustively itemize all possible binary-level, security-relevant operations
will become quite large documents over time. It is therefore important to be able to modularize such documents by
assigning names to commonly used pointcut expressions and allowing those names to be used as references in larger
pointcuts. The <pointcutid> pointcut allows such references, and can be thought of as a macro that expands to the
referent’s definition.

4. Web Service Implementation

We have implemented a version of our rewriter which acts as a Java web service application. Using an HTTP
request with the POST method, a client uploads two files: a SPoX policy and an untrusted JAR (Java ARchive) file.
The server then provides these two files as input to the rewriter, which creates a new, rewritten JAR that enforces the
security policy. Finally, the rewritten JAR file is returned as an HTTP response to the client.

The server-side code consists of about 7400 lines of Java code, 7200 lines of which are devoted to Java binary
parsing, rewriting, and code generation, and 200 lines of which implement the servlet that makes the rewriter acces-
sible as a web service. We use the Apache BCEL library for low-level Java binary reading and writing. In order to
manage the file uploads, we use the Apache Commons fileUpload library, which obtains Java FileInputStreams
from the request data. The files are saved locally on the server in temp files, which are submitted as input to the
rewriter. The newly rewritten JAR file is then copied to the HTTP response as a binary stream.
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| <state name="s" />

2 <edge name="badUpload">

3 <nodes var="s">0,#</nodes>

4 <or><and><set>Picasa.UploadPhoto.name</set>

5 <not><argval num="1">

6 <streg>.*\.(jpgljpeg|tif |tiff |png|bmplgif)</streq>
7 </argval></not></and>

8 <and><set>GoogleDocs.UploadDoc.file</set>

9 <not><argval num="1">

10 <streqg>.*\. (doc|docx|txt|rtf)</streq>

1 </argval></not></and></or>
12 </edge>

Figure 4. Policy that prohibits uploads of files with non-whitelisted extensions

‘We ran the rewriter service on three different applications, with different policies for each. All tests were performed
on a Dell Studio XPS notebook computer running Windows 7 64-bit with an Intel i7-Q720M quad core processor, a
Samsung PM800 solid state drive, and 4 GB of memory. The server-side code ran on an instance of GlassFish Server
3.1. Provided runtimes account only for time spent rewriting and performing related file I/O, and do not include any
network operations such as uploading and downloading files.

JjWeatherWatch. We enforced the policy from Figure 1 on a weather widget application called jWeatherWatch [12].
The policy prohibits the application from accessing files in the Windows directory. The application obeys this policy,
so the rewritten program showed no observable change in behavior. The uploaded JAR was 140 KB in size and
rewriting increased its size by 6K (4%). Total processing time was approximately 4.3 seconds.

Google.mE. Google.mE [13] is an open source Java application that acts as a client for various Google web applica-
tions, including GoogleDocs, Picasa, YouTube, and GMail. One of its features supports uploading of files to many of
those services. We chose to enforce the policy in Figure 4, which prohibits uploads of non-picture files to Picasa and
non-document files to GoogleDocs. The file type is identified by whitelisting permissible file extensions; filenames
with extensions not explicitly listed in the respective <streq> elements are prohibited. When we attempted to upload
a file with an unsupported extension to GoogleDocs, the rewritten application halted execution as expected.

The original JAR was 921 KB in size while the rewritten one was 513 KB—a size reduction of over 44%. The
reduction is primarily to the lack of compression in the original JAR, whereas our rewriter compresses the output JAR
by default. The runtime was reported as 21.7 seconds.

Jeti. Jeti [14] is a simple Jabber IM client. We enforced the policy in Figure 5, which limits the number of simul-
taneous socket connections to 5. Such a policy might be used to protect a user from DDoS malware disguised as
legitimate web service clients. Socket connection events increment security state s until s = 5, at which point the next
connection event signals a policy violation. Socket close events decrement s.

Interestingly, enforcement of this policy uncovered an apparent bug in the application. When a login is successful
and the user later logs out, the connection is properly closed; however, connections for failed logins are never properly
closed. Thus, six successive failed login attempts trigger a policy violation, and the rewritten program halts.

The original JAR file was 533 KB in size and rewriting decreased it by 59 KB (11%). In this case, the size
reduction is a result of the rewriter stripping out unnecessary metadata in the JAR’s internal class files. The total
processing time was 20.4 seconds.

5. Conclusion

We implemented a web service that automatically in-lines security monitors into untrusted Java binary code in
accordance with a client-specified, temporal security policy. The policy is specified using the SPoX XML format,
which encodes temporal code properties as security automata. This allows client-specific security requirements for
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<pointcut name="connect">
<or><and><call>java.net.Socket.new</call>
<argtyp num="2">int</argtyp></and>
<call>java.net.Socket.connect</call></or></pointcut>
<state name="s" />
<forall var="i" from="0" to="4">
<edge name="inc_connections">
<nodes var="s">i,i+1</nodes>
<pointcutid name="connect" /></edge>
</forall>
<forall var="i" from="1" to="5">
<edge name="dec_connections">
<nodes var="s">i,i-1</nodes>
<call>java.net.Socket.close</call></edge>
</forall>
<edge name="six_connections">
<nodes var="s">5,#</nodes>
<pointcutid name="connect" /></edge>

Figure 5. Policy that prohibits more than 5 simultaneous connections

mobile code to be shifted to a separate, trusted security service in a service-oriented architecture. The separate service
is lighter-weight than platform-as-a-service approaches because it does not actually execute the mobile code.

Processing time for rewriting averaged 0.02 seconds per kilobyte. This is acceptable for small applications, but

would need to be improved for larger applications on the order of megabytes in size. Future work should also inves-
tigate certification approaches, such as those based on proof- or model-carrying code [15, 16], that could allow the
in-lining service to remain untrusted by checking its output with a lighter-weight verifier [17].
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