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We note that one can obtain a general formula for
%an W, Po) for the case of one right half plane at p:

Amax( W, Po) = ¢ T"P|W ™ H(p)ny H(p)]

where n, (s) is the Blaschke product of the open right
half plane zeros of Po(s).

We now consider an example of a system with no
open right half plane zeros, two right half plane
poles, and a pure transmission delay:

these results need to be extended to systems
governed by partial differential equations.
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where P, (s) is invertible in A4,. In this case a routine
calculation gives

Amax( 1, Po) = 0.5¢72(/9e?" + 9 — 14e" — 3(e" — 1)).

Forh=1,
Amax (L, Po) = 0.065.

Hence, in this case, the robust stabilization problem
for multiplicative perturbation family, section 3 is
solvable if and only if 6 < 0.065. And the maximal
obtainable gain margin for this plant is 2.26 dB! The
effect ofaright half plane zero would be to reduce %4
even further.
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In this paper we have given a solution to certain
robust stabilization problems for a large class of
distributed plants. In particular, our results give
concrete necessary and sufficient conditions for
robust stabilizability for plants with pure delay and
a finite number of right half plane poles and zeros.
Our results provide techniques for the assessment of
the impact of time-delays on robust stabilizability.
Many open problems remain to be solved in this
problem area. For example, so far no explicit results
have been obtained for the H * -weighted sensitivity
optimization problem of Zames (1981). Also, the
multivariable versions of the problems treated in
this paper remain essentially unsolved. Finally,

Doyle, J.C.. J. Wall and G. Stein (1982}, Performance and
robustness analysis for structured uncertainty. Proc 21st IEEE
Conf. Dec. Control, pp. 629-636.

Doyle, J. C. and G. Stein (1981). Multivariable feedback design:
concepts for a classical;modern synthesis. IEEE Trans. Aut.
Control, AC-26, 4.

Duren, P. L. (1970). Theory of HP-spaces. Academic Press, New
York.

Ghosh, B. K. and C. L. Byrnes (1983). Simultaneous stabilization
and simultaneous pole-placement by non-switching com-
pensation. [EEE Trans. Aut. Control. AC-28, 735.

Helton, J. W. (1982). Non-Euclidean functional analysis and
electronics. Bull. AMS. 7, 1.

Khargonekar. P. P.. K. Poolla and A. Tannenbaum (1985).
Robust control of linear time-invariant plants using periodic
compensation. [EEE Trans. Aur. Control, AC-30, 1088.

Khargonekar, P. P. and A. Tannenbaum (1985). Non-Euclidean
metrics and robust stabilization of systems with parameter
uncertainty. /EEE Trans. Aut. Control. AC-30, 1005.

Kimura, H. {1984). Robust stabilizability for a class of transfer
functions. IEEE Trans. Aut. Control, AC-29, 788.

Lehtomaki, N. (1983). Practical robustness measures in
multivariable control system analysis. Ph.D. dissertation,
MIT, Cambridge, Mass.

Saeks, R. and J. Murray (1982). Fractional representation,
algebraic geometry, and the simultancous stabilization
problem. IEEE Trans. Aut. Control, AC-27, 895.

Tannenbaum, A. (1980). Feedback stabilization of plants with
uncertainty in the gain factor. Int. J. Control, 32, 1.

Tannenbaum, A. (1981). [Invariance and System Theory:
Algebraic and Geometric Aspects. Springer-Verlag, Berlin.

Tannenbaum, A. {1982). Modified Nevanlinna-Pick interpola-
tion and feedback stabilization of linear plants with
uncertainty in the gain factor. Int. J. Control, 36, 331.

Vidyasagar, M. (1985). Control System Synthesis: A Factorization
Approach. MIT Press, Cambridge, Mass.

Vidyasagar, M. and N. Viswanadham (1982). Algebraic design
techniques for reliable stabilization. [EEE Trans. Aut. Control,
AC-27. 1085.

Youla, D.C..J. Bongiornoand Y. Lu (1974). Single loop feedback
stabilization of linear multivariable dynamic plants.
Automatica, 10, 159.

Zames, G. (1981). Feedback and optimal sensitivity: model
reference transformations, multiplicative seminorms, and
approximate inverses. [EEE Trans. Aut. Control, AC-16, 301.

-

and sufficient conditions are derived for the existence of such a controller.

Key Words—Control system design: feedback control: robust control; mathematical system theory:

stability criteria.

Abstract—This paper is addressed to three distinct vet related
topics in the design of controllers for imprecisely known linear
multivariable systems. In the first part, it is supposed that the
plant to be stabilized is subject to additive or multiplicative
uncertainties, and necessary and suflicient conditions are derived
fo. the existence of a controller that stabilizes all plants within
this band of uncertainty. In the second part. in contrast with the
first part. it is supposed that the number of unstable poles of the
plant to be stabilized is not precisely known. The type of plant
uncertainty is the so-called “stable-factor” uncertainty, and
necessary and sufficient conditions are given for robust
stabilization. In the third part. the model of uncertainty is a ball in
the space of rational matrices metrized by the so-called graph
metric, and sufficient conditions for robust stabilization are
derived.

INTRODUCTION

THIS PAPER is addressed to three distinct yet related
problems in the design of stabilizing controllers for
imprecisely known linear multivariable systems. To
state each of these problems formally, suppose the
imprecisely known plant which is to be stabilized is
nominally modeled by a rational transfer matrix
Py(s); the “true” plant is not necessarily Py, but lies
within some “domain of uncertainty” containing P,.
The three problems differ in the representation of
this domain of uncertainty.

In the first problem, the true plant P is supposed
to have the same number of right half-plane (RHP)
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poles as P,. though not necessarily at the same
locations. In the case of additive uncertainty, P is
assumed to satisfy

1P(jw) — Poljwlll < r(jow)l. Yo, (1.1)

where 1 1s a prespecified stable rational function. In
the case of multiplicative uncertainty, P is assumed
to satisfy

P(s) = (I + L(s))Po(s). (1.2)

where
ILCje)] < | jo) V. (1.3)

Let A(F,,r) (resp. M(P,,r)) denote the class of all
plants P that have the same number of RHP poles
as Py and satisfy (1.1) [resp. (1.2} ]. In Doyle and Stein
(1981), Chen and Desoer (1982), necessary and
sufficient conditions are presented that a controller
must satisfy in order to stabilize all plants in the class
A(Po, r) or M{F,,r). These papers leave open the
question of whether such a controller actually exists.
This is the question tackled in Section 3. Specifically,
necessary and sufficient conditions are given for the
existence of robustly stabilizing controllers in the
case of A(Py,r) and M(P,,r).

The assumption that the number of unstable
poles of the plant to be stabilized is exactly known is
rather restrictive. In some applications, such aslarge
flexible spacecraft, the number of unstable poles can
and does change as the configuration of the
spacecraft is changed. The objective of Section 4 is to
put forward a model of plant uncertainty wherein
the various plants within the domain of uncertainty
need not all have the same number of RHP poles.
This model is called stable-factor uncertainty, and
can be described as follows: Let P, be the nominal
plant model. and factor Py(s) as Ny(s)[Do(s)] ™!
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where N;, Dy are right-coprime stable rational
matrices [see Desoer et al. (1980) and Vidyasagar et
al. (1982)]. The class S(Ny.Dg.r) consists of all
plants P that satisfy P(s) = N(s)[D(s)]™ " for some
stable rational matrices N, D such that

i D - gﬂ ()l < Ir(s)| Vs with Res =0, (1.4)

where r is a specified stable rational function. Thus
the class S(Ng, Dy, r) depends not just on P, and r
but on a particular right-coprime factorization of
P,. In Section 4, necessary and sufficient conditions
that a controller must satisfy in order to stabilize all
plants in the class S(Ng, Do, ) are derived.

Finally, in Section 5, the model of plant
uncertainty is a ball centered at P,. Thus it is
assumed that the true plant is only known to lie
within some distance r of the nominal plant Py,
where r is a positive real number, and the distance
between P and P, is measured using the graph
metric defined in Vidyasagar (1984). In this case the
domain of uncertainty is

B(Po,r) = {Pd(P, P()) < l‘}, (15)

where d denotes the graph metric distance. This
uncertainty model has the advantages that (i) P
need not have the same number of RHP poles as Py,
and (ii) the domain of uncertainty B(F,, r) depends
only on P, and r, and not on any particular
factorization of P,. In Section 5, suflficient
conditions are given for a controller to stabilize all
plants in the class B(Py,r). These sufficient
conditions are readily extended to the case where
both the plant and controller are perturbed.

As a preparation for the principal results, Section
2 contains a precis of known facts. Finally, Section 6
contains some concluding remarks.

2. NOTATION AND PRELIMINARIES

Throughout the paper, S denotes the set of proper
stable rational functions with real coefficients. The
symbol M(S) is a generic symbol denoting the set of
all matrices {of whatever order) whose elements
belongto S. Thus, A, Be M(S)does not imply that 4
and B have the same order. This notation is very
useful because, almost always, the actual orders of
the various matrices encountered in the discussion
need not be displayed explicitly and can easily be
determined should the need arise.

The set S is a subset of the space H, of analytic
functions bounded over the right half-plane.
Specifically, H, consists of all complex-valued
analytic functions f over the open RHP with the
property that

limsup [f(s)] < =. (2.1)

a0+ Resza

If fe H, . then the domain of definition of f can be
extended to include the jw-axis. and the boundary
function o — f(jw)isin L, (— . x ). Moreover. if
the norm of fe H, is defined as

LAl =sup sup [f(s)]. (2.2)
¢>0 Resza
then actually
/1 = esssup|f(jw)l (2.3)

A function fe H, is symmetricif /(s) = /(5)Vsin the
RHP, where the bar denotes complex conjugation.
Note that S is precisely the set of symmetric rational
functions in H, . For further basic facts about H, ,
see Duren (1970).

Afunction fe H, isinnerif | f(jw)| = 1 for almost
all w. The definition of an outer function is more
technical, but a rational function fe H, is outer if
and only if f{(s) # 0 whenever Res > 0 thowever, f
can have zeros on the jw-axis or at infinity). For
convenience, let us refer to the jw-axis plus the point
at infinity as the extended jem-axis. If f is rational,
outer, and also does not vanish at any point on the
extended jw-axis, then f'is a unit of H, , in that the
function s— 1/f(s) also belongs to H,. Every
rational fe H_, can be factored as f;f,, where f; is
inner and f, is outer. In particular, if f is rational and
has no zeros on the extended jw-axis, then its outer
factor f, is a unit of H, .

If FeM(H, ), i.e. ifall components of the matrix F
are H, -functions, then we define

1Fll, = esssupa(F{ jw}), (2.4)

€«

where G(-) denotes the largest singular value of a
matrix.

A rational matrix FeH”™" is inner if
F*(jo)F(jw) = IV, where * denotes the conjugate
transpose, and is outer if F(s) has full row rank at all
s in the open RHP. Note that if Fe H? ™" is inner
{resp. outer), then m=n (resp. m<n). Every
rational matrix F e H"*"with m > n can be factored
as F.F, where F; is inner and F, is square outer. Every
rational matrix F e H" " with m < ncan be factored
as G;G, where G; is square inner and G, is outer.
Finally, if Fe M(H, ) is rational and square, then
both types of factorization are possible. If F has full
rank at all points on the extended jow-axis, then its
outer factor is a unit matrix in M(H ), L.e. its inverse
also belongs to M(H, ). Note that if F is square
inner, then its adjoint matrix F* and its
determinant |F] are also inner. Finally, multipli-
cation (left or right) by an inner matrix preserves
norms. Thus, if F, G are inner and He M(H, ), then
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\FHY, = [H],. |HG|, = |IH||, . For further re-

sults concerning factorizations, sce Sz-Nagy and
Foias (1970).

Suppose 4;..... 4, are distinct points in the open
RHP.and Fy..... F, are complex matrices, all of the
same order. with ||F| < 1Vi. Then a classical result
states that there exists an Fe M(H,) such that
|Fll, <1 and F(s;) = FViif and only if the matrix

P, ... P,
P=: Do (2.5)
Pul L Pnn
where
I - FF,
Pj=— —. (2.6)
’ i+ /.

is nonnegative definite. See Walsh (1935) for the
scalar case and Delsarte er al. (1979) for the matrix
case.

Let R(s) denote the set of rational functions with
real coeflicients, and suppose a plant has the transfer
matrix P e M(R(s})). Suppose a feedback controller
C e M(R(s)) is applied to the plant P, resulting in the
closed-loop transfer matrix

(I+PC)y"" —PU+CP)!
Hp.C) = [C(I +PC)y"' (I+cCP)! J 27

We say that the pair (P.C) is stuable, or that C
stabilizes P if H(P,C)eM(S). The symbol S{P)
denotes the set of all controllers that stabilize P.

Given a plant P, the set S(P) can be explicitly
parametrized using the concept of coprime factori-
zations over S defined in Vidyasagar (1975) and
exploited in Desoer et al. (1980); see also
Vidyasagar et al. (1982). A pair (N,D) is a right-
coprime factorization (r.c.f.) of P if

(i} N,DeM(S) and P(s) = N(s) [D(s)]™";

(ii) there exist X, Te M(S) such that XN + YD
= I. A left-coprime factorization (l.c.f) (D,N) of
P is defined analogously.

Theorem 1. (Desoer et al., 1980; Vidyasagar et al..
1982.) Suppose P e M(R(s)), and let (N, D), (D, N) be
anyr.cfandanylcf of P.Let X, Y, X, Y be solutions
of

XN+YD=1  NX+DY=1 (28
Then

S(P) = {(Y — RN)" %X + RD):ReM(S)
and |Y — RN| # 0] (2.9)

= (X + DRIY = NR)"':ReM(S)
and |Y — NR| # 0. (2.10)

Moreover, if P is strictly proper, the nonsingularity
constraint can be dropped.

3. ADDITIVE AND MULTIPLICATIVE
PERTURBATIONS
Suppose P,e M(R(s)) is a nominal plant, reS.
and consider the classes A(P,.r), M(P,, r)defined in
the introduction. Conditions for a controller
CeS(P,) to stabilize all plants in each of these
classes are available in the literature.
Theorem 2. (Doyle and Stein, 1981; Chen and
Desoer, 1982). A controller Ce S(P,) stabilizes all
plants in the class A(P,.r) if and only if

ICU + PCy ', < 1. (3.1)

C stabilizes all plants in the class M (P, r)ifand only
if

P, CU + PC) ML, < 1. (3.2)

[t is natural to ask whether. given a nominal plant
P, and a function r, there actually exists a C that
satisfies (3.1) or (3.2). The purpose of this section is
to answer ‘these questions.

Theorem 3. Suppose a nominal plant P,. free of
extended jw-axis poles, and a function r€ S, free of
zeros on the extended jw-axis, are specified. Let
(N, D), (D, N)be any r.cf. and Lcf. of Py, and let X.
¥ e M(S) be any particular solutions of the identity
NX + DY = I Factor D. D in the form

D= DD,, D=D,D;, (3.3)

where D;, D, are inner and D,. D, are outer, and
assume without loss of generality that |D;] = \D,|. By
Kailath (1980, p. 446), |D| and |D| are associates: so
are |D,| and |D,|, since both are units. Hence |D;| and
|D,| are also associates. Since both are inner. we have
ID;| = +|D;| in any case. Finally, factor r as ry,
where r; is inner and r, is a unit of S. Under these
conditions. there exists a C & S(F,) that stabilizes all
plants in the class A(P,.r) if and only if

min D4 XD, + 65|, < 1. (3.4}
5 eM(S)

where 6 = |D;| = |Dy|.

1f & has only simple RHP zeros (or equivalently. if
P, has only simple RHP poles). (3.4) can be stated in
a more readily testable form.

Corollary 1.1. Suppose J has only simple zeros.
and let 4,.....4, denote these zeros. Let

F = (D¥XDyro)sy) j=1..... n. and define

i

ij = (] —_ FJXF]\)//(/_J + )-k)- 1 S’.l\ _<_ n. (3 )
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Qll an
0= : Do (3.6)

in o an i

Then there exists a C e S(F,) that stabilizes all plants
in the class A(P,,r) if and only if Q is nonnegative
definite.

The treatment of multiplicative perturbations is
entirely similar to that of additive perturbations.

Theorem 4. Suppose a function reS and a
nominal plant P,e M(R(s)) are specified, and
suppose in addition that P, has no poles on the
extended jw-axis. Let (N, D), (D, N) be any r.c.f. and
lLef of Py, and let X, Ye M(S) be any particular
solution of the identity XN + YD = I. Under these
conditions, there exists a C e S(P,) that stabilizes all
plants in the class M(P,r) if and only if

min |N(X + RD)|j, < 1. (3.7)

R eMS)

Suppose in addition that P, has at least as many
inputs as outputs, and that r has no zeros on the
extended jw-axis. Then the condition (3.7) can be
further simplified as follows: factor N, D in the form

N=NN,  D=D,D, (3.8)
where N,, D; are inner and N,, D, are outer. Finally,
factor r as r;r, where r; is inner and r, is a unit of S.
Under these conditions, there exists a C e S(P,) that
stabilizes all plants in the class M(P,, r)if and only if

min [N, Xr, D! + 6R|, <1, (3.9)

R =M(8)

where 6 = |D,).
Proof of Theorem 3. By Theorem 1, the set of all
CeS(R) is described by
S(Py) = (X + DSYY — NS)"':Se M(S)
and |Y — NS| # 0], (3.10)
where the nonsingularity constraint is automati-

cally satisfied if P is strictly proper. Moreover, if
C=(X+ DS)Y~— NS)™ ! then

CU + P,C)y" ' =(X + DS)D. (3.11)
Hence there exists a C e S(P,) satisfying (3.1) if and

or~11y if t~here exists an SeM(S) such that
X + DS)Drfj, <1, ie. if and only if

min ||X + DS)Dr||, < 1. (3.12)

S =M(S)

A few simple manipulations bring (3.12) into the

form (3.4). Note that

|XDr + DSDr||, = | XD, D,
+ D:D,SD Dyl
= 1D} XD
+ 32D SD o1yl

after left multiplication by D¢ and
right multiplication by D%

= 0r( Dt X Dyry + 68

where S; = D,SD,r, is a new free parameter
= {9 XDy, + 651

since 0 and r; are inner. (3.13)

Hence (3.12) and (3.4) are equivalent.

Proof of Corollary 1.1. Let F denote DX D r,,
and note that Fe M(H, ). Now, a matrix Ge M(H, )
is of the form F + 98 for some Se M(H,, ) if and only
if G(4;) = F(4;) = F¥j. Thus (3.4) holds if and only if
there exists a matrix Ge M(H, ) with |G||,, < 1 such
that G(4;) = Fvj. Now apply (2.5) and (2.6).

In (34), X is any particular solution of the
identity NX + DY = I. Hence it is nice to know that
the test matrix Q is the same no matter which X is
used. To see this, let X,, ¥, be another set of
rgatrice;s in M(S) satisfying NX, + DY, = I. Then
Xy =X + DR for some ReM(S). Hence

Di%X Dy, = DX + DR)Dr,
= D XD.r, + 0D,RD, (3.14)

since D = D;D,. Now the second term on the right
side of (3.14) vanishes at all zeros of §. Hence
Fi.....F, are independent of which particular
solution X is used to compute them. Similar
remarks apply even in the case where 6 has repeated
Zer08.

If the plant P, is scalar, then the expression for F
(or f;) in the scalar case is more elegant. In this case,
di* = 1 (since by convention the adjointofal x 1
matrix is 1), and f; = (xd,r,)(2;). Now. in the scalar
case d = d;: henceit follows from d = d;d, = dd, and
nx +dy = 1 that, at any zero /; of 5, we have n(4;)
x(4;) = 1. Hence

_ Aotz

,‘C().j)(I(,().j) n(; ) .
“J

(3.15)

With the plant p,, associate the stable plant
qo = pod = n/d,. Then

1, = BlAB) _ o) (3.16)

1(4;) - qol2)

The above result was obtained earlier by Kimura

§
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4 (1983) using quite diflerent methods. He also

extended these results to the case where both the
unperturbed and perturbed plants had a simple pole
at s =0.

The treatment of multiplicative perturbations is
entirely similar to that of additive perturbations.

Proof of Theorem 4. From Theorem 1. every
CeS(P,y) is of the form (Y — RN)"Y(X + RD) for
some R eM(S). Moreover,

PoCU + P,C) ' =Pyl + CPy) 'C = N(X + RD).
(3.17)

Hence (3.2} holds for some Ce S(F,) if and only if
there exists an R M(S) such that (3.7) holds. This
proves the first part of the theorem.

To prove the second part. let ; = |N{ and note
that yis inner. Using by now familiar manipulations.
we arrive at

INXr + NRDr|l, = [NiNoXrori
+ N;NRD Dl
= |lyriNoXr,Di% + S|,
where S = N,RD,r,
= IN,Xr.D4 + 58], . (3.18)

Now (3.9) follows readily.

If the plant P, is scalar, one can again obtain a
simple expression for the quantity N,Xr,Di%
evaluated at the zeros of 4. Suppose nx + dy = 1,
and suppose {2} = 0 at some point « in the RHP.

Then d(+) =0, (nx){s) =1, and
o s Tol7)
(N X1, DiF)(2) = — .
()

The foregoing results also lead very naturally to
the notion of optimally robust compensators.
Suppose a nominal plant P, is given, together with a
function feS, which represents an uncertainty
profile. Consider the class A(P,. r) consisting of all
plants satisfving (1.1), where r=2f. It is now
reasonable to ask: what is the largest value of the
parameter /. for which the class A(Fy, r) is robustly
stabilizable. and what is a corresponding robustly
stabilizing compensator? This problem can be
solved very easily using the results derived so far.
Factor fas f; f, where f;, f, are respectively inner and
outer. and define

+ = min |DiYXD,f, + 6S|, . (3.19)

i
S M8y

where all symbols are as in Theorem 3. Now. by
applyving Theorem 3 with r = /f.it follows that there
exists a single compensator that stabilizes all the
plants in the class A(P,.r) if and only if 72 < 1.

Hence the largest value of 2 for which there exists a
robustly stabilizing compensator is given by
+.= 1/7. Further. if § is any matrix which attains the
minimum in  (3.19), then the ~compensator
C=(X + DS)(Y— NS) ! is an optimally robust
compensator. The case of multiplicative per-
turbations is entirely similar and is left to the reader.

If the plant P, has more rows than columns, then
the condition (3.7} for robust stabilizability cannot
be simply tested in terms of the nonnegative
definiteness of a test matrix of the form (3.6). In this
case one has to use the iterative method of Doyle
{1983) to test the condition (3.7). If the plant P, has
at least as many columns as rows, then the simpler
condition (3.9} applies. which can be more readily
tested.

4. STABLE FACTOR PERTURBATIONS

In the previous section, we studied the case where
the perturbed and unperturbed plants had the same
number of RHP poles. and neither had poles on the
Jem-axis. However. this assumption is not satisfied in
certain applications such as large flexible spacecraft.
Thus it is desirable to develop a theory that removes
this assumption by considering a different class of
plant perturbations. The class of stable factor
perturbations has this feature. The conditions for
the robust stabilizability in the case of stable factor
perturbations are given in the next theorem.

Theorem 5. Suppose Pye M(R(s)). Suppose an
r.c.f (No. Dy) of Py and a function re S are specified,
and define the class S(N,. Dg.r)as in (1.4). Suppose
Ce S(P,). and select an Lef. (D, N,) of C such that
D.Dy + N.N, = I. Then C stabilizes all P in the class
S{Ny.Dgy.ryif and only if

D Nl < 1. (4.1)

Proof. For convenience, define

_ DO — D A =D N 2

“if": Suppose (4.1) holds. and suppose P is an
arbitrary plant in the class S(Ny. Do.r). Then P has
an r.cf (N.D) such that |A(s) — Ag(s)] < |r(s)]
Vse C. .. Now consider the return difference matrix
D.D + NN = 4,A. Since A Ao = I, it follows that
A.A =TI+ A(A — Ao). However, from (4.1), we
get [I[AdA = 4) 1) < 1Ads)l 114 = Aol <1
V¥se C.,. This shows that |[4,A(s)] # 0 VseC.,, s0
that 4.4 is unimodular. Hence C stabilizes P.

“only if”: Suppose (4.1} is false: we will construct
a plant Pe S(Ny. Dy.r) that is not stabilized by C.
Since (4.1) is false. there exists a w, such that
1A jooll 1M jome)l > 1. Select unitary matrices U, V
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such that* Hence, if it can be shown that {B( juo)| # 0. then
|D.D, + N.N,| vanishes at jow,. and C does not
g ... 0 0 stabilize P. Thus the proof is complete if it can be
UAjoo)V=1| + + L (4.3) shown that |B{ jwg)| # 0. For this it is enough to
0 ... 6, O show that Aq + @ = [D’ N’} has full column rank

where o, = - =0, are the singular values of
A jwg). Since A jowo)A(jog) = I, it follows that
A(jwy) must be of the form

ljg, ... O
Aoljwo) =V | * T U (44)

0 ... Yo,
T

where T is some matrix. Now, by assumption,
a|r{ jwe)l > 1. Define

l/o, 0
QGs) =~V 0: 0: Ur(s)/r(jwe), (4.5)
q 0 0

where g is a column vector chosen such that (i)
Ojwolll < |r(jwo)l, and (i1) the first column of
Aol jwe) + Q(jwo) is not identically zero.T Let P be
the plant ND™! where [D' N'] = A= A, + Q.
Then P belongs to the class S(Ny, Dy, r), since |Q(s)]
[r(s)} < 1 VseC,.. [The matrix Q may not be a real
rational matrix, but this is easily fixed; see the
discussion following the proof. ] However, since

Al jog) = Aol jwe) + Qjwe)

0 O ... 0
0 1/"0’2 :

1% Lo |V (46)
X X X X

we see that |A.A(jwe) =0, so that 4.4 is not
unimodular.

The question is: does the singularity of
(D.D + N.NJ at jowq imply that C fails to stabilize P?
We can conclude that this is so provided we can
show that this singularity does not come about as a
result of a nontrivial common right divisor between
N and D. To amplify this argument, suppose
N = N,B, D = DB, where B is a greatest common
right divisor of N and D, and N, and D, are right-
coprime. Then [D.D + N.N| = |D.D, + N.N,|-|B.

* Note that A.(s) is a “fat” matrix and has full row rank at all
seC,.. :

+If the first column of the matrix T in (4.4} is nonzero, simply
choose ¢ = 0. Otherwise, choose ¢ to be any nonzero vector of
sufficiently small norm that §Q(jm )il < |r{ jiy)|. Since the norm
of the top part of Q(jmg) is /o < |r{jm,)], such a ¢ can always
be found.

at jowo. But this last fact is immediate from (4.6).
since the first column of T is nonzero.

Let us digress briefly to consider the possibility
that the matrix Q defined in (4.5} may not be a real
rational matrix. If wy = 0 or =, then Q(s) is clearly
real rational. If wq is nonzero and finite, proceed as
follows: rewrite (4.5) in the form Q(s) = r(s)M where
M is a constant matrix whose definition is self-
evident. Now M is a rank one, possibly complex,
matrix, and M| <1 since o,|r{jwe)>1 by
assumption. [t is easy to see that the argument in the
proof of Theorem 5 is unaffected if the constant
matrix M is replaced by a function T(s)so long as (i)
[T(N.. < 1,and (i1) T(jowe) = M. Thus it is shown
that, given any complex rank one matrix M and any
nonzero finite number ¢y, it is possible to construct
a real rational function T(s) such that T( jwy) = M.
and |T()l. = [|M|. Factor the rank one matrix M
in dyadic form as xy’, and suppose without loss of
generality that w, is greater than zero. Express the
vectors x, y in the form

x; = wexplj@s), vi = exp(jv;). (4.7)

where the o;, f; are all real and ¢, 0,e(—n,0]Vi
The idea is to generate a collection of all-pass
functions such that at the frequency ), they have
the right values. This is done by defining

s s — 0

ai(s) = o ———, bi(s) = p; -, 4.8
(s) ST, {s) /S+0i (4.3}
and adjusting the constants ;. 9; such that
a4l jowg) = X;, b jowe) = ;. The matrix

T(s) = a(s)[b(s)]. where a.b are the vectors of the
d;, b;, has the required properties. As this
construction is quite general, it follows that in
robustness studies one can as well use complex
rational matrices instead of real rational matrices, as
the proofs are much more transparent in this case.

There is an interesting anomaly associated with
the robustness condition (4.1). Comparing the
contents of Doyle and Stein (1981) and Chen and
Desoer (1982), we see that it makes very little
difference, in the case of additive and multiplicative
perturbations, whether the class of perturbations is
defined with <™ or =< If the class of
perturbations is defined with a strict inequality, the
robustness condition has a nonstrict inequality, and
vice versa. But this is not so in the case of stable
factor perturbations. Define the class S(N,. Dy, r) by

%
|
.
%
: é‘
]
-

R S S S
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' g(Nn-DuJ') =

{P =ND ’:u[tg B g“;(‘:ﬂu < |r(s)|¥seC, }
[EFAN

(4.9)
One might then be tempted to conjecture the

following result: C e S(P,) stabilizes all Pin the class
S(Ny.Dg.r) il and only if

sup Aol rCjo)] < 1. (4.10)
But this is false: (4.10) is certainly sufficient {or
robust stability, but not necessary, as the next

example shows.

Example 1. Consider

(5) = b = 1ol8)
S )
where
nols) = 0TI gy = BT
e P P T

Let ¢(s) = 4/(s + 5). Then ¢ stabilizes p,. Moreover,
ddy + n.ng = 1, where

[(__S+5 (g)__i
(""S)—s+7' A _s+7'

Now consider the class S(ng.d,. ) with r = 1. Since

dl) |, 1), _
HLM J”-%éh"k

{(4.10) does not hold. Nevertheless. ¢ stabilizes every
p in the class S(ng.d,.r). which shows that (4.8) is
not always necessary for robust stability.

To show this. suppose that pe S(ng.dg,r). Thus

88

p(s) = as) where||[n —ng d — do ) (s)|l
ds)

<1VseC.,.

Let Q = [¢, ¢, denote [d —dy n—ng). Then
there are two cases to consider, namely:
(Vg (x)+1#0.and (ii)g,() + I = 0. In either
case we have ||[d.(s) n(s)]} < 1 for all (finite) s in
the RHP. so that

tdod + nalsi =1+ [d, m.]le #0VseC..
On the other hand. [d{= ) n(=)]= [1 0]so that

(dd +~nnflx)=1+¢g(x)

Hence. if ¢,(»)# 1, then the return difference
d.d + narhasnozerosin C ., and s thus a unitof S.
Thercfore ¢ stabilizes p.

It only remains to show that ¢ stabilizes p even if
gu{7)y=—1. In this case ¢:(x)=10 since
Otz <1 Hence nlx)=dl~)=0, and
o= 1/(s + 1}is a common divisor of n and d in the
ring S. Further, since {(d.d + nai)(s) # 0 for all finite
s in the RHP. 2, its powers and associates are the
only possible common divisors of n and d. Now it is
claimed that, whatever be ¢;. the function
d = dy + ¢, can have only a simple zero at infinity.
Let us accept this claim for a moment; then « is a
greatest common divisor of n and d. since d/x does
not vanish at infinity. Let n, = n/a. d, = d;jo. Then
(11,.dy) 1s a coprime factorization of p. Now

(dd; + nainy ) =d{)

# 0 since d, = d/7 and d has only 4 simple zero at
infinity. On the other hand, since it has already been
established that (d.d + na)(s) # 0 for all finite s in
the RHP, 1t follows that

(d.d; +nn)s)#0VseC.,.
This shows that ¢ stabilizes p.

Thus the example is complete if the claim can be
established. This is most easily done using the
bilinear transformation z = (s — 1)/{s + 1), which
sends the function d,, into

aglzy = dol{l + 2)/(1 —z)) = (4 — 3z)/(2z ~ 1)

and sends ¢, (s) into an associated rational function
t:(z). In this context, the claim is that ay + ; has
only a simple zero at - = 1 whenever (1) = —1
and||t;|l, = 1. We prove the contrapositive, namely.
if g is a rational H,, -function such that g(1) = 1 and
ag — g has a double zero at z = 1, then ||g}, , > L
Expand g in a power series around = 1, as

glz)= ) gl=— 1)
i=0
If ay — ¢ has (at least) a double zero at = = 1, then

gll) =ao(l) = 1,g'(1) = ap (1) = — 1.

Hence, for = < 1 and sufficiently close to 1. we have
g(z) > 1} Therefore |igf| > 1.

This completes the example.

Theorem 5 provides a necessary and sufficient
condition for a C e S(P,) to stabilize all plants in the
class S(Ny, Dy.7). The issue of whether such a C
exists can be formulated in terms of an H,-norm
minimization problem.

Theorem 6. Suppose a function reS and a
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nominal plant P, € M(S) are specified, together with
an r.cf (Ny,Do) and an Lef. (D, N) of P,. Let X,
Ye M(S) satisfy XN, + YDy = I. Then there exists
a CeS(P,) that stabilizes all plants in the class
S(Ng, Dy, 1} if and only if

inf |4A—RB|<1, (4.11)
R =M(S)
where
A=[Y X, B=[-N, DoJr. (4.12)

The proof is obvious and is left to the reader. Note
that the matrix Bin (4.11) always has more columns
than rows. Hence the condition (4.12) can only be
verified using the iterative method of Doyle (1983).

5. GRAPH METRIC PERTURBATIONS

In this section, we consider the case where the
uncertainty in the plant is characterized by a graph
metric perturbation. [t turns out that simultaneous
perturbations in both the plant and the controller
can be very easily handled in this framework.

We begin with a brief description of the graph
metric, which is defined in Vidyasagar (1984). An
rc.f (N, D) of a plant P is said to be normalized if

[D'(-s)N'(—s)]m((?J =1vs.  (51)

It can be shown that every P has a normalized r.c.f,
which is unique to within right multiplication by an
orthogonal matrix. If (N, D) is a normalized r.c.f. of
P, then A= [D" N’V is inner, and as a result
multiplication by A is an isometry. Now suppose P,
P, are two plants with normalized r.c.fs (N, D,),
(N,,D,), respectively. To define the graph metric
distance d(P;, P,) between the two plants, let

¥

D
L= ! = 1.2
A; |:N] fori=1,2. (5.2)

(S(Pl,Pz)Z inf

UeMS) {jU,, <1
kK

A4 — AU, (5.3)

d(P;, P,) = max {fS(P1,P2)J5(Pz,P1);~ (5.4)

Then d is a metric on M(R(s)), taking values in the
interval [0,1].

The presentation of the results in this section is
made clearer by a bit of notation. Given P,
C e M(R(s)), define

T(P,C)zH(P,C)—-[(I) g} (5.5)

where H(P,(’) is defined in (2.7). Using this last
equation, one can derive a few other useful
representations of T(P, C). For instance.

. _[-PCU+PC)"" —PU+CP)!
T(P’C)‘[ C(I + PC)™! (I+CpP)~! }
=[”ﬂ(1+cp)'1[c I]. (5.6)

Theorem 7. Suppose the pair (P, Cy) is stable,

and that P, C, are perturbed to P, C, respectively.

Then the pair (P, C’) is stable provided

d(P, POIT(Py, Collls. + d(C, Colli T(Co, Py)ll - < L.
(5.7)

Corollary 5.1. Under the hypotheses of Theorem
7, the vpair (P,Co) is stable provided
d(P, Py) < 1/|T(Py, Co)l...

The significance of Theorem 7 and Corollary 5.1
is as follows: the type of plant perturbations studied
in these two results is the most unstructured one
considered in this paper, in that (i) one is permitted
to perturb simultaneously both the plant and the
controller, (1i) there is no restriction on the number
of RHP poles of the perturbed and unperturbed
plant being the same, and (iii) the perturbations are
not couched in terms of a particular coprime
factorization of the plant. The stability condition
(5.7) is interesting in that the effects of the
perturbations in the plant and controller enter
additively. When only the plant is perturbed, the
stability condition given in Corollary 5.1 is
reminiscent of the small gain theorem [see eg.
Desoer and Vidyasagar (1975)]. These results also
serve to bring out the significance of the concept of
the graph metric introduced in Vidyasagar (1984).

The proof requires the following easily proved
result.

Lemma 5.1. Suppose (N, D,). (N, D,) are r.c.{s of
P, C, respectively. Then the pair (P, C) is stable if
and only if the matrix

Db, —N
U= [N D, J (5.8)
is unimodular.

Proof. Define

C 0 N 0 _[p. 0
o P R PR RS AR

o —-I17
F_[I . ] (5.10)

Then it is easy to verify that (N,. D) is an r.c.f of G,
and that the transfer matrix H(P,C) equals
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(I + FG)™!.Since F is a constant matrix, an r.c.f, of
H(P.C) is given by the pair (D, D, + FN,). Hence
H(P.C)eM(S) if and only if its “denominator”

matrix D, + FN, is unimodular. Now routine

computation shows that this matrix is precisely U.

Proof of Theorem 7. Let (Ny, Dg), (X, Yo) be
normalized r.c.fs of P,. Cy, respectively. Then from
the stability of the pair (Py. Cy). the matrix

D, —X
zO — [ ;0 ‘; ():I (51 I)
O 4]

is unimodular. Let ¥, = Uy ', and partition V, as

VO - [)‘(),§Y )Df()]v (512)
Vo 0O

Then (Do.Ng). (Yo.Xo) are lLefs of Py, Co,
respectively.

Now select real numbers &, > d(P, FPy),
3, > d(C,Cy) such that

Sl T(Po. Collls + 3l T(Co, Po)ll, < 1. (5.13)

This is possible in view of (5.7). Let (N,,. D), (N.. D.)
be any normalized r.c.fs of P, C respectively. Then,
from the definition of the graph metric, there exist
matrices W,, W,e M(S) with [[W,], < 1, Wi, <1
such that

Do —D,W, |, _

5, 5.14
||[NO_ e [T AT
" ¥, - D.W, .

- L < 4. 5.15
H[XO ) MWJH, <o (515)

Define F as in (5.11) and observe that F is inner so
that multiplication by F is norm-preserving. Thus
{5.15) impilies that

u[”‘f 0~ N‘,WC’Jnx <5 (5.16)
)’0 - DCVI;

Next, define

D, 0
D,=|"°¢ .
=[o 5]
v | Dol —N.W.
T INW, D.W,

D, —N][w, o0
=|7r ¢ b (5.17)
N, D . {l0 W

It is now shown that (5.13) implies the un-

imodularity of V. This will show, u fortiori, that W,
and W, are both unimodular, and that the pair (P. C)
is stable, the latter conclusion following from
Lemma 5.1. Note that V- U; = [4 B] where

A= D() hns DPW’,, B — _(X(l - ‘Nyl'w2)
N = N, Yo - DW,
(5.18)
Now, if A BJUG M, < 1. then

W —UpUg ', <1, which implies that V is
unimodular. From (5.12),

{A B]U51 = [A B]Voz A[Y(J Xo]
+B[=N, Dy (5.19)

1[4 BIUg'll, < ALY Xolll, + HB[_NU E(J]H/

< Sl[Yo Xolls + ddl—No Dolll,
(5.20)

where the last step follows from (5.14) and (5.16).
The proof is completed by showing that

1Yo Xolll = [IT(Fo. Col. -

S (5.21)

I10—No Dolll, = IT(Co. Po)ll. .
Then {5.13) and (5.20) will imply the unimodularity
of V and the stability of (P.C).

To prove the first part of (5.21). recall that
(Ny. Dg) is a normalized r.c.f of Py, and (Y, Xo) is
the corresponding lcf of C, such that
YoDo + XoNy = 1. Hence, from (5.6),

. - A’()X() - 1’\’0 )Q
Mo Col= { DoXo _ Do¥

__N ,
=[ Dﬂ (X, Yol: (5.22)

IT(Po, Colll =11[Xo Yol

. ~Np | . .
since p. |1san isometry

(4}

wh

=[[Yo Xolll- (5.23)
The proof of the second half of (5.21) follows
essentially by symmetry arguments. after noting
that [|[~No Dolll. = IINo Dol -

It is mot known at present how close the
conditions of Theorem 7 and Corollary 5.1 are to
being necessary. In particular, it is not known
whether the condition |T(P,.C)l},, <r~' is nec-
essary for a controller C to stabilize all plants within
a distance of r from the plant P,. Nevertheless, it is
reasonable to seek, among all stabilizing controllers
for P,. an “optimally robust™ controller C, for
which [[T(Py. Co)ll is as small as possible. The
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problem of finding such a C, can be formulated as
an H,-norm minimization problem. As C varies
over S(P,). the corresponding T(F,.C) vary over all
matrices of the form

FRy | VoKt RDy) —No(Yo — RNo)
S Do(X o + RDy) Do(Ys — RNo)
(5.24)

where (Ny. Do), (Dy. Ny} are any r.c.f. and Lc.f. of Py,
Xo. YoeM(S) satisfy XNy + YoDo=1, and
ReM(S) is a free parameter. Thus, minimizing
IT(Py, C)ll.. over all CeS(P,) is equivalent to the
unconstrained minimization of | T;(R)|,, as R varies
over M(S). Now note that T(R) is of the form
U — VRW, where

[ =N, .
U:[ Dﬂ[xo Y, 1. 1%

~

W’ = [EO - /\"Q],

{
—
I
F&
—

However, since V has more rows than columns and
W has more columns than rows, the quantity

inf [T(R.C)j, = inf |U—VRW|, (5.26)

CeStPy) R =M(S)

can only be computed iteratively using the method
of Doyle (1983).

6. CONCLUSIONS

This paper contains three distinct contributions:
(i)in the case of additive and multiplicative
perturbations. necessary and sufficient conditions
are given for the existence of a robustly stabilizing
controller; (ii) in the case of stable-factor per-
turbations. necessary and sufficient conditions are
given for a controller to stabilize all plants within
the specified class; (iii) in the case of graph metric
perturbations, which also includes simultaneous

perturbations in the plant as well as controller.
sufficient conditions for robust stabilization are
given. In the latter two cases. conditions for the
existence of a robustly stabilizing controller are
given in the form of the value of a certain H, -norm
minimization problem being less than one.

Acknowledgement—The first author thanks John Dovle for his
comments on Theorem 5.
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control.

Abstract A linear state and control constrained problem
arising in optimal routing in communication networks is
investigated by Fenchel duality methods. The problem reduces to
a dual program having a particularly simple solution.

1. Introduction
IN DEALING with state constrained optimal control problems. one
encounters discontinuities in the time derivatives of state
components whenever some component hits the boundary.
These correspond to jumps of multipliers at these time instances.
The behaviour of optimal control and state trajectory at these
points is practically important and many refining assertions
around the necessary conditions of optimality can be obtained, if
one restricts the generality of dynamics and constraints (see
typically Maurer. 1977). A case in point where smoothness of
solution can lead to substantial simplification of on-line
algorithms. is the optimal dynamic routing problem in single
destination communication networks. As originally attacked by
Segall (1977). Moss (1977) and Moss and Segall (1982), this
reduces without undue simplifications to a linear dynamics,
linear cost. state and control constrained problem. with the state
absent from the right hand side of the dynamic equation, state
constraints x(r)= 0 and convex, time constant control
constraints. This model is introduced in Section 2 and has
become standard in the communication network literature
{Segall. 1977: Moss. 1977: Moss and Segall. 1982; Sarachik and
Ozgtner. 1982: Hajek and Ogier. 1984: Stassinopoulos and
Konstantopoulos, 1985). Segall’s original development based on
a Kuhn-Tucker theorem (see Section I1. Proof of Theorem 1 in
Moss and Segall. 1982) leads via an optimal control in feedback
form to solutions, where all state components can exhibit
discontinuous derivatives of all trajectory components, whenever
some component hits its respective boundary. This paper shows
(Sections 4--6) that optimal solutions always exist, where this
does not happen. so that optimal trajectory components have
constant slopes throughout the interval, where these components
are nonzero. Hence the problem reduces to a finite dimensional
dual program. Furthermore. due to the special geometry of the
velocity set. the problem can be solved by a finite algorithm.
The property of constant slopes has been observed (Moss,
1977: Hajek and Ogier. 1984). without a simple proof. free from
arguments relevant only to the communication network case. We
attack here the corresponding control problem by Fenchel
duality methods and illustrate in Section 6 which geometric
properties of the velocity set are nceded along the way and are
thus responsible for the simplicity of the final result. Since our
development departs right from the start from the network case
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and is solely based on the geometry of the velocity set, its scope
and applicability are broader. This contrasts with the
development in Hajek and Ogier {1984). where the property of
the constant trajectory slopes is derived through a network
theoretic approach. By restricting in this way the applicability of
the method, a finite algorithm of polynomial complexity in the
number of nodes is presented (Hajek and Ogier, 1984). Our
approach, based on the velocity set is broader, however the
resulting finite algorithm is of exponential complexity.

We emphasize that the removal of state constraints, either
directly, or by allowing only positive velocities, makes the
problem trivial, solvable in a few lines with the results of, say
Hermes and Lasalle (1969). We concentrate here on aspects
interesting to.control theorists and give extensions of importance
to communication networks in Stassinopoulos and Konstant-
opoulos, 1985.

2. The control problem
The dynamics are governed by linear equations, with the right
hand side independent from the state

x(t) = Bufr) (1)
with x(f) & R” the state vector with components xi{1), u(t) & R" the

control vector and B a n x m incidence matrix with elements 1.
—1 or 0. We have the following constraints:

Control constraints g U (2)
with U the rectangle U = {ueR"O0Su; £ C;j=1,....mj.
State constraints x(1) = 0 vt (3)

The control problem is to steer to the origin a given initial state
Xo = x(0) lying in the positive orthant (R")", while minimizing
either one of the two criteria:

Minimum total delay: Jp = ‘ Y xin)de 4)
0 i=t
or
Minimum time: Jp = J( dr (5)
4]
where t* = min{tre [0, o0 )/x(r) = 0;. (6)

In the following development we will place special interest in
the (negative) velocity set

V= {veR"v = —Bu ue Ul (7)
Due to the special form of B and U, V is convex, polyhedral and

can be described (Moss. 1977: Stassinopoulos and Konstanto-
poulos, 1984) by linear inequalities of the form

ZV.’ =0r (8)

ieF



