
Evaluating Cell/B.E Software Cache for ClustalW

Vipin Sachdeva

IBM Systems and Technology Group

Indianapolis, IN

vsachde@us.ibm.com

Michael Kistler

IBM Austin Research Lab

Austin, TX

mkistler@us.ibm.com

David A. Bader

College of Computing

Georgia Institute of Technology

Atlanta, GA

Abstract— This paper evaluates the performance of the bioin-
formatics application ClustalW developed on Cell Broadband
Engine(TM) (Cell/B.E.) using a software data cache for SPEs,
instead of explicit DMA transfers. The software cache of the
SPEs, once it has been configured, provides the capability to
access main memory with data-transfer functions that override
the need for DMA commands. ClustalW exhibits high spatial
locality but little temporal locality. We compare performance
of ClustalW with a previous version that uses explicit DMA
transfers as a means of communication with the system memory,
and provide analysis and results of our comparison.

I. INTRODUCTION

The recent emergence of accelerator technologies like

GPUs, FPGAs and specialized processors has made it possible

to achieve an order-of-magnitude improvement in execution

time for many bioinformatics applications compared to current

general-purpose platforms. Although these accelerator tech-

nologies have a performance advantage, they are constrained

by the high effort needed in porting the application to these

platforms. Recent implementations have focused on sequence

similarity applications using a wide variety of accelerators

including Cell/B.E. [1], GPUs [2] and FPGAs [3].

In previous research [1], we ported and optimized two

key sequence similarity applications to Cell/B.E. – ClustalW

(clustalw) and FASTA (ssearch34). We detailed the efforts

required, especially the changes required in each application

for data movement to and from SPEs, which require explicit

DMA commands, and provided analysis and results for our

implementation. In this paper, we discuss our implementation

of ClustalW (clustalw) using the SPE software cache support,

which was introduced in Version 3.1 of the IBM SDK for

MultiCore Acceleration [4] as an alternative to DMA com-

mands for custom data movement. We describe the changes

we made to utilize the compiler-supplied software data cache.

In our experiences, the use of caches simplifies the program

development and enhances the programmer productivity to a

significant extent. We also compare the performance our cache

implementation to the DMA version of the same application.

II. CELL/B.E.

The Cell/B.E. is a heterogeneous, multi-core chip optimized

for compute-intensive workloads and broadband, rich media

applications. The Cell/B.E. is composed of one 64-bit Power

Processor Element (PPE), 8 specialized accelerators called

Synergistic Processing Elements (SPEs), a high-speed memory

controller and high-bandwidth bus interface, all integrated on-

chip. The PPE and SPEs communicate through an internal

high-speed Element Interconnect Bus (EIB). The memory

interface controller (MIC) provides a peak bandwidth of

25.6GB/s to main memory. The Cell/B.E. has a clock speed of

3.2GHz and theoretical peak performance of 204.8 GFLOPS

(single precision) and 21 GFLOPS (double precision).

The PPE is the main processor of the Cell/B.E. and is

responsible for running the operating system and coordinating

the SPEs. Each SPE consists of a Synergistic Processing Unit

(SPU) and a Memory Flow Controller (MFC). The SPU is a

RISC processor with 128 128-bit single-instruction-multiple-

data (SIMD) registers and a 256KB Local Store (LS). The

SIMD pipeline can run at four different granularities: 16-way

8b integers, 8-way 16b integers, 4-way 32b integers or single-

precision floating-point numbers, or 2 64b double-precision

floating point numbers.

The 256 KB local store is used to hold both the instructions

and data of an SPE program. The SPU cannot access main

memory directly. The SPU issues DMA commands to the

MFC to bring data into the LS or write the results of a

computation back to main memory. Thus, the contents of the

LS are explicitly managed by software. The SPE can continue

program execution while the MFC independently performs

these DMA transactions.

III. CACHE IMPLEMENTATION ON CELL/B.E.

At the hardware level, SPU can only directly access data

that resides in the SPE’s local store – it cannot directly

access data in system memory. The SPU must use DMA

operations to transfer data from main memory to local store

in order to access it, and must issue DMA operations to

transfer the results of computation back to main memory.

However, a recent feature in the GCC and XLC compilers

makes it possible for SPE programs to directly access data

in main memory. This feature is called Named Address

Space support or ea address space support [4]. It allows

the programmer to add the type qualifier ea to variable

declarations in a SPE program to indicate that this variable

actually resides in system memory. This allows the PPE and

SPE portions of an application to share data as easily as two

different functions within the PPE portion of the code.

The compilers are able to provide this functionality by

generating the DMA operations for the referenced data under

the covers. However, issuing a DMA for every access to

978-1-4244-5309-2/10/$26.00 ©2010 IEEE 3793

an ea variable could severely impact performance, so the

compiler implements a software-managed cache in the local

store of the SPE. The compiler allocates a region of local store

and uses it to hold copies of ea qualified variables accessed

by the SPE program. Several implementations of software data

caching for the SPEs have been developed, but we chose to

explore the cache support in the compilers because it is nearly

transparent to the application programmer.

In our work, we used the GCC compiler and implementation

of named address space support [5]. The size of the cache

allocated by spu-gcc can be set to 8KB, 16KB, 32KB, 64KB,

or 128KB with the compiler option -mcache-size=, where

the default size is 64KB. The compiler does not attempt to

maintain coherence of its cached copies with the contents

of system memory, so some care must be used in choosing

data to access using this mechanism. However, the cache

manager does track modifications to cached data at a byte

level, and writes these changes back to system memory with

an atomic read-modify-write operation, to prevent the loss of

concurrent modifications to other bytes on the same cache

line. If the programmer carefully partitions the data in system

memory such that no two SPEs write to the same cache line,

performance may be improved by avoiding the atomic DMAs

in the update phase by specifying the -mno-atomic-updates

compiler option.

If ea variables are used for communication between

threads, GCC provides the cache evict(ea void *ea) func-

tion to flush updates from the cache back to system memory

for a given ea variable. Other SPEs that wish to see these

updates must also evict the line from their cache before reading

the new value. A form of synchronization, such as mailboxes

or signotify registers, is typically needed to ensure the first

thread completes its updates to memory before the second

thread attempts to read the new value. GCC also provides

a cache touch(ea void *ea) function that can be used to

prefetch data into the cache. These and a few other special

cache functions are available in the spu cache.h header file.

IV. CLUSTALW CACHE IMPLEMENTATION

ClustalW is a progressive multiple sequence alignment

application. The major time-consuming step of the ClustalW

alignment is the all-to-all pairwise comparisons which can take

60%-80% of the execution time. ClustalW compares all input

sequences against each other, thus performing a total of
n(n−1)

2
alignments for n sequences. In [1], we explained in detail

our Cell/B.E. implementation of ClustalW that uses explicit

DMA operations to transfer data to and from the SPEs. This

implementation executes the forward pass function, which is

the most time consuming portion of the all-to-all pairwise

alignment, on the SPEs, dividing the sequences among the

SPEs in a round-robin fashion. We developed our SPE version

of forward pass from an existing version that used Altivec

functions by replacing the Altivec APIs with SPE vector APIs.

We adopt the same strategy for our cache implementation,

focusing on running the forward pass function on the SPEs,

and we have reused the bulk of our previously developed

SPE-optimized forward pass function. For more details on the

kernel implementation of forward pass and the parallelization

of the step among the SPEs, please refer to [1]. In this section,

we focus on the difference between the DMA and the cache

implementation in data movement to and from SPEs.

In the DMA implementation, we had to make changes to

the data layout in the PPU code, so that the data can be

DMAed to and from the SPEs; DMA operations require the

SPE address and the PPE address, as well as the size of

data being transferred, must be a multiple of 16 bytes. In the

original ClustalW implementation, the sequences were stored

as an array of pointers, each pointer storing the address of

a sequence; the sequences are all of varying lengths. For the

DMA implementation, all of the sequences are packed into a

single one-dimensional array; each sequence begins at a 16-

byte aligned address, and is padded in length to the maximum

sequence length rounded to a multiple of 16 bytes. The output

of the forward pass function executed on two sequences must

be placed into an array of structures in main memory. We

modified this array so that each structure is aligned on a 16-

byte boundary to allow the SPE to DMA the results directly

into the appropriate structure. These changes allow every SPE

to DMA in any 2 sequences and DMA out the output result

obtained by pairwise alignment of the 2 sequences. The SPE

recieves pointers to this combined sequence array, the output

values array, and the sequence length array, which is needed

for computation. The SPE also recieves the scalar values

necessary for computation of penalties for gap-opening and

gap-extension.

The cache implementation does not require any of these

changes, as the ea qualifier works for arbitrarily aligned

variables stored in the PPE address space. Variables in the

PPE code that are required for computation by the SPEs are

declared with the ea qualifier in the SPE code: this includes

the original array of pointers, sequence length array, scalar

values, and the alignment matrix. The only reason for quad-

word alignment of the sequences was for DMAs to complete

successfully, and was not a requirement for Altivec-enabled

code. In certain cases, it was necessary to copy values of local

function variables into global variables to make them properly

accessible to the SPE through the ea mechanism. With these

changes, we could get the code to use SPEs for forward pass

computation.

We also experimented an alternate approach for moving data

between main memory and the SPE local store. This approach

uses the software caching mechanisms to create local copies of

data in the SPE local store. The data to be copied is declared

as an ea variable, and the SPU code then simply copies data

from this variable into a buffer in local store. This approach

eliminates the need for 16-byte alignment restrictions which

the DMA commands require, thus significantly enhancing

programmer productivity.

Besides software caching mechanisms to copy data, we

also experimented with data access and layouts on the PPE

side and cache touch APIs to prefetch the sequences being

pairwise aligned into the SPE local store. However, we did

3794

not find notable performance improvement from either of these

techniques.

In Section V, we detail the performance of the cache imple-

mentation with varying input sizes and SPEs, and compare it

with the DMA-only implementation from our previous work.

We also pinpoint the reasons for the overhead of the cache

implementation over the DMA only implementation.

V. RESULTS

A. Experimental Setup

Our experimental setup consists of a QS20 blade with 2

Cell/B.E processors running at 3.2 Ghz and a total memory

of 1 GB. Sequence similarity applications do not depend on

double-precision floating-point performance to a large extent,

so using the older QS20 is not a major issue with these appli-

cations. We used ppu-gcc and spu-gcc release 4.1.1 to compile

the PPU and the SPE code respectively. The optimization level

was fixed at -O3 for both the PPU and the SPE code.

B. Results and Analysis

Figure 1 shows the time taken by ClustalW on 1 SPE, with

the DMA code completed before, and the cache implemen-

tation for the pairwise alignment step. The figure shows the

performance of the cache implementation with varying cache

sizes of 8 KB and 64 KB(default). The input datasets class-A,

class-B and class-C for ClustalW are included as part of the

BioPerf package suite [6], downloaded from www.bioperf.

org. As can be seen, the performance of the cache imple-

mentation is about 2X slower than the DMA implementation,

for both cache sizes. The difference in performance of the

cache implementation between the two cache sizes we tested

is negligible, which indicates that the cache performance of

ClustalW is not limited by the cache sizes, even for the largest

inputs. As explained in Section IV, we have retained the

original SPE kernel for pairwise alignment from the DMA

implementation, thus we can conclude that the difference in

performance is entirely due to overhead of software cache

over the DMA.

To understand which data accesses are leading to the

overhead in the cache implementation, we changed our DMA-

only implementation to a mix of DMA and software cache.

Figure 2 shows the difference in performance as we move

from a DMA-only implementation to a mix of DMA and

caches; the data was collected using 1 SPE only. The DMA

+ Cache (Sequences) data shows an implementation in which

all data is DMAed into SPE, except for the DNA sequences,

which are accessed through the software caches. The DMA

+ Cache (Alignment Matrix) data shows the implementation

in which all data is DMAed into the SPEs, except for the

alignment matrix; the alignment matrix is used to compute the

scores of aligning every 2 characters of the query sequence and

the library sequence. The DMA + Cache (Alignment Matrix

+ Sequences) data shows the implementation in which all

data is DMAed into the SPEs except for the DNA sequences

and the alignment matrix, which are accessed through the

Fig. 1. Timings of ClustalW pairwise alignment step on a single SPE with
DMA and initial cache version

software cache. Lastly, the Cache only data shows the cache-

only implementation with no DMAs. As can be seen, the

difference in performance of the Cache only implementation

and the DMA + Cache (Alignment Matrix + Sequences)

implementation is negligible, so we can conclude that the main

overhead in the cache-only implementation is primarily

due to the access of the alignment matrix and the DNA

sequences. Cached access to other data such as the scalar

values for gap-extension and penalty, as well as storing the

results matrix does not carry any major penalty.

Fig. 2. Performance of DMA implementation with caches for sequences and
alignment matrix

Since the main overhead of the cache implementation is in

accessing the alignment matrix and the sequences through the

cache, we experimented with copying the alignment matrix

and the sequences into a buffer in local store, and then using

3795

this local copy in the SPE computation. The copy is performed

using software caching mechanisms just before the SPE starts

its computation. The size of the alignment matrix is 4096 bytes

and independant of input size, so we perform the copy of the

alignment matrix for all input sizes. However, we only perform

the copy for the sequence data when it will fit within the buffer

space allocated in the SPE local store. This is the case for the

class-A and class-B inputs, whose sequences consume 2990

bytes and 71K bytes, respectively. But the sequences for the

class-C input are 325K bytes, so for this input we fall back to

accessing the sequences through the software cache.

Figure 3 shows the performance of the cache implemen-

tation when the alignment matrix and/or the sequences are

copied to a local buffer prior to the SPE computation. This

figure shows that the performance of the implementation that

copies both the alignment matrix and sequences is nearly

equivalent to the DMA implementation for the class-A and

class-B inputs. Since the sequences in the class-C are to copy

into a local buffer, we still see an overhead of more than 50%

compared to the DMA implementation.

Fig. 3. Performance of cache implementation with copying of alignment
matrix and sequences into a buffer before computation

Figure 4 shows the difference in performance using multiple

SPEs upto a maximum of 16, for both the cache and the DMA

implementations for class-B and class-C input of BioPerf.

We implemented the same static load-balancing strategy as

explained in [1] for both the implementations. As is evident

from Figure 4, we can see that both implementations scale well

with increasing number of SPEs. The cache implementation

does not lead to increased overhead at higher number of

SPEs, and shows the same overhead as the runs done with

1 SPE. These results are for cache sizes of 8 KB. For size-B

input, in which we can copy the entire input and the alignment

matrix into a local store buffer, the performance of the cache

implementation is very close to the DMA implementation.

For class-C input, in which only the alignment matrix can be

copied entirely into the local store, we still see a performance

overhead compared to the DMA implementtaion.

Fig. 4. Timings of ClustalW pairwise alignment step on multiple SPEs with
cache and DMA versions

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we described our implementation of ClustalW

running on Cell/B.E. that uses software caches inside the

SPEs for data movement between PPE and SPEs. Our initial

effort resulted in an overhead of about 2X compared to the

DMA only version, but copying the data to the local store

prior to using it results in a version which is very close to

the DMA performance. Using the software caches enhances

the programmer productivity to a significant extent, without a

major decrease in a performance. For the largest input size,

which does not fit into the SPE local store, we still see

an overhead of more than 50% in performance compared to

the DMA-only implementation. Our future work will involve

investigating the sources of overhead of SPE caches and

devising ways to reduce them. Such an implementation will

also make it possible to use SPEs for pairwise alignment of

very large DNA sequences, without a significant overhead.

REFERENCES

[1] V. Sachdeva, M. Kistler, E. Speight, and T.-H. K. Tzeng, “Exploring the
Viability of the Cell Broadband Engine for Bioinformatics Applications,”
in Proc. of the Sixth IEEE Intl. Workshop on High Performance Compu-
tational Biology, 2007.

[2] Y. Lui, W. Huang, J. Johnson, and S. Vaidya, “GPU Accelerated
Smith-Waterman,” in Proc. GPGPU Workshop (GPGPU06), University
of Reading, UK, May 2006, http://www.mathematik.uni-dortmund.de/
∼goeddeke/iccs/index.html.

[3] T. Oliver, L. Y. Yeow, and B. Schmidt, “High Performance Database
Searching with HMMer on FPGAs,” in Proc. 6th Workshop on High
Performance Computational Biology (HiCOMB 2007), Long Beach, CA,
Apr. 2007.

[4] IBM, “IBM SDK for Multicore Acceleration,” 2008, https://www.ibm.
com/developerworks/power/cell/.

[5] M. R. Meissner, “Adding named address space support to the gcc
compiler,” in Proc. 2009 GCC Developers Summit, Montreal, Canada,
jun 2009.

[6] D. Bader and V. Sachdeva, “An Open Benchmark Suite for Evaluating
Computer Architecture on Bioinformatics and Life Science Applications,”
in Proc.SPEC Benchmark Workshop 2006, Austin, TX, Jan. 2006.

3796

