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Abstract

In this paper, we introduce the Maxwell equations of time- fractional order in lossy media. We derive the solution of these
equations by using Sumudu transform techniques.
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1. Introduction

In the literature there are numerous integral transforms and widely used in physics, astronomy as well as in engineering.
In order to solve the differential equations, the integral transforms were extensively applied and thus there are several
works on the theory and application of integral transforms such as the Laplace, Fourier, Mellin and Hankel, to name
a few. In the sequence of these transforms, in early 90’s Watugala (G. K.Watugala, 1993) introduced a new integral
transform, named the Sumudu transform and further applied it to the solution of ordinary differential equation in control
engineering problems. For further detail and properties about Sumudu transform (M. A. Asiru, 2001; 2002; 2003; F. B.
M. Belgacem, 2003; M. E. El-Shandwily, 1988; H. Eltayeb, 2010; V. G. Gupta, 2010) and many others. The Sumudu
transform is defined over the set of the functions:

A =
{
f (t) : ∃M, τ1, τ2 > 0, | f (t)| < Me t/τ j , if t ∈ (−1) j × [0,∞)

}
(1)

by the following formula

f̄ (u) = S
[
f (t); u

]
=:

∞∫
0

f (ut)e−tdt, u ∈ (−τ1, τ2). (2)

The existence and the uniqueness was discussed in (A. Kılıçman, 2010), for further properties of Sumudu transform and
its derivatives we refer to (M. A. Asiru, 2001). In (M. A. Asiru, 2002), some fundamental further properties of Sumudu
transform were also established.

Similarly, this new transform was applied to the one-dimensional neutron transport equation in (A. Kadem, 2005). In
fact one can easily show that there is strong relationship between Sumudu and other integral transforms. In particular the
relation between Sumudu transform and Laplace transforms was proved in (A. Kılıçman, 2010).

Further in (H. Eltayeb, 2010), the Sumudu transform was extended to the distributions(generalized functions) and some
of their properties were also studied in (A. Kılıçman, 2010). Recently Kılıçman et al. applied this transform to solve the
system of differential equations, see (A. Kılıçman, 2010).

A very interesting fact about Sumudu transform is that the original function and its Sumudu transform have the same
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Taylor coefficients except a factor n!. Thus if

f (t) =
∞∑

n=0

antn

then

F(u) =
∞∑

n=0

n! antn

see (J. Zhang, 2007). Similarly, the Sumudu transform sends combinations, C(m, n), into permutations, P(m, n) and hence
it will be useful in the discrete systems. Further

S (H(t) = £(δ(t)) = 1

and
£(H(t)) = S (δ(t)) =

1
u
.

Thus we further note that since many practical engineering problems involve mechanical or electrical systems acted
upon by discontinuous or impulsive forcing terms then the Sumudu transform can be effectively used to solve ordinary
differential equations as well as partial differential equations in engineering problems.

The Riemann-Liouville fractional integral of order ν is defined by Miller and Ross (K.S. Miller, 1993).

0D−ν
t f (t) =

1
Γ(ν)

t∫
0

(t − u)ν−1 f (u)du, Re(ν) > 0. (3)

Here we define the fractional partial-derivative for α > 0 in the form

∂α f (x, t)
∂tα

=
1

Γ(n − α)
∂n

∂tn

t∫
0

f (u, x)du

(t − u)α−n+1 ; n = [α] + 1 (4)

where [α] means the integral part of the number α. In particular, if 0 ≤ α < 1,

∂α f (t)
∂tα

=
1

Γ(1 − α)
∂

∂t

t∫
0

f (u, x)du

(t − u)α
(5)

and if α = n, n ∈ N = {1, 2, ...}, then we have the ordinary derivative

∂n f (t)
∂tn
.

A generalization of the Mittag-Leffler function is given by

Eα(z) =

∞∑
n=0

zn

Γ(nα + 1)
, α ∈ C, Re(α) > 0 (6)

and the general form as follows

Eα,β(z) =

∞∑
n=0

zn

Γ(nα + β)
, α, β ∈ C, Re(α) > 0,Re(β) > 0. (7)

In order to prove our main results, we shall require the following lemma that was proved in (V. G. Gupta, 2010).

Lemma 1. Sumudu transform of Mittag-leffer function Eα,β(z) =
∞∑

n=0

zn

Γ(nα + β)
, Re α > 0 and Re β > 0 exists and given

by

S [tγ−1Eβ,γ(ωtβ)] = uγ−1(1 − ωuβ). (8)

By using the above lemma we note that Mittag-leffer function can be recovered as follows:
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Lemma 2. Let Eα,β(z) =
∞∑

n=0

zn

Γ(nα + β)
then

S −1
[

1
u(u−α + au−β + b)

]
=

1√
a2 − 4b

τα−1[Eα,α(λ1τ
α) − Eα,α(λ2τ

α)] (9)

where

λ1 =
1
2

(−a +
√

a2 − 4b) (10)

and

λ2 =
1
2

(−a −
√

a2 − 4b). (11)

Proof. Since

1
u(u−α + au−β + b)

=
1

u(λ1 − λ2)

(
1

u−α − λ1
− 1

u−α − λ2

)

=
1

(λ1 − λ2)

(
uα−1

1 − λ1uα
− uα−1

1 − λ2uα

)

where λ1 and λ2 are given by (10) and (11), respectively. Now taking inverse Sumudu transform and using Lemma 1, we
get the desired result.

2. Maxwell’s equations of time-fractional order and Sumudu transform

Maxewell’s equations are fundamental equations in electricity and magnetism to find electromagnetic fields that can exist
in any configuration (normal modes). Thus we can develop most of the working relationships in the field. Also they
have successfully been applied to predict the electromagnetic fields that are produced by any distribution of charges and
currents. The equations are general and no restriction is placed on the type of variation of the exciting sources. In the
present paper, we introduce the Maxwell’s equations of time-fractional order.

Now consider the transverse electromagnetic planar where the waves propagating in the z-direction having unbounded
lossy medium is given by

∂Ex

∂z
+ μ
∂Hy

∂t
= 0 (12)

∂Hy

∂z
+ ε
∂Ex

∂t
+ σEx = 0 (13)

where μ, ε and σ > 0 are the constants permeability, permittivity and the conductivity, respectively, see (M. E. El-
Shandwily, 1988). The boundary conditions are given as follows

Ex(∞, t) = finite
Ex(z, 0) = Hy(z, 0) = 0
∂Ex(z, 0)
∂z

=
∂Hy(z, 0)
∂z

= 0

∂Ex(z, t)
∂t

∣∣∣∣∣
t=0

=
∂Hy(z, t)
∂t

∣∣∣∣∣∣
t=0
= 0

and

E(0, t) =
{

0, t < 0
f (t), t ≥ 0 .

We note that many authors have discussed the solution of (12) and (13) by using different method, for example see (M. E.
El-Shandwily, 1988) and (M. G. M. Hussain, 2007).

Now we consider the Maxwell’s equations with time-fractional order under the same boundary conditions as follows

∂Ex

∂z
+ μ
∂αHy

∂tα
= 0 (14)

∂Hy

∂z
+ ε
∂αEx

∂tα
+ σEx = 0 (15)
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where 0 ≤ α < 1. Taking the Sumudu transform of the above equations (14) and (15), we get

dĒx(z, u)
dz

+ μ

[
H̄y(z, u)

uα
− H(z, 0)

uα

]
= 0 (16)

dH̄y(z, u)
dz

+ ε

[
Ēx(z, u)

uα
− Ex(z, 0)

uα

]
+ σĒx(z, u) = 0. (17)

Now by eliminating H̄(z, u) from (16) and (17), we get

d2Ēx(z, u)
dz2 −

[
μ ∈
u2α +

σμ

uα

]
Ēx(z, u) =

μ

uα
∂H(z, 0)
∂z

− με
u2α E(z, 0). (18)

By applying boundary conditions, then we obtain the equation in following form

d2Ēx(z, u)
dz2 −

[
με

u2α +
σμ

uα

]
Ēx(z, u) = 0. (19)

By applying Sine transform to the above equation (19), we get(
−s2Ē∗

s(s, u) + sE(0, u)
)
−

(
με

u2α +
σμ

uα

)
Ē∗

s(s, u) = 0 (20)

where Ē∗
s(s, u) =

√
2
π

∞∫
0

E(z, u) sin szdz. This implies

Ē∗
s(s, u) =

s f (u)
s2 + μεu−2α + μσu−α

.

Now by taking the inverse Sumudu transform and using convolution theorem, we obtain

Ē∗
s(s, u) =

s

με
√

a2 − 4b

t∫
0

τα−1[Eα,α(λ1τ
α) − Eα,α(λ2τ

α)] f (τ − t)dτ (21)

where λ1 and λ2 are given in (9) and (10) and a = σ/ε and b = s2/
με. Now taking the inverse sine transform we obtain

E(z, t) =

∞∫
0

s

με
√

a2 − 4b
(sin sz)

t∫
0

τα−1[Eα,α(λ1, τ
α) − Eα,α(λ2, τ

α)] f (τ − t)dτds, (22)

which is the desired solution.

For magnetic field, by using the equation (16), and substituting the value of (22), we easily get

H̄(z, u) = − 1
με

∞∫
0

s2 cos sz

(
uα f (u)

u(u−2α + au−α + b)

)
ds.

Taking the inverse Sumudu transform and by using the Lemma 1, we obtain

H(z, t) =

∞∫
0

s2

με
√

a2 − 4b
(cos sz)

t∫
0

τ2α−1[Eα,2α(λ1τ
α) − Eα,2α(λ2τ

α)] f (τ − t)dτds.
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