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Abstract

This dissertation reports a systematic study onanalysisand identificationof multiple parameter damped
mechanical systems. The attention is focused on viscously and non-viscously damped multiple degree-of-
freedom linear vibrating systems. The non-viscous damping model is such that the damping forces depend
on the past history of motion via convolution integrals over some kernel functions. The familiar viscous
damping model is a special case of this general linear damping model when the kernel functions have no
memory.

The concept of proportional damping is critically examined and a generalized form of proportional
damping is proposed. It is shown that the proportional damping can exist even when the damping mechanism
is non-viscous.

Classical modal analysis is extended to deal with general non-viscously damped multiple degree-of-
freedom linear dynamic systems. The new method is similar to the existing method with some modifications
due to non-viscous effect of the damping mechanism. The concept of (complex)elastic modesandnon-
viscous modeshave been introduced and numerical methods are suggested to obtain them. It is further
shown that the system response can be obtained exactly in terms of these modes. Mode orthogonality
relationships, known for undamped or viscously damped systems, have been generalized to non-viscously
damped systems. Several useful results which relate the modes with the system matrices are developed.

These theoretical developments on non-viscously damped systems, in line with classical modal analy-
sis, give impetus towards understanding damping mechanisms in general mechanical systems. Based on a
first-order perturbation method, an approach is suggested to the identify non-proportional viscous damping
matrix from the measured complex modes and frequencies. This approach is then further extended to iden-
tify non-viscous damping models. Both the approaches are simple, direct, and can be used with incomplete
modal data.

It is observed that these methods yield non-physical results by breaking the symmetry of the fitted
damping matrix when the damping mechanism of the original system is significantly different from what is
fitted. To solve this problem, approaches are suggested to preserve the symmetry of the identified viscous
and non-viscous damping matrix.

The damping identification methods are applied experimentally to a beam in bending vibration with
localized constrained layer damping. Since the identification method requires complex modal data, a gen-
eral method for identification of complex modes and complex frequencies from a set of measured transfer
functions have been developed. It is shown that the proposed methods can give useful information about
the true damping mechanism of the beam considered for the experiment. Further, it is demonstrated that
the damping identification methods are likely to perform quite well even for the case when noisy data is
obtained.

The work conducted here clarifies some fundamental issues regarding damping in linear dynamic sys-
tems and develops efficient methods for analysis and identification of generally damped linear systems.
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Chapter 1

Introduction

It is true that the grasping of truth is not possible without empirical basis. How-

ever, the deeper we penetrate and the more extensive and embracing our theories

become, the less empirical knowledge is needed to determine those theories.

Albert Einstein, December 1952.

Problems involving vibration occur in many areas of mechanical, civil and aerospace engineering:

wave loading of offshore platforms, cabin noise in aircrafts, earthquake and wind loading of cable

stayed bridges and high rise buildings, performance of machine tools – to pick only few random

examples. Quite often vibration is not desirable and the interest lies in reducing it by dissipation of

vibration energy ordamping. Characterization of damping forces in a vibrating structure has long

been an active area of research in structural dynamics. Since the publication of Lord Rayleigh’s

classic monograph ‘Theory of Sound (1877)’, a large body of literature can be found on damping.

Although the topic of damping is an age old problem, the demands of modern engineering have led

to a steady increase of interest in recent years. Studies of damping have a major role in vibration

isolation in automobiles under random loading due to surface irregularities and buildings subjected

to earthquake loadings. The recent developments in the fields of robotics and active structures have

provided impetus towards developing procedures for dealing with general dissipative forces in the

context of structural dynamics. Beside these, in the last few decades, the sophistication of modern

design methods together with the development of improved composite structural materials instilled

a trend towards lighter structures. At the same time, there is also a constant demand for larger

structures, capable of carrying more loads at higher speeds with minimum noise and vibration level

as the safety/workability and environmental criteria become more stringent. Unfortunately, these

two demands are conflicting and the problem cannot be solved without proper understanding of

energy dissipation or damping behaviour. It is the aim of this dissertation is to develop fundamental

techniques for the analysis and identification of damped structural systems.

In spite of a large amount of research, understanding of damping mechanisms is quite primitive.

A major reason for this is that, by contrast with inertia and stiffness forces, it is not in general

clear whichstate variablesare relevant to determine the damping forces. Moreover, it seems that

1



2 Chapter 1. Introduction

in a realistic situation it is often the structural joints which are more responsible for the energy

dissipation than the (solid) material. There have been detailed studies on the material damping

(seeBert, 1973) and also on energy dissipation mechanisms in the joints (Earls, 1966, Beards and

Williams, 1977). But here difficulty lies in representing all these tiny mechanisms in different parts

of the structure in an unified manner. Even in many cases these mechanisms turn out be locally

non-linear, requiring an equivalent linearization technique for a global analysis (Bandstra, 1983).

A well known method to get rid of all these problems is to use the so called ‘viscous damping’.

This approach was first introduced byRayleigh (1877) via his famous ‘dissipation function’, a

quadratic expression for the energy dissipation rate with a symmetric matrix of coefficients, the

‘damping matrix’. A further idealization, also pointed out by Rayleigh, is to assume the damping

matrix to be a linear combination of the mass and stiffness matrices. Since its introduction this

model has been used extensively and is now usually known as ‘Rayleigh damping’, ‘proportional

damping’ or ‘classical damping’. With such a damping model, themodal analysisprocedure,

originally developed for undamped systems, can be used to analyze damped systems in a very

similar manner.

In this Chapter, we begin our discussion with classical dynamics of undamped systems. A

brief review of literature on currently available damping models, techniques for analysis of damped

dynamic systems and methods for identification of damping is presented. Based on this literature

review, some open problems have been identified which are discussed in the subsequent Chapters

of this dissertation.

From an analytical point of view, models of vibrating systems are commonly divided into two

broad classes – discrete, or lumped-parameter models, and continuous, or distributed-parameter

models. In real life, however, systems can contain both distributed and lumped parameter mod-

els (for example, a beam with a tip mass). Distributed-parameter modelling of vibrating systems

leads topartial-differential equationsas the equations of motion. Exact solutions of such equations

are possible only for a limited number of problems with simple geometry, boundary conditions,

and material properties (such as constant mass density). For this reason, normally we need some

kind of approximate method to solve a general problem. Such solutions are generally obtained

through spatial discretization (for example, the Finite Element Method,Zienkiewicz and Taylor,

1991), which amounts to approximating distributed-parameter systems by lumped-parameter sys-

tems. Equations of motion of lumped-parameter systems can be shown to be expressed by a set

of coupledordinary-differential equations. In this dissertation we mostly deal with such lumped-

parameter systems. We also restrict our attention to the linear system behaviour only.

1.1 Dynamics of Undamped Systems

Linear dynamics of undamped systems occupy a central role in vibrational studies of engineering

systems. This is also the starting point of the work taken up in this dissertation and here we briefly
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outline the classical theory of linear dynamics of undamped systems.

1.1.1 Equation of Motion

Suppose that a system withN degrees of freedom is executing small oscillations around equilib-

rium points. The theory of small oscillations was studied in detail byRayleigh (1877). Considering

the vector ofgeneralized coordinates

q = {q1(t), q2(t), · · · , qN(t)}T ∈ RN (1.1)

the potential energy could be expanded in the form of a Taylor series in the neighborhood of the

equilibrium position as (seeMeirovitch, 1997, for details)

V (q) = V (0) +
N∑

j=1

(
∂V
∂qj

)
q=0

qj +
1

2

N∑
j=1

N∑
k=1

(
∂2V

∂qj∂qk

)
q=0

qjqk +O(q3). (1.2)

Since the potential energy is defined only to a constant, it may be assumed thatV (0) = 0, and

consequently the second order approximation yields

V (q) =
1

2

N∑
j=1

N∑
k=1

Kjkqjqk (1.3)

because second term is zero at equilibrium. Here theelastic coefficients

Kjk =

(
∂2V

∂qj∂qk

)
q=0

. (1.4)

Equation (1.3) can also be put in the matrix positive definite quadratic form as

V (q) =
1

2
qT Kq (1.5)

whereK ∈ RN×N , the (linear)stiffness matrixof the system, is symmetric and non-negative

definite. In a similar way, in the absence of any centripetal and Coriolis forces, the kinetic energy

of a system can be expressed as

T (q) =
1

2

N∑
j=1

N∑
k=1

Mjkq̇j q̇k =
1

2
q̇T Mq̇. (1.6)

In the above expressioṅq is the vector of the generalized velocities andM ∈ RN×N , the mass

matrix of the system, is a symmetric and positive definite matrix. The equations of motion of free

vibration can now be obtained by the application of Lagrange’s equation

d

dt

(
∂L
∂q̇k

)
− ∂L

∂qk

= Qnck
+ fk, ∀k = 1, · · · , N (1.7)
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whereL = T − V is the Lagrangian,Qnck
are the non-conservative forces andfk are the applied

forces acting on the system. For undamped systemsQnck
= 0,∀k. Using the expressions ofV and

T from equation (1.5) and (1.6) and substitutingL, from equation (1.7), the equations of motion

of an undamped non-gyroscopic system can be obtained as

Mq̈(t) + Kq(t) = f(t) (1.8)

wheref(t) ∈ RN is the forcing vector. Equation (1.8) represents a set of coupled second-order

ordinary-differential equations. The solution of this equation also requires knowledge of the initial

conditions in terms of the displacements and velocities of all the coordinates.

1.1.2 Modal Analysis

Rayleigh (1877) has shown that undamped linear systems, equations of motion of which are given

by (1.8), are capable of so-callednatural motions. This essentially implies that all the system

coordinates execute harmonic oscillation at a given frequency and form a certain displacement

pattern. The oscillation frequency and displacement pattern are callednatural frequenciesand

normal modes, respectively. The natural frequencies (ωj) and the mode shapes (xj) are intrinsic

characteristic of a system and can be obtained by solving the associated matrix eigenvalue problem

Kx j = ω2
j Mx j, ∀ j = 1, · · · , N. (1.9)

Since the above eigenvalue problem is in terms of real symmetric matricesM andK , the eigenval-

ues and consequently the eigenvectors are real, that isωj ∈ R andxj ∈ RN . In addition to this, it

was also shown by Rayleigh that the undamped eigenvectors satisfy an orthogonality relationship

over the mass and stiffness matrices, that is

xT
l Mx j = δlj (1.10)

and xT
l Kx j = ω2

j δlj, ∀ l, j = 1, · · · , N (1.11)

whereδlj is the Kroneker delta function. In the above equations the eigenvectors are unity mass

normalized, a convention often used in practice. This orthogonality property of the undamped

modes is very powerful as it allows to transform a set of coupled differential equations to a set of

independent equations. For convenience, we construct the matrices

Ω = diag [ω1, ω2, · · · , ωN ] ∈ RN×N (1.12)

and X = [x1, x2, · · · , xN ] ∈ RN×N (1.13)

where the eigenvalues are arranged such thatω1 < ω2, ω2 < ω3, · · · , ωk < ωk+1. Use a coordinate

transformation

q(t) = Xy(t). (1.14)
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Substitutingq(t) in equation (1.8), premultiplying byXT and using the orthogonality relationships

in (1.12) and (1.13), the equations of motion in the modal coordinates may be obtained as

ÿ(t) + Ω2y(t) = f̃(t) (1.15)

where f̃(t) = XT f(t) is the forcing function in modal coordinates. Clearly, this method signifi-

cantly simplifies the dynamic analysis because complex multiple degrees of freedom systems can

be treated as collections of single degree of freedom oscillators. This approach of analyzing lin-

ear undamped systems is known asmodal analysis, possibly the most efficient tool for vibration

analysis of complex engineering structures.

1.2 Models of Damping

Damping is the dissipation of energy from a vibrating structure. In this context, the term dissipate is

used to mean the transformation of energy into the other form of energy and, therefore, a removal

of energy from the vibrating system. The type of energy into which the mechanical energy is

transformed is dependent on the system and the physical mechanism that cause the dissipation.

For most vibrating system, a significant part of the energy is converted into heat.

The specific ways in which energy is dissipated in vibration are dependent upon the physical

mechanisms active in the structure. These physical mechanisms are complicated physical process

that are not totally understood. The types of damping that are present in the structure will depend

on which mechanisms predominate in the given situation. Thus, any mathematical representation

of the physical damping mechanisms in the equations of motion of a vibrating system will have

to be a generalization and approximation of the true physical situation. AsScanlan (1970) has

observed, any mathematical damping model is really only a crutch which does not give a detailed

explanation of the underlying physics.

For our mathematical convenience, we divide the elements that dissipate energy into three

classes: (a) damping in single degree-of-freedom (SDOF) systems, (b) damping in continuous

systems, and (c) damping in multiple degree-of-freedom (MDOF) systems. Elements such as

dampers of a vehicle-suspension fall in the first class. Dissipation within a solid body, on the

other hand, falls in the second class, demands a representation which accounts for both its intrinsic

properties and its spatial distribution. Damping models for MDOF systems can be obtained by

discretization of the equations of motion. There have been attempt to mathematically describe the

damping in SDOF, continuous and MDOF systems.

1.2.1 Single Degree-of-freedom Systems

Free oscillation of an undamped SDOF system never die out and the simplest approach to introduce

dissipation is to incorporate an ideal viscous dashpot in the model. The damping force(Fd) is
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assumed to be proportional to the instantaneous velocity, that is

Fd = c ẋ (1.16)

and the coefficient of proportionality,c is known as the dashpot-constant or viscous damping

constant. The loss factor, which is the energy dissipation per radian to the peak potential energy

in the cycle, is widely accepted as a basic measure of the damping. For a SDOF system this loss

factor can be given by

η =
c|ω|
k

(1.17)

wherek is the stiffness. The expression similar to this equation have been discussed byUngar and

Kerwin (1962) in the context of viscoelastic systems. Equation (1.17) shows a linear dependence

of the loss factor on the driving frequency. This dependence has been discussed byCrandall (1970)

where it has been pointed out that the frequency dependence, observed in practice, is usually not

of this form. In such cases one often resorts to an equivalent ideal dashpot. Theoretical objections

to the approximately constant value of damping over a range of frequency, as observed in aeroelas-

ticity problems, have been raised byNaylor (1970). On the lines of equation (1.17) one is tempted

to define the frequency-dependent dashpot as

c(ω) =
kη(ω)

|ω|
. (1.18)

This representation, however has some serious physical limitations.Crandall (1970, 1991), New-

land (1989) andScanlan (1970) have pointed out that such a representation violates causality, a

principle which asserts that the states of a system at a given point of time can be affected only by

the events in the past and not by those of the future.

Now for the SDOF system, the frequency domain description of the equation of motion can be

given by [
−mω2 + iωc(ω) + k

]
X(iω) = F (iω) (1.19)

whereX(iω) andF (iω) are the response and excitation respectively, represented in the frequency

domain. Note that the dashpot is now allowed to have frequency dependence. Inserting equation

(1.18) into (1.19) we obtain[
−mω2 + k {1 + iη(ω)sgn(ω)}

]
X(iω) = F (iω) (1.20)

where sgn(•) represents the sign function. The ‘time-domain’ representations of equations (1.19)

and (1.20) are often taken as

mẍ + c(ω)ẋ + kx = f (1.21)

and

mẍ + kx {1 + iη(ω)sgn(ω)} = f (1.22)
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respectively. It has been pointed out byCrandall (1970) that these are not the correct Fourier in-

verses of equations (1.19) and (1.20). The reason is that the inertia, the stiffness and the forcing

function are inverted properly, while the damping terms in equations (1.21) and (1.22) are ob-

tained by mixing the frequency-domain and time-domain operations.Crandall (1970) calls (1.21)

and (1.22) the ‘non-equations’ in time domain. It has been pointed out byNewland (1989) that

only certain forms of frequency dependence forη(ω) are allowed in order to to satisfy causality.

Crandall (1970) has shown that the impulse response function for the ideal hysteretic dashpot (η

independent of frequency), is given by

h(t) =
1

πkη0

.
1

t
, −∞ < t <∞. (1.23)

This response function is clearly non-causal since it states that the system responds before the ex-

citation (or the cause) takes place. This non-physical behaviour of the hysteretic damping model

is a flaw, and further attempts have been made to cure this problem.Bishop and Price (1986)

introduced the band limited hysteretic damper and suggested that it might satisfy the causality

requirement. However,Crandall (1991) has further shown that the band-limited hysteretic dash-

pot is also non-causal. In view of this discussion it can be said that the most of the hysteretic

damping model fails to satisfy the casualty condition. Recently, based on the analyticity of the

transfer function,Makris (1999) has shown that for causal hysteretic damping the real and imag-

inary parts of the dynamic stiffness matrix must form a Hilbert transform pair1. He has shown

that the causal hysteretic damping model is the limiting case of a linear viscoelastic model with

nearly frequency-independent dissipation that was proposed byBiot (1958). It was also shown that

there is a continuous transition from the linear viscoelastic model to the ideally hysteretic damping

model.

The physical mechanisms of damping, including various types of external friction, fluid viscos-

ity, and internal material friction, have been studied rather extensively in some detail and are com-

plicated physical phenomena. However, a certain simplified mathematical formulation of damping

forces and energy dissipation can be associated with a class of physical phenomenon. Coulomb

damping, for example is used to represent dry friction present in sliding surfaces, such as structural

joints. For this kind of damping, the force resisting the motion is assumed to be proportional to the

normal force between the sliding surfaces and independent of the velocity except for the sign. The

damping force is thus

Fd =
ẋ

|ẋ|
Fr = sgn(ẋ)Fr (1.24)

whereFr is the frictional force. In the context of finding equivalent viscous damping,Bandstra

(1983) has reported several mathematical models of physical damping mechanisms in SDOF sys-

tems. For example, velocity squared damping, which is present when a mass vibrates in a fluid or

1The Hilbert transform relation is known as Kramers-Kronig result.



8 Chapter 1. Introduction

when fluid is forced rapidly through an orifice. The damping force in this case is

Fd = sgn(ẋ)aẋ2; or, more generally Fd = cẋ|ẋ|n−1 (1.25)

wherec is the damping proportionality constant. Viscous damping is a special case of this type of

damping. If the fluid flow is relatively slowi.e. laminar, then by lettingn = 1 the above equation

reduces to the case of viscous damping (1.16).

1.2.2 Continuous Systems

Construction of damping models becomes more difficult for continuous systems.Banks and Inman

(1991) have considered four different damping models for a composite beam. These models of

damping are:

1. Viscous air damping:For this model the damping operator in the Euler-Bernoulli equation

for beam vibration becomes

L1 = γ
∂

∂t
(1.26)

whereγ is the viscous damping constant.

2. Kelvin-Voigt damping:For this model the damping operator becomes

L1 = cdI
∂5

∂x4∂t
(1.27)

whereI is the moment of inertia andcd is the strain-rate dependent damping coefficient. A

similar damping model was also used byManohar and Adhikari (1998) andAdhikari and

Manohar (1999) in the context of randomly parametered Euler-Bernoulli beams.

3. Time hysteresis damping:For this model the damping operator is assumed as

L1 =

∫ t

−∞
g(τ)uxx(x, t + τ)dτ whereg(τ) =

α√
−τ

exp(βτ) (1.28)

whereα andβ are constants. Later, this model will be discussed in detail.

4. Spatial hysteresis damping:

L1 =
∂

∂x

[∫ L

0

h(x, ξ){uxx(x, t)− uxt(ξ, t)}dξ

]
(1.29)

The kernel functionh(x, ξ) is defined as

h(x, ξ) =
a

b
√

π
exp[−(x− ξ)2/2b2]

where b is some constant.

It was observed by them that the spatial hysteresis model combined with a viscous air damping

model results in the best quantitative agreement with the experimental time histories. Again, in the

context of Euler-Bernoulli beams,Bandstra (1983) has considered two damping models where the

damping term is assumed to be of the forms{sgn ut(x, t)} b1u
2(x, t) and{sgn ut(x, t)} b2|u(x, t)|.
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1.2.3 Multiple Degrees-of-freedom Systems

The most popular approach to model damping in the context of multiple degrees-of-freedom

(MDOF) systems is to assume viscous damping. This approach was first introduced byRayleigh

(1877). By analogy with the potential energy and the kinetic energy, Rayleigh assumed thedissi-

pation function, given by

F (q) =
1

2

N∑
j=1

N∑
k=1

Cjkq̇j q̇k =
1

2
q̇T Cq̇. (1.30)

In the above expressionC ∈ RN×N is a non-negative definite symmetric matrix, known as the vis-

cous damping matrix. It should be noted that not all forms of the viscous damping matrix can be

handled within the scope of classical modal analysis. Based on the solution method, viscous damp-

ing matrices can be further divided into classical and non-classical damping. Further discussions

on viscous damping will follow in Section1.3.

It is important to avoid the widespread misconception that viscous damping is theonly linear

model of vibration damping in the context of MDOF systems. Any causal model which makes the

energy dissipation functional non-negative is a possible candidate for a damping model. There have

been several efforts to incorporate non-viscous damping models in MDOF systems.Bagley and

Torvik (1983), Torvik and Bagley (1987), Gaulet al. (1991), Maia et al. (1998) have considered

damping modeling in terms of fractional derivatives of the displacements. FollowingMaia et al.

(1998), the damping force using such models can be expressed by

Fd =
l∑

j=1

gjD
νj [q(t)]. (1.31)

Heregj are complex constant matrices and the fractional derivative operator

Dνj [q(t)] =
dνj q(t)

dtνj
=

1

Γ(1− νj)

d

dt

∫ t

0

q(t)

(t− τ)νj
dτ (1.32)

whereνj is a fraction andΓ(•) is the Gamma function. The familiar viscous damping appears

as a special case whenνj = 1. We refer the readers to the review papers bySlateret al. (1993),

Rossikhin and Shitikova (1997) andGaul (1999) for further discussions on this topic. The physical

justification for such models, however, is far from clear at the present time.

Possibly the most general way to model damping within the linear range is to consider non-

viscous damping models which depend on the past history of motion via convolution integrals over

some kernel functions. Amodified dissipation functionfor such damping model can be defined as

F (q) =
1

2

N∑
j=1

N∑
k=1

q̇k

∫ t

0

Gjk(t− τ)q̇j(τ)dτ =
1

2
q̇T

∫ t

0

G(t− τ)q̇(τ)dτ. (1.33)
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HereG(t) ∈ RN×N is a symmetric matrix of the damping kernel functions,Gjk(t). The kernel

functions, or others closely related to them, are described under many different names in the lit-

erature of different subjects: for example, retardation functions, heredity functions, after-effect

functions, relaxation functionsetc. In the special case whenG(t − τ) = C δ(t − τ), whereδ(t)

is the Dirac-delta function, equation (1.33) reduces to the case of viscous damping as in equation

(1.30). The damping model of this kind is a further generalization of the familiar viscous damping.

By choosing suitable kernel functions, it can also be shown that the fractional derivative model dis-

cussed before is also a special case of this damping model. Thus, as pointed byWoodhouse (1998),

this damping model is the most general damping model within the scope of a linear analysis.

Golla and Hughes (1985), McTavis and Hughes (1993) have used damping model of the form

(1.33) in the context of viscoelastic structures. The damping kernel functions are commonly de-

fined in the frequency/Laplace domain. Conditions whichG(s), the Laplace transform ofG(t),

must satisfy in order to produce dissipative motion were given byGolla and Hughes (1985). Sev-

eral authors have proposed several damping models and they are summarized in Table1.1.

Damping functions Author, Year

G(s) =
∑n

k=1

aks

s + bk

Biot (1955, 1958)

G(s) = as
∫∞

0

γ(ρ)

s + ρ
dρ Buhariwala (1982)

γ(ρ) =


1

β − α
α ≤ γ ≤ β

0 otherwise

G(s) =
E1s

α − E0bs
β

1 + bsβ
Bagley and Torvik (1983)

0 < α < 1, 0 < β < 1

sG(s) = G∞
[
1 +

∑
k αk

s2 + 2ξkωks

s2 + 2ξkωks + ω2
k

]
Golla and Hughes (1985)

andMcTavis and Hughes (1993)

G(s) = 1 +
∑n

k=1

∆ks

s + βk

Lesieutre and Mingori (1990)

G(s) = c
1− e−st0

st0
Adhikari (1998)

G(s) = c
1 + 2(st0/π)2 − e−st0

1 + 2(st0/π)2
Adhikari (1998)

Table 1.1: Summary of damping functions in the Laplace domain

1.2.4 Other Studies

Another major source of damping in a vibrating structure is the structural joints, seeTan (1997)

for a recent review. Here, a major part of the energy loss takes place through air-pumping. The air-

pumping phenomenon is associated with damping when air is entrapped in pockets in the vicinity

of a vibrating surface. In these situations, the entrapped air is ‘squeezed out’ and ‘sucked-in’
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through any available hole. Dissipation of energy takes place in the process of air flow and culomb-

friction dominates around the joints. This damping behaviour has been studied by many authors

in some practical situations, for example byCremer and Heckl (1973). Earls (1966) has obtained

the energy dissipation in a lap joint over a cycle under different clamping pressure.Beards and

Williams (1977) have noted that significant damping can be obtained by suitably choosing the

fastening pressure at the interfacial slip in joints.

Energy dissipation within the material is attributed to a variety of mechanisms such as thermoe-

lasticity, grainboundary viscosity, point-defect relaxation etc (seeLazan, 1959, 1968, Bert, 1973).

Such effects are in general called material damping. In an imperfect elastic material, the stress-

strain curve forms a closed hysteresis loop rather that a single line upon a cyclic loading. Much

effort has been devoted by numerous investigators to develop models of hysteretic restoring forces

and techniques to identify such systems. For a recent review on this literature we refer the readers

to Chassiakoset al.(1998). Most of these studies are motivated by the observed fact that the energy

dissipation from materials is only a weak function of frequency and almost directly proportional to

xn. The exponent on displacement for the energy dissipation of material damping ranges from 2 to

3, for example 2.3 for mild steel (Bandstra, 1983). In this context, another large body of literature

can be found on composite materials where many researchers have evaluated a material’s specific

damping capacity (SDC).Baburaj and Matsukai (1994) and the references therein give an account

of research that has been conducted in this area.

1.3 Modal Analysis of Viscously Damped Systems

Equations of motion of a viscously damped system can be obtained from the Lagrange’s equation

(1.7) and using the Rayleigh’s dissipation function given by (1.30). The non-conservative forces

can be obtained as

Qnck
= −∂F

∂q̇k

, k = 1, · · · , N (1.34)

and consequently the equations of motion can expressed as

Mq̈(t) + Cq̇(t) + Kq(t) = f(t). (1.35)

The aim is to solve this equation (together with the initial conditions) by modal analysis as de-

scribed in Section1.1.2. Using the transformation in (1.14), premultiplying equation (1.35) by XT

and using the orthogonality relationships in (1.12) and (1.13), equations of motion of a damped

system in the modal coordinates may be obtained as

ÿ(t) + XT CXẏ(t) + Ω2y(t) = f̃(t). (1.36)

Clearly, unlessXT CX is a diagonal matrix, no advantage can be gained by employing modal

analysis because the equations of motion will still be coupled. To solve this problem, it it common
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to assumeproportional damping, that isC is simultaneously diagonalizable withM andK . Such

damping model allows to analyze damped systems in very much the same manner as undamped

systems. Later,Caughey and O’Kelly (1965) have derived the condition which the system matrices

must satisfy so that viscously damped linear systems possess classical normal modes. In Chapter

2, the concept of proportional damping or classical damping will be analyzed in more detail.

Modes of proportionally damped systems preserve the simplicity of the real normal modes as in

the undamped case. Unfortunately there is no physical reason why a general system should behave

like this. In fact practical experience in modal testing shows that most real-life structures do not do

so, as they possess complex modes instead of real normal modes. This implies that in general linear

systems are non-classically damped. When the system is non-classically damped, some or all of

the N differential equations in (1.36) are coupled through theXT CX term and can not be reduced

to N second-order uncoupled equation. This coupling brings several complication in the system

dynamics – the eigenvalues and the eigenvectors no longer remain real and also the eigenvectors

do not satisfy the classical orthogonality relationship as given by equations (1.10) and (1.11). The

methods for solving this kind of problem follow mainly two routes, the state-space method and the

methods in configuration space or ‘N -space’. A brief discussion of these two approaches is taken

up in the following sections.

1.3.1 The State-Space Method

The state-space method is based on transforming theN second-order coupled equations into a

set of2N first-order coupled equations by augmenting the displacement response vectors with the

velocities of the corresponding coordinates (seeNewland, 1989). Equation (1.35) can be recast as

ż(t) = Az(t) + p(t) (1.37)

whereA ∈ R2N×2N is the system matrix,p(t) ∈ R2N the force vector andz(t) ∈ R2N is the

response vector in the state-space given by

A =

[
ON IN

−M−1K −M−1C

]
, z(t) =

{
q(t)
q̇(t)

}
, and p(t) =

{
0

−M−1f(t).

}
(1.38)

In the above equationON is theN × N null matrix andIN is theN × N identity matrix. The

eigenvalue problem associated with the above equation is in term of an asymmetric matrix now.

Uncoupling of equations in the state-space is again possible and has been considered by many

authors, for example,Meirovitch (1980), Newland (1989) andVeletsos and Ventura (1986). This

analysis was further generalized byNewland (1987) for the case of systems involving singular

matrices. In the formulation of equation (1.37) the matrixA is no longer symmetric, and so eigen-

vectors are no longer orthogonal with respect to it. In fact, in this case, instead of an orthogonality

relationship, one obtains a biorthogonality relationship, after solving the adjoint eigenvalue prob-

lem. The complete procedure for uncoupling the equations now involves solving two eigenvalue
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problems, each of which is double the size of an eigenvalue problem in the modal space. The de-

tails of the relevant algebra can be found inMeirovitch (1980, 1997). It should be noted that these

solution procedures are exact in nature. One disadvantage of such an exact method is that it re-

quires significant numerical effort to determine the eigensolutions. The effort required is evidently

intensified by the fact that the eigensolutions of a non-classically damped system are complex.

From the analyst’s view point another disadvantage is the lack of physical insight afforded by this

method which is intrinsically numerical in nature.

Another variation of the state-space method available in the literature is through the use of

‘Duncan form’. This approach was introduced byFoss (1958) and later several authors, for ex-

ample,Béliveau (1977), Nelson and Glasgow (1979), Vigneron (1986), Suarez and Sing (1987,

1989), Sestieri and Ibrahim (1994) andRen and Zheng (1997) have used this approach to solve a

wide range of interesting problems. The advantage of this approach is that the system matrices in

the state-space retain symmetry as in the configuration space.

1.3.2 Methods in Configuration Space

It has been pointed out that the state-space approach towards the solution of equation of motion

in the context of linear structural dynamics is not only computationally expensive but also fails to

provide the physical insight which modal analysis in configuration space orN -space offers. The

eigenvalue problem associated with equation (1.35) can be represented by theλ−matrix problem

(Lancaster, 1966)

s2
jMu j + sjCuj + Ku j = 0 (1.39)

wheresj ∈ C is thej-th latent root (eigenvalue) anduj ∈ CN is thej-th latent vector (eigenvector).

The eigenvalues,sj, are the roots of the characteristic polynomial

det
[
s2M + sC + K

]
= 0. (1.40)

The order of the polynomial is2N and the roots appear in complex conjugate pairs. Several authors

have studied non-classically damped linear systems by approximate methods. In this section we

briefly review the existing methods for this kind of analysis.

Approximate Decoupling Method

Consider the equations of motion of a general viscously damped system in the modal coordinates

given by (1.36). Earlier it has been mentioned that due to non-classical nature of the damping this

set ofN differential equations are coupled through theC′ = XT CX term. An usual approach in

this case is simply to ignore the off-diagonal terms of the modal damping matrixC′ which couple

the equations of motion. This approach is termed the decoupling approximation. For large-scale

systems, the computational effort in adopting the decoupling approximation is an order of magni-

tude smaller than the methods of complex modes. The solution of the decoupled equation would
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be close to the exact solution of the coupled equations if the non-classical damping terms are suffi-

ciently small. Analysis of this question goes back toRayleigh (1877). A preliminary discussion on

this topic can be found inMeirovitch (1967, 1997). Thomsonet al. (1974) have studied the effect

of neglecting off-diagonal entries of the modal damping matrix through numerical experiments and

have proposed a method for improved accuracy.Warburton and Soni (1977) have suggested a cri-

terion for such a diagonalization so that the computed response is acceptable. Using the frequency

domain approach,Hasselsman (1976) proposed a criterion for determining whether the equations

of motion might be considered practically decoupled if non-classical damping exists. The criterion

suggested by him was to have adequate frequency separation between the natural modes.

Using matrix norms,Shahruz and Ma (1988) have tried to find an optimal diagonal matrix

Cd in place ofC′. An important conclusion emerging from their study is that ifC′ is diagonally

dominant, then among all approximating diagonal matricesCd, the one that minimizes the error

bound is simply the diagonal matrix obtained by omitting the off-diagonal elements ofC′. Using

a time-domain analysisShahruz (1990) has rigorously proved that ifCd is obtained formC′ by

neglecting the off-diagonal elements ofC′, then the error in the solution of the approximately

decoupled system will be small as long as the off-diagonal elements ofC′ are not too large.

Ibrahimbegovic and Wilson (1989) have developed a procedure for analyzing non-pro- portion-

ally damped systems using a subspace with a vector basis generated from the mass and stiffness

matrices. Their approach avoids the use of complex eigensolutions. An iterative approach for

solving the coupled equations is developed byUdwadia and Esfandiari (1990) based on updating

the forcing term appropriately.Felszeghy (1993) presented a method which searches for another

coordinate system in the neighborhood of the normal coordinate system so that in the new coordi-

nate system removal of coupling terms in the equations of motion produces a minimum bound on

the relative error introduced in the approximate solution.Hwang and Ma (1993) have shown that

the error due to the decoupling approximation can be decomposed into an infinite series and can

be summed exactly in the Laplace domain. They also concluded that by solving a small number of

additional coupled equations in an iterative fashion, the accuracy of the approximate solution can

be greatly enhanced.Felszeghy (1994) developed a formulation based on biorthonormal eigen-

vector for modal analysis of non-classically damped discrete systems. The analytical procedure

take advantage of simplification that arises when the modal analysis of the motion separated into a

classical and non-classical modal vector expansion.

From the above mentioned studies it has been believed that either frequency separation be-

tween the normal modes (Hasselsman, 1976), often known as ‘Hasselsman’s criteria’, or some

form of diagonal dominance (Shahruz and Ma, 1988), in the modal damping matrixC′ is sufficient

for neglecting modal coupling. In contrast to these widely accepted beliefsParket al. (1992a,b,

1994) have shown using Laplace transform methods that within the practical range of engineering

applications neither the diagonal dominance of the modal damping matrix nor the frequency sep-

aration between the normal modes would be sufficient for neglecting modal coupling. They have
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also given examples when the effect of modal coupling may even increase following the previous

criterion.

In the context of approximate decoupling,Shahruz and Srimatsya (1997) have considered error

vectors in modal and physical coordinates, say denoted byeN(•) andeP(•) respectively. They

have shown that based on the norm (denoted here as‖ (•) ‖) of these error vectors three cases may

arise:

1. ‖ eN(•) ‖ is small (respectively, large) and‖ eP(•) ‖ is small (respectively, large)

2. ‖ eN(•) ‖ is large but‖ eP(•) ‖ is small

3. ‖ eN(•) ‖ is small but‖ eP(•) ‖ is large

From this study, especially in view of case 3, it is clear that the error norms based on the modal

coordinates are not reliable to use in the actual physical coordinates. However, they have given

conditions when‖ eN(•) ‖ will lead to a reliable estimate of‖ eP(•) ‖. For a flexible structure

with light damping,Gawronski and Sawicki (1997) have shown that neglecting off-diagonal terms

of the modal damping matrix in most practical cases imposes negligible errors in the system dy-

namics. They also concluded that the requirement of diagonal dominance of the damping matrix

is not necessary in the case of small damping, which relaxes the criterion earlier given byShahruz

and Ma (1988).

In order to quantify the extent of non-proportionality, several authors have proposed ‘non-

proportionality indices’.Parter and Sing (1986) andNair and Sing (1986) have developed sev-

eral indices based on modal phase difference, modal polygon areas, relative magnitude of cou-

pling terms in the modal damping matrix, system response, Nyquist plotetc. Recently, based

on the idea related to the modal polygon area,Bhaskar (1999) has proposed two more indices

of non-proportionality. Another index based on driving frequency and elements of the modal

damping matrix is given byBellos and Inman (1990). Bhaskar (1992, 1995) has proposed a non-

proportionality index based on the error introduced by ignoring the coupling terms in the modal

damping matrix.Tonget al. (1992, 1994) have developed an analytical index for quantification of

non-proportionality for discrete vibrating systems. It has been shown that the fundamental nature

of non-proportionality lies in finer decompositions of the damping matrix.Shahruz (1995) have

shown that the analytical index given byTonget al.(1994) solely based on the damping matrix can

lead to erroneous results when the driving frequency lies close to a system natural frequency. They

have suggested that a suitable index for non-proportionality should include the damping matrix

and natural frequencies as well as the excitation vector.Prells and Friswell (2000) have shown that

the (complex) modal matrix of a non-proportionally damped system depends on an orthonormal

matrix, which represents the phase between different degrees of freedom of the system. For pro-

portionally damped systems this matrix becomes an identity matrix and consequently they have

used this orthonormal matrix as an indicator of non-proportionality. Recently,Liu et al.(2000) has
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proposed three indices to measure the damping non-proportionality. The first index measures the

correlation between the real and imaginary parts of the complex modes, the second index measures

the magnitude of the imaginary parts of the complex modes and the third index quantifies the de-

gree of modal coupling. These indices are based on the fact that the complex modal matrix can be

decomposed to a product of a real and and complex matrix.

Complex Modal Analysis

Other than the approximate decoupling methods, another approach towards the analysis of non-

proportionally damped linear systems is to use complex modes. Since the original contribution

of Caughey and O’Kelly (1965), many papers have been written on complex modes. Several au-

thors, for example,Mitchell (1990), Imregun and Ewins (1995) andLallement and Inman (1995),

have given reviews on this subject.Placidiet al. (1991) have used a series expansion of complex

eigenvectors into the subspace of real modes, in order to identify normal modes from complex

eigensolutions. In the context of modal analysisLiang et al. (1992) have posed and analyzed the

question of whether the existence of complex modes is an indicator of non-proportional damping

and how a mode is influenced by damping. Analyzing the errors in the use of modal coordinates,

Sestieri and Ibrahim (1994) andIbrahim and Sestieri (1995) have concluded that the complex mode

shapes are not necessarily the result of high damping. The complexity of the mode shapes is the

result of particular damping distributions in the system and depends upon the proximity of the

mode shapes.Liu and Sneckenberger (1994) have developed a complex mode theory for a linear

vibrating deficient system based on the assumption that it has a complete set of eigenvectors. Com-

plex mode superposition methods have been used byOliveto and Santini (1996) in the context of

soil structure interaction problems.Balmès (1997) has proposed a method to find normal modes

and the associated non-proportional damping matrix from the complex modes. He has also shown

that a set of complex modes is complete if it verifies a defined properness condition which is used

to find complete approximations of identified complex modes.Garveyet al. (1995) have given a

relationship between real and imaginary parts of complex modes for general systems whose mass,

stiffness and damping can be expressed by real symmetric matrices. They have also observed that

the relationship becomes most simple when all roots are complex and the real part of all the roots

have same sign. RecentlyBhaskar (1999) has analyzed complex modes in detail and addressed the

problem of visualizing the deformed modes shapes when the motion is not synchronous.

While the above mentioned works concentrate on the properties of the complex modes, several

authors have considered the problem of determination of complex modes in theN -space.Cronin

(1976) has obtained an approximate solution for a non-classically damped system under harmonic

excitation by perturbation techniques.Clough and Mojtahedi (1976) considered several methods

of treating generally damped systems, and concluded that the proportional damping approxima-

tion may give unreliable results for many cases. Similarly,Duncan and Taylor (1979) have shown

that significant errors can be incurred when dynamic analysis of a non-proportionally damped sys-



1.3. Modal Analysis of Viscously Damped Systems 17

tem is based on a truncated set of modes, as is commonly done in modelling continuous systems.

Meirovitch and Ryland (1985) have used a perturbation approach to obtain left and right eigen-

vectors of damped gyroscopic systems.Chung and Lee (1986) applied perturbation techniques to

obtain the eigensolutions of damped systems with weakly non-classical damping.Cronin (1990)

has developed an efficient perturbation-based series method to solve the eigenproblem for dynamic

systems having non-proportional damping matrix. To illustrate the general applicability of this

method,Peres-Da-Silvaet al.(1995) have applied it to determine the eigenvalues and eigenvectors

of a damped gyroscopic system. In the context of non-proportionally damped gyroscopic systems

Maloneet al. (1997) have developed a perturbation method which uses an undamped gyroscopic

system as the unperturbed system. Based on a small damping assumption,Woodhouse (1998)

has given the expression for complex natural frequencies and mode shapes of non-proportionally

damped linear discrete systems with viscous and non-viscous damping. More recently, based on

the idea related to the first-order perturbation method,Adhikari (2000) has proposed an expression

of complex modes in terms of classical normal modes.

Response Bounds and Frequency Response

In the two previous subsections we have mainly discussed on the eigensolutions of non-classically

damped systems. In this subsection we briefly consider the problem of obtaining dynamic response

of such systems.Nicholson (1987b) andNicholson and Baojiu (1996) have reviewed the literature

on stable response of non-classically damped mechanical systems.Nicholson (1987a) gave upper

bounds for the response of non-classically damped systems under impulsive loads and step loads.

Yae and Inman (1987) have obtained bound on the displacement response of non-proportionally

damped discrete systems in terms of physical parameters of the system and input. They also have

observed that the larger the deviation from proportional damping the less accurate their results

become.

Bellos and Inman (1990) have given a procedure for computing the transfer functions of a

non-proportionally damped discrete system. Their method was based on Laplace transformation

of the equation of motion in modal coordinates. A fairly detailed survey of the previous research is

made inBellos and Inman (1990). Yang (1993) has developed a iterative procedure for calculation

of the transfer functions of non-proportionally damped systems.Bhaskar (1995) has analyzed

the behaviour of errors in calculating frequency response function when the off-diagonal terms of

modal damping matrix are neglected. It has been shown that the exact response can be expressed

by an infinite Taylor series and the approximation of ignoring the off-diagonal terms of modal

damping matrix is equivalent to retaining one term of the series.

Finally, it should be noted that frequency responses of viscously damped systems with non-

proportional damping can be obtainedexactlyin terms of the complex frequencies and complex

modes in the configuration space, see for exampleLancaster (1966, Section 7.5) andGéradin and

Rixen (1997, pp. 126-128). Similar expressions are also derived byFawzy and Bishop (1976),
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Vigneron (1986) andWoodhouse (1998). This in turn requires determination of complex modes in

the configuration space.

1.4 Analysis of Non-viscously Damped Systems

In Section1.2.3 it was pointed out that the most general way to model (non-viscous) damping

within the scope of linear theory is through the use of the modified dissipation function given by

equation (1.33). Equations of motion of such non-viscously damped systems can be obtained from

the Lagrange’s equation (1.7). The non-conservative forces can be obtained as

Qnck
= −∂F

∂q̇k

= −
N∑

j=1

∫ t

0

Gjk(t− τ)q̇j(τ)dτ, k = 1, · · · , N (1.41)

and consequently the equations of motion can be expressed as

Mq̈(t) +

∫ t

0

G(t− τ)q̇(τ)dτ + Kq(t) = f(t). (1.42)

This is a set of coupled second-order integro-differential equation. The presence of the ‘integral’

term in the equations of motion complicates the analysis. Unlike the viscously damped systems,

the concept of ‘proportional damping’ cannot easily be formulated for such systems. The question

of the existence of classical normal modes in such systems,i.e., if proportional damping can occur

in such systems, will be discussed in Chapter2.

Equations similar to (1.42) occur in many different subjects.Bishop and Price (1979) have

considered equations of motion similar to (1.42) in the context ofship dynamics. The convolution

term appeared in order to represent the fluid forces and moments. They have discussed the eigen-

value problem associated with equation (1.42) and presented an orthogonality relationship for the

right and left eigenvectors. They have also given an expression for the system response due to sinu-

soidal excitation. Their results were not very efficient because the orthogonality relationship of the

eigenvectors were not utilized due to the difficulty associated with the form of the orthogonality

equation, which itself became frequency dependent.

Equations of motion like (1.42) also arise in the dynamics ofviscoelastic structures. Golla

and Hughes (1985), McTavis and Hughes (1993) have proposed a method to obtain such equations

using a time-domain finite-element formulation. Their approach (the GHM method), which intro-

duces additional dissipation coordinates corresponding to the internal dampers, increases the size

of the problem. Dynamic responses of the system were obtained by using the eigensolutions of the

augmented problem in the state-space.Muravyov (1997, 1998) has proposed a method to obtain

the time and frequency-domain description of the response by introducing additional coordinates

like the GHM method. To reduce the order of the problem, recentlyParket al.(1999) andFriswell

and Inman (1999) have proposed a state-space approach which employs a modal truncation and

uses an iterative approach to obtain the eigensolutions. Using a first-order perturbation approach,
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Woodhouse (1998) has obtained expressions for the eigensolutions and transfer functions of system

(1.42). His method, although it avoids the state-space representations and additional dissipation

coordinates, is valid for small damping terms only.

1.5 Identification of Viscous Damping

In Section1.3we have discussed several methods foranalysisof viscously damped linear dynamic

systems. In this section we focus our attention on the methodologies available for identification of

viscous damping parameters from experimental measurements.

1.5.1 Single Degree-of-freedom Systems Systems

Several methods are available for identifying the viscous damping parameters for single degree of

freedom systems for linear and non-linear damping models (seeNashif et al., 1985). For linear

damping models these methods can be broadly described as:

1. Methods based on transient response of the system:This is also known as logarithmic decre-

ment method: ifqi andqi+i are heights of two subsequent peaks then the damping ratioζ

can be obtained as

δ = loge

(
qi

qi+i

)
≈ 2πζ (1.43)

For applicability of this method the decay must be exponential.

2. Methods based on harmonic response of the system:These methods are based on calculating

the half power points and bandwidth from the frequency response curve. It can be shown that

the damping factorζ can be related to a peak of the normalized frequency response curve by

|H|max ≈
1

2ζ
(1.44)

3. Methods based on energy dissipation:Consider the force-deflection behaviour of a spring-

mass-damper (equivalent to a block of material) under sinusoidal loading at some particular

frequency. In steady-state, considering conservation of energy, energy loss per cycle (∆ucyc)

can be calculated by equating it with the input power. Here it can be shown that the damping

factorζ can be related as

2ζ =
∆ucyc

2πUmax

(1.45)

whereUmax is maximum energy of the system.

The above mentioned methods, although developed for single-degree-of-freedom systems, can be

used for separate modes of multiple degree of freedom systems, for example a cantilever beam

vibrating in the first mode. RecentlyChassiakoset al. (1998) proposed an on-line parameter iden-

tification technique for a single degree of freedom hysteretic system.
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1.5.2 Multiple Degrees-of-freedom Systems

For multiple degree-of-freedom systems, most of the common methods for experimental determi-

nation of the damping parameters use the proportional damping assumption. A typical procedure

can be described as follows (seeEwins, 1984, for details):

1. Measure a set of transfer functionsHij(ω) at a set of grid points on the structure.

2. Obtain the natural frequenciesωk by a pole-fitting method.

3. Evaluate the modal half-power bandwidth∆ωk from the frequency response functions, then

the Q-factorQk = ωk

∆ωk
and the modal damping factorζk = 1

2Qk
.

4. Determine the modal amplitude factorsak to obtain the mode shapes,uk.

5. Finally reconstruct some transfer functions to verify the accuracy of the evaluated parame-

ters.

Such a procedure does not provide reliable information about the nature or spatial distribution of

the damping, though the reconstructed transfer functions may match the measured ones well.

The next stage, followed by many researchers, is to attempt to obtain the full viscous damping

matrix from the experimental measurements.Pilkey and Inman (1998) have given a recent survey

on methods of viscous damping identification. These methods can be divided into two basic cate-

gories (Fabunmiet al., 1988): (a) damping identification from modal testing and analysis, and (b)

direct damping identification from the forced response measurements.

The modal testing and analysis method seeks to determine the modal parameters, such as nat-

ural frequencies, damping ratio and mode shapes, from the measured transfer functions, and then

fit a damping matrix to these data. In one of the earliest works,Lancaster (1961) has given an

expression from which the damping matrix can be constructed from complex modes and frequen-

cies. Unfortunately this expression relies on having all the modes, which is almost impossible

in practice. For this reason, several authors have proposed identification methods by consider-

ing the modal data to be incomplete or noisy.Hasselsman (1972) has proposed a perturbation

method to identify a non-proportional viscous damping matrix from complex modes and frequen-

cies.Béliveau (1976) has proposed a method which uses eigensolutions, phase angles and damping

ratios to identify the parameters of viscous damping matrix. His method utilizes a Bayesian frame-

work based on eigensolution perturbation and a Newton-Raphson scheme.Ibrahim (1983b) uses

the higher order analytical modes together with the experimental set of complex modes to compute

improved mass, stiffness and damping matrices.Minas and Inman (1991) have proposed a method

for viscous damping identification in which it is assumed that the mass and stiffness area priori

known and modal data, obtained from experiment, allowed to be incomplete.Starek and Inman

(1997) have proposed an inverse vibration problem approach in which it is assumed that the damp-

ing matrix has ana priori known structure. Their method yields a positive-definite damping matrix
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but requires the full set of complex modes.Pilkey and Inman (1997) have developed an iterative

method for damping matrix identification by using Lancaster’s (1961) algorithm. This method re-

quires experimentally identified complex eigensolutions and the mass matrix.Alvin et al. (1997)

have proposed a method in which a correction was applied to the proportionally damped matrix by

means of an error minimization approach. RecentlyHalevi and Kenigsbuch (1999) have proposed

a method for updating the damping matrix by using the reference basis approach in which error and

incompleteness of the measured modal data were taken into account. As an intermediate step, their

method corrects the imaginary parts of the measured complex modes which are more inaccurate

than their corresponding real parts.

Direct damping identification methods attempt to fit the equations of motion to the measured

forced response data at several time/frequency points.Caravani and Thomson (1974) have pro-

posed a least-square error minimization approach to obtain the viscous damping matrix. Their

method uses measured frequency response at a set of chosen frequency points and utilizes an it-

erative method to successively improve the identified parameters.Fritzen (1986) has used the

instrumental variable method for identification of the mass, damping and stiffness matrices. It was

observed that the identified values are less sensitive to noise compared to what obtained from least-

square approach.Fabunmiet al. (1988) has presented a damping matrix identification scheme that

uses forced response data in the frequency domain and assumes that the mass and stiffness ma-

trices are known.Mottershead (1990) has used the inverse of the frequency response functions

to modify the system matrices so that the modified model varies minimally from an initial finite-

element model. Using a different approach,Roemer and Mook (1992) have developed methods

in the time domain for simultaneous identification of the mass, damping and stiffness matrices. It

was observed that the identified damping matrix has larger relative error than that of the mass and

stiffness matrices.Chenet al. (1996a) have proposed a frequency domain technique for identifi-

cation of the system matrices in which the damping matrix was determined independently. It was

shown that separate identification of the damping matrix improves the result as relative magnitude

of the damping matrix is less than those of the mass and stiffness matrices. Later,Baruch (1997)

has proposed a similar approach in which the damping matrix was identified separately from the

mass and stiffness matrices.

1.6 Identification of Non-viscous Damping

Unlike viscous damping, there is very little available in the literature which discusses generic

methodologies for identification of non-viscous damping. Most of the methods proposed in the

literature are system-specific.Banks and Inman (1991) have considered the problem of estimating

damping parameters in a non-proportionally damped beam. They have taken four different mod-

els of damping: viscous air damping, Kelvin-Voigt damping, time hysteresis damping and spatial

hysteresis damping, and used a spline inverse procedure to form a least-square fit to the experimen-
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tal data. A procedure for obtaining hysteretic damping parameters in free-hanging pipe systems

is given byFang and Lyons (1994). Assuming material damping is the only source of damping

they have given a theoretical expression for the loss factor of then-th mode. Their theory pre-

dicts higher modal damping ratios in higher modes.Maia et al. (1997) have emphasized the need

for development of identification methodologies of general damping models and indicated several

difficulties that might arise. Recently,Dalenbring (1999) has proposed a method for identification

of (exponentially decaying) damping functions from the measured frequency response functions

and finite element displacement modes. A limitation of this method is that it neglects the effect of

modal coupling, that is, the identified non-viscous damping model is effectively proportional.

1.7 Open Problems

From the discussions based on the existing literature it is clear that in spite of extensive research ef-

fort, many questions regarding damped dynamic systems are still to be answered. These questions

can be broadly divided as follows:

1. What damping model has to be used for a given structure,i.e., viscous or non-viscous, and

if non-viscous then what kind of model should it be?

2. How can conventional modal analysis be extended to systems with non-viscous damping?

3. How is it possible to determine the damping parameters by conventional modal testing if a

system is non-viscous?

The first question is a major issue, and in the context of general vibration analysis, has been ‘set-

tled’ by assuming viscous damping, although has been pointed out in the literature that in general

it will not be the correct model. The last two questions are related to each other in the sense that

for identification of the non-viscous damping parameters a reliable method of modal analysis is

also required.

Most of the techniques for detecting damping in a structure either consider the structure to be

viscously damped ora priori assume some particular non-viscous model of damping and try to fit

its parameters with regard to some specific structure. Thisa priori selection of damping no doubt

hides the physics of the system and there has not been any indication in the literature on how to find

a damping model by doing conventional vibration testing. However another relevant question in

this context is whether thisa priori selection of damping model matters from an engineering point

of view: it may be possible that a pre-assumed damping model with a ‘correct’ set of parameters

may represent the system response quite well, although the actual physical mechanism behind the

damping may be different. These issues will be discussed in this dissertation. Next, the works

taken up in this dissertation is outlined briefly.
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1.8 Outline of the Dissertation

Motivated by the existing gaps and open problems identified in the last section, a systematic study

on analysisand identificationof damped discrete linear dynamic systems has been carried out in

this dissertation. In Section1.2 it has been brought out that the convolution integral model is the

most general damping model for multiple-degrees-of-freedom linear systems. Attention is specif-

ically focused on this kind of general damping model. However, for comparing and establishing

the relationship with the current literature, viscously damped systems are also discussed. The

dissertation is divided into nine chapters and two Appendices.

In Chapter2, the concept of classical damping, well known for viscously damped systems,

is extended to non-viscously damped discrete linear systems. The convolution integral model is

assumed for non-viscous damping. Conditions for the existence of classical normal modes in

such non-viscously damped systems are discussed. Several numerical examples are provided to

illustrate the derived results.

Chapter3 is aimed at extending classical modal analysis to treat lumped-parameter non-viscously

damped linear dynamic systems. The nature of the eigenvalues and eigenvectors are discussed

under certain simplified but physically realistic assumptions concerning the system matrices and

kernel functions. A numerical method for calculation of the eigenvectors is suggested. The transfer

function matrix of the system is derived in terms of the eigenvectors of the second-order system.

Exact closed-form expressions for the dynamic response due to general forces and initial condi-

tions are derived.

In Chapter4, the mode-orthogonality relationships, known for undamped or viscously damped

systems, have been generalized to such non-viscously damped systems. Some expressions are

suggested for the normalization of the eigenvectors. A number of useful results which relate the

system matrices with the eigensolutions have been established.

The above mentioned studies give a firm basis for modal analysis of non-viscously damped

systems. Motivated by these results, from Chapter5 onwards, studies on damping identification

are considered. Chapter5 considers identification of viscous damping under circumstances when

the actual damping model in the structure is non-viscous. A method is presented to obtain a full

(non-proportional) viscous damping matrix from complex modes and complex natural frequencies.

It is assumed that the damping is ‘small’ so that a first order perturbation method is applicable.

The proposed method and several related issues are discussed by considering numerical examples

based on a linear array of damped spring-mass oscillators. It is shown that the method can predict

the spatial location of damping with good accuracy, and also give some indication of the correct

mechanism of damping.

From the studies in Chapter5 it is observed that when a system is non-viscously damped, an

identified equivalent viscous damping model does not accurately represent the damping behaviour.

This demands new methodologies to identify non-viscous damping models. Chapter6 takes a
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first step, by outlining a procedure for identifying a damping model involving an exponentially-

decaying relaxation function. The method uses experimentally identified complex modes and com-

plex natural frequencies, together with the knowledge of mass matrix for the system. The proposed

method and several related issues are discussed by considering numerical examples of a linear ar-

ray of damped spring-mass oscillators. It is shown that good estimates can be obtained for the

exponential time constant and the spatial distribution of the damping.

In some cases the identified damping matrix become non-symmetric, which in a way is a non-

physical result because the original system is reciprocal. In Chapter7, methods are developed

to identify damping models which preserve the symmetry of the system. Both viscous and non-

viscous models are considered. The procedures are based on a constrained error minimization

approach and they use experimentally identified complex modes and complex natural frequencies.

The proposed methods are supported by suitable numerical examples.

Experimental verification of the damping identification techniques developed in this disserta-

tion is considered in Chapter8. First, extraction of complex modes and frequencies from a set of

measured transfer functions is considered as all the damping identification procedures rely heav-

ily on these complex modal parameters. A general methodology based on linear-nonlinear least-

square approach is proposed. The experimental structure is comprised of a beam with localized

constrained layer damping. It is demonstrated that the proposed approach for damping identifica-

tion can indeed predict the nature of the damping with good accuracy. Through an error analysis,

it is further shown that the proposed method is likely to be robust in the presence of noisy data,

as the identified damping matrix is less sensitive to the imaginary parts of the complex modes, on

which any measurement noise has highest effect.

Finally, Chapter9 presents the conclusions emerging from the studies taken up in this disserta-

tion and makes a few suggestions for further research.



Chapter 2

The Nature of Proportional Damping

2.1 Introduction

Modal analysis is the most popular and efficient method for solving engineering dynamic problems.

The concept of modal analysis, as introduced byRayleigh (1877), was originated from the linear

dynamics ofundamped systems. It was shown (see Section1.1.2for details) that the undamped

modes orclassical normal modessatisfy an orthogonality relationship over the mass and stiffness

matrices and uncouple the equations of motion,i.e., If X ∈ RN×N is the modal matrix thenXT MX

andXT KX are both diagonal matrices. This significantly simplifies the dynamic analysis because

complex multiple degree-of-freedom (MDOF) systems can be treated as a collection of single

degree-of-freedom oscillators.

Real-life systems are however, not undamped, but possess some kind of energy dissipation

mechanism or damping. In order to apply modal analysis of undamped systems to damped sys-

tems, it is common to assume the proportional damping, a special case of viscous damping. The

proportional damping model expresses the damping matrix as a linear combination of the mass and

stiffness matrices, that is

C = α1M + α2K (2.1)

whereα1, α2 are real scalars. This damping model is also known as ‘Rayleigh damping’ or ‘clas-

sical damping’. Modes of classically damped systems preserve the simplicity of the real normal

modes as in the undamped case.Caughey and O’Kelly (1965) have derived the condition which

the system matrices must satisfy so that viscously damped linear systems possess classical normal

modes. They have also proposed an (series) expression for the damping matrix in terms of the

mass and stiffness matrices so that the system can be decoupled by the undamped modal matrix

and have shown that the Rayleigh damping is a special case of this general expression. In this

chapter a more general expression of the damping matrix is proposed so that the system possess

classical normal modes.

There are no physical reasons to believe that viscous damping is the only linear damping model.

It is perfectly possible for the damping forces to depend on values of other quantities. In the last

25
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chapter (see Section1.2.3) it was concluded that the convolution integral model is the most general

linear damping model. Since the concept of classical or proportional damping is defined in the

context of viscously damped systems, it is not clear whether such a concept exists for this kind of

non-viscously damped systems. In this chapter we address the question – under what conditions

can such non-viscously damped systems be ‘classically damped’?i.e., under what conditions such

non-viscously damped systems possess classical normal modes?

2.2 Viscously Damped Systems

The equations of motion of free vibration of a viscously damped system can be expressed by

Mq̈(t) + Cq̇(t) + Kq(t) = 0. (2.2)

In this case the equations of motion are characterized bythree real symmetric matrices which

brings additional complication compared to the undamped systems where the equations of motion

are characterized by two matrices. We require a non-zero matrixX ∈ RN×N such that it simulta-

neously diagonalizesM , C andK under a congruence transformation. This requirement restricts

the admissible forms of these matrices as discussed below.

2.2.1 Existence of Classical Normal Modes

Caughey and O’Kelly (1965) have proved that a damped linear system of the form (2.2) can pos-

sess classical normal modes if and only if the system matrices satisfy the relationshipKM −1C =

CM−1K . This is an important result on modal analysis of viscously damped systems and is now

well known. However, this result does not immediately generalize to systems with singular mass

matrices (seeNewland, 1989, Chapter 6). Thisapparentrestriction in Caughey and O’Kelly’s re-

sult may be removed by considering the fact that the properties (and roles) of all the three system

matrices are identical and can be treated on equal basis. In view of this, a modified version of

Caughey and O’Kelly’s theorem can be stated as following:

Theorem 2.1. If M , C and K are positive definite matrices and there exist a nonsingularX ∈
RN×N such thatXT MX , XT CX andXT KX are all real diagonal matrices then the following are

equivalent

(a) KM −1C = CM−1K , (b) MK −1C = CK−1M , (c) MC−1K = KC−1M .

Proof. We have to prove that: (1) from the given condition (a), (b) and (c) follows, (2) from (a),

(b) and (c) the given condition follows – in total all the six statements proposed in the theorem. For

notational brevity defineZ = {M , C, K} as a ordered collection of the system property matrices.

Instead of proving all the six statements separately, first we will prove that ‘there exist aX such

that XT ZkX is a real diagonal if and only if there exist ani, 1 ≤ i ≤ 3 such thatZjZ
−1
i Zm =

ZmZ−1
i Zj for all j, m = 1, 2, 3 6= i’ and then will come back to our main result.



2.2. Viscously Damped Systems 27

Consider the ‘if’ part first: LetZi is the positive definite matrix, then there exist aV such

that Z−1
i = VVT . From the given conditionZjZ

−1
i Zm = ZmZ−1

i Zj we haveZj(VVT )Zm =

Zm(VVT )Zj or (VT ZjV)(VT ZmV) = (VT ZmV)(VT ZjV). This implies that(VT ZjV), ∀j,

are symmetric matrices and also pairwise commutative. So there exist a orthogonalQ such that

QT (VT ZjV)Q is diagonal∀j. The ‘if’ part follows by selectingX = VQ.

To prove the ‘only if’ part, suppose(XT ZiX) = Λi is a diagonal matrix with its elements

λir > 0, ∀r. So Λ
−1/2
i (XT ZiX)Λ

−1/2
i = I , from which one hasZi = X−TΛ

1/2
i Λ

1/2
i X−1 or

Z−1
i = XΛ

−1/2
i Λ

−1/2
i XT . Now from the given condition(XT ZjX) = Λj is a diagonal matrix

∀j 6= i, or Λ−1/2
i (XT ZjX)Λ

−1/2
i = Λj/i a diagonal matrix. Similar expression forΛm/i can also

be obtained by considering that(XT ZmX) is diagonal. Since two diagonal matrix always commute

we haveΛj/iΛm/i = Λm/iΛj/i, ∀j, m 6= i or

Λ
−1/2
i XT ZjXΛ

−1/2
i Λ

−1/2
i XT ZmXΛ

−1/2
i =

Λ
−1/2
i XT ZmXΛ

−1/2
i Λ

−1/2
i XT ZjXΛ

−1/2
i .

Using the expression ofZ−1
i obtained before, the above equation resultsZjZ

−1
i Zm = ZmZ−1

i Zj,

∀j, m 6= i.

Since in this proofl,m, i are all arbitrary andZ−1
i exist ∀i = 1, 2, 3 all the six statements

proposed in the theorem have been proved by successive change of indices.

This result may be alternatively proved by following Caughey and O’Kelly’s approach and

interchangingM , K andC successively. If a system is(•)-singular then the condition(s) involving

(•)−1 have to be disregarded and remaining condition(s) have to be used. Thus, for a positive

definite system, along with Caughey and O’Kelly’s result (condition (a) of the theorem), there

exist two other equivalent criterion to judge whether a damped system can possess classical normal

modes. It is important to note that these three conditions are equivalent and simultaneously valid

but in generalnot the same.

Example2.1. Assume that a system’s mass, stiffness and damping matrices are given by

M =

1.0 1.0 1.0
1.0 2.0 2.0
1.0 2.0 3.0

 and K =

 2 −1 0.5
−1 1.2 0.4
0.5 0.4 1.8

 and C =

15.25 −9.8 3.4
−9.8 6.48 −1.84
3.4 −1.84 2.22

 .

It may be verified that all the system matrices are positive definite. The mass-normalized undamped

modal matrix is obtained as

X =

 0.4027 −0.5221 −1.2511
0.5845 −0.4888 1.1914
−0.1127 0.9036 −0.4134

 . (2.3)

Since Caughey and O’Kelly’s condition

KM −1C = CM−1K =

125.45 −80.92 28.61
−80.92 52.272 −18.176
28.61 −18.176 7.908





28 Chapter 2. The Nature of Proportional Damping

is satisfied, the system possess classical normal modes and thatX given in equation (2.3) is the

modal matrix. Because the system is positive definite the other two conditions,

MK −1C = CK−1M =

 2.0 −1.0 0.5
−1.0 1.2 0.4
0.5 0.4 1.8


and

MC−1K = KC−1M =

4.1 6.2 5.6
6.2 9.73 9.2
5.6 9.2 9.6


are also satisfied. Thus all three conditions described in theorem2.1 are simultaneously valid

although none of them are the same. So, if any one of the three conditions proposed in Theorem

2.1 is satisfied, a viscously damped positive definite system possesses classical normal modes.

Example2.2. Suppose for a system

M =

[
7.0584 1.3139
1.3139 0.2446

]
, K =

[
3.0 −1.0
−1.0 4.0

]
and C =

[
1.0 −1.0
−1.0 3.0

]
.

It may be verified that the mass matrix is singular for this system. For this reason, Caughey and

O’Kelly’s criteria is not applicable. But, as the other two conditions in theorem2.1,

MK −1C = CK−1M =

[
1.6861 0.3139
0.3139 0.0584

]
and

MC−1K = KC−1M =

[
29.5475 5.5

5.5 1.0238

]
are satisfied all three matrices can be diagonalized by a congruence transformation using the un-

damped modal matrix

X =

[
0.9372 −0.1830
0.3489 0.9831

]
.

2.2.2 Generalization of Proportional Damping

Obtaining a damping matrix from ‘first principles’ as with the mass and stiffness matrices is not

possible for most systems. For this reason, assumingM andK are known, we often want to find

C in terms ofM andK such that the system still possesses classical normal modes. Of course,

the earliest work along this line is the proportional damping shown in equation (2.1) by Rayleigh

(1877). It may be verified that, for positive definite systems, expressingC in such a way will

always satisfy all three conditions given by theorem2.1. Caughey (1960) proposed that asufficient

condition for the existence of classical normal modes is: ifM−1C can be expressed in a series

involving powers ofM−1K . His result generalized Rayleigh’s result, which turns out to be the first

two terms of the series. Later,Caughey and O’Kelly (1965) proved that the series representation

of damping

C = M
N−1∑
j=0

αj

[
M−1K

]j
(2.4)
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is thenecessary and sufficientcondition for existence of classical normal modes for systems with-

out any repeated roots. This series is now known as the ‘Caughey series’ and is possibly the most

general form of damping under which the system will still possess classical normal modes.

Here, a further generalized and useful form of proportional damping will be proposed. We

assume that the system is positive definite. Consider the conditions (a) and (b) of theorem2.1;

premultiplying (a) byM−1 and (b) byK−1 one has(
M−1K

) (
M−1C

)
=
(
M−1C

) (
M−1K

)
or AB = BA(

K−1M
) (

K−1C
)

=
(
K−1C

) (
K−1M

)
or A−1D = DA−1

(2.5)

whereA = M−1K , B = M−1C andD = K−1C. Notice that we did not consider the condition (c)

of theorem2.1. Premultiplying (c) byC−1, one would obtain a similar commutative condition but

it would involveC terms in both the matrices, from which any meaningful expression ofC in terms

of M andK can not be deduced. For this reason only the above two commutative relationships

will be considered. It is well known that for any two matricesA and B, if A commutes with

B, f(A) also commutes withB wheref(z) is any analytic functionof the variablez. Thus,

in view of the commutative relationships represented by equation (2.5), one can use almostall

well known functions to representM−1C in terms ofM−1K and alsoK−1C in terms ofK−1M ,

that is, representations likeC = Mf(M−1K) andC = Kf(K−1M) are valid for any analyticf(z).

Adding these two quantities and also takingA andA−1 in the argument of the function as (trivially)

A andA−1 always commute we can express the damping matrix in the form of

C = Mf1

(
M−1K , K−1M

)
+ Kf2

(
M−1K , K−1M

)
(2.6)

such that the system possesses classical normal modes. Further, postmultiplying condition (a) of

theorem2.1by M−1 and (b) byK−1 one has(
KM −1

) (
CM−1

)
=
(
CM−1

) (
KM −1

)(
MK −1

) (
CK−1

)
=
(
CK−1

) (
MK −1

)
.

(2.7)

Following a similar procedure we can express the damping matrix in the form

C = f3

(
KM −1, MK −1

)
M + f4

(
KM −1, MK −1

)
K (2.8)

for which system (2.2) possesses classical normal modes. The functionsfi, i = 1, · · · , 4 can

have very general forms− they may consist of an arbitrary number of multiplications, divisions,

summations, subtractions or powers of any other functions or can even be functional compositions.

Thus, any conceivable form of analytic functions that are valid for scalars can be used in equations

(2.6) and (2.8). In a natural way, common restrictions applicable to scalar functions are also valid,

for example logarithm of a negative number is not permitted. Although the functionsfi, i =

1, · · · , 4 are general, the expression ofC in (2.6) or (2.8) gets restricted because of the special

nature of theargumentsin the functions. As a consequence,C represented in (2.6) or (2.8) does not
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cover the wholeRN×N , which is well known that many damped systems do not possess classical

normal modes.

Rayleigh’s result (2.1) can be obtained directly from equation (2.6) or (2.8) as a very special

− one could almost say trivial− case by choosing each matrix functionfi as real scalar times

an identity matrix. The damping matrix expressed in equation (2.6) or (2.8) provides a new way

of interpreting the ‘Rayleigh damping’ or ‘proportional damping’ where the identity matrices (al-

ways) associated in the right or left side ofM andK are replaced by arbitrary matrix functions

fi with proper arguments. This kind of damping model will be calledgeneralized proportional

damping. We call the representation in equation (2.6) right-functional formand that in equation

(2.8) left-functional form. Caughey series (2.4) is an example of right functional form. Note that if

M or K is singular then the argument involving its corresponding inverse has to be removed from

the functions.

All analytic functions have power series form via Taylor expansion. It is also known that for any

A ∈ RN×N , all Ak, for integerk > N , can be expressed as a linear combination ofAj, j ≤ (N−1)

by a recursive relationship using the Cayley-Hamilton theorem. For this reason the expression of

C in (2.6) or (2.8) can in turn be expressed in the form of Caughey series (2.4). However, since

all fi can have very general forms, such a representation may not be always straight forward.

For example, ifC = M(M−1K)e the system possesses normal modes, but it is neither a direct

member of the Caughey series (2.4) nor is it a member of the series involving rational fractional

powers given byCaughey (1960) as e is an irrational number. However, we know thate =

1+ 1
1!

+ · · ·+ 1
r!

+ · · ·∞, from which we can writeC = M(M−1K)(M−1K)
1
1! · · · (M−1K)

1
r! · · ·∞,

which can in principle be represented by the Caughey series. It is easy to verify that, from a

practical point of view, this representation is not simple and requires truncation of the series up to

some finite number of terms. Hence,C expressed in the form of equation (2.6) or (2.8) is a more

convenient representation of the Caughey series and we say thatviscously damped positive definite

systems possess classical normal modes if and only ifC can be represented by equation (2.6) or

(2.8).

Example2.3. It will be shown that the linear dynamic system satisfying the following equations of

free vibration

Mq̈+

[
Me

−
(
M−1K

)2
/2

sinh(K−1M ln(M−1K)2/3)

+ K cos2(K−1M)
4
√

K−1M tan−1

√
M−1K
π

]
q̇ + Kq = 0

(2.9)

possesses classical normal modes and can be analyzed using modal analysis. HereM andK are

the same as example2.1.

Direct calculation showsC =

 −67.9188 −104.8208 −95.9566
−104.8208 −161.1897 −147.7378
−95.9566 −147.7378 −135.2643

 . Using the modal ma-
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trix calculated before in equation (2.3), we obtain

XT CX =

−88.9682 0.0 0.0
0.0 0.0748 0.0
0.0 0.0 0.5293

 ,

a diagonal matrix. Analytically the modal damping ratios can be obtained as

2ξjωj = e−ω4
j /2 sinh

(
1

ω2
j

ln
4

3
ωj

)
+ ω2

j cos2

(
1

ω2
j

)
1
√

ωj

tan−1 ωj

π
. (2.10)

A natural question which arises in the context of the generalized proportional damping is how

to obtain the damping functionsfi from experimental modal analysis. The following numerical

example shows how one might obtain these damping functions.

Example2.4. Suppose Figure2.1shows modal damping ratios as a function of frequency obtained

by conducting simple vibration testing on a structural system. The damping ratio is such that,

within the frequency range considered, it shows very low values in the low frequency region, high

values in the mid frequency region and again low values in the high frequency region. We want to
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Figure 2.1: Curve of modal damping ratios (simulated)

find a damping model which shows this kind of behaviour. The first step is to identify the function

which produces this curve. Here this (continuous) curve was simulated using the equation

ξ(ω) =
1

15

(
e−2.0ω − e−3.5ω

) (
1 + 1.25 sin

ω

7π

) (
1 + 0.75ω3

)
. (2.11)

From the above equation, the modal damping ratios in terms of the discrete natural frequencies,

can be obtained by

2ξjωj =
2ωj

15

(
e−2.0ωj − e−3.5ωj

) (
1 + 1.25 sin

ωj

7π

) (
1 + 0.75ω3

j

)
. (2.12)
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In the light of the previous example, identifying the damping matrix which will produce the above

damping ratio is straightforward (see the relationship between equation (2.9) and (2.10)). We view

equation (2.12) as a function ofω2
j and simply replaceω2

j by M−1K and any constant terms by that

constant timesI to obtain the damping matrix. Using the right functional form in this case one has

C =
2

15
M
√

M−1K
[
e−2.0

√
M−1K − e−3.5

√
M−1K

]
×
[
I + 1.25 sin

(
1

7π

√
M−1K

)] [
I + 0.75(M−1K)3/2

] (2.13)

as the identified damping matrix. Using the numerical values ofM andK from example2.1 we

obtain

C =

2.3323 0.9597 1.4255
0.9597 3.5926 3.7624
1.4255 3.7624 7.8394

× 10−2. (2.14)

If we recalculate the damping ratios from the above constructed damping matrix, it will pro-

duce three points corresponding to the three natural frequencies which will exactly match with

our initial curve as shown in figure2.1. The method outlined here can produce a very accu-

rate estimate of the damping matrix if the modal damping ratio function is known. When an

exact expression ofξ(ω) is not known, all polynomial fitting methods can be employed to ap-

proximateξ(ω) and corresponding to the fitted function one can construct a damping matrix by

the procedure outlined here. As an example, if2ξjωj can be represented in a Fourier series by

2ξjωj = a0

2
+
∑∞

r=1

[
ar cos

(
2πrωj

Ω

)
+ br sin

(
2πrωj

Ω

)]
then the damping matrix can be expanded

asC = a0

2
I+M

∑∞
r=1

[
ar cos

(
2πrΩ−1

√
M−1K

)
+ br sin

(
2πrΩ−1

√
M−1K

)]
in a Fourier series.

2.3 Non-viscously Damped Systems

In Section1.2.3a class of non-viscous linear damping models where the damping forces depend on

the past history of motion via convolution integrals was considered. Equations of motion governing

free vibration of a linear system with such damping can be expressed by the following coupled

integro-differential equations

Mq̈(t) +

∫ t

−∞
G(t, τ) q̇(τ) dτ + Kq(t) = 0. (2.15)

HereG(t, τ) ∈ RN×N is the matrix of kernel functions. It is also assumed thatG(t, τ) is a sym-

metric matrix so that reciprocity holds. Often the kernel depends upon the difference(t− τ) only:

then,G(t, τ) = G(t − τ). In a special case whenG(t, τ) = C δ(t − τ), whereδ(t) is the Dirac-

delta function, equation (2.15) reduces to equation (2.2). Most of the current research considers

system (2.15) in its generalform. For this reason an exact analysis becomes computationally ex-

pensive and almost intractable for large systems (see Chapter3 for further discussions). Here we
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are interested in whether such non-viscously damped systems can exhibit ‘proportional damping’

or ‘classical damping’, similar to the viscously damped case, so that a simplified analysis method

can be adopted.

2.3.1 Existence of Classical Normal Modes

It is required to find out the conditions when there exist a non-zeroX ∈ RN×N which diagonalizes

equation (2.15) by a congruence transformation. Unlike the viscously damped case where all the

system matrices were constant and symmetric, here the system dynamics is characterized by two

constant symmetric matrices and one symmetric matrix containing real functions. The problem

of simultaneous diagonalization of Hermitian matrices with functional entries through constant

complex transformations has been discussed byChakrabartiet al. (1978). In view of their results

and our earlier result (theorem2.2) on viscously damped systems, the conditions for existence of

classical normal modes in system (2.15) can be described as follows:

Theorem 2.2. If M , K andG(t, τ),∀t, τ are positive definite matrices and there exist a non-zero

X ∈ RN×N such thatXT MX , XT KX and XT G(t, τ)X,∀t, τ are all real diagonal matrices then

the following are equivalent

(a) KM −1G(t, τ) = G(t, τ)M−1K ,

(b) MK −1G(t, τ) = G(t, τ)K−1M ,

(c) MG−1(t, τ)K = KG−1(t, τ)M , ∀t, τ .

A rigorous proof of this theorem can be constructed following the proof of theorem2.1 to-

gether with the results established byChakrabartiet al. (1978). Intuitively, if G(t, τ) is a suffi-

ciently smooth matrix function then one can obtain a sequenceGjk = G(tj, τk) ∈ RN×N ,∀j, k =

1, 2, · · · ,∞, where allGjk are symmetric. Use of theorem2.1for all j, k = 1, 2, · · · ,∞ essentially

leads to the result of this theorem.

Example2.5. Consider a system whose equation of motion can be described by (2.15) with

M =

[
2 −1
−1 3

]
, K =

[
1 −2
−2 5

]
and

G(t, τ) =

[
1.0177e−µ1τ̂ + 0.3517e−µ2τ̂2/2 −1.7724e−µ1τ̂ − 0.5364e−µ2τ̂2/2

−1.7724e−µ1τ̂ − 0.5364e−µ2τ̂2/2 4.4749e−µ1τ̂ + 1.3688e−µ2τ̂2/2

]
, where τ̂ = t−τ

andµ1, µ2 are constants. Note thatM , K andG(t, τ) are positive definite. It may be easily verified

that all the three conditions outlined in Theorem2.2 are satisfied. For this reason the undamped

modal matrix

X =

[
0.7710 −0.0743
0.3124 0.5499

]
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which diagonalizesM andK also diagonalizesG(t, τ) as

XT G(t, τ)X =

[
0.1879e−µ1τ̂ + 0.0843e−µ2τ̂2/2 0.0

0.0 1.5037e−µ1τ̂ + 0.4597e−µ2τ̂2/2

]
is a diagonal matrix∀t, τ .

2.3.2 Generalization of Proportional Damping

We can now follow the approach similar to the viscously damped case for obtaining an expression

of the damping function in terms ofM andK so that system (2.15) possesses classical normal

modes. From results (a) and (b) of theorem2.2, the conditions for existence of classical normal

modes can be expressed as

AB(t, τ) = B(t, τ)A and A−1D(t, τ) = D(t, τ)A−1, ∀t, τ (2.16)

whereA = M−1K , B(t, τ) = M−1G(t, τ) andD(t, τ) = K−1G(t, τ). In view of this commutative

condition we say system (2.15) possesses classical normal modes if and only if

G(t, τ) = MF1

(
M−1K , K−1M , t, τ

)
+ KF2

(
M−1K , K−1M , t, τ

)
(2.17)

whereFi(z1, z2, t, τ), i = 1, 2 are any realz1z2-analytic functions such that
∣∣∣∫∞−∞Fi(z1, z2, t, τ) dτ

∣∣∣ <
∞, ∀z1, z2, t . This representation of damping is the right-functional form. Following a similar ap-

proach to that outlined for the viscous damping case, one can also have the left-functional form as

G(t, τ) = F3

(
KM −1, MK −1, t, τ

)
M + F4

(
KM −1, MK −1, t, τ

)
K . (2.18)

This is possibly the most general class of damping that can be treated within the scope of classical

modal analysis. The representation ofC in equation (2.6) and (2.8) can be obtained as a special

case whenFi(z1, z2, t, τ) = fi(z1, z2)δ(t − τ). This in turn relates equation (2.17) and (2.18) to

the Rayleigh’s representation and Caughey series.

Example2.6. It will be shown that the linear dynamic system satisfying the following equations of

motion of free vibration

Mq̈ +

∫ t

−∞

[
M(K−1M)−π/4e−µ(t−τ) + e−

√
KM −1

Kδ(t− τ)

]
q̇(τ) dτ + Kq = 0

possesses classical normal modes. HereM andK are the same as example2.1andµ is a constant.

Introduce the transformationy(t) = Xq(t) where the mass normalized modal matrixX is given

as before in equation (2.3). From direct calculation, equations of motion in the modal coordinates

may be obtained as

I ÿ+

∫ t

−∞

0.2695 0.0 0.0
0.0 0.9732 0.0
0.0 0.0 5.2433

 e−µ(t−τ)ẏ(τ) dτ

+

0.1220 0.0 0.0
0.0 0.3615 0.0
0.0 0.0 0.4668

 ẏ +

0.1883 0.0 0.0
0.0 0.9660 0.0
0.0 0.0 8.2457

 y = 0.
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The above equations are uncoupled and can be solved in the frequency domain adopting similar

procedures to those used for viscously damped systems.

2.4 Conclusions

Conditions for the existence of classical normal modes in viscously and non-viscously damped

linear multiple degree-of-freedom systems have been discussed. The non-viscous damping mech-

anism is such that it depends on the past history of the velocities via convolution integrals over

some kernel functions. Caughey and O’Kelly’s (1965) criteria for the existence of classical normal

modes in viscously damped systems is extended to non-viscously damped systems and systems

with a singular mass matrix. By introducing the concept of generalized proportional damping we

have extended the applicability of classical damping. The generalized proportional damping ex-

presses the damping in terms ofanynon-linear function involving time and specially arranged mass

and stiffness matrices so that the system still posses classical normal modes. This enables to ana-

lyze more general class of non-viscously damped discrete linear dynamic systems using classical

modal analysis.
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Chapter 3

Dynamics of Non-viscously Damped
Systems

3.1 Introduction

In the last chapter, the concept of proportional damping was extended to non-viscously damped

systems. Conditions for existence of proportional damping in non-viscously damped systems were

derived. It is clear that these conditions are purely mathematical in nature and there is no rea-

son why a general linear system should obey such conditions. Thus, in general, non-viscously

damped systems are non-proportionally damped. The central theme of this chapter is to analyze

non-viscously damped multiple-degrees-of-freedom linear systems with non-proportional damp-

ing. We rewrite the equations of motion of forced vibration of anN -degrees-of-freedom linear

system with non-viscous damping as

Mq̈(t) +

∫ t

0

G(t− τ)q̇(τ)dτ + Kq(t) = f(t). (3.1)

The initial conditionsassociated with the above equation are

q(0) = q0 ∈ RN

and q̇(0) = q̇0 ∈ RN .
(3.2)

In Section1.4 currently available methods for analyzing such systems were discussed. Majority

of the available methods employ additional dissipation coordinates and then use the state-space

formalism. This approach not only computationally more involved but also physical insight is

lost in such approach. For this reason, we develop procedures which avoid this approach and is

consistent with traditional modal analysis.

The nature of eigenvalues and eigenvectors is discussed under certain simplified but physically

realistic assumptions on the system matrices and kernel functions. A series expansion method for

the determination of complex eigenvectors is proposed. The transfer function matrix of the system

is derived in term of these eigenvectors. Exact closed-form expressions are derived for the transient

response and the response due to non-zero initial conditions. Applications of the proposed method

37
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and related numerical issues are discussed using a non-viscously damped three-degrees-of-freedom

system.

3.2 Eigenvalues and Eigenvectors

Considering free vibration, that isf(t) = q0 = q̇0 = 0, and taking the Laplace transform of the

equations of motion (3.1) one has

s2M q̄ + sG(s)q̄ + K q̄ = 0. (3.3)

Hereq̄(s) = L [q(t)] ∈ CN , G(s) = L [G(t)] ∈ CN×N andL [•] denotes the Laplace transform.

In the context of structural dynamics,s = iω, where i =
√
−1 andω ∈ R+ denotes the frequency.

It is assumed that: (a)M−1 exists, and (b)all the eigenvalues ofM−1K are distinct and positive.

BecauseG(t) is a real function,G(s) is also a real function of the parameters. We assume

that G(s) is such that the motion is dissipative. Conditions whichG(s) must satisfy in order to

produce dissipative motion were given byGolla and Hughes (1985). Several physically realistic

mathematical forms of the elements ofG(s) were given in Table1.1. For the linear viscoelastic

case it can be shown that (seeBland, 1960, Muravyov, 1997), in general, the elements ofG(s) can

be represented as

Gjk(s) =
pjk(s)

qjk(s)
(3.4)

wherepjk(s) andqjk(s) are finite-order polynomials ins. Here, we do not assume any specific

functional form ofGjk(s) but assume that|Gjk(s)| < ∞ whens → ∞. This in turn implies that

the elements ofG(s) are at the most of order1/s in s or constant, as in the case of viscous damping.

The eigenvalues,sj, associated with equation (3.3) are roots of the characteristic equation

det
[
s2M + sG(s) + K

]
= 0. (3.5)

If the elements ofG(s) have simple forms, for example – as in equation (3.4), then the charac-

teristic equation becomes a polynomial equation of finite order. In other cases the characteristic

equation can be expressed as a polynomial equation by expandingG(s) in a Taylor series. How-

ever, the order of the equation will be infinite in those cases. For practical purposes the Taylor

expansion ofG(s) can be truncated to a finite series to make the characteristic equation a poly-

nomial equation of finite order. Such equations can be solved using standard numerical methods

(seePresset al., 1992, Chapter 9). Suppose the order of the characteristic polynomial ism. In

generalm is more than2N , that ism = 2N + p; p ≥ 0. Thus, although the system hasN

degrees-of-freedom, the number of eigenvalues is more than2N . This is a major difference be-

tween the non-viscously damped systems and the viscously damped systems where the number of

eigenvalues is exactly2N , including any multiplicities.

A general analysis on the nature of the eigenvalues of non-viscously damped systems is beyond

the scope of this chapter. It is assumed thatall m eigenvalues are distinct. We further restrict
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our attention to a special case when, among them eigenvalues,2N appear in complex conjugate

pairs1. Under such assumptions it is easy to show that the remainingp eigenvalues become purely

real. The mathematical conditions whichM , K andG(s) must satisfy in order to produce such

eigenvalues will not be obtained but a physical justification will follow shortly. For convenience

the eigenvalues are arranged as

s1, s2, · · · , sN , s∗1, s
∗
2, · · · , s∗N , s2N+1, · · · , sm (3.6)

where(•)∗ denotes complex conjugation.

The eigenvalue problem associated with equation (3.1) can be defined from (3.3) as

D(sj)zj = 0, for j = 1, · · · , m (3.7)

where

D(sj) = s2
jM + sj G(sj) + K (3.8)

is thedynamic stiffness matrixcorresponding to thej-th eigenvalue andzj is thej-th eigenvec-

tor. Here(•)T denotes the matrix transpose. From equation (3.7) it is clear that, whensj appear

in complex conjugate pairs,zj also appear in complex conjugate pairs, and whensj is realzj is

also real. Corresponding to the2N complex conjugate pairs of eigenvalues, theN eigenvectors

together with their complex conjugates will be calledelastic modes. These modes are related to

the N modes of vibration of the structural system. Physically, the assumption of ‘2N complex

conjugate pairs of eigenvalues’ implies that all the elastic modes are oscillatory in nature, that is,

they are sub-critically damped. The modes corresponding to the ‘additional’p eigenvalues will

be callednon-viscous modes. These modes are induced by the non-viscous effect of the damping

mechanism. For stable passive systems the non-viscous modes are over-critically damped (i.e.,

negative real eigenvalues) and not oscillatory in nature. Non-viscous modes, or similar to these,

are known by different names in the literature of different subjects, for example, ‘wet modes’ in

the context of ship dynamics (Bishop and Price, 1979) and ‘damping modes’ in the context of vis-

coelastic structures (McTavis and Hughes, 1993). Determination of the eigenvectors is considered

next.

3.2.1 Elastic Modes

Once the eigenvalues are known,zj,∀j = 1, · · · , 2N can be obtained from equation (3.7) by fixing

any one element and inverting the matrixD(sj) ∈ CN×N . Note that inversion of an(N − 1) ×
(N − 1) complex matrix is required for calculation of everyzj. Although the method is exact,

it is computationally expensive and does not offer much physical insight. Here we propose an

alternative method based on Neumann expansion approach which utilizes the familiar undamped

eigenvectors discussed in Section1.1.2.

1BecauseG(t) is real,G∗(s) = G(s∗). Using this and taking complex conjugation of (3.3) it is clear thats∗
2
M q̄+

s∗G(s∗)q̄ + K q̄ = 0, i.e., if s satisfies equation (3.3) then so doess∗.
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Neumann Expansion Method

For distinct undamped eigenvalues (ω2
l ), xl, ∀ l = 1, · · · , N , form acompleteset of vectors. For

this reason,zj can be expanded as a complex linear combination ofxl. Thus, an expansion of the

form

zj =
N∑

l=1

α
(j)
l xl (3.9)

may be considered. Now, without any loss of generality, we can assume thatα
(j)
j = 1 (normaliza-

tion) which leaves us to determineα(j)
l ,∀l 6= j. Substituting the expansion ofzj, from equation

(3.7) one obtains
N∑

l=1

s2
jα

(j)
l Mx l + sjα

(j)
l G(sj)xl + α

(j)
l Kx l = 0. (3.10)

Premultiplying above equation byxT
k and using the orthogonality property of the undamped eigen-

vectors described by (1.10) and (1.11) one obtains

s2
jα

(j)
k + sj

N∑
l=1

α
(j)
l G′

kl(sj) + ω2
kα

(j)
k = 0, ∀k = 1, · · · , N (3.11)

whereG′
kl(sj) = xT

k G(sj)xl. Thej-th equation of this set obtained by settingk = j is a trivial

case becauseα(j)
j = 1 has already been assumed. From the above set of equations, excluding this

trivial case, one has

s2
jα

(j)
k + sj

(
G′

kj(sj) + α
(j)
k G′

kk(sj) +
N∑

l 6=k 6=j

α
(j)
l G′

kl(sj)

)
+ω2

kα
(j)
k = 0,

∀k = 1, · · · , N ; 6= j.

(3.12)

These equations can be combined into a matrix form as[
P(j) −Q(j)

]
â(j) = gu

(j). (3.13)

In the above equation:

P(j) = diag

[
s2

j + sjG
′
11(sj) + ω2

1

−sj

, · · · ,{j−th term deleted} ,

· · · ,
s2

j + sjG
′
NN(sj) + ω2

N

−sj

]
∈ C(N−1)×(N−1),

(3.14)

the trace-less matrix

Q(j) =


0 G′

12(sj) · · · {j−th term deleted} · · · G′
1N(sj)

G′
21(sj) 0

...
...

... G′
2N(sj)

...
...

... {j−th term deleted} ...
...

...
...

...
...

...
...

G′
N1(sj) G′

N2(sj) · · · {j−th term deleted} · · · 0

 ∈ C(N−1)×(N−1), (3.15)
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gu
(j) =

{
G′

1j(sj), G
′
2j(sj), · · · ,{j−th term deleted} , · · · , G′

Nj(sj)
}T ∈ C(N−1) (3.16)

and

â(j) =
{

α
(j)
1 , α

(j)
2 , · · · ,{j−th term deleted} , · · · , α(j)

N

}T

∈ C(N−1) (3.17)

is the vector of unknownα(j)
k ,∀k 6= j. From equation (3.13), â(j) has to be determined by per-

forming the associated matrix inversion and is achieved by using the Neumann expansion method.

Now, using the Neumann expansion we have

â(j) =
[
IN−1 − P(j)−1

Q(j)
]−1 {

P(j)−1

gu
(j)
}

=
[
IN−1 + Ru

(j) + Ru
(j)2 + Ru

(j)3 + · · ·
]
a

(j)
0

(3.18)

whereIN−1 is a(N − 1)× (N − 1) identity matrix,

Ru
(j) = P(j)−1

Q(j) ∈ C(N−1)×(N−1) (3.19)

and

a
(j)
0 = P(j)−1

gu
(j) ∈ C(N−1). (3.20)

BecauseP(j) is a diagonal matrix, its inversion can be carried out analytically and subsequently the

closed-form expressions ofRu
(j) anda

(j)
0 can be obtained as

R(j)
ukl

=
−sjG

′
kl(sj) (1− δkl)

ω2
k + s2

j + sjG′
kk(sj)

, ∀k, l 6= j (3.21)

a
(j)
0l

=
−sjG

′
lj(sj)

ω2
l + s2

j + sjG′
ll(sj)

, ∀l 6= j. (3.22)

This makes further calculations involving these quantities simpler. From equation (3.18), â(j) can

be calculated in an efficient way as one can write

â(j) = a
(j)
0 + a

(j)
1 + a

(j)
2 + · · ·+ a

(j)
k + · · · (3.23)

where

a
(j)
1 = Ru

(j)a
(j)
0 , a

(j)
2 = Ru

(j)a
(j)
1 , · · · a

(j)
k = Ru

(j)a
(j)
k−1. (3.24)

This implies that all thea(j)
k can be obtained using successive matrix-vector multiplications only.

Noting that â(j) is the vector ofα(j)
k ,∀k 6= j, substitution of it in equation (3.9) will give the

elastic modes. It is easy to see that by taking more terms in the series represented by (3.23), one

can obtain the elastic modes to any desired accuracy provided the complex matrix power series

IN−1 + Ru
(j) + Ru

(j)2 + Ru
(j)3 + · · · is convergent. Convergence of this series will be addressed

later.
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From the preceding formulation one may verify that, corresponding to the complex conjugate

pairs of the eigenvalues, the eigenvectors also appear in complex conjugate pairs. For many en-

gineering problems it is often observed that the damping forces are not very ‘big’ and that by

retaining only a few terms in the series expression (3.23) will result in an acceptable accuracy.

Closed-form approximate expressions for the elastic modes obtained by retaining one and two

terms of these series are given in Section3.2.3. These expressions might be useful whenever we

find that the entries of the damping kernel-functions are small compared to those ofM andK .

Convergence of the Neumann Series

For the validity of the series expressions forâ(j) in (3.23) it is required that the series

Su = IN−1 + Ru
(j) + Ru

(j)2 + Ru
(j)3 + · · · (3.25)

should be convergent. We develop following conditions for convergence.

Condition 1. The complex matrix power seriesSu converges if, and only if, for all the eigenvalues

σ
(j)
l of the matrixRu

(j), the inequality|σ(j)
l | < 1 holds.

Although this condition is both necessary and sufficient, checking convergence for allj =

1, · · · , N is often not feasible. So we look for a sufficient condition which is relatively easy to

check and which ensures convergence for allj = 1, · · · , N .

Condition 2. The complex matrix power seriesSu converges for anysj, ωj if G′(sj) is a diagonally

dominant matrix.

Proof. Since a matrix norm is always greater than or equal to its maximum eigenvalue, it follows

from condition 1 that convergence of the series is guaranteed if‖ Ru
(j) ‖< 1. Writing the sum

of absolute values of entries ofRu
(j) results in the following inequality as the required sufficient

condition for convergence

N∑
k=1
k 6=j

N∑
l=1
l6=j

∣∣∣∣ sjG
′
kl(sj)

ω2
k + s2

j + sjG′
kk(sj)

∣∣∣∣ (1− δlk) < 1. (3.26)

Dividing both numerator and denominator bysj the above inequality can be written as

N∑
k=1
k 6=j

N∑
l=1

l6=i6=k

|G′
kl(sj)|

|1/sj

(
ω2

k + s2
j

)
+ G′

kk(sj)|
< 1. (3.27)

Taking the maximum for allk 6= j this condition can further be represented as

max
k 6= j

∑N
l=1

l6=j,k
|G′

kl(sj)|

|1/sj

(
ω2

k + s2
j

)
+ G′

kk(sj)|
< 1. (3.28)
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It is clear that (3.28) always holds if

N∑
l=1

l6=j 6=k

|G′
kl(sj)| < |G′

kk(sj)|, ∀k 6= j; (3.29)

which in turn implies that, for allj = 1 · · ·N , the inequality‖ Ru
(j) ‖< 1 holds if G′(sj) is a

diagonally dominant matrix. It is important to note that the diagonal dominance ofG′(sj) is only

a sufficient condition and the lack of it does not necessarily prevent convergence ofSu.

3.2.2 Non-viscous Modes

When2N < j ≤ m, the eigenvalues become real and consequently from equation (3.8) we observe

that D(sj) ∈ RN×N . The non-viscous modes can be obtained from equation (3.7) by fixing any

one element of the eigenvectors. SinceD(sj) ∈ RN×N , from equations (3.7) it is easy to see that

zj ∈ RN . Partitionzj as

zj =

{
z1j

z2j

}
. (3.30)

We selectz1j = 1 so thatz2j ∈ R(N−1) has to be determined from equations (3.7). Further,

partitionD(sj) as

D(sj) =

[
D11(sj) D12(sj)
D21(sj) D22(sj)

]
(3.31)

whereD11(sj) ∈ R, D12(sj) ∈ R1×(N−1), D21(sj) ∈ R(N−1)×1 andD22
(j) ∈ R(N−1)×(N−1). In

view of (3.31) and recalling thatz1j = 1, from equation (3.7) we can have

D22(sj)z2j = −D21(sj)

or z2j = − [D22(sj)]
−1 D21(sj).

(3.32)

It may be noted that determination of the non-viscous modes is computationally more demand-

ing than the elastic modes because inversion of an(N − 1) × (N − 1) real matrix is associated

with each eigenvector. However, for most physically realistic non-viscous damping models it ap-

pears that the number of non-viscous modes is not very high and also the contribution of them

to the global dynamic response is not very significant (see the example section). For this reason,

calculation of the first few non-viscous modes may be sufficient from a practical point view.

3.2.3 Approximations and Special Cases

The expression of the elastic modes derived in Section3.2.1is quite general. In this section we

consider some special cases and approximation of this general expression which are of practical

interest.
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Light Non-proportionally Damped Systems

For light non-proportionally damped systems, the off-diagonal entries of the modal damping func-

tion matrix is small compared to the diagonal entries, that isG′
kl(sj) ≤ G′

kk(sj), ∀k 6= l, sj. For

this reason higher order terms in the series expression (3.23) can be neglected.

The expression for the elastic modes obtained by taking one term in the series (3.23) is close

to the one obtained from the first-order perturbation analysis. Considering thej-th set of equation

(3.11) and neglecting the second-order terms involvingα
(j)
k andG′

kl(sj), ∀k 6= l, and also noting

thatα(j)
j = 1, one obtains

s2
j + sjG

′
jj(sj) + ω2

j ≈ 0

or sj ≈ ±iωj −G′
jj(±iωj)/2

= iωj −G′
jj(iωj)/2, −iωj −G′

jj(−iωj)/2.

(3.33)

This is the first-order approximate expression for the complex eigenvalues of system (3.1) corre-

sponding to the elastic modes. A similar result was also obtained byWoodhouse (1998). In de-

riving this expression the assumption has been made thatG(sj) ≈ G(iωj). Since the off-diagonal

elements ofG(sj) is assumed small, it is expected that this approximation will not result in signif-

icant errors. Note that, asG(t) is a real function,G′
jj(•) satisfies the property

G′
jj(−iωj) = G′∗

jj(iωj). (3.34)

Using this relationship it may be confirmed that the eigenvalues corresponding to the elastic modes,

approximately given by equation (3.33), appear in complex conjugate pairs.

To obtain approximate expression for the eigenvectors, one simply considers only the first term

of the series (3.23) and substituteŝa(j) in equation (3.9) to obtain

zj ≈ xj −
N∑

k=1
k 6=j

sjG
′
kj(sj)xk

ω2
k + s2

j + sjG′
kk(sj)

. (3.35)

Now, retaining the first two terms of the series expression (3.23) and substitutinĝa(j) in equation

(3.9) one obtains

zj ≈ xj−
N∑

k=1
k 6=j

sjG
′
kj(sj)xk

ω2
k + s2

j + sjG′
k(sj)

+
N∑

k=1
k 6=j

N∑
l=1

l6=j 6=k

s2
jG

′
kl(sj)G

′
lj(sj)xk(

ω2
k + s2

j + sjG′
kk(sj)

) (
ω2

l + s2
j + sjG′

ll(sj)
) . (3.36)

The above equation is second-order approximate expressions for the eigenvectors corresponding

to the elastic modes of system (3.1). Finally, note that no such simple expressions can be obtained

for the non-viscous modes unless some specific forms for the kernel function are assumed.
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Viscously Damped Systems With Light Non-proportional Damping

Eigensolutions of viscously damped systems consist of only the elastic modes. All the results

derived for elastic modes can be applied to viscously damped systems by considering the fact

that the matrix of the damping functions,G(s), is a constant matrix. SayG(s) = C, ∀s, where

C ∈ RN×N is the viscous damping matrix.

Using this simplification, from equation (3.33), the approximate eigenvalues (appear in com-

plex conjugate pairs) can be obtained as

sj ≈ ±iωj − C ′
jj/2 = −C ′

jj/2 + iωj, −C ′
jj/2− iωj. (3.37)

From equation (3.35), the first-order approximate expressions of eigenvectors may be obtained as

zj ≈ xj −
N∑

k=1
k 6=j

sjC
′
kjxk

ω2
k + s2

j + sjC ′
kk

. (3.38)

Similarly, from equation (3.36), the second-order approximate expressions of eigenvectors may be

obtained as

zj ≈ xj −
N∑

k=1
k 6=j

sjC
′
kjxk

ω2
k + s2

j + sjC ′
k

+
N∑

k=1
k 6=j

N∑
l=1

l6=j 6=k

s2
jC

′
klC

′
ljxk(

ω2
k + s2

j + sjC ′
kk

) (
ω2

l + s2
j + sjC ′

ll

) . (3.39)

3.3 Transfer Function

The transfer function (matrix) of a system completely defines its input-output relationship in

steady-state. It is well known that for any linear system, if the forcing function is harmonic,

that isf(t) = f̄ exp[st] with s = iω and amplitude vector̄f ∈ RN , the steady-state response will

also be harmonic at frequencyω ∈ R+. So we seek a solution of the formq(t) = q̄ exp[st], where

q̄ ∈ CN is the response vector in the frequency domain. Substitution ofq(t) andf(t) in equation

(3.1) gives

s2M q̄ + s G(s)q̄ + K q̄ = f̄ or D(s)q̄ = f̄ . (3.40)

Here thedynamic stiffness matrix

D(s) = s2M + s G(s) + K ∈ CN×N . (3.41)

From equation (3.40) the response vector̄q can be obtained as

q̄ = D−1(s)̄f = H(s)̄f (3.42)

where

H(s) = D−1(s) ∈ CN×N (3.43)
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is the transfer function matrix. From this equation one further has

H(s) =
adj[D(s)]

det [D(s)]
. (3.44)

Thepolesof H(s), denoted bysj, are the eigenvalues of the system. Because it is assumed thatall

the m eigenvalues are distinct, each pole is asimple pole. The matrix inversion in (3.42) is difficult

to carry out in practice because of the singularities associated with the poles. Moreover, such an

approach would be an expensive numerical exercise and may not offer much physical insight. For

these reasons, we seek a solution analogous to the classical modal series solution of the undamped

or proportionally damped systems.

From the residue theorem it is known that any complex function can be expressed in terms of

the poles andresidues, that is, the transfer function has the form

H(s) =
m∑

j=1

Rj

s− sj

. (3.45)

Here

Rj =
res

s=sj
[H(s)]

def
= lim

s→sj

(s− sj) [H(s)] (3.46)

is the residue of the transfer function matrix at the polesj. It may be noted that equation (3.45) is

equivalent to expressing the right hand side of equation (3.44) in the partial-fraction form. Here

we try to obtain the residues, that is the coefficients in the partial-fraction form, in terms of the

system eigenvectors.

3.3.1 Eigenvectors of the Dynamic Stiffness Matrix

It turns out that the eigenvectors of the dynamic stiffness matrix play an important role in deter-

mining the residues of the transfer function matrix. For any givens ∈ C, the eigenvalue problem

associated with the dynamic stiffness matrix can be expressed by

D(s)φk(s) = νk(s)φk(s), ∀ k = 1, · · · , N. (3.47)

In the preceding equation the eigenvaluesνk(s) ∈ C are the roots of the characteristic equation

det [D(s)− ν(s)IN ] = 0 (3.48)

andφk(s) ∈ CN is thek-th eigenvector ofD(s). The symbolsνk(s) andφk(s) indicate functional

dependence of these quantities on the complex parameters. Such a continuous dependence is ex-

pected wheneverD(s) is a sufficiently smooth matrix function ofs. It should be noted that because

D(s) is anN ×N complex matrix for a fixeds, the number of eigenvalues (and consequently the

eigenvectors) must beN . Further, it can be shown that, for distinct eigenvalues,φk(s) also satisfy

an orthogonality relationship althoughzk do not enjoy any such simple relationship. We normalize

φk(s) such that

φT
j (s)φk(s) = δkj, ∀ k, j = 1, · · · , N (3.49)
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In view of the above relationship, from equation (3.47) we have

φT
j (s)D(s)φk(s) = νk(s)δkj, ∀ k, j = 1, · · · , N (3.50)

or in the matrix form

ΦT (s)D(s)Φ(s) = ν(s). (3.51)

Here

Φ(s) = [φ1(s), φ2(s), · · · , φN(s)] ∈ CN×N , (3.52)

and ν(s) = diag [ν1(s), ν2(s), · · · , νN(s)] ∈ CN×N . (3.53)

It is possible to establish the relationships between the original eigenvalue problem of the system

defined by equation (3.7) and that by equation (3.47). Consider the case when the parameters

approaches any one of the system eigenvalues, saysj. Sinceall the νk(s) are assumed to be

distinct, for nontrivial eigenvectors, comparing equations (3.7) and (3.47) we can conclude that

one and only one of theνk(s) must be zero whens → sj (seeYang and Wu, 1998). Suppose that

ther-th eigenvalue of the eigenvalue problem (3.47) is zero whens → sj. It is also clear that the

eigenvector in (3.47) corresponding to ther-th eigenvalue also approaches the eigenvector in (3.7)

ass→ sj. Thus, whens = sj one has

νr(sj) = 0 and νk(sj) 6= 0,∀k = 1, · · · , N ; 6= r (3.54)

and also

φr(sj) = zj. (3.55)

These equations completely relate the eigensolutions of (3.7) with (3.47). Now, these relationships

will be utilized to obtain the residues of the transfer function matrix.

3.3.2 Calculation of the Residues

From equation (3.51) one has

D−1(s) = Φ(s)ν−1(s)ΦT (s). (3.56)

Using the expression of the transfer function in equation (3.43) and noting thatν(s) is a diagonal

matrix, we may expand the right-hand side of the above equation to obtain

H(s) = D−1(s) =
N∑

k=1

φk(s)φ
T
k (s)

νk(s)
. (3.57)

Separation of ther-th term in the above sum yields

H(s) =
φr(s)φ

T
r (s)

νr(s)
+

 N∑
k=1
k 6=r

φk(s)φ
T
k (s)

νk(s)

 . (3.58)
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Clearly, whens→ sj, the second term of the right-hand side of equation (3.58) is analytic because

according to equation (3.54) νk(sj) 6= 0,∀k = 1, · · · , N ; 6= r. Now, from equation (3.46) the

residue ats = sj may be obtained as

Rj
def
= lim

s→sj

(s− sj)

φr(s)φ
T
r (s)

νr(s)
+

 N∑
k=1
k 6=r

φk(s)φ
T
k (s)

νk(s)




= lim
s→sj

(s− sj)
φr(s)φ

T
r (s)

νr(s)

=
φr(s)φ

T
r (s)|s=sj

∂νr(s)

∂s
|s=sj

+ lim
s→sj

(s− sj)
∂

∂s

[
φk(s)φ

T
k (s)

]
∂νr(s)

∂s

(using l’Hôspital’s rule)

=
zjzT

j

∂νr(s)

∂s
|s=sj

(by equation (3.55)).

(3.59)

The denominator in the above expression for the residues,∂νr(s)
∂s
|s=sj

, is still unknown. Now,

consider ther-th eigenvalue problem associated with the dynamic stiffness matrix. Differentiation

of equation (3.47) for k = r with respect tos yields

∂D(s)

∂s
φr(s) + D(s)

∂φr(s)

∂s
=

∂νr(s)

∂s
φr(s) + νr(s)

∂φr(s)

∂s
. (3.60)

Premultiplying the above equation byφT
r (s) and rearranging one obtains

φT
r (s)

∂D(s)

∂s
φr(s) +

[
φT

r (s)D(s)− φT
r (s)νr(s)

] ∂φr(s)

∂s
= φT

r (s)
∂νr(s)

∂s
φr(s). (3.61)

Taking transpose of equation (3.47) it follows that the second term of the left-hand side of the above

equation is zero. Using the normalizing condition in (3.49) and lettings → sj, from equation

(3.61) we have
∂νr(s)

∂s
|s=sj

= zT
j

∂D(s)

∂s
|s=sj

zj = zT
j

∂D(sj)

∂sj

zj. (3.62)

The term
∂D(sj)

∂sj

can be obtained by differentiating equation (3.41) as

∂D(sj)

∂sj

= 2sjM + G(sj) + sj
∂G(sj)

∂sj

. (3.63)

Using (3.59) and (3.62) one finally obtains the residue as

Rj =
zjzT

j

zT
j

∂D(sj)

∂sj
zj

. (3.64)

The above equation completely relates the transfer function residues to the eigenvalues and eigen-

vectors of the system. Recalling that, among them eigenvalues2N appear in complex conjugate
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pairs, from equation (3.45) the transfer function matrix may be obtained as

H(iω) =
N∑

j=1

[
γjzjzT

j

iω − sj

+
γ∗j z∗jz

∗T

j

iω − s∗j

]
+

m∑
j=2N+1

γjzjzT
j

iω − sj

, (3.65)

where

γj =
1

zT
j

∂D(sj)

∂sj
zj

. (3.66)

The transfer function matrix has two parts, the first part is due to the elastic modes, and the second

part is due to the non-viscous modes. Using a first-order perturbation method,Woodhouse (1998,

equation (35)) has obtained an expression of the transfer functions similar to equation (3.65). How-

ever, the non-viscous part of the transfer functions has not been obtained by him.

3.3.3 Special Cases

The expression for the transfer function matrix in equation (3.65) is a natural generalization for the

familiar expressions for the transfer function matrix of undamped or viscously damped systems.

Transfer functions for several useful special cases may be obtained from (3.65) as follows:

1. Undamped systems: In this caseG(s) = 0 results the order of the characteristic polynomial

m = 2N ; sj is purely imaginary so thatsj = iωj whereωj ∈ R are the undamped natural

frequencies andzj = xj ∈ RN . In view of the mass normalization relationship in (1.10),

γj = 1
2iωj

and equation (3.65) leads to

H(iω) =
N∑

j=1

1

2iωj

[
1

iω − iωj

− 1

iω + iωj

]
xjxT

j =
N∑

j=1

xjxT
j

ω2
j − ω2

. (3.67)

2. Viscously-damped systems with non-proportional damping(see,Lancaster, 1966, Vigneron,

1986, Géradin and Rixen, 1997): In this casem = 2N andγj = 1

zT
j [2sjM+C]zj

. These

reduce expression (3.65) to

H(iω) =
N∑

j=1

[
γjzjzT

j

iω − sj

+
γ∗j z∗jz

∗T

j

iω − s∗j

]
. (3.68)

3.4 Dynamic Response

The steady-state response due to harmonic loads or the response due to broad-band random excita-

tion can be obtained directly from the expression of the transfer function matrix in equation (3.65).

In this section we consider the system response due to transient loads and initial conditions in the

time and frequency domains.
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Taking the Laplace transform of equation (3.1) and considering the initial conditions in (3.2)

we have

s2M q̄− sMq0 −M q̇0 + s G(s)q̄−G(s)q0 + K q̄ = f̄(s)

or
[
s2M + s G(s) + K

]
q̄ = f̄(s) + M q̇0 + [sM + G(s)]q0.

(3.69)

Using the expression for the transfer function derived before, the response vectorq̄ may be ob-

tained as

q̄ =
m∑

j=1

γjzjzT
j

s− sj

{
f̄(s) + M q̇0 + [sM + G(s)]q0

}
. (3.70)

This can be simplified further to

q̄(iω) =
m∑

j=1

γjAj(iω)

iω − sj

zj (3.71)

where the frequency-dependent complex scalar

Aj(iω) = zT
j f̄(iω) + zT

j M q̇0 + iωzT
j Mq0 + zT

j G(iω)q0. (3.72)

The summation in equation (3.71) may be split into two different parts – the first part would

correspond to the2N complex conjugate pairs of elastic modes and the second part would be the

contribution of the non-viscous modes.

The response in the time domain due to any forcing function can be obtained using a convo-

lution integral over theimpulse response function. From the expression of the transfer function in

equation (3.65), the impulse response function matrixh(t) ∈ RN×N may be obtained as

h(t) =
N∑

j=1

[
γjzjzT

j esjt + γ∗j z∗jz
∗T

j es∗j t
]

+
m∑

j=2N+1

γjzjzT
j esjt. (3.73)

The response due to the initial conditions may also be obtained by taking the inverse transform of

equation (3.70). First, simplify equation (3.70) to obtain

q̄(s) =
m∑

j=1

γj

[
zT
j f̄(s) + zT

j G(s)q0

s− sj

+
zT
j M q̇0

s− sj

+

(
1 +

sj

s− sj

)
zT

j Mq0

]
zj. (3.74)

From the above, one has

q(t) = L−1[q̄(s)] =
N∑

j=1

[
γjaj(t)zj + γ∗j a

∗
j(t)z

∗
j

]
+

m∑
j=2N+1

γjaj(t)zj (3.75)

where the time-dependent scalar coefficients

aj(t) =

∫ t

0

esj(t−τ)
{

zT
j f(τ) + zT

j G(τ)q0

}
dτ + esjt

{
zT

j M q̇0 + sjzT
j Mq0

}
; ∀t > 0. (3.76)
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The expression of the system response, either the frequency-domain description in equation (3.71)

or the time-domain description in equation (3.75), is similar to the classical modal superposi-

tion result for undamped or proportionally damped systems usually obtained using the mode-

orthogonality relationships. Thus, the formulation presented here is a generalization of the classical

result where the real normal modes are appropriately replaced by the elastic modes and the non-

viscous modes. Also note that we have not used any orthogonality relationship – the expression

of the transfer function residue in equation (3.64) allows us to express the response in terms of

superposition of individual modes even when the equations of motion cannot be decoupled.

3.5 Summary of the Method

Following the procedure outlined so far one can obtain the eigensolutions and dynamic response

of non-viscously damped linear systems. Here we briefly summarize the steps to be followed

in order to obtain the eigenvalues, eigenvectors and dynamic response of non-viscously damped

linear systems:

1. Evaluate the natural frequenciesωj and eigenvectorsxj of the undamped system fromKx j =

ω2
j Mx j for all j = 1, · · · , N . Normalize so thatxT

l Mx j = δlj.

2. Obtain the eigenvalues by solving the (saym-th order) characteristic equation

det [s2M + sG(s) + K ] = 0. For convenience, arrange the eigenvalues as

s1, s2, · · · , sN , s∗1, s
∗
2, · · · , s∗N , s2N+1, s2N+2, · · · , sm.

3. Set up theG′(sj) matrix usingG′
kl(sj) = xT

k G(sj)xl. Calculate the matricesRu
(j) using

R(j)
uk1l1

=
−sjG

′
kl(sj) (1− δk1l1)

ω2
k + s2

j + sjG′
kk(sj)

. (3.77)

In order to keep the dimension ofRu
(j) to (N − 1)× (N − 1), the subscriptk1 is expressed

ask1 = k − U(k,j). Here the functionU(k,j) is defined as

U(k,j) =


0 if k < j,

1 if k > j,

not defined if k = j.

(3.78)

4. Obtain the vectorsa(j)
0 using

a
(j)
0l1

=
−sjG

′
lj(sj)

ω2
l + s2

j + sjG′
ll(sj)

. (3.79)

5. Select the number of terms, sayn, and calculatea(j)
k = Ru

(j)a
(j)
k−1 for all k = 1, · · · , n .

Subsequently obtain the complex constantsâ(j) =
∑n

k=1 a
(j)
k−1.
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6. Determine theelastic modesasuj = xj +
∑N

l=1
l6=j

â
(j)
l1

xl1 for all j = 1, · · · , N .

7. For 2N < j < 2N + p, obtain the dynamic stiffness matrixD(sj) = s2
jM + sjG(sj) + K .

Partition asD(sj) =
[

D11(sj) D12(sj)

D21(sj) D22(sj)

]
whereD11(sj) ∈ R, D12(sj) ∈ R1×(N−1), D21(sj) ∈

R(N−1)×1 andD22
(j) ∈ R(N−1)×(N−1).

8. Calculatez2j = − [D22(sj)]
−1 D21(sj). Now obtain thenon-viscousmodes asuj ={

1, z2j

}
for all j = 2N + 1, · · ·m.

9. Finally, using the eigensolutions, calculate the response either in the frequency domain from

equation (3.71) or alternatively, in the time domain from equation (3.75).

This procedure is general, simple, direct and provides better physical insights as the familiarN -

space eigenvectors are only used. The approach also offers reduction in computational effort

because it neither uses the state-space formalism nor utilizes additional dissipation coordinates.

Applications of the proposed method are illustrated next.

3.6 Numerical Examples

3.7 The System

We consider a three degree-of-freedom system to illustrate the proposed method. Figure3.1shows

the example taken together with the numerical values considered for mass and stiffness properties.

A similar system with viscous damping has been studied byNewland (1989, see pages 148-151).

Damping is associated only with the middle mass, and the kernel function corresponding to this

u

c g(t)
ku

m

ku

m m
ku ku

u u

Figure 3.1: Three degree-of-freedom non-viscously damped system,mu = 1 kg, ku = 1 N/m

damper has the form

G22(t) = c g(t) (3.80)

where c is a damping coefficient andg(t) is the damping function. Two different forms ofg(t)

available in the literature will be considered here. For the first model (exponential)

g(t) = µe−µt; µ, t ≥ 0 (3.81)
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and for the second model (double exponential)

g(t) =
1

2

(
µ1e

−µ1t + µ2e
−µ2t

)
; µ1, µ2, t ≥ 0. (3.82)

The exponential function in (3.81) is possibly the simplest physically realistic non-viscous damp-

ing model. This function, often known as a ‘relaxation function’, was introduced byBiot (1955).

It has been used extensively in the context of viscoelastic systems. In Chapter6 a method will be

proposed to identify such damping models using modal testing. The double exponential damping

function, known as the GHM model, was introduced byGolla and Hughes (1985) andMcTavis and

Hughes (1993). Identification of GHM model has been discussed byFriswell et al. (1997). Both

damping functions have been scaled so as to have unit area when integrated to infinity. This makes

them directly comparable with the viscous model in which the corresponding damping function

would be a unit delta function,g(t) = δ(t), and the coefficientc would be the usual viscous damp-

ing coefficient. The difference between a delta function andg(t) given by equations (3.81) and

(3.82) is that att = 0 they start with finite values ofµ and1/2 (µ1 + µ2) respectively. Thus, the

values ofµ, µ1 andµ2 give a notion ofnon-viscousness− if they are large the damping behaviour

will be near-viscous, and vice versa.

The mass and stiffness matrices and the damping matrix in the Laplace domain for the problem

can be obtained as:

M =

mu 0 0
0 mu 0
0 0 mu

 , (3.83)

K =

2ku −ku 0
−ku 2ku −ku

0 −ku 2ku

 (3.84)

and

G(s) =

0 0 0
0 c G(s) 0
0 0 0

 . (3.85)

HereG(s) is the Laplace transform ofg(t). Next, the eigensolutions and the dynamic response of

the system are discussed for the two functional forms ofg(t).

3.7.1 Example 1: Exponential Damping

Eigensolutions

We assumec = 0.3, as considered byNewland (1989, page 149) for the equivalent viscously

damped system. From equation (3.81) one obtains

G(s) =
1

s + µ
. (3.86)
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Using this expression, the characteristic equation can be simplified as

m3
us

7 + m3
uµ s6 +

(
2 m2

uku + mu (µ cmu + 4 muku)
)
s5 + 6 kum

2
uµ s4

+
(
2 ku (µ cmu + 4 muku) + mu

(
2 µ cku + 2 ku

2
))

s3 + 10 ku
2muµ s2

+ 2 ku

(
2 µ cku + 2 ku

2
)
s + 4 ku

3µ = 0.

(3.87)

The order of the above polynomial,m = 7. Since the system has three degrees of freedom there are

three elastic modes corresponding to the three modes of vibration. The number of the non-viscous

modes,p = m− 2N = 1.

It is of interest to us to understand the effect of ‘non-viscousness’ on the eigensolutions. Figure

3.2shows the locus of the third eigenvalue, that iss3, plotted as a function ofµ. It is interesting to

observe that the locus is much more sensitive in the region of lower values ofµ (i.e., when damping

is significantly non-viscous) compared to that in the region of higher values. The eigenvalue of the

corresponding viscously damped system is also plotted (marked by *) in the same diagram. Note

that, the non-viscous damping mechanism approaches the viscous damping whenµ >≈ 50.0.

Similar behaviour has been observed (results not shown here) for the locus ofs1 also. The second

mode, in which the middle mass remains stationary, is not effected by damping.
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Figure 3.2: Root-locus plot showing the locus of the third eigenvalue (s3) as a function ofµ

The eigenvectors of the system,i.e., the three elastic modes (together with their complex con-

jugates) and one non-viscous mode can be obtained in a straight forward manner by following

the steps outlined in the previous section. We select two representative values ofµ – one when
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µ is large (i.e., near viscous case) and the other whenµ is small. The undamped eigenvalues and

eigenvectors are obtained as

{ω1, ω2, ω3} = {0.7654, 1.4142, 1.8478} (3.88)

and

[x1, x2, x3] =

 0.5 0.7071 −0.5
0.7071 0.0 0.7071

0.5 −0.7071 −0.5

 . (3.89)

Using these results, whenµ = 50.0, for the elastic modes we have

{s1, s2, s3} = {−0.0757 + 0.7659i, 1.4142i,−0.0751 + 1.8416i} (3.90)

and

[z1, z2, z3] =

0.4983 + 0.0204i 0.7071 −0.5002 + 0.0491i
0.7095− 0.0289i 0.0 0.7069 + 0.0694i
0.4983 + 0.0204i −0.7071 −0.5002 + 0.0491i

 . (3.91)

The above calculation is performed by retaining five terms in the series (3.23). It may be verified

that, becauseµ is large (about27 times of the maximum natural frequency), the results obtained

are close to the viscously damped case (seeNewland, 1989, page 149). For the one non-viscous

mode we obtain

s7 = −49.6984 and z7 =


1.0

2.4719× 103

1.0

 (3.92)

Becauses7 is purely real and negative this mode is non-oscillatory (over critically damped) and

stable.

Whenµ = 0.5 the damping is significantly non-viscous. For this case, performing similar

calculations for the elastic modes one has

{s1, s2, s3} = {−0.0207 + 0.8i, 1.4142i,−0.0053 + 1.8671i} (3.93)

and

[z1, z2, z3] =

0.4983 + 0.0204i 0.7071 −0.5002 + 0.0491i
0.6787 + 0.0112i 0.0 0.7442− 0.0630i
0.4983 + 0.0204i −0.7071 −0.5002 + 0.0491i

 . (3.94)

These values are not significantly different from those obtained forµ = 50.0 in (3.91). For this

problem the elastic modes are not very sensitive to the damping mechanism. However, we em-

phasize that this factcannotbe generalized to all systems. For the non-viscous mode one has

s7 = −0.4480 and z7 =


1.0

2.2007
1.0

 . (3.95)

These values are, however, quite different from those obtained forµ = 50.0 in (3.92). It is difficult

to physically visualize the nature of the non-viscous modes in general. These modes are intrinsic
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to the dampers and we do not have sufficient generalized coordinates to represent them properly.

Nevertheless, they yield non-zero residues in the system transfer functions and thus contribute to

the global dynamic response.

Dynamic Response Analysis

The problem of stationary random vibration analysis of the system is considered here. Suppose

the system is subjected to a band-limited Gaussianwhite noiseat the third DOF. We are interested

in the resulting displacement of the system at the third DOF (i.e., z3). The power spectral density

(PSD) of the response (seeNigam, 1983, for details) can be given by

Suu(iω) = |H33(iω)|2Sff (iω) (3.96)

where

Sff (iω) =

{
1 if 0 < ω ≤ 2.5 rad/sec

0 otherwise
. (3.97)

In Figure3.3 the PSD ofz3 that is|H33(iω)|2 is plotted for the cases whenµ = 50.0 andµ = 0.5.

These results are obtained by direct application of equation (3.65). From the diagram observe that

the damping is less for the case whenµ = 0.5 than whenµ = 50.0. Also note the (horizontal)

shift in the position of the natural frequencies. These features may also be observed in the loot

locus diagram as shown in Figure3.2. To understand the effect of ‘non-viscosity’, in the same

diagram we have plotted the non-viscous term (the second term) appearing in equation (3.65) for

both values ofµ. For this problem the non-viscous part is quite small and becomes smaller at

higher frequencies. Observe that whenµ = 0.5, that is when damping is significantly non-viscous,

the value of the non-viscous part of the response is more than that whenµ = 50.0. This plot also

clearly demonstrates that the non-viscous part of the response isnot oscillatory in nature.

3.7.2 Example 2: GHM Damping

Taking the Laplace transform of equation (3.82) one obtains

G(s) =
(µ1 + µ2) /2 s + µ1µ2

s2 + (µ1 + µ2) s + µ1µ2

. (3.98)

Using this equation, together with the expressions of the system matrices given by equations (3.83)

– (3.85), it can be shown that the order of the characteristic polynomial,m = 8. Thus, the number

of the non-viscous modes,p = m−2N = 2. In this section we focus our attention on the numerical

accuracy of the formulation developed in this chapter.

Regarding the numerical values of the damping parameters, we assumec = 0.5, µ1 = 1 and

µ2 = 3. Small values ofµ1 andµ2 indicate that the damping mechanism is strongly non-viscous.

Solving the characteristic equation, exact eigenvalues corresponding to the three elastic modes can

be obtained as

{s1, s2, s3} = {−0.0994 + 0.8180i, 1.4142i,−0.0687 + 1.9025i} (3.99)
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Figure 3.3: Power spectral density function of the displacement at the third DOF (z3)

and their complex conjugate pairs. Eigenvalues corresponding to the two non-viscous modes are

found to be

{s7, s8} = {−2.7901,−0.8738}. (3.100)

Eigenvalues corresponding to the elastic modes can also be obtained approximately by equation

(3.33) in Section3.2.3. Recall that only the undamped eigensolutions are required in order to apply

this equation. Approximate eigenvalues using equation (3.33) are calculated as

{s1, s2, s3}approx = {−0.0981− 0.8105i, 1.4142i,−0.0595− 1.9018i}. (3.101)

It is useful to compare the exact and approximate eigenvalues in the light of the Q-factors. In this

problem the second mode is not damped, soQ2 = ∞. For the first and third modes we obtain

Q1 = 4.1164 andQ3 = 13.8540. Small values of Q-factor indicate that these modes are quite

heavily damped. Comparing equations (3.99) and (3.101) it may be observed that the approximate

values are quite close to the exact one even when damping is reasonably high.

In order to check the numerical accuracy of the eigenvectors, first the exact values are calculated

by the matrix inversion method. For the elastic modes we obtain

[z1, z2, z3] =

0.5114 + 0.0299i 0.7071 −0.4639 + 0.0403i
0.6905− 0.0431i 0.0 0.7596 + 0.0562i
0.5114 + 0.0299i −0.7071 −0.4639 + 0.0403i

 (3.102)
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and their complex conjugates. For the two non-viscous modes one has

[z7, z8] =

1.0000 1.0000
9.7847 2.7636
1.0000 1.0000

 . (3.103)

Approximate eigenvectors corresponding to the elastic modes, calculated by equation (3.35), are

obtained as

[z1, z2, z3]approx =

0.5114 + 0.0299i 0.7071 −0.4639 + 0.0403i
0.6910− 0.0422i 0.0 0.7582 + 0.0569i
0.5114 + 0.0299i −0.7071 −0.4639 + 0.0403i

 . (3.104)

The above values are equivalent to performing the calculation by retaining only one term in the

series (3.23). Also recall that the approximate values are obtained from the undamped eigensolu-

tions only. Comparing equation (3.102) and (3.104) it is clear that the results obtained from the

approximate method match the exact solutions to an excellent accuracy.

As a final check on the formulation developed in this chapter, we compare the transfer func-

tion obtained from equation (3.65) with the exact transfer function calculated by inversion of the

dynamic stiffness matrix. Figure3.4shows such a comparison forH33(iω). Approximate natural

frequencies and modes given by (3.101) and (3.104) are used and also the non-viscous term in

equation (3.65) is neglected in order to calculate the approximate transfer function. Thus, in turn,

the approximate transfer function in Figure3.4is obtained only by proper ‘post-processing’ of the

undamped eigensolutions. From this figure it may be observed that, except in a few places, the

approximate transfer function is reasonably close to the exact one. This analysis demonstrates the

usefulness of the proposed method.

3.8 Conclusions

The problem of dynamic analysis of non-viscously damped multiple-degrees-of-freedom linear

systems has been considered. The assumed non-viscous damping model is such that the damping

forces depend on the past history of motion via convolution integrals over some kernel functions.

It has been assumed that, in general, the mass and stiffness matrices as well as the matrix of the

kernel functions cannot be simultaneously diagonalized by any linear transformation. The analysis

is, however, restricted to systems with non-repetitive eigenvalues and non-singular mass matrices.

The system eigenvalues were obtained by solving the characteristic equation. It turns out that,

unlike viscously damped systems, the order of the characteristic equation for anN -degrees-of-

freedom system is more than2N . As a consequence, the number of modes become more than

2N and they were grouped into two types – (a) elastic modes and (b) non-viscous modes. It is

assumed that the elastic modes appear in complex conjugate pairs, that is, they are sub-critically

damped. The elastic modes, which consist ofN eigenvectors together with their complex conju-

gate pairs, correspond toN modes of vibration of the structural system. TheseN eigenvectors
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were expressed as a complex linear combination of the (real) eigenvectors of the corresponding

undamped system. The vector of these complex constants were further determined from a series

obtained by the Neumann expansion method. Based on this analysis, some approximate formulas

for the eigenvalues and eigenvectors were suggested and their accuracy were verified using numer-

ical examples. The non-viscous modes, which occur due to the non-viscous damping mechanism,

are real, over critically damped and non-oscillatory in nature. These modes were obtained by

inversion of a partition of the dynamic stiffness matrix evaluated at the corresponding eigenvalues.

The transfer function matrix of the system was derived in terms of the eigenvalues and eigen-

vectors of the second-order system. Exact closed-form expressions of the response due to arbitrary

forcing functions and initial conditions were obtained. The response can be expressed as a sum

of two parts, one that arises in usual viscously damped systems and the other that occurs due to

non-viscous damping mechanisms. Through an example it was shown that the non-viscous part of

the response is purely dissipative and non-oscillatory in nature.

The method developed here is analogous to classical modal analysis where undamped natural

frequencies and modes have to be appropriately replaced by elastic modes and non-viscous modes

of the non-conservative system. The method presented offers a reduction in computational effort

because neither the first-order formalisms nor the additional dissipation coordinates are employed.

Moreover, this approach also provides better physical insight as familiarN -space eigenvectors are

utilized.
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Chapter 4

Some General Properties of the
Eigenvectors

4.1 Introduction

In the last chapter, the eigenvalues, eigenvectors and transfer functions associated with multiple-

degrees-of-freedom non-viscously damped systems have been discussed. A method was outlined

to obtain the eigenvectors and dynamic response of the system. Although the method is analogous

to classical modal analysis, unlike the classical modes, very little is known about qualitative prop-

erties of the modes of non-viscously damped systems. Purpose of this chapter is to develop some

basic relationships satisfied by the eigensolutions and the system matrices of (3.1). Specifically we

have focused our attention to the normalization and orthogonality relationship of the eigenvectors.

4.2 Nature of the Eigensolutions

The eigenvalue problem associated with equation (3.1) can be defined as[
s2

jM + sj G(sj) + K
]

zj = 0 or D(sj)zj = 0, ∀ k = 1, · · · , m (4.1)

where thedynamic stiffness matrix

D(s) = s2M + s G(s) + K ∈ CN×N . (4.2)

Herezj is thej-th eigenvector andsj is thej-th eigenvalue. In general the number of eigenvalues,

m = 2N + p; p ≥ 0. It is assumed thatall m eigenvalues are distinct. It should be noted that

eigenvalue problems of this kind are not similar to the eigenvalue problems arise in the context

of Lambda-matrices (Lancaster, 1966) becauseG(s) is not a constant matrix. We consider the

damping to be ‘non-proportional’, that is, the mass and stiffness matrices as well as the matrix

of the kernel functions cannot be simultaneously diagonalized by any linear transformation. It is

assumed that|Gjk(s)| < ∞ whens → ∞. This in turn implies that the elements ofG(s) are at

61
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the most of order1/s in s or constant, as in the case of viscous damping. Construct the diagonal

matrix containing the eigenvalues as

S = diag [s1, s2, · · · , sm] ∈ Cm×m (4.3)

and the matrix containing the eigenvectors (the modal matrix) as

Z = [z1, z2, · · · , zm] ∈ CN×m. (4.4)

Next, we consider the normalization relationship of the eigenvectors.

4.3 Normalization of the Eigenvectors

Premultiplying equation (4.1) by zT
k , applying equation (4.1) for k-th set and postmultiplying by

zj and subtracting one from the other we obtain

zT
k

[(
s2

j − s2
k

)
M + sjG(sj)− skG(sk)

]
zj = 0. (4.5)

Sincesj andsk are distinct for differentj andk, the above equation can be divided by(sj − sk) to

obtain

zT
k

[
(sj + sk) M +

sjG(sj)− skG(sk)

sj − sk

]
zj = 0, ∀j, k; j 6= k. (4.6)

This equation may be regarded as the orthogonality relationship of the eigenvectors. It is easy

to verify that, in the undamped limit equation (4.6) degenerates to the familiar mass orthogonal-

ity relationship of the undamped eigenvectors. However, this orthogonality relationship is not very

useful because it is expressed in terms of the natural frequencies. A frequency-independent orthog-

onality relationship of the eigenvectors will be derived later in this chapter. Assumingδs = sj−sk,

rewrite equation (4.6) as

zT
k

[
(δs + 2sk) M +

(sk + δs) G(sk + δs)− skG(sk)

δs

]
zj = 0. (4.7)

Consider the case whensj → sk, that is,δs → 0. For this limiting case, equation (4.7) reads

zT
k

[
2skM +

∂ [sG(s)]

∂s
|sk

]
zk = θk (4.8)

or zT
k [2skM + G(sk) + skG′(sk)] zk = θk, (4.9)

∀k = 1, · · · , m

for some non-zeroθk ∈ C. Equation (4.9) is the normalization relationship for the eigenvectors

of the non-viscously damped system (3.1). From the expression of the dynamic stiffness matrix in

(4.2), the normalization condition in equation (4.9) can also be expressed as

zT
k D′(sk)zk = θk, ∀k = 1, · · · , m. (4.10)
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Equation (4.9), and consequently equation (4.10), can be regarded as the generalization of the

‘mass normalization’ relationship used in structural dynamics. In the undamped limit whenG(s)

is a null matrix, equation (4.9) reduces to the familiar mass normalization relationship for the

undamped eigenvectors. For viscously damped systems (see Section4.7 for details), relationship

analogous to (4.9) was obtained, for example, bySestieri and Ibrahim (1994) using state-space

approach and, byFawzy and Bishop (1976) andFawzy (1977) using second-order equations of

motion. We define thenormalization matrix, Θ, as

Θ = diag [θ1, θ2, · · · , θm] ∈ Cm×m. (4.11)

Numerical values ofθk can be selected in various ways:

• Chooseθk = 2sk,∀k that isΘ = 2S. This reduces tozT
k Mzk = 1,∀k when the damping is

zero. This is consistent with the unity modal mass convention, often used in experimental

modal analysis and finite element methods.

• Chooseθk = 1 + 0i,∀k, that is,Θ = Im. Theoretical analysis becomes easiest with this

normalization. However, as pointed out byFawzy (1977) andVigneron (1986) in the context

of viscously damped systems, this normalization is inconsistent with undamped or classically

damped modal theories.

4.4 Orthogonality of the Eigenvectors

The orthogonality relationship of the eigenvectors given by equation (4.6) is not very useful be-

cause it is expressed in terms of the eigenvalues of the system. In this section, we will develop an

orthogonality relationship which is independent of the eigenvalues. Expressions equivalent to the

orthogonality relationships of the undamped eigenvectors with respect to the mass and stiffness

matrices will also be established. In order to derive these results, first recall the expression of the

transfer function matrix derived in Section3.3. In the pole-residue form the inverse of the dynamic

stiffness matrix (transfer function matrix) can be expressed as

D−1(s) =
adj[D(s)]

det [D(s)]
=

m∑
j=1

Rj

s− sj

. (4.12)

HereRj, the residue ofD−1(s) at the polesj obtained from equation (3.64) as

Rj =
zjzT

j

zT
j

∂D(sj)

∂sj
zj

∈ CN×N . (4.13)

Interestingly, observe that denominator of left-hand side of the above equation is exactly the same

as the normalization condition given by equation (4.10). Now, using equations (4.10) and (4.13)

one finally obtains the residues as

Rj =
zjzT

j

θj

. (4.14)
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For undamped systems,i.e., whenG(s) = ON ,∀ s, the eigenvectors satisfy familiar orthog-

onality relationship over the mass and stiffness matrices as given by equations (1.10) and (1.11).

For viscously damped systems (with non-proportional damping), equivalent relationships may be

obtained by converting the equations of motion into the state-space form (seeSestieri and Ibrahim,

1994). The eigenproblem in the state-space form is essentially similar to the undamped eigen-

problem except that the size of the problem gets doubled, and the eigensolutions become complex.

Thus, from the analysis point of view, the state-space approach offers significant advantage for

viscously damped systems. Unfortunately, for non-viscously damped systems, no advantage can

be gained by adopting the state-space formalism as at least one of the system matrices will not be a

constant matrix. For this reason, and also realizing that the state-space eigenvectors are not phys-

ically appealing, we kept the analysis in the second-order form. One of our main result regarding

the orthogonality of the eigenvectors is the following:

Theorem 4.1. The modal matrix of a non-viscously damped system,Z ∈ CN×m, satisfy the or-

thogonality relationshipZΘ−1ZT = ON .

Proof. From equations (4.12) and (4.14) one obtains

adj[D(s)]

det [D(s)]
=

m∑
j=1

1

s− sj

zjzT
j

θj

. (4.15)

Multiplying both side of the above equation bys and taking limit ass→∞ we obtain

lim
s→∞

s
adj[D(s)]

det [D(s)]
= lim

s→∞

m∑
j=1

s

s− sj

zjzT
j

θj

=
m∑

j=1

zjzT
j

θj

. (4.16)

It is easy to observe that the order of the elements of adj[D(s)] is at the most(m− 2) in s. Since

the order of the determinant,det [D(s)], is m, after taking the limit every element of the left-hand

side of equation (4.16) reduces to zero. Thus, in the limit, the left-hand side of equation (4.16)

approaches to anN ×N null matrix. Finally, writing equation (4.16) in the matrix form we obtain

ZΘ−1ZT = ON (4.17)

and the theorem is proved.

The result of this theorem is quite general and it does not depend on the nature of the system

property matrices. The only requirement of this theorem is that the system must havem ≥ 2N dis-

tinct eigenvalues. Clearly, the undamped systems as well as the viscously damped systems are also

covered as special cases. In the context of viscously damped systems (see Section4.7 for details),

similar result has been derived byFawzy and Bishop (1976) by considering the normalization ma-

trix Θ as the identity matrix. LaterFawzy (1977) generalized this result for the case whenΘ is not

an identity matrix. The result obtained in theorem4.1can be viewed as a further generalization of

these results to the non-viscously damped systems. Next, we consider the relationship between the

eigensolutions and the mass matrix.



4.4. Orthogonality of the Eigenvectors 65

Theorem 4.2. The modal matrix of a non-viscously damped system,Z ∈ CN×m, satisfy the rela-

tionshipZΘ−1SZT = M−1.

Proof. First consider the functionsD−1(s). Following the approach outlined in Section3.3.2and

using the residue theorem one obtains

sD−1(s) =
m∑

j=1

Qj

s− sj

. (4.18)

Here the residuesQj can be obtained as

Qj
def
= lim

s→sj

(s− sj)
[
sD−1(s)

]
= sj

zjzT
j

θj

. (4.19)

Using the expression of the dynamic stiffness matrix in equation (4.2) we can deduce

lim
s→∞

D(s)

s2
= lim

s→∞

[
M +

G(s)

s
+

K
s2

]
= M . (4.20)

Taking the inverse of the above equation results

lim
s→∞

[
s2D−1(s)

]
= M−1. (4.21)

Now, multiplying equation (4.18) by s and taking limit ass→∞ we obtain

lim
s→∞

[
s2D−1(s)

]
= lim

s→∞

m∑
j=1

s

s− sj

sjzjzT
j

θj

=
m∑

j=1

sjzjzT
j

θj

. (4.22)

Casting the right-hand side of the above equation in the matrix form and equating it with (4.21)

results

ZΘ−1SZT = M−1 (4.23)

and the theorem is proved.

SinceΘ andS are diagonal matrices, they commute in product. For this reason the above

result can also be expressed asZSΘ−1ZT = M−1. For viscously damped systems, similar result

has been derived byFawzy and Bishop (1976) by considering the normalization matrixΘ as the

identity matrix. It might be thought that by taking the inverse of equation (4.23) and rearranging,

the conventional mass-orthogonality relationship

ZT MZ = S−1Θ (4.24)

could be obtained. We emphasize that the representation of equation (4.23) in the form of equation

(4.24) is not always possible. To show this, premultiply equation (4.24) by ZΘ−1 to obtain

ZΘ−1ZT MZ = ZΘ−1S−1Θ = ZS−1. (4.25)



66 Chapter 4. Some General Properties of the Eigenvectors

Due to theorem4.1, the left-hand side of equation (4.25) is a null matrix, while its right-hand side

is not. Thus (4.24) cannot be a valid equation. However, for a special case, when the system is

undamped, the modal matrixZ can be expressed by a square matrix and equation (4.23) can be

represented by the classical mass-orthogonality relationship in (4.24). Thus, theorem4.2provides

the result equivalent to the classical mass-orthogonality relationship for general cases.

Like the mass-orthogonality relationship of the eigenvectors, the orthogonality relationship

with respect to the stiffness matrix can also be obtained. Assuming thatK−1 exists we have the

following:

Theorem 4.3. The modal matrix of a non-viscously damped system,Z ∈ CN×m, satisfy the rela-

tionshipZΘ−1S−1ZT = −K−1.

Proof. Using the expression of the dynamic stiffness matrix in equation (4.2) we can easily deduce

lim
s→0

D(s) = K . (4.26)

Taking the inverse of the above equation results

lim
s→0

D−1(s) = K−1. (4.27)

From equations (4.12) and (4.14) one obtains

D−1(s) =
m∑

j=1

1

s− sj

zjzT
j

θj

. (4.28)

Taking the limit ass→ 0 in equation (4.28) we obtain

lim
s→0

D−1(s) =
m∑

j=1

1

−sj

zjzT
j

θj

. (4.29)

Casting the right-hand side of the preceding equation in the matrix form and equating it with (4.27)

results

ZΘ−1S−1ZT = −K−1 (4.30)

and the theorem is proved.

4.5 Relationships Between the Eigensolutions and Damping

In the last section, some direct relationships have been established between the mass and stiffness

matrices and the eigensolutions. In this section we try to establish the relationships between the

damping matrix and the eigensolutions. A major difficulty in this regard is that, unlike the mass

and stiffness matrices, the damping matrix,G(s), is a function ofs. To simplify the problem we

consider only two limiting cases, (a) whens→∞, and (b) whens→ 0. Suppose

lim
s→∞

G(s) = G∞ ∈ RN×N (4.31)

and lim
s→0

G(s) = G0 ∈ RN×N , (4.32)
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where‖G∞‖, ‖G0‖ <∞.

4.5.1 Relationships in Terms of M−1

Casting equation (4.28) into the matrix form one obtains

D−1(s) = ZΘ−1 (sIm − S)−1 ZT . (4.33)

The preceding equation can be expanded as

D−1(s) =
1

s
ZΘ−1

(
Im −

S
s

)−1

ZT

=
1

s

(
ZΘ−1ZT

)
+

1

s2

(
ZΘ−1SZT

)
+

1

s3

(
ZΘ−1S2ZT

)
+

1

s4

(
ZΘ−1S3ZT

)
+ · · ·

(4.34)

Now, rewrite the expression of the dynamic stiffness matrix in equation (4.2) as

D(s) = s2M
[
IN +

M−1

s

(
G(s) +

K
s

)]
. (4.35)

Taking the inverse of this equation and expanding the right-hand side one obtains

D−1(s) =

[
IN −

M−1

s

(
G(s) +

K
s

)
+

{
M−1

s

(
G(s) +

K
s

)}2

− · · ·

]
M−1

s2
.

(4.36)

Equation (4.36) can be further simplified to obtain

D−1(s) =
M−1

s2
+

1

s3

(
−M−1G(s)M−1

)
+

1

s4

(
M−1

[
G(s)M−1G(s)− K

]
M−1

)
+ · · ·

(4.37)

Comparing equations (4.34) and (4.37) it is clear that their right-hand sides are equal. Theorems

1 and 2 can be alternatively proved by multiplying these equations bys ands2 respectively and

taking the limit ass → ∞. Observe that, the coefficients associated with the corresponding

(negative) powers ofs in the series expressions (4.34) and (4.37) cannot be equated becauseG(s)

is also a function ofs. However, in the limit whens → ∞, the variation ofG(s) becomes

negligible as by equation (4.31) it approaches toG∞. Considering the second term of the right-

hand side of equation (4.37), equating it with the corresponding term of equation (4.34) and taking

the limit ass→∞ one obtains

ZΘ−1S2ZT = −M−1G∞M−1. (4.38)



68 Chapter 4. Some General Properties of the Eigenvectors

It must be noted that this procedure cannot be extended to further lower order terms as all of them

would be effected by the functional variation ofG(s) from previous terms.

Were the system viscously dampedG(s) would be a constant matrix and equating the coef-

ficients associated with different powers ofs one could obtain several relationships between the

eigensolutions and the system matrices. Considering the first few terms in the series expressions

(4.34) and (4.37), some such relationships are reported in Section4.7.

4.5.2 Relationships in Terms of K−1

We rewrite equation (4.33) as

D−1(s) = −ZΘ−1S−1
(
Im − sS−1

)−1
ZT . (4.39)

Expanding equation (4.39) one obtains

D−1(s) =− ZΘ−1S−1ZT − s
(
ZΘ−1S−2ZT

)
− s2

(
ZΘ−1S−3ZT

)
− s3

(
ZΘ−1S−4ZT

)
− · · ·

(4.40)

The expression of the dynamic stiffness matrix in equation (4.2) can be rearranged as

D(s) = K
[
IN + s

(
sK−1M + K−1G(s)

)]
. (4.41)

Taking the inverse of equation (4.41) and expanding the right-hand side one obtains

D−1(s) =
[
IN − s

(
sK−1M + K−1G(s)

)
+
{
s
(
sK−1M + K−1G(s)

)}2 − · · ·
]

K−1.
(4.42)

The preceding equation can be further simplified to obtain

D−1(s) =K−1 + s
(
−K−1G(s)K−1

)
+ s2

(
K−1

[
G(s)K−1G(s)−M

]
K−1

)
+ · · ·

(4.43)

Comparing the right-hand side of equations (4.40) and (4.43), theorem4.3can be proved alterna-

tively by taking the limit ass→ 0. Considering the second term of the right-hand side of equation

(4.43), equating it with the second term of equation (4.40) and taking the limit ass → 0 one

obtains

ZΘ−1S−2ZT = K−1G0K−1. (4.44)

Again, note that this approach cannot be extended to the higher order terms as all of them would

be effected by the functional variation ofG(s) from previous terms.

4.6 System Matrices in Terms of the Eigensolutions

Theorems4.2, 4.3and equations (4.38), (4.44) allow us to represent the system property matrices

explicitly in terms of the eigensolutions. This might be useful in system identification problems
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where the eigensolutions of a structure can be measured from experiments. Using the eigensolu-

tions we define two matrices

P1 = ZΘ−1SZT (4.45)

and P2 = ZΘ−1S−1ZT . (4.46)

Using these equations, from equation (4.23) one obtains the mass matrix as

M = P−1
1 . (4.47)

Similarly from equation (4.30) the stiffness matrix can be obtained as

K = −P−1
2 . (4.48)

The damping matrix in the Laplace domain,G(s), can be obtained only at the two limiting values

whens→∞, ands→ 0. From equations (4.38) and (4.44) one obtains

G∞ = −P−1
1

[
ZΘ−1S2ZT

]
P−1

1 (4.49)

and G0 = P−1
2

[
ZΘ−1S−2ZT

]
P−1

2 . (4.50)

These results, however, do not give any indication regarding the functional behaviour ofG(s)

between these two extreme values.

4.7 Eigenrelations for Viscously Damped Systems

Viscously damped systems arise as a special case of the more general non-viscously damped sys-

tems when the damping matrix become a constant matrix, that is,G(s) = C ∈ RN×N ,∀ s. Here,

several relationships satisfied by the eigensolutions and the system matrices will be derived for this

special case.

For viscously damped systems the order of the characteristic polynomialm = 2N , and conse-

quently the modal matrixZ ∈ CN×2N and the diagonal matricesS,Θ ∈ C2N×2N . From equation

(4.9), the normalization relationship reads

zT
k [2skM + C] zk = θk, ∀k = 1, · · · , 2N. (4.51)

Now, consider the series expansion ofD−1(s) given by equations (4.34) and (4.37). Equating the

coefficients of1/s we obtain the mode orthogonality relationship

ZΘ−1ZT = ON . (4.52)

This relationship was also derived byFawzy (1977). Now, equating the coefficients of1/s2, · · · , 1/s5

in the right hand sides of equations (4.34) and (4.37), several relationships involving the eigenso-

lutions andM−1, C andK may be obtained:

ZΘ−1SZT = M−1 (4.53)

ZΘ−1S2ZT = −M−1CM−1 (4.54)

ZΘ−1S3ZT = M−1
[
CM−1C− K

]
M−1 (4.55)
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and

ZΘ−1S4ZT = M−1
[
KM −1C + CM−1K − CM−1CM−1C

]
M−1. (4.56)

This procedure can be extended to obtain further higher order terms involvingS.

Similarly, equating the coefficients ofs0, · · · , s3 in the right-hand sides of equations (4.40) and

(4.43), several relationships involving the eigensolutions andK−1, C andM may be obtained:

ZΘ−1S−1ZT = −K−1 (4.57)

ZΘ−1S−2ZT = K−1CK−1 (4.58)

ZΘ−1S−3ZT = K−1
[
M − CK−1C

]
K−1 (4.59)

and

ZΘ−1S−4ZT = K−1
[
CK−1CK−1C−MK −1C + CK−1M

]
K−1. (4.60)

This procedure can be extended to obtain further lower order terms involvingS. Employing a

different approach, and considering the normalization matrixΘ as the identity matrix,Fawzy and

Bishop (1976) obtained expressions similar to equations (4.53) – (4.55) and (4.57) – (4.59). Thus,

the relationships derived here extend their results to generally normalized eigenvectors.

4.8 Numerical Examples

4.8.1 The System

A three-degree-of-freedom system, similar to what considered in Section3.7, is used to illustrate

the results derived in this chapter. The mass and stiffness matrices are assumed to be

M =

3 0 0
0 3 0
0 0 3

 (4.61)

and K =

 4 −2 0
−2 4 −2

0 −2 4

 . (4.62)

Numerical values for these matrices are taken by assumingmu = 3 andku = 2 in the example

considered in Section3.7. The matrix of the damping functions is assumed to be of the form

G(t) =

0 0 0
0 1.5g(t) 0
0 0 0

 (4.63)

where

g(t) = δ(t) +
(
µ1e

−µ1t + µ2e
−µ2t

)
; µ1, µ2 > 0. (4.64)

The damping matrix in the Laplace domain,G(s), can be obtained by taking the Laplace transform

of equation (4.63). The Laplace transform ofg(t) given by (4.64) can be obtained as

G(s) = 1 +
(µ1 + µ2) s + 2µ1µ2

s2 + (µ1 + µ2) s + µ1µ2

. (4.65)
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This damping model is a linear combination of the viscous model and the GHM model considered

in the last chapter. Regarding the numerical values of the damping parameters, we assumeµ1 = 1.5

andµ2 = 0.1.

4.8.2 Eigenvalues and Eigenvectors

Using equation (4.65), together with the expressions of the system matrices given by equations

(4.61) – (4.63), it can be shown that the order of the characteristic polynomial,m = 8. It has

been mentioned that (for lightly damped systems), among them eigenvalues,2N = 6 appear in

complex conjugate pairs (elastic modes) and the restp = m− 2N = 2 eigenvalues become purely

real (non-viscous modes).

Solving the characteristic equation, the diagonal matrix containing the eigenvalues can be ex-

pressed as

S = diag [se, s∗e, sn] ∈ C8×8. (4.66)

Here, the eigenvalues corresponding to the three elastic modes are

se = {−0.2632 + 0.7363i, 1.1547i,−0.2392 + 1.5177i, } . (4.67)

The eigenvalues corresponding to the two non-viscous modes are found to be

sn = {−1.0029,−0.0921} . (4.68)

Since these eigenvalues are purely real and negative, it implies that the non-viscous modes are

stable and non-oscillatory in nature (i.e., over critically damped).

The eigenvectors can be obtained by applying the procedure outlined in the last chapter. The

matrix of eigenvectors can be expressed as

Z = [Ze, Z∗e, Zn] ∈ C3×8 (4.69)

Here,Ze, the matrix of eigenvectors corresponding to the three elastic modes, is

Ze =

 1 1 1
1.2908− 0.5814i 0 −1.3690− 1.0893i

1 −1 1

 . (4.70)

The matrix of eigenvectors corresponding to the two non-viscous modes is calculated as

Zn =

 1 1
3.5088 2.0127

1 1

 . (4.71)

Using the eigenvectors given by equations (4.70) – (4.71), the normalization matrixΘ can be

obtained from equation (4.9) as

Θ = diag [θe, θ
∗
e, θn] . (4.72)
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Here

θe = {0.0223 + 0.1180i, 0.1386i,−0.2756 + 0.2359i} (4.73)

and

θn = {1.0075, 9.8738} . (4.74)

4.8.3 Orthogonality Relationships

Using Z andΘ one can easily verify that the mode orthogonality relationship given by theorem

4.1 is satisfied, that is,

ZΘ−1ZT = O3. (4.75)

Now, in the line of theorem4.2we calculate

ZΘ−1SZT =

0.3333 0 0
0 0.3333 0
0 0 0.3333

 = M−1. (4.76)

Similarly, following theorem4.3one obtains

−ZΘ−1S−1ZT =

0.375 0.250 0.125
0.250 0.500 0.250
0.125 0.250 0.375

 = K−1. (4.77)

4.8.4 Relationships With the Damping Matrix

Taking the Laplace transform of equation (4.63) and considering the limiting cases ass→∞, and

s→ 0 one obtains

G∞ =

0 0 0
0 1.5 0
0 0 0

 (4.78)

and G0 =

0 0 0
0 4.5 0
0 0 0

 . (4.79)

Note that the matricesP1 andP2, defined in equations (4.45) and (4.46) respectively, can be directly

obtained from (4.76) and (4.77). Using these matrices, the truth of equations (4.49) and (4.50),

which relateG∞ andG0 to the eigensolutions, can be verified. Thus, the damping matrix,G(s),

can be reconstructed from the eigensolutions for the cases whens→∞, ands→ 0.

4.9 Conclusions

In this chapter we have developed several eigenrelations for non-viscously damped multiple-

degrees-of-freedom linear dynamic systems. It has been assumed that, in general, the mass and
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stiffness matrices as well as the matrix of the kernel functions cannot be simultaneously diago-

nalized by any linear transformation. The analysis is, however, restricted to systems with non-

repetitive eigenvalues and non-singular mass matrices. Relationships regarding the normalization

and the orthogonality of the (complex) eigenvectors have been established (theorem4.1). Expres-

sions equivalent to the orthogonality of the undamped modes over the mass and stiffness matrices

have been proposed (theorems4.2 and4.3). It was shown that the classical relationships can be

obtained as special cases of these general results. Based on these results, we have shown that the

mass and stiffness matrices can be uniquely expressed in terms of the eigensolutions. The damp-

ing matrix,G(s), cannot be reconstructed using this approach because it is not a constant matrix.

However, we have provided expressions which relate the damping matrix to the eigensolutions for

the cases whens → ∞, ands → 0. Whenever applicable, viscously damped counterparts of the

newly developed results were provided.
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Chapter 5

Identification of Viscous Damping

5.1 Introduction

In Chapters3 and4, a systematic study on modal analysis of generally damped linear systems has

been carried out. The results based on these studies give a firm basis for further analysis, to use the

details of the measured vibration data to learn more about the underlying damping mechanisms.

It was shown that non-viscously damped systems have two types of modes, (a) elastic modes,

and (b) non-viscous modes. The elastic modes correspond to the ‘modes of vibration’ of a linear

system. The non-viscous modes occur due to the non-viscous damping mechanism and they are not

oscillatory in nature. For an underdamped system, that is a system whose all modes are vibrating,

the elastic modes are complex (appear in complex conjugate pairs) and non-viscous modes are real.

For anN -degrees-of-freedom non-viscously damped systems there are exactlyN pairs of elastic

modes. The number of non-viscous modes depends on the nature of the damping mechanisms.

Conventional viscously damped systems are special cases of non-viscously damped systems when

the damping kernel functions have no ‘memory’. Modes of viscously damped systems consist of

only (complex) elastic modes as non-viscous modes do not appear in such systems. Elastic modes

can be real only if the damping is proportional, that is only if the conditions derived in Theorem

2.2are satisfied.

There is no physical reason why a general system should follow the mathematical conditions

for existence of real normal modes. In fact practical experience in modal testing shows that most

real-life structures do not do so, as they possess complex modes instead of real normal modes.

As Sestieri and Ibrahim (1994) have put it ‘ ... it is ironic that the real modes are in fact not real

at all, in that in practice they do not exist, while complex modes are those practically identifiable

from experimental tests. This implies that real modes are pure abstraction, in contrast with complex

modes that are, therefore, the only reality!’ For this reason it is legitimate to consider only complex

modes for further developments. However, consideration of complex modes in experimental modal

analysis has not been very popular among researchers. In fact many publications, for example

Ibrahim (1983a), Chenet al. (1996b) and Balm̀es (1997), discuss how to obtain the ‘best’ real

normal modes from identified complex modes.

75
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The works in the previous chapters made it clear that the standard procedure of experimental

modal analysis actually measured ‘modes’ when complex results were obtained. The justification

of the method in the standard texts (eg., Ewins, 1984) is based on assuming viscous damping, and

begs the question of how one might tell in practice whether a viscous model is applicable to a

given structure, let alone of how to proceed if a viscous model is not supported by the measure-

ments. These are the central questions to be addressed in this study. The works in the earlier

chapters showed that the expression for vibration transfer functions in terms of mode shapes and

natural frequencies, familiar from undamped systems, carries over almost unchanged to systems

with completely general linear damping. One simply replaces the mode shapes with corresponding

complex elastic modes and non-viscous modes, and the natural frequencies with their correspond-

ing values. This result shows that experimental modal analysis can indeed measure the correct

complex modes of a structure, since the pole-fitting strategy normally used is based on the validity

of this transfer function expression. Here we emphasize that by conducting conventional modal

testing procedure it is only possible to obtain the elastic modes as the non-viscous modes do not

produce any ‘peak’ in the measured transfer functions (see Section8.2 for further discussions ).

This is however, not a very big limitation since it was shown before that the effect of non-viscous

modes is not very significant on the vibration response. For this reason, in what follows next, the

non-viscous modes willnot be considered. Beside this we also assume that the damping is light so

that the first-order perturbation method can be applied.

There are good arguments to support the principle of reciprocity when the physical mechanism

of damping arises from linear viscoelastic behaviour within some or all of the material of which the

structure is built. The ‘correspondence principle’ of linear viscoelasticity applies to such problems

under rather general conditions (seeeg., Fung, 1965), and since the undamped problem satisfies

reciprocity, then the damped one will also do so. However, the case is less obvious for damping

associated with structural joints, often the dominant source of damping in practice. The mech-

anisms of such damping are frequently non-linear when examined in detail, but empirically the

overall result frequently satisfies normal experimental tests of linearity. The question of whether

such systems should be expected to satisfy reciprocity remains open. For the purpose of the present

investigation, reciprocity will be assumed in all cases.

These facts gives us the confidence to ask some general questions of interest:

1. From experimentally determined complex modes can one identify the underlying damping

mechanism? Is it viscous or non-viscous? Can the correct model parameters be found ex-

perimentally?

2. Is it possible to establish experimentally thespatial distributionof damping?

3. Is it possible that more than one damping model with corresponding ‘correct’ sets of param-

eters may represent the system response equally well, so that the identified model becomes

non-unique?
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4. Does the selection of damping model matter from an engineering point of view? Which

aspects of behaviour are wrongly predicted by an incorrect damping model?

This chapter and following two address these questions. The analysis is restricted to linear systems

with light damping: we assume throughout the validity of the first-order perturbation results. The

initial aim is to consider what can be learned about these questions in principle, so procedures will

be illustrated by applying them to simulated transfer functions, with no noise. The issue of how the

usefulness of any procedure might be limited in practice by measurement noise will be deferred to

later studies. This chapter will concentrate on the fitting of viscous models to ‘measured’ transfer

functions, and on establishing the symptoms by which a non-viscous model might be recognized.

In Section5.2 we briefly review the theory of determination of complex frequencies and modes

based on the first-order perturbation method. In Section5.3 an algorithm is given for fitting a

non-proportional viscous damping model, using the complex modes and complex frequencies. In

Section5.4numerical examples are given to illustrate the fitting procedure. Some implications of

these results for damping identification are summarized in Section5.5. In Chapter6, the procedures

are generalized to some non-viscous models of damping, and the discussion extended to this more

general case.

5.2 Background of Complex Modes

Dynamics of viscously damped systems has been discussed in details in Section1.3. Complex

modes arise in viscously damped systems provided the damping is non-proportional. Expressions

of complex modes can be obtained as a special case of the general analysis presented in Section

3.2.1. One such special case when the damping is lightly non-proportional is discussed in Section

3.2.3. In this section we consider a further special case when the damping is light so that the first-

order perturbation method can be applied. First-order perturbation results can be obtained from

the results in Section3.2.3as follows.

Supposeλj, zj is thej-th complex natural frequency and complex mode shape. In the context

of the notations used in Section3.2.3, sj = iλj. Using this, from equation (3.37) approximate

expression for the complex natural frequencies can be obtained as

λj ≈ ±ωj + iC ′
jj/2. (5.1)

From equation (3.38), the first-order approximate expression of the complex eigenvectors is

zj ≈ xj + i
N∑

k=1
k 6=j

ωjC
′
kj

(ω2
j − ω2

k)
xk. (5.2)

In the above expressionsC ′
kl = xT

k Cxl are the elements of the damping matrix in modal coordi-

nates. These results were obtained byRayleigh (1877, see Section 102, equation 5 and 6). The
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above equation shows (up to first order approximation) that the real parts of the complex modes

are the same as the undamped modes and that the off-diagonal terms of the modal damping matrix

are responsible for the imaginary parts.

5.3 Identification of Viscous Damping Matrix

Currently available methods for identification of viscous damping matrix in the context of linear

multiple-degrees-of-freedom systems have been discussed in Section1.5.2. These methods range

form the simplest case, that is proportional damping, to more general non-proportional damping

case. Several practical issues, for example, effect of measurement noise, incomplete modal data,

consistency with FE models,etc. have been discussed. However, all these methods are based on

the assumption that the damping mechanism of the structure is viscous, and their efficacy when the

damping mechanism is not viscous is largely unexplored. Here we propose a method to obtain the

full non-proportional viscous damping matrix from complex modal data, in a way which will gen-

eralize very naturally to the fitting of non-viscous damping models in Chapter6. The perturbation

expression from the previous section is used as the basis of the fitting procedure, and it is assumed

that the damping is sufficiently light to justify this.

Approximate complex natural frequencies and mode shapes for a system with light viscous

damping can be obtained from the expressions given in equations (5.1) and (5.2). Write

ẑj = ûj + iv̂j (5.3)

whereẑj ∈ CN is themeasuredj-th complex mode, andN denotes the number of measurement

points on the structure. Suppose that the number of modes to be considered in the study ism: in

generalm 6= N , usually N ≥ m. If the measured complex mode shapes are consistent with a

viscous damping model then from equation (5.1) the real part of each complex natural frequency

gives the undamped natural frequency:

ω̂j = <
(
λ̂j

)
, (5.4)

whereλ̂j denotes thej-th complex natural frequency measured from the experiment. Similarly

from equation (5.2), the real part of each complex modeûj immediately gives the corresponding

undamped mode and the mass orthogonality relationship (1.10) will be automatically satisfied.

Now from equation (5.2), expand the imaginary part ofẑj as a linear combination of̂uj:

v̂j =
m∑

k=1

Bkjûk; where Bkj =
ω̂jC

′
kj

ω̂2
j − ω̂2

k

. (5.5)

With N ≥ m this relation cannot be satisfied exactly in general. Then the constantsBkj should be

calculated such that the error in representingv̂j by such a sum is minimized. Note that in the above

sum we have included thek = j term although in the original sum in equation (5.2) this term was
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absent. This is done to simplify the mathematical formulation to be followed, and has no effect

on the result. Our interest lies in calculatingC ′
kj from Bkj through the relationship given by the

second part of the equation (5.5), and indeed fork = j we would obtainC ′
kj = 0. The diagonal

termsC ′
jj are instead obtained from the imaginary part of the complex natural frequencies:

C ′
jj = 2=(λ̂j). (5.6)

The error from representinĝvj by the series sum (5.5) can be expressed as

εj = v̂j −
m∑

k=1

Bkjûk. (5.7)

To minimize the error a Galerkin approach can be adopted. The undamped mode shapesûl,∀l =

1, · · · , m, are taken as ‘weighting functions’. Using the Galerkin method onεj ∈ RN for a fixed

j one obtains

ûT
l εj = 0; ∀l = 1, · · ·m. (5.8)

Combining equations (5.7) and (5.8) yields

ûT
l

{
v̂j −

m∑
k=1

Bkjûk

}
= 0 or

m∑
k=1

Wlk Bkj = Dlj; l = 1, · · · , m (5.9)

with Wlk = ûT
l ûk andDlj = ûT

l v̂j. SinceWkl is j−independent, for allj = 1, · · ·m the above

equations can be combined in matrix form

W B = D (5.10)

whereB ∈ Rm×m is the matrix of unknown coefficients to be found,W = ÛT Û ∈ Rm×m and

D = ÛT V̂ ∈ Rm×m with

Û = [û1, û2, · · · ûm] ∈ RN×m

V̂ = [v1, v̂2, · · · v̂m] ∈ RN×m.
(5.11)

Now B can be obtained by carrying out the matrix inversion associated with equation (5.10) as

B = W−1D =
[
ÛT Û

]−1

ÛT V̂. (5.12)

From theB matrix, the coefficients of the modal damping matrix can be derived from

C ′
kj =

(ω̂2
j − ω̂2

k)Bkj

ω̂j

; k 6= j (5.13)

The above two equations together with equation (5.6) completely define the modal damping matrix

C′ ∈ Rm×m. If Û ∈ RN×N is thecompleteundamped modal matrix then the damping matrices

in the modal coordinates and original coordinates are related byC′ = ÛTCÛ. Thus givenC′, the

damping matrix in the original coordinates can be easily obtained by the inverse transformation as
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C = UT−1
C′Û−1. For the case when the full modal matrix is not available, that isÛ ∈ RN×m

is not a square matrix, a pseudoinverse is required in order to obtain the damping matrix in the

original coordinates. The damping in the original coordinates is then given by

C =

[(
ÛT Û

)−1

ÛT

]T

C′
[(

UT Û
)−1

ÛT

]
. (5.14)

It is clear from the above equations that we need only the complex natural frequencies and mode

shapes to obtainC. The method is very simple and does not require much computational time.

Another advantage is that neither the estimation of mass and stiffness matrices nor the full set of

modal data is required to obtain an estimate of the full damping matrix. Using a larger number

of modes will of course produce better results with higher spatial resolution. In summary, this

procedure can be described by the following steps:

1. Measure a set of transfer functionsHij(ω).

2. Choose the numberm of modes to be retained in the study. Determine the complex natural

frequencieŝλj and complex mode shapesẑj from the transfer functions, for allj = 1, · · ·m.

Obtain the complex mode shape matrixẐ = [ẑ1, ẑ2, · · · ẑm] ∈ CN×m.

3. Estimate the ‘undamped natural frequencies’ asω̂j = <(λ̂j).

4. SetÛ = <
[
Ẑ
]

andV̂ = =
[
Ẑ
]
, from these obtainW = ÛT Û andD = ÛT V̂. Now denote

B = W−1D.

5. From theB matrix getC ′
kj =

(ω̂2
j − ω̂2

k)Bkj

ω̂j

for k 6= j andC ′
jj = 2=(λ̂j).

6. Finally, carry out the transformationC =

[(
ÛTU

)−1

ÛT

]T

C′
[(

ÛT Û
)−1

ÛT

]
to get the

damping matrix in physical coordinates.

It should be observed that even if the measured transfer functions are reciprocal, this procedure

does not necessarily yield a symmetric damping matrix. If we indeed obtain a non-symmetric

damping matrix then it may be deduced that the physical law behind the damping mechanism in

the structure is not viscous. This fact is illustrated by example in the next section. Under those

circumstances, if an accurate model for the damping in the structure is needed then a non-viscous

model of some kind must be fitted to the measured data. Some examples of such models and

algorithms for fitting them will be illustrated in the next chapter.

5.4 Numerical Examples

There is a major difference in emphasis between this study and other related studies on damping

identification reported in the literature. Most of the methods assume from the outset that the
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system is viscously damped (see the review paper byPilkey and Inman, 1998) and then formulate

the theory to identify a viscous damping matrix. Here, we wish to investigate how much one can

learn by fitting a viscous damping model when the actual system is non-viscously damped, as one

must expect to be the case for most practical systems. It is far from clear in practice what kind of

non-viscous damping behaviour a system might exhibit. We defer that question for the moment,

and instead study by simulation a system which has a known non-viscous damping model. Two

different physically realistic non-viscous damping models are considered in this study. They are

applied to a system consisting of a linear array of spring-mass oscillators and dampers.

This simple system gives us a useful basis to carry out numerical investigations. Complex

natural frequencies and modes can be calculated for the model system using the procedure outlined

in Section3.2, then treated like experimental data obtained from a modal testing procedure, and

used for identifying a viscous damping model by the procedure described in the previous section.

Note that in a true experimental environment the measured complex natural frequencies and mode

shapes will be contaminated by noise. Since the simulation data are noise-free the results obtained

using them are ‘ideal’, the best one can hope using this approach. Once promising algorithms have

been identified in this way, the influence of noise in degrading the performance will have to be

addressed.

Figure5.1 shows the model systems.N masses, each of massmu, are connected by springs

of stiffnessku. The mass matrix of the system has the formM = muIN whereIN is theN × N

identity matrix. The stiffness matrix of the system is

K = ku



2 −1
−1 2 −1

. .. ... ...
−1 2 −1

... ...
−1 2


. (5.15)

Certain of the masses of the system shown in Figure5.1(a) have dissipative elements connecting

them to the ground. In this case the damping force depends only on the absolute motion of the

individual masses. Such damping will be described as ‘locally reacting’ by analogy with usage

in the theory of fluid-loaded structures (seeeg. Crighton, 1985). For the system shown in Figure

5.1(b), by contrast, dissipative elements are connected between certain adjacent pairs of masses.

In this case the damping force depends on the relative motion of the two adjacent masses, and will

be called ‘non-locally reacting’.

The dissipative elements shown in Figure5.1 will be taken to be linear, but not to be simple

viscous dashpots. For any such element, the force developed between the two ends will depend on

the history of the relative motion of the two ends. The dependence can be written in terms of a

convolution integral. Using the mass and the stiffness matrices described before, the equations of
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Figure 5.1: Linear array ofN spring-mass oscillators,N = 30, mu = 1 Kg, ku = 4× 103N/m

motion can thus be expressed in the form

Mq̈(t) + C̄

∫ t

−∞
g(t− τ) q̇(τ) dτ + Kq(t) = 0 (5.16)

whereg(t) is the damping function (assumed to have the same form for all the damping elements

in the system) and̄C is the associated coefficient matrix which depends on the distribution of the

dampers. Two specific damping models will be considered, defined by two different forms ofg(t):

MODEL 1: g(1)(t) = µ1e
−µ1t; t ≥ 0 (5.17)

MODEL 2: g(2)(t) = 2

√
µ2

π
e−µ2t2 ; t ≥ 0 (5.18)

where µ1 andµ2 are constants. Any physically realistic damping model must satisfy a condition

of positive energy dissipation at all frequencies. A sufficient condition to guarantee this, satisfied

by both models considered here, will be described in Chapter6.

It is convenient to normalize the functions to make comparisons between models meaningful.

Both functions have already been scaled so as to have unit area when integrated to infinity. This

makes them directly comparable with the viscous model, in which the corresponding damping

function would be a unit delta function,g(t) = δ(t), and the coefficient matrix̄C would be the

usual damping matrix. It is also convenient to define a characteristic time constantθj for each

damping function, via the first moment ofg(j)(t):

θj =

∫ ∞

0

t g(j)(t) dt (5.19)
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For the two damping models considered here, evaluating the above integral givesθ1 = 1
µ1

and

θ2 = 1√
πµ2

. For viscous dampingθj = 0. The characteristic time constant of a damping function

gives a convenient measure of ‘width’: if it is close to zero the damping behaviour will be near-

viscous, and vice versa. To establish an equivalence between the two damping models we can

choose that they have the same time constant, so that1
µ1

= 1√
πµ2

.

For the system with locally reacting damping shown in Figure5.1(a), C̄ = c̄I where c is a

constant and̄I is a block identity matrix which is non-zero only between thes-th and(s + l)-th

entries along the diagonal, so that ‘s’ denotes the first damped mass and(s+ l) the last one. For the

system with non-locally reacting damping shown in Figure5.1(b), C̄ has a similar pattern to the

stiffness matrix given by equation (5.15), but non-zero only for terms relating to the block between

s and(s + l). For the numerical calculations considered here, we have takenN = 30, s = 8 and

(s + l) = 17.

For the purpose of numerical examples, the valuesmu = 1 kg, ku = 4 × 105 N/m have been

used. The resulting undamped natural frequencies then range from near zero to approximately 200

Hz. For damping models, the valuec = 25 has been used, and various values of the time constant

θ have been tested. These are conveniently expressed as a fraction of the period of the highest

undamped natural frequency:

θ = γTmin (5.20)

Whenγ is small compared with unity the damping behaviour can be expected to be essentially

viscous, but whenγ is of order unity non-viscous effects should become significant.

The complex natural frequencies and mode shapes can now be calculated from the analysis

presented in Section3.2. We can then follow the steps outlined in the previous section to obtain an

equivalent viscous damping which represents these ‘measured’ data most accurately.

5.4.1 Results for Smallγ

Whenγ = 0.02 both damping models should show near-viscous behaviour. First consider the

system shown in Figure5.1(a) with locally reacting damping. Figure5.2shows the fitted viscous

damping matrixC for damping model 2, calculated using the complete set of 30 modes. The fitted

matrix identifies the damping in the system very well. The high portion of the plot corresponds

to the spatial location of the dampers. The off-diagonal terms of the identified damping matrix

are very small compared to the diagonal terms, indicating correctly that the damping is locally

reacting.

It is useful to understand the effect of modal truncation on the damping identification proce-

dure. In practice, one might expect to be able to use only the first few modes of the system to

identify the damping matrix. Figures5.3 and5.4 shows the fitted viscous damping matrix using,

respectively, the first 20 and the first 10 modes only. The quality of the fitted damping matrix grad-

ually deteriorates as the number of modes used to fit the damping matrix is reduced, but still the
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Figure 5.2: Fitted viscous damping matrix for the local case,γ = 0.02, damping model 2

identified damping matrix shows a reasonable approximation to the true behaviour. The spatial res-

olution of the identified damping is limited by that of the set of modes used, and some off-diagonal

activity is seen in the fitted matrix. Since for this system the mode shapes are approximately sinu-

soidal, we can recognize the effects of modal truncation as analogous to Gibbs phenomenon in a

truncated Fourier series.

Now consider the system shown in Figure5.1(b) with non-locally reacting damping. Figure

5.5 shows the fitted viscous damping matrix for damping model 2, using the full set of modes.

Again, the fitted matrix identifies the damping in the system quite well. The high portion of the plot

corresponds to the spatial location of the dampers. The negative off-diagonal terms in the identified

damping matrix indicate that the damping is non-locally reacting, and the pattern is recognizably

that of equation (5.15). The extent of noise away from the three diagonals is rather higher than was

the case in Figure5.2. This is not very surprising. The pattern of terms along a row of the matrix

corresponding to a damped position was, in the former case, a discrete approximation to a delta

function. In the latter case it is an approximation to the second derivative of a delta function. The

modal expansion, approximately a Fourier series, will thus have a much larger contribution from

the higher modes, which are the first to be affected by the non-zero width of the damping function.

A higher level of noise is the inevitable result.

One consequence of the distinction between local and non-local damping is illustrated in Fig-

ure 5.6. The modal Q-factors are plotted for the two cases studied, for the full set of 30 modes.

Locally-reacting damping (solid line) produces a Q-factor roughly proportional to mode number.

The particular non-local damping chosen here shows the opposite trend, with Q-factors roughly
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Figure 5.3: Fitted viscous damping matrix using first 20 modes for the local case,γ = 0.02,
damping model 2
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Figure 5.4: Fitted viscous damping matrix using first 10 modes for the local case,γ = 0.02,
damping model 2

inversely proportional to mode number (dashed line). Both trends can be understood in terms of

Rayleigh damping. If the damping extended over the entire structure rather that being limited to a

finite patch, then the local-reacting damping would correspond to a dissipation matrix proportional

to the mass matrix, while the non-local damping would correspond to a dissipation matrix propor-
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Figure 5.5: Fitted viscous damping matrix for the non-local case,γ = 0.02, damping model 2

tional to the stiffness matrix. The trends of modal Q-factor with frequency would then be exactly

proportional and inversely proportional, respectively. Limiting the damping to a part of the struc-

ture has evidently not disturbed this pattern very much. The variation with frequency has translated

into a variation with mode number: the mode number relates rather directly to wavenumber for this

simple system, and the physical origins of the different trends of Q-factors lies in dependence on

wavelength, rather than on frequency as such.

When the fitting procedure is repeated using the alternative damping model of equation (5.17)

the results are sufficiently similar that they are not reproduced here. Since the time constant is

so short, both damping models are near to viscous damping and the detailed difference in their

functional behaviour does not influence the results significantly. In summary, we can say that

when the time constant for a damping model is small the proposed identification method works

quite well regardless of the functional form of the damping mechanism. The spatial location of

damping is revealed clearly, and whether it is locally or non-locally reacting. Modal truncation

blurs the results, but does not invalidate the identification process.

5.4.2 Results for Largerγ

Whenγ is larger the two non-viscous damping models depart from the viscous damping model,

each in its own way. For the valueγ = 0.5, Figure5.7 shows the result of running the fitting

procedure for damping model 1 (equation (5.17)) with locally-reacting damping and the full set of

modes, similar to Figure5.2. Figure5.8 shows the corresponding fitted viscous damping matrix

C for damping model 2 (equation (5.18)). In both cases it may be noted that although we have
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Figure 5.6: Modal Q-factors,γ = 0.02, damping model 2

started with a locally reacting damping model, which means the matrix is non-zero only along the

diagonal, the non-zero values in the off-diagonal terms show that the fitted viscous damping is, in a

sense, not locally reacting. Nevertheless, the spatial distribution of the damping is well identified,

and perhaps one might be able to guess that the underlying mechanism was locally-reacting from

the fact that the significantly non-zero elements all have positive values, with a clear peak centered

on the diagonal of the matrix. This remark remains true even for larger values ofγ. We give just

one example: Figure5.9shows the fitted dissipation matrix forγ = 2. Most of the matrix elements

are now significantly non-zero, but the pattern shows the same general features as Figure5.7. The

high values, along the main diagonal of the matrix, still correctly identify the spatial distribution

of the damping.

Figures5.10,5.11show the fitted results corresponding to Figures5.7,5.8, using the non-local

damping model. Similar remarks can be made as for the locally-reacting case. The spatial distri-

bution of the damping is revealed quite clearly and correctly. The non-local nature of the damping

is hinted at by the strong negative values on either side of the main diagonal of the matrix. In both

cases, there is an obvious echo of the pattern seen in Figure5.5and equation (5.15).

To give a different insight into the behaviour of the various damping models it is useful to see

the pattern of modal damping factors. In Figure5.12, the modal Q-factors are plotted for the two

damping models withγ = 0.5, in the local-reacting case. Figure5.13shows the corresponding

results for the non-locally reacting case. For locally-reacting damping the Q-factors rise with mode

number, for both damping models. For the non-local case the Q-factors fall initially. For damping

model 1 and these particular parameter values the Q-factors are then approximately constant, while
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Figure 5.7: Fitted viscous damping matrix for the local case,γ = 0.5, damping model 1
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Figure 5.8: Fitted viscous damping matrix for the local case,γ = 0.5, damping model 2

for damping mode 2 they rise again after a while, reaching very high values at high mode numbers.

In terms of physical plausibility, damping model 1 in the non-local configuration gives the closest

match to the common practical experience that modal damping factors are approximately constant.

However, physical plausibility is not a major issue here, where the aim is to test the procedure

under a wide range of circumstances.
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Figure 5.9: Fitted viscous damping matrix for the local case,γ = 2.0, damping model 1
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Figure 5.10: Fitted viscous damping matrix for the non-local case,γ = 0.5, damping model 1

To judge the numerical accuracy of the fitted viscous damping it is useful to reconstruct transfer

functions. It is easy to do this, by inverting the dynamic stiffness matrix using the fitted viscous

damping matrix. A typical transfer functionHkj(ω), for k = 11 andj = 24 is shown in Figure

5.14, based on locally-reacting damping using damping model 1. It is clear that the reconstructed

transfer function agrees well with the original one. This is to be expected: the fitting procedure
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Figure 5.11: Fitted viscous damping matrix for the non-local case,γ = 0.5, damping model 2

outlined in the previous section is exact, within the the approximations of the small-damping per-

turbation theory, provided the full set of modes is used. The full set of poles and their residues are

correctly reproduced — this is the essential contrast between this approach and one which fits only

proportional damping, for which the poles can be correct but the residues cannot (because they will

be real, not complex). This result has a far-reaching implication: an incorrect damping model (the

fitted viscous damping) with a different spatial distribution from the true locally-reacting model

can reproduce accurately the full set of transfer functions. This means that by measuring transfer

functions it is not possible to identify uniquely the governing mechanism.

However, it should be noted that in all cases of Figures5.7−5.11the fitted damping matrix is

not symmetric. This is, in some sense, a non-physical result. In view of this non-symmetry, it is

interesting to check the reciprocity of the transfer functions. In Figure5.14the reciprocal transfer

functionHjk(ω) is also plotted, as a dashed line. It is not visible as a separate line in the figure,

because it matchesHkj(ω) to good accuracy. This plot demonstrates that the non-symmetry of

the fitted viscous damping in the spatial coordinate does not necessarily affect the reciprocity of

the transfer functions. Instead, we should regard non-symmetry of a fitted dissipation matrix as

evidence that the true damping model is not viscous. To obtain a correct physical description of

the damping, a non-viscous model should be fitted instead. This idea is developed in Chapter6.
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Figure 5.12: Modal Q-factors for the local case,γ = 0.5
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Figure 5.13: Modal Q-factors for the non-local case,γ = 0.5
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5.5 Conclusions

In this chapter a method has been proposed to identify a non-proportional viscous damping matrix

in vibrating systems. It is assumed that damping is light so that the first order perturbation method

is applicable. The method is simple, direct, and compatible with conventional modal testing proce-

dures. The complex modes and natural frequencies are used, but the method does not require either

the full set of modal data, or any knowledge of the mass and stiffness matrices. The validity of the

proposed method has been explored by applying it to simulated data from a simple test problem,

in which a linear array of spring-mass oscillators is damped by non-viscous elements over part of

its length.

Numerical experiments have been carried out with a wide range of parameter values and dif-

ferent damping models. The main features of the results have been illustrated by two particular

damping models and representative parameter values. It has been shown that the method generally

predicts the spatial location of the damping with good accuracy, and also gives a good indication of

whether the damping is locally-reacting or not. Whatever the nature of the fitted damping matrixC,

the transfer functions obtained from the fitted viscous damping agree well with the exact transfer

functions of the simulated system. Reciprocity of the transfer functions remains preserved within

an acceptable accuracy although in some cases the fitted viscous dampingC is not symmetric.

Symmetry breaking of the fitted viscous damping matrixC depends on the value of the char-

acteristic time constantsθ of the damping model, defined by equation (5.19). Whenθ is short

compared with the natural periods of the vibration, the damping is effectively viscous and the fit-

ting procedure gives a physically-sensible symmetric matrix. Whenθ is larger, though, the memory

of the damping function influences the detailed behaviour. Although the poles and residues of the
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transfer functions can still be fitted accurately with a model of viscous form, the underlying non-

viscous behaviour manifests itself in a non-symmetrical matrix. If a correct physical description of

the damping mechanism is needed, then a suitable non-viscous model must be selected and fitted.

We take up this question in Chapter6.
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Chapter 6

Identification of Non-viscous Damping

6.1 Introduction

Linear systems must generally be expected to exhibit non-viscous damping. In the last chapter

it was shown that when a system is non-viscously damped, it is possible to fit a viscous damp-

ing model to the set of measured transfer functions but that the fitted damping matrix will be

non-symmetrical. The fitted model may also be misleading in other ways: for example it may

predict the wrong spatial distribution of damping over the structure. Of course,a priori selection

of viscous damping in the identification procedure rules out any possibility of recognizing other

damping behaviour present in the structure. In this chapter we consider the identification of certain

non-viscous damping models in the context of general multiple degrees-of-freedom linear systems.

A key issue in identifying non-viscous damping is to decide on an appropriate damping model

to consider. A brief review on available damping models may be found in Section1.2. There have

been detailed studies of material damping and of specific structural components.Lazan (1968),

Bert (1973) andUngar (1973) have given excellent accounts of different mathematical methods

for modelling damping in (solid) material and their engineering applications. The book byNashif

et al.(1985) presents more recent studies in this area. Other than material damping a major source

of energy dissipation in a vibrating structure is the structural joints. Here, energy loss can take

place through air-pumping and local frictional effects. The air-pumping phenomenon is associated

with air trapped in pockets in the vicinity of a vibrating surface. In these situations, the air is

squeezed in and out through any available gap, leading to viscous dissipation of energy. Damping

behaviour associated with joints has been studied by many authors. For exampleEarls (1966) has

obtained the energy dissipation in a lap joint over a cycle under different clamping pressure.Beards

and Williams (1977) have noted that significant damping can be obtained by suitably choosing the

fastening pressure to allow some interfacial slip in joints. In many cases these damping mecha-

nisms turn out be locally non-linear, requiring an equivalent linearization technique for a global

analysis (Bandstra, 1983). These studies provide useful physical insights into damping mecha-

nisms, but due to their very specific nature it is not possible to formulate a general procedure for

identification of such mechanisms by simple vibration measurement.

95
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In Section1.6 it was pointed out that methodologies of identification of non-viscous damping

in the context of general MDOF systems is not well developed.Banks and Inman (1991) have

proposed a somewhat general approach for identification of non-viscous damping models in Euler-

Bernoulli beams. They have considered four different models of damping: viscous air damping,

Kelvin-Voigt damping, time hysteresis damping and spatial hysteresis damping, and used a spline

inverse procedure to form a least-square fit to the experimental data. It was observed that the spatial

hysteresis model combined with a viscous air damping model gave the best quantitative agreement

with the experimental time histories. A procedure for obtaining hysteretic damping parameters in

free-hanging pipe systems is given byFang and Lyons (1994). Assuming material damping to be

the only source of damping they have given a theoretical expression for the loss factor of then-th

mode. The system-specific nature of these methods means that they cannot be extended in a simple

way to more general multiple degrees-of-freedom systems.

In Section1.2.3it was mentioned that convolution integral models are most general class of

linear non-viscous damping models in the context of multiple degrees-of-freedom systems. In

Chapter3 it was shown that such damping models can be handled in a very similar way to viscous

models. These results motivate us to develop procedures for identification this type of general

damping models from standard vibration testing data. A wide variety of mathematical expressions,

as shown in Table1.1, could be used for the kernel functions. Of these, the exponential function

seems a particularly promising candidate.Cremer and Heckl (1973) have written ‘Of the many

after-effect functions that are possible in principle, only one — the so-called relaxation function

— is physically meaningful.’ They go on to give a physical justification for this model, by which

they mean the exponential case. The argument applies most convincingly to the case of material

damping, rather than joint damping. An alternative mathematical rationalization can be given

in terms of exponential contributions from the poles of frequency-response functions when the

Fourier transform is inverted (seeMuravyov, 1997). With this motivation, we concentrate here on

fitting exponential damping models to vibration data.

The analysis in this chapter is restricted to linear system behaviour and it is assumed that the

damping is light. In Section6.2 we outline the expressions of complex frequencies and modes

based on the first-order perturbation method when the system is non-viscously damped. Using

these perturbation results, a method for identification of non-viscous damping models using com-

plex modes and natural frequencies is proposed. We assume that the mass matrix of the structure

is known — either directly from a finite element model or by means of modal updating based on

experimental measurements. Having the mass matrix we try to identify an exponential damping

model consistent with the measured complex modes. In Section6.3 a procedure to obtain there-

laxation parameterof an exponential damping model is outlined. Identification of the associated

damping coefficient matrixis discussed in Section6.5. The proposed method is illustrated using

simulated numerical examples directly comparable to those in the last chapter. Finally Section6.6

summarizes the main findings of this chapter.



6.2. Background of Complex Modes 97

6.2 Background of Complex Modes

Dynamics of non-viscously damped systems has been discussed in details in Chapter3. As men-

tioned earlier, only elastic modes will be considered because non-viscous modes are not measur-

able within the scope of traditional modal analysis. Thus, in the context of non-viscously damped

systems ‘complex modes’ implies complex elastic modes. Expressions of complex modes can be

obtained from the analysis presented in Section3.2.1. One special case of this general analysis in

considered in Section3.2.3when the damping is lightly non-proportional. In this section we con-

sider a further special case when the damping is light so that the first-order perturbation method

can be applied. First-order perturbation results can be obtained from the results in Section3.2.3as

follows.

Supposeλj, zj is j-th complex natural frequency and and complex mode shape. In the context

of the notations used in Section3.2.3, sj = iλj. Using this, from equation (3.33) approximate

expression for the complex natural frequencies can be obtained as

λj ≈ ±ωj + iG′
jj(±ωj)/2 (6.1)

whereG′
kl(ωj) = xT

k G(ωj)xl is the frequency dependent damping matrix expressed in normal

coordinates andG(ω) is the Fourier transform of the matrix of kernel functionsG(t). Since the

inverse Fourier transform ofG(ω) must be real it must satisfy the conditionG(−ω) = G(ω)∗,

where(•)∗ denotes complex conjugation. It follows that the eigenvalues of the generally damped

system appear in pairsλ and−λ∗ (unlessλ is purely imaginary). The first-order approximate

expression for the complex eigenvectors can be obtained as a special case of equation (3.35). The

result is

zj ≈ xj + i
N∑

k=1
k 6=j

ωjG
′
kj(ωj)

(ω2
j − ω2

k)
xk. (6.2)

Equations (6.1) and (6.2) were first obtained byWoodhouse (1998). Note that the eigenvectors

also appear in complex conjugate pairs. Since in generalG′
kj(ωj) will be complex, in contrast to

the viscously damped case the real part of complex natural frequencies and complex mode shapes

do not coincide with the undamped ones. This fact will complicate the problem of fitting model

parameters to experimental complex modes.

It is natural to consider first the idealized problem in which just one relaxation function is used

for identification purposes. In that case the general form of the kernel function in equation (3.1)

reduces to

G(t) = C g(t) (6.3)

whereg(t) is some damping function andC is a positive-definite coefficient matrix. The admissible

form of g(t) is restricted by the condition of non-negative energy loss given in equation (1.33). The

damping model in equation (6.3) is physically realistic if the real part of the Fourier transform of

the kernel function is non-negative within the driving frequency range, that is<[G(ω)] ≥ 0,∀ω.
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This can be easily shown. Rewriting equation (1.33) in the frequency domain and using (6.3), the

rate of energy dissipation can be expressed as

F (ω) =
ω2

2
<
{

q̄∗
T

C q̄G(ω)
}

(6.4)

where<(•) represents the real part of(•) andF (ω), q̄ andG(ω) are the Fourier transform ofF(t),

q(t) andg(t) respectively. For a physically realistic model of damping we must have

F (ω) ≥ 0

or
ω2

2
<
{

q̄∗
T

C q̄G(ω)
}
≥ 0

or <{G(ω)} ≥ 0

(6.5)

since for a real value of driving frequencyω2 ≥ 0 andq̄ can be chosen in a way that<
{

q̄∗
T
C q̄
}
≥

0 asC is positive definite.

6.3 Fitting of the Relaxation Parameter

As has been mentioned earlier, from the wide range of non-viscous damping models the exponen-

tial function seems a particularly good candidate. It satisfies the condition (6.5) at all frequencies.

In this section we outline a general method to fit the relaxation parameter of an exponential damp-

ing model using measured modal data.

6.3.1 Theory

We assume that the damping has only one relaxation function, so that the matrix of kernel functions

is of the form

G(t) = µe−µt C (6.6)

whereµ is the relaxation parameter andC is the associated coefficient matrix. The factorµ serves

to normalize the kernel function: see Section6.3.2. Complex natural frequencies and mode shapes

for systems with this kind of damping can be obtained from equations (6.1) and (6.2). In view of

the expression for damping given in equation (6.6) it is easy to see that the termG′
kj(ωj) appearing

in these equations can be expressed as

G′
kj(ωj) =

µ

µ + iωj

C ′
kj =

[
µ2

µ2 + ω2
j

− i
µωj

µ2 + ω2
j

]
C ′

kj (6.7)

whereC ′
kj = xT

k Cxj. Using this expression in equation (6.1), thej-th complex natural frequency

is given by

λj ≈ ωj + i
C ′

jj

2

[
µ2

µ2 + ω2
j

− i
µωj

µ2 + ω2
j

]
. (6.8)
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Similarly from equation (6.2) thej-th complex mode can be expressed as

zj ≈ xj +
N∑

k=1
k 6=j

µωj

(µ2 + ω2
j )

ωjC
′
kj

(ω2
j − ω2

k)
xk + i

N∑
k=1
k 6=j

µ2

(µ2 + ω2
j )

ωjC
′
kj

(ω2
j − ω2

k)
xk. (6.9)

Suppose that̂λj and ẑj for j = 1, 2, · · ·m are themeasuredcomplex natural frequencies and

modes. Write

ẑj = ûj + iv̂j. (6.10)

Here ẑj ∈ CN where N denotes the number of measurement points on the structure and the

number of modes considered in the study ism. In generalm 6= N , usually N ≥ m. Assume

that x̂j ∈ RN are theundamped modesandµ̂ is the relaxation parameter to be estimated from the

experiment. In order to fit a damping model of the form (6.6), equations (6.8) and (6.9) must be

valid in conjunction with the experimental measurementsλ̂j andẑj. As an initial approximation

we may suppose the real part of the complex natural frequencies to be the same as the undamped

natural frequencies:

ω̂
(0)
j = <

(
λ̂j

)
. (6.11)

For most practical cases it turns out that the above value ofω̂
(0)
j is sufficiently accurate to carry out

further analysis. However, we present later an iterative method which may be used to update the

value ofω̂j and remove the need for this approximation (see Section6.5.2for details).

In view of equations (6.9) and (6.10) and considering that onlym modes are measured, sepa-

rating real and imaginary parts ofûj gives

ûj = <(ẑj) ≈ x̂j +
m∑

k=1
k 6=j

Ãkjx̂k; where Ãkj =
µ̂ω̂j

(µ̂2 + ω̂2
j )

Bkj (6.12)

and

v̂j = =(ẑj) ≈
m∑

k=1
k 6=j

B̃kjx̂k; where B̃kj =
µ̂2

(µ̂2 + ω̂2
j )

Bkj. (6.13)

Here the unknown constantsBkj are defined as

Bkj =
ω̂jC

′
kj

ω̂2
j − ω̂2

k

. (6.14)

It may be noted that in addition toBkj, the relaxation constant̂µ and the undamped modesx̂k are

also unknown. Combining equations (6.12) and (6.13) one can write

ûj = x̂j +
ω̂j

µ̂
v̂j. (6.15)

From the preceding equation it is clear that ifµ̂ � ω̂j, thenûj → x̂j. This implies that when

the damping mechanism is near to viscous, the real part of each complex mode tends towards
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the corresponding undamped mode. Since the undamped modes are orthonormal with respect to

the mass matrix, from equation (6.13) it may be observed that the imaginary part of each complex

modev̂j is M-orthogonal to its corresponding undamped mode so thatv̂T
j M x̂j = 0. Premultiplying

equation (6.15) by v̂T
j M one can write

v̂T
j M ûj = v̂T

j M x̂j +
ω̂j

µ̂
v̂T

j M v̂j (6.16)

Now use of the orthogonality property ofv̂j andx̂j leads to

µ̂j =
ω̂jv̂

T
j M v̂j

v̂T
j M ûj

. (6.17)

We have used the notation̂µj because for different choices ofj on the right hand side one will

in general obtain different values ofµ̂. If in practice one obtained very similar values, this would

confirm the initial assumption that the actual system has only one relaxation time. On the other

hand, if significantly different values are obtained it would indicate that the assumed model needs

to be extended. We show shortly that the pattern of variation ofµ̂j can give some clues about the

true underlying model. If one wished to choose a single value ofµ̂ to best represent a range of

values found by this procedure, one could consider several alternatives:

1. Simply selecta value ofj, sayj = k ≤ m, to obtainµ̂. For this choice

µ̂ =
ω̂kv̂

T
k M v̂k

v̂T
k M ûk

. (6.18)

How to select the value ofk will be discussed in the next subsection.

2. Average the realizations of̂µ. For this choice

µ̂ =
1

mµ

mµ∑
j=1

ω̂jv̂
T
j M v̂j

v̂T
j M ûj

. (6.19)

wheremµ ≤ m are the number of terms to be retained.

3. Sum the numerator and denominator separately and take their ratio to obtainµ̂. For this

choice

µ̂ =

∑mµ

j=1 ω̂jv̂
T
j M v̂j∑mµ

j=1 v̂T
j M ûj

. (6.20)

We can best illustrate via a numerical example.

6.3.2 Simulation Method

Numerical studies have been carried out using simulated systems identical to those used in Chapter

5. Figure6.1shows the model systems together with the numerical values used. For these param-

eter values the resulting undamped natural frequencies range from near zero to approximately 200
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Hz. The damping elements are associated with masses between thes-th and(s + l)-th (N = 30,

s = 8 and(s + l) = 17 are taken for the numerical calculations). For the system shown in Fig-

ure6.1(a) the damping force depends only on the absolute motion of the individual masses. Such

damping will be described as ‘locally reacting’. For the system shown in Figure6.1(b), by con-

trast, dissipative elements are connected between certain adjacent pairs of masses. In this case

the damping force depends on the relative motion of the two adjacent masses, and will be called

‘non-locally reacting’. In the previous chapter, a viscous damping matrix was calculated from the

complex modes and frequencies of these systems. Here we seek to identify the parameters of an

exponential damping model using the same modal data.

(a)

(b)

m

. . .

. . .

uk uk um
uk um uk um uk

um
ukum

ukum
ukuk

g(t)

g(t)

g(t)

um uk

u

Figure 6.1: Linear array ofN spring-mass oscillators,N = 30, mu = 1 Kg, ku = 4× 103N/m.

The dissipative elements shown in Figure6.1 are taken to be linear non-viscous dampers so

that the equations of motion are described by (5.16). Three damping models, two of which were

considered in5, are used: one with an exponential kernel function as assumed in the model being

fitted, and two others with different functions to probe the limitations of the fitting procedure. They

are determined by three different forms ofg(t) (defined in equation (6.3)):

• MODEL 1 (exponential):

g(1)(t) = µ1e
−µ1t (6.21)

• MODEL 2 (Gaussian):

g(2)(t) = 2

√
µ2

π
e−µ2t2 (6.22)
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• MODEL 3 (double exponential or GHM):

g(3)(t) =
β1µ3e

−µ3t + β2µ4e
−µ4t

β1 + β2

(6.23)

All the three damping models are normalized such that the damping functions have unit area when

integrated to infinity,i.e., ∫ ∞

0

g(j)(t) dt = 1. (6.24)

This will make them directly comparable with the viscous model, in which the corresponding

damping function would be a unit delta function,g(t) = δ(t), and the coefficient matrixC would

be the usual dissipation matrix. For each damping function acharacteristic time constantcan be

defined via the first moment ofg(j)(t):

θ(j) =

∫ ∞

0

t g(j)(t) dt. (6.25)

For the three damping models considered here, evaluating this integral gives

θ(1) =
1

µ1

(6.26)

θ(2) =
1
√

πµ2

(6.27)

θ(3) =
β1/µ3 + β2/µ4

β1 + β2

. (6.28)

Note that for viscous dampingθ = 0. The characteristic time constant of a damping function gives

a convenient measure of ‘width’: if it is close to zero the damping behaviour will be near-viscous,

and vice versa. For comparability between the three damping models we take them all to have the

same time constant.

Complex natural frequencies and modes of the systems are calculated using equations (6.1)

and (6.2), then these are treated as if they were experimental data obtained from a modal testing

procedure. The procedures described above can be applied to identify the relaxation parameter

of an exponential damping model. We present results of the fitting procedure for both small and

large values of the characteristic time constant, expressed in non-dimensional form as given by

equation (5.20). Whenγ is small compared with unity the damping behaviour can be expected to

be essentially viscous, but whenγ is of order unity or bigger non-viscous effects are likely to be

significant.

6.3.3 Numerical Results

Results for Smallγ

We consider firstγ = 0.02, so that damping models show near-viscous behaviour. Since the

viscous model is a special case of the exponential model we might expect good fit quality in this
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case. For the system shown in Figure6.1(a) with locally reacting damping, Figure6.2 shows the

values ofγ̂ obtained fromµ̂ (recall thatγ̂ = 1
Tminµ̂

) for all j = 1, · · · , 30 for Gaussian damping

(model 2). In the same Figure the values ofγ̂ corresponding to equations (6.19) and (6.20) using

mµ = 30 are also shown. Because the damping mechanism is near to viscous the fitted values of

γ̂ are quite small, and in fact agree well with the assumedγ = 0.02 for all values ofj. To obtain

a single ‘best’ value any one of the three relationships in equations (6.18) – (6.20) could be used.

Similar features were observed (results not shown) when the fitting procedure was repeated for the

non-locally damped case shown in Figure6.1(b).
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Figure 6.2: Values ofγ̂ obtained from different̂µ calculated using equations (6.18)–(6.20) for the
local case, damping model 2

Now we turn our attention to the systems with double exponential damping model (model 3).

It is supposed that the two exponential functions combine to give a valueγ = 0.02. In this case

we considerβ1 = 0.5, γ3 = 0.01 andβ2 = 0.5, γ4 = 0.03. Values ofγ̂ obtained for different

modes for the locally reacting case with this damping model is shown in Figure6.3. In the same

figure we also show the values ofγ̂ corresponding to equation (6.19) and (6.20). Again, as in the

case of damping model 2 discussed above, the fitted values ofγ̂ are all very close to the correct

valueγ = 0.02. The only difference from the previous case is that values now decrease slightly

with j rather than increasing. Similar features were observed (results not shown) when the fitting

procedure is extended to non-locally damped systems with damping model 3. We conclude that,

when the damping is near to viscous, regardless of the functional form or damping type, the fitting

procedure gives a good estimate of the damping time constant and that any one of the relationship

in equations (6.18) – (6.20) may be used to obtain the ‘best’ relaxation parameter.
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Figure 6.3: Values ofγ̂ obtained from different̂µ calculated using equations (6.18)–(6.20) for the
local case, damping model 3

Results for Larger γ

Whenγ is larger the three damping models depart more strongly from the viscous damping model

each in its own way. Also, model 1, which is used for fitting purpose, differ form the other two

damping models. We show typical results for the caseγ = 0.5. When the fitting procedure is

run for damping model 1, the calculation correctly reproduces the assumedγ value for all modes

because the model being fitted is precisely the one assumed by the theory. This confirms the

accuracy of the computer coding, but nothing further is to be learnt from displaying the results.

Figure 6.4 shows the values of̂γ obtained for each mode for damping model 2 applied to the

locally reacting system. The value ofγ̂ now vary considerably withj. This indicate, of course,

that the assumption of a single kernel is not correct for this system. As will be discussed shortly,

the variation of̂γ with j gives some clue as to the correct form of the kernel function. Estimates

of γ̂ obtained from equations (6.19) and (6.20) usingmµ = 30 are also shown in Figure6.4. Both

these estimates are higher than the value ofγ used for simulation and also the estimate obtained

using equation (6.19) is higher than that obtained using equation (6.20). Observe that the value

of γ̂ obtained using equation (6.18) with k = 1 (marked by a *) is very close to the value of the

original γ used in the simulation. An explanation of this behaviour is given in Section6.4. It is

shown there that under rather general circumstances, a value ofγ̂ obtained from equation (6.18)

with k = 1 is likely to be a good estimate of the correct characteristic time constant defined via

the first moment as in equation (5.20). Results for the non-local case are shown in Figure6.5. A

similar trend is seen to that in Figure6.4. In this figure also we observe that the value ofγ̂ obtained
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from equation (6.18) with k = 1 (marked by a *) is very close to the value of the originalγ while

those obtained from equations (6.19) and (6.20) differ significantly from the original one. Also

observe that estimates ofγ̂ obtained from the two former equations are higher than the simulated

value for both the local and nonlocal systems. However, unlike the case of Figure6.4, here the

value ofγ̂ obtained from equation (6.19) is lower than that obtained using equation (6.20).

0 5 10 15 20 25 30
10

10
0

10
1

10
2

Mode number

O
rig

in
al

 a
nd

 fi
tte

d 

Fitted  for different modes             
Fitted using Eq. (6.19), 

fit
= 1.5642 

Fitted using Eq. (6.20), 
fit

= 0.63666

Original  = 0.5                         

Figure 6.4: Values ofγ̂ obtained from different̂µ calculated using equations (6.18)–(6.20) for the
local case, damping model 2

Now consider damping model 3, consisting of two exponential functions. For the numerical

values we take:β1 = 0.5, γ3 = 0.2 andβ2 = 0.5, γ4 = 0.8. This results an equivalentγ for the

model of0.5, the same as for damping model 2 discussed above. Figure6.6shows the values of̂γ

obtained for each mode for this damping model applied to the locally reacting system. This time

γ̂ decreases withj, in contrast to the Gaussian case. The range of variation is less dramatic, but

still significant. Observe that, as with damping model 2, the value ofγ̂ obtained from equation

(6.18) with k = 1 (marked by a *) is very close to the value of the originalγ used in the simulation

while that obtained from equations (6.19) and (6.20) differ significantly from the original one.

However, unlike the case of damping model 2, here the estimates ofγ̂ obtained from the two former

equations are lower than the simulated value. Behaviour analogous to this was also observed when

the identification procedure is repeated for the nonlocally damped system.

6.4 Selecting the Value of̂µ

From equations (6.18) – (6.20) it is clear that different choices ofj yield different values of̂µ,

which contradicts our initial assumption that the system has only one relaxation time. Here it
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Figure 6.5: Values ofγ̂ obtained from different̂µ calculated using equations (6.18)–(6.20) for the
non-local case, damping model 2
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Figure 6.6: Values ofγ̂ obtained from different̂µ calculated using equations (6.18)–(6.20) for the
local case, damping model 3

will be shown that for systems with normalized damping functions similar to equations (6.21) and

(6.22) the best estimate of̂µ is given by equation (6.18) with k = 1.

Since the damping functions are normalized to have unit area when integrated to infinity they
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can be written in the form

g(t) = β f(t); where β =
1∫∞

0
f(t)dt

. (6.29)

The characteristic time constant is obtained from equation (6.25) as

θ =

∫∞
0

t f(t)dt∫∞
0

f(t)dt
. (6.30)

It is useful to express this result in the frequency domain. From the definition of the Fourier

transform

F (ω) =

∫ ∞

0

f(t)e−iωtdt, (6.31)

differentiating with respect toω we have

F ′(ω) =
dF (ω)

dω
=

∫ ∞

0

−itf(t)e−iωtdt. (6.32)

From equations (6.31) and (6.32) it is clear that

F (0) =

∫ ∞

0

f(t)dt

and iF ′(0) =

∫ ∞

0

t f(t)dt

(6.33)

so that from equation (6.30) the characteristic time constant may be represented as

θ =
iF ′(0)

F (0)
. (6.34)

Substitutingg(t) from (6.29) and taking the Fourier transform of equation (6.3) one obtains

G(ω) = C βF (ω) = C β [FR(ω) + iFI(ω)] (6.35)

where

F (ω) = FR(ω) + iFI(ω) (6.36)

whereFR and FI are respectively the real and imaginary parts ofF . Using thisG(ω) in the

approximate expression for the complex modes in equation (6.2) and separating real and imaginary

parts we have

uj = <(zj) ≈ xj − ωjβFI(ωj)
N∑

k=1
k 6=j

C ′
kj

(ω2
j − ω2

k)
xk (6.37)

and

vj = =(zj) ≈ ωjβFR(ωj)
m∑

k=1
k 6=j

C ′
kj

(ω2
j − ω2

k)
xk. (6.38)
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From the above two equations it is easy to see that

uj = xj −
FI(ωj)

FR(ωj)
vj (6.39)

It has been mentioned thatv̂j is M-orthogonal to its corresponding undamped mode,i.e., v̂T
j M x̂j =

0. Using this relationship in equation (6.39) we have

vT
j Mu j = −FI(ωj)

FR(ωj)
vT

j Mv j or
vT

j Mu j

vT
j Mv j

= −FI(ωj)

FR(ωj)
(6.40)

From this equation the expression forµ̂ may be rewritten as

µ̂ = − ω̂jFR(ω̂j)

FI(ω̂j)
. (6.41)

For the exponential function we have shown that the characteristic time constantθ = 1/µ.

Thus using equation (6.34) one has

µ =
1

θ
=
−iF (0)

F ′(0)
. (6.42)

This is an exact relationship. We now show why equation (6.41) is a good approximation to

equation (6.42) whenωj is small. Sincef(t) is a real functionF (ω) can be expanded as a real

polynomial in(iω). Thus

F (ω) = F (0) + (iω)F (1) +
(iω)2

2!
F (2) + · · · (6.43)

where allF (k) are real. From this expansion we obtain

F (0) = F (0)

F ′(0) = iF (1)
(6.44)

Now consider the case whenω is small. For this case the higher order terms in series (6.43) can be

neglected to obtain

F (ω) ≈ F (0) + iωF (1). (6.45)

Comparing above with equation (6.36) and in view of (6.44) one has

FR(ω) ≈ F (0) = F (0)

and FI(ω) ≈ ωF (1) = −iωF ′(0).
(6.46)

Substituting in equation (6.42) we obtain

µ ≈ −ωFR(ω)

FI(ω)
when ω → 0. (6.47)

This result is immediately comparable with the expression ofµ̂ in (6.41). Observe that̂ωj is closest

to zero whenj = 1. For this reason the best estimate ofµ̂ can be obtained by choosingj = 1 in

(6.41). From equation (6.40) this in turn implies that

µ̂ ≈ − ω̂1FR(ω̂1)

FI(ω̂1)
=

ω̂1v̂
T
1 M v̂1

v̂T
1 M û1

. (6.48)
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6.4.1 Discussion

It should be noted that for all the cases in Figures6.2, 6.4, 6.5 and Figures6.3, 6.6 the values of

γ̂ evaluated for each mode show opposite trend: for system with damping model 2 the values ofγ̂

increases with increase of the mode numberj whereas for system damping model 2 the values ofγ̂

decreases with increase of the mode number. This behaviour can give us further insight regarding

the underlying damping function. Recall that after obtaining the complex modes and frequencies

and having the mass matrix it is possible to obtainγ̂ for different modes:

γ̂j =
1

Tminµ̂j

(6.49)

whereµ̂j is given by equation (6.17). Because by equation (5.20) we know that̂γj is proportional

to θ̂j it is sufficient if we understand the behaviour of the fittedθ̂j. Using the expression of̂µj in

equation (6.41) one can expresŝθj as

θ̂j =
1

µ̂j

= − FI(ω̂j)

ω̂jFR(ω̂j)
(6.50)

whereFR andFI are respectively the real and imaginary parts ofF , the Fourier transform of the

(non-normalized) damping functionf(t) as defined in equation (6.29). Multiplying the numerator

and denominator of equation (6.50) by the normalization constantβ, the fittedθ̂j can be expressed

in a more convenient form as

θ̂j = − GI(ω̂j)

ω̂jGR(ω̂j)
. (6.51)

HereG(ω), the Fourier transform of the normalized damping functiong(t), is defined as

G(ω) =

∫ ∞

0

g(t)e−iωtdt. (6.52)

Expandinge−iωt in the above expression gives

G(ω) =

∫ ∞

0

g(t)

[
1− iωt− ω2t2

2!
+

iω3t3

3!
− · · ·

]
dt

=M0 − iωM1 −
ω2

2
M2 +

iω3

6
M3 − · · ·

(6.53)

whereMk, thek-th moment of the damping functiong(t), is defined as

Mk =

∫ ∞

0

tkg(t)dt; k = 0, 1, 2, · · · (6.54)

For the three damping functions considered here in equations (6.21) – (6.22) the exact expressions

for thek-th moment may be obtained as follows:

• MODEL 1:

Mk = k! µ−k
1 ; k = 0, 1, 2, · · · (6.55)
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• MODEL 2:

M2k =
(2k − 1)!!

2µk
2

; M2k+1 =
k!√
π

µ
−(k+1/2)
2 ; k = 0, 1, 2, · · · (6.56)

• MODEL 3:

Mk =
β1 k! µ−k

3 + β2 k! µ−k
4

β1 + β2

; k = 0, 1, 2, · · · (6.57)

Clearly, for all the damping functionsMk > 0∀k. In Figure6.7 the first 6 moments of the three

damping functions considered here are plotted whenγ = 0.5. It is clear that although allMk > 0

their values approach zero ask increases. This ensures that omission of the higher order terms

in equation (6.53) do not introduce much error for low values ofω. Now separating real and

imaginary parts ofG(ω) in equation (6.53) one has

GR(ω) = < [G(ω)] ≈M0 −
ω2

2
M2

GI(ω) = = [G(ω)] ≈− ωM1 +
ω3

6
M3.

(6.58)

Using these relationships, from equation (6.51) the value of̂θ at any frequency can be obtained as
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Figure 6.7: First six moments of the three damping functions forγ = 0.5

θ̂(ω) ≈ −
−ωM1 +

ω3

6
M3

ω

(
M0 −

ω2

2
M2

) =
M1 −

ω2

6
M3

M0 −
ω2

2
M2

. (6.59)
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From this we can further deduce

θ̂(ω) ≈

{
M1 −

ω2

6
M3

}
M0

{
1 +

ω2

2

(
M2

M0

)
+

ω4

4

(
M2

M0

)2

+ · · ·

}
(6.60)

Sinceω is small andM0 >M2, higher order terms arising in this expression will be small. Thus,

neglecting all the terms associated with higher power thanω2 we obtain

θ̂(ω) ≈

{
M1 −

ω2

6
M3

}
M0

{
1 +

ω2

2

M2

M0

}

≈
M1 + ω2

{
1

2

M1M2

M0

− M3

6

}
M0

(6.61)

The variation of the fittedθj in the low frequency region can now be deduced. The curve of fitted

θj will increase, as for the system with damping model 2 shown in Figures6.2, 6.4and6.5, if

M1M2

M0

− M3

3
> 0; since ω,M0 > 0

or 3
M2

M3

− M0

M1

> 0.

(6.62)

Currently the curve of fittedθj will decrease if the above quantity is negative. This analysis gives

some insight into the nature of the underlying damping function. Using the expressions for the mo-

ments given by equations (6.55) – (6.57) it may be verified that the damping functions considered

here always satisfy this condition.

6.5 Fitting of the Coefficient Matrix

6.5.1 Theory

Once the relaxation parameter of the damping function is estimated our next step is to obtain

the coefficient matrixC associated with the damping function as shown in equation (6.6). After

obtainingµ̂, from the imaginary part of equation (6.8) the diagonal entries ofC′ can be obtained

as

C ′
jj = 2=(λ̂j)

(µ̂2 + ω̂2
j )

µ̂2
. (6.63)

This C ′
jj andµ̂ can be substituted in equation (6.8) and subsequently an improved estimate value

of ω̂j may be obtained from (6.11) by

ω̂
(new)
j = ω̂j +

C ′
jj

2

µ̂ω̂j

µ̂2 + ω̂2
j

. (6.64)

If all the ω̂
(new)
j are sufficiently close tôω(0)

j then we take the values of̂ω(new)
j as the estimated

values,i.e., ω̂j = ω̂
(new)
j . Otherwise the process can be repeated by substitutingω̂

(new)
j in place of
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ω̂j in one of the equations (6.18) – (6.20) to obtainµ̂, and subsequently obtaining a new set of

ω̂j from (6.64). This iterative procedure may be continued until the differences between all new

ω̂j and oldω̂j become sufficiently small. We select the final values ofω̂j andµ̂ as our estimated

values.

Now µ̂ can be substituted in equation (6.15) to obtain an estimate of the undamped modes as

x̂j = ûj −
ω̂j

µ̂
v̂j. (6.65)

After obtaining x̂j in this way from equation (6.13), the constants̃Bkj can be derived using

Galerkin error minimization as described in Section5.3. DenotingB̃ ∈ Rm×m as the matrix

of unknownB̃kj one obtains

B̃ =
[
X̂T X̂

]−1

X̂T V̂. (6.66)

where

X̂ = [x̂1, x̂2, · · · x̂m] ∈ RN×m (6.67)

is the matrix of undamped modes. Now the off-diagonal termsC ′
kj can be obtained from

C ′
kj =

(ω̂2
j − ω̂2

k)

ω̂j

(µ̂2 + ω̂2
j )

µ̂2
B̃kj ∀ k, j = 1, · · ·m; k 6= j (6.68)

The diagonal entries ofC′ have already been obtained in (6.63). Recall thatC ′
kj are constant

coefficients of the damping matrix in the modal coordinates, with associated time functione−µ̂t.

The coefficients in the original coordinates can be calculated using the transformation

C =

[(
X̂T X̂

)−1

X̂T

]T

C′
[(

XT X̂
)−1

X̂T

]
∈ Rm×m. (6.69)

This coefficient matrix together with the relaxation parameter completely defines the fitted damp-

ing model for the structure. This fitting procedure has made use only of the complex natural fre-

quencies, mode shapes and mass matrix to identify the best exponential damping model associated

with the measurements.

It is easy to check that when̂µ is large,i.e., when the damping mechanism is near to viscous,

this procedure reduces exactly to the procedure described in the earlier chapter5 for identification

of a viscous damping model. Thus, this method is a generalization of identification of viscous

damping properties to the more general linear damping case described by an exponential model

with a single relaxation time constant. One limitation of this method compared to the identification

method of viscous damping matrix is that an estimate of the mass matrix is required. The extra

information from the mass matrix also enables us to detect whether the correct damping model of

the system is viscous/exponential or not.
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6.5.2 Summary of the Identification Method

In summary, the procedure can be described by the following steps:

1. Measure a set of transfer functionsHij(ω) at a set ofN grid points. Fix the number of

modes to be retained in the study, saym. Determine the complex natural frequenciesλ̂j and

complex mode shapeŝzj from the transfer functions, for allj = 1, · · ·m. Denote byẐ =

[ẑ1, ẑ2, · · · ẑm] ∈ CN×m the complex mode shape matrix. SetÛ = <
[
Ẑ
]

= [û1, û2, · · · ûm]

andV̂ = =
[
Ẑ
]

= [v1, v̂2, · · · v̂m].

2. Obtain the first guess (i.e., r = 0) of the ‘undamped natural frequencies’ asω̂
(r)
j = <(λ̂j).

3. Estimate the relaxation parameterµ̂(r) =
ω̂

(r)
1 v̂T

1 M v̂1

v̂T
1 M û1

(or using a different estimate of̂µ

given by equations (6.19) or (6.20)).

4. Calculate the diagonal terms of theC′ matrix asC ′(r)

jj = 2=(λ̂j)
(µ̂(r)2 + ω̂

(r)2

j )

µ̂(r)2
for all j.

5. Obtain new values of the undamped natural frequenciesω̂
(r+1)
j = ω̂

(r)
j +

C ′(r)

jj

2

µ̂(r)ω̂
(r)
j

(µ̂(r)2 + ω̂
(r)2

j )
.

6. Select a value ofε, sayε = 0.001. If |ω̂(r+1)
j − ω̂

(r)
j | < ε∀j thenω̂j = ω̂

(r+1)
j , C ′

jj = C ′(r)

jj

andµ̂ = µ̂(r) and move to the next step. Otherwise increaser, set the final values of̂ωj as

the current values,i.e., ω̂(r)
j = ω̂

(r+1)
j , and go back to step 3.

7. For all j = 1, · · · , m calculate the ‘undamped mode shapes’x̂j =

{
ûj −

ω̂j

µ̂
v̂j

}
. Set

X̂ = [x̂1, x̂2, · · · x̂m] ∈ RN×m.

8. Evaluate the matrix̃B =
[
X̂T X̂

]−1

X̂T V̂.

9. From theB̃ matrix getC ′
kj =

(ω̂2
j − ω̂2

k)

ω̂j

(µ̂2 + ω̂2
j )

µ̂2
B̃kj for k, j = 1, 2 · · ·m; k 6= j.

10. UseC =

[(
X̂TX

)−1

X̂T

]T

C′
[(

X̂T X̂
)−1

X̂T

]
to get the coefficient matrix in physical

coordinates.

It may be observed that even if the measured transfer functions are reciprocal, from this procedure

there is no reason why the fitted coefficient matrixC will always be symmetric. If we indeed detect

a non-symmetricC then it may be guessed that the physical law behind the damping mechanism

in the structure cannot be described by an exponential model. This possibility will be illustrated

by considering numerical examples.
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6.5.3 Numerical Results

Results for Smallγ

Consider firstγ = 0.02 so that all the damping models show near-viscous behaviour. For the

system shown in Figure6.1(a), with locally reacting damping, Figure6.8 shows the fitted coeffi-

cient matrix of the exponential model for damping model 2, calculated using the complete set of

30 modes. The fitted matrix identifies the damping in the system very well. Equation (6.18) with

k = 1 has been used to obtain the relaxation parameter. As has seen in Figure6.2, the fitted relax-

ation parameter̂γ = 0.02 so that the fitted characteristic time constant also agrees exactly with the

original one, even though the underlying model was Gaussian rather than exponential. The high

portion of the plot corresponds exactly to the spatial location of the dampers. The off-diagonal

terms of the identified damping matrix are very small compared to the diagonal terms, indicating

correctly that the damping is locally reacting.
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Figure 6.8: Fitted coefficient matrix of exponential model for the local case,γ = 0.02, damping
model 2

Now consider the system shown in Figure6.1(b) with non-locally reacting damping. Figure

6.9shows the fitted coefficient matrix of an exponential model for damping model 2, using the full

set of modes. Again the high portion of the plot corresponds to the spatial location of the dampers.

Now the negative off-diagonal terms in the identified damping matrix indicate that the damping

is non-locally reacting. We conclude that in both cases the proposed method extracts accurate

information from the complex frequencies and modes. In practice, one might expect to be able to

use only the first few modes of the system to identify the damping matrix. The proposed method

can be applied using a smaller number of modes, and it is found that the result behaves in a very



6.5. Fitting of the Coefficient Matrix 115

similar way to the case of identification of a viscous damping matrix as discussed in Chapter5 —

the spatial resolution of the identified coefficient matrix gradually deteriorates as the number of

modes used to fit the damping matrix is reduced, but still the identified coefficient matrix shows a

reasonable approximation to the true behaviour.
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Figure 6.9: Fitted coefficient matrix of exponential model for the non-local case,γ = 0.02, damp-
ing model 2

When the fitting procedure is repeated using other damping models with a similarly short char-

acteristic time constant, the result are very similar. The detailed difference in their functional

behaviour does not influence the results significantly. It may be observed that the results obtained

here are quite similar to those obtained by fitting a viscous damping model for the corresponding

case discussed in Section5.4.1. In summary, we can say that when the time constant for a damping

model is small the proposed identification method seems to work well regardless of the functional

form of the damping mechanism. The spatial location of damping is revealed clearly and the as-

sociated relaxation parameter is accurately estimated whether damping is locally or non-locally

reacting. Modal truncation blurs the fitted coefficient matrix, but does not degrade the estimate of

the relaxation parameter and overall the identification process remains valid.

Results for Larger γ

Whenγ is larger the two non-exponential damping models depart from the exponential damping

model, each in its own way. For the valueγ = 0.5, Figure5.7 shows the result of fitting a vis-

cous damping matrix, using the procedure described in Chapter5, for damping model 1 (equation

(6.21)) with locally-reacting damping and the full set of 30 modes. Note that although we have
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started with a locally reacting damping model, which means the true coefficient matrix is non-zero

only along the diagonal, non-zero values in the off-diagonal terms show that the fitted viscous

damping is, in a sense, not locally reacting. Figure6.10shows the corresponding result of fitting

the exponential model for this problem. This result clearly demonstrates the improvement of fit-

ting over the result in Figure5.7. Since the damping model is ‘identified’ correctly in this case,

the correct value of the relaxation parameter is obtained, and the coefficient matrix corresponds

to the exact coefficient matrix for the problem. Thus, even if the characteristic time constant of

the damping mechanism present in a system is large, a correctly identified damping model can

represent the true damping behaviour.
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Figure 6.10: Fitted coefficient matrix of exponential model for the local case,γ = 0.5, damping
model 1

Figure6.11shows the fitted coefficient matrix of the exponential function similar to Figure6.10

but with damping model 2 (equation (6.22)). The fitted matrix has some negative off-diagonal val-

ues which wrongly gives the impression that the damping type is non-local. For this result equation

(6.18) with k = 1 has been used to estimate the relaxation parameter. Figure6.12compares the

original damping time function (Gaussian) with the fitted exponential function. It may be observed

that although the fitted coefficient matrix does not match the original one very accurately the time

functions agree with reasonable accuracy. Sinceγ̂ = 0.4951 the characteristic time constant of the

fitted exponential model is surprisingly close to the exactγ of the simulated model. This remains

true with even larger values of the characteristic time constant for systems with damping model 2.

The identification results show somewhat different behaviour for systems with damping model

3. Figure6.13 shows the fitted coefficient matrix of the exponential function withγ = 0.5 for

damping model 3 with two exponential functions as considered in subsection6.3.3. Compared
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Figure 6.11: Fitted coefficient matrix of exponential model for the local case,γ = 0.5, damping
model 2
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Figure 6.12: Original and fitted damping time function for the local case with damping model 2

to the case of damping model 2 (Figure6.11), the fitted coefficient matrix is much closer to the

original coefficient matrix used for simulation. However, we note that for the fitted exponential

function γ̂ = 0.4834, less close to the correct value compared to that with damping model 2.

Explanation of this fact lies in values ofγ̂j shown in Figures6.5and6.6for damping model 2 and

3 respectively. For damping model 2 variation ofγ̂j is much more compared to that for damping
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model 3. Thus the fitted (exponential) damping model is ‘closer’ to model 3 compared to model 2.

This is expected becauseγ̂j always lies between extremum of all theγ used in simulation.
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Figure 6.13: Fitted coefficient matrix of exponential model for the local case,γ = 0.5, damping
model 3

In Chapter5 it was shown that the features of the fitted viscous model were quite similar in the

case of non-viscous damping models 1 and 2. Now, however, the features of fitting the exponential

model with damping model 2 (Figure6.11) are clearly different from those with model 1 (Figure

6.10) and model 3 (Figure6.13). This is due to the fact that a viscous damping model was incorrect

for both model 1 and 2, whereas when fitting the exponential model, it is correct for damping model

1 and close for damping model 3. For damping model 2, since the original damping function is

Gaussian while the fitted function is exponential, the coefficient matrix does not correspond to

the exact coefficient matrix of the problem. For damping model 3, since the fitted exponential

function is a reasonable approximation of the original multiple exponential function, the coefficient

matrix does not differ from the original function. From these results we conclude that when the

characteristic time constant of a damping model is large an incorrect damping model (no matter

whether it is viscous or non-viscous) may not accurately indicate the actual damping behaviour of

a structure.

Now we turn our attention to the non-local case shown in Figure6.1(b). As has just been shown

with locally-reacting damping, the proposed method can identify the exact coefficient matrix and

damping function for the system with damping model 1 because the fitted model is the same as

the original model. Figure6.14shows the fitted coefficient matrix for damping model 2, using the

full set of 30 modes. For these results equation (6.18) with k = 1 has been used to calculateγ̂ =

0.5033. Thus although the fitted coefficient matrix does not match very well with the original one,
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we find once again that the value of the characteristic time constant is quite accurately predicted.

For damping model 3 it was observed (results not shown) that, as in the locally-reacting case, the

identified coefficient matrix is very close to the original one.
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Figure 6.14: Fitted coefficient matrix of exponential model for the non-local case,γ = 0.5, damp-
ing model 2

It might be thought that a useful check on the accuracy of the fitting method could be made

by comparing the ‘measured’ and reconstructed transfer functions. However, little information

is gained from such a comparison. The reason is that, for both viscous and non-viscous fitting

procedures, the poles and corresponding residues of all transfer functions are fitted correctly. It

follows from Liouville’s theorem that the transfer functions are always well reproduced. This

demonstrates that there is a fundamental ambiguity in damping identification: two different damp-

ing models (eg., the viscous model and the exponential model) with different spatial distributions

and different sets of parameters can reproduce accurately the full set of transfer functions of a

system with an entirely different damping model (eg., the Gaussian model) with different spatial

distributions and parameters. This in turn implies thatjust by measuring the transfer functions it is

not possible to identify uniquely the governing damping mechanism. However, it should be noted

that in cases like Figures6.11, 6.14etc., the fitted coefficient matrix is not symmetric. This is a

non-physical result, which can be regarded as evidence that the true damping behaviour is not in

fact described by an exponential function. In Chapter5 similar features were also observed while

fitting a viscous damping matrix.
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6.6 Conclusions

In this chapter a method has been proposed to identify a non-proportional non-viscous damping

model in vibrating systems. It is assumed that damping is light so that the first-order perturbation

method is applicable. The method is simple, direct, and compatible with conventional modal

testing procedures. The complex modes and natural frequencies are used together with the system

mass matrix. The method does not require the full set of modal data. The damping behaviour is

assumed to be described by an exponential relaxation function, and the relaxation time constant

is found as part of the fitting procedure. Identification of the familiar viscous damping model is a

special case of the general method proposed here. The validity of the proposed method has been

explored by applying it to simulated data from a simple test problem, in which a linear array of

spring-mass oscillators is damped by non-viscous elements over part of its length.

Numerical experiments have been carried out with a wide range of parameter values and dif-

ferent damping models. The main features of the results have been illustrated by two particular

damping models and representative parameter values. It has been shown that the method generally

predicts the spatial location of the damping with good accuracy, and also gives a good indication of

whether the damping is locally-reacting or not. In general, the relaxation time constant was fitted

well, even when the coefficient matrix was less accurate. The transfer functions obtained from

the fitted exponential damping model agree well with the exact transfer functions of the simulated

system. Reciprocity of the transfer functions is preserved within an acceptable accuracy, although

in some cases the fitted coefficient matrix is not symmetric, indicating that the true damping model

differs from the assumed exponential model.

When the time constant is short compared with the periods of all modes retained in the analy-

sis, the damping is close to viscous and the fitting procedure gives a physically-sensible symmetric

coefficient matrix and an accurate value of the relaxation parameter. When the time constant is

larger, though, the memory of the damping function influences the detailed behaviour. If the iden-

tified model matches the true model then the fitting procedure gives a correct physical description

of the damping. When the models are different, the poles and residues of the transfer functions

are still fitted accurately with a model of the form considered, but the underlying different func-

tional behaviour manifests itself in a non-symmetrical coefficient matrix and significant variation

of fitted relaxation parameter with mode number. A correct physical description of the damping

mechanism can be obtained only if a correct model is selected and fitted.

From equation (6.2) we can deduce that, within the approximation of small damping, each

frequency functionG′
kj(ω) can be observed at only two frequencies,ωj andωk. This fact imposes

a fundamental restriction on identification of an exact damping function using this approach. When

the fitted coefficient matrix turns out to be non-symmetric, this indicates that it was not possible to

fit the assumed function through both ‘measured’ frequency points, and two different coefficients

were needed. To correct this problem it would be necessary to fit a different damping model,
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able to pass through both measured points while retaining symmetric coefficients. The function

cannot be uniquely determined by this requirement, of course. There can be two possible ways to

tackle this problem. One can ‘invent’ different physically plausible damping models and try to fit

their parameters using the approach outlined in this chapter and see which model fits the measured

data most convincingly. Alternatively, one might use the viscous or exponential model and put

constraints on the coefficients such that they yield symmetric coefficient damping matrix. This

approach is explored in the next chapter.
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Chapter 7

Symmetry Preserving Methods for
Damping Identification

7.1 Introduction

In the preceding two chapters (Chapter5 and Chapter6) methods were proposed to identify viscous

and non-viscous damping models from modal data. Some general conclusions emerging from these

studies are

1. Whenever the fitted damping model (whether viscous or non-viscous) is not close to the

original damping model of the system, the identified coefficient matrix becomes asymmetric.

2. Once the poles and residues of transfer functions are obtained, several damping models can

be fitted. In other words, more than one damping model can reproduce some measured set

of transfer functions exactly.

An asymmetric fitted damping matrix is a non-physical result because the original system is recip-

rocal. Thus, result 1 above may be regarded as an indication of the fact that the selected model is

incorrect. Whereas, result 2 indicates that if one’s interest is reconstructing the transfer functions

within a given frequency band, then it does not matter even if a wrong damping model is assumed.

This is the justification of widespread use of the viscous damping model. Motivated by these facts,

in this chapter we consider fitting of viscous and exponential damping models so that reciprocity

of the system is preserved. Unless the identified damping matrix is symmetric, the model may

have poor predictive power for changes to the system.

Like the previous two chapters, analysis in this chapter is restricted to linear systems with

light damping. Based on first-order perturbation results, a method for identification of a symmetry

preserving viscous damping model using complex modes and natural frequencies is outlined in

Section7.2. In Section7.3 this method is extended to identify the coefficients of an exponential

damping model with a single relaxation parameter. Applications of these methods are illustrated

by considering a few numerical examples. Finally Section7.4 summarizes the main findings of

this chapter.

123
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7.2 Identification of Viscous Damping Matrix

7.2.1 Theory

In Chapter5 we have proposed a method to identify a viscous damping matrix from measured

complex frequencies and modes using a Galerkin type error minimization approach. This method

does not guarantee symmetry of the identified damping matrix. In a numerical simulation study it

was observed that in some cases the identified viscous damping matrix becomes asymmetric. This

is a non-physical result since the viscous damping matrix by its definition (through the Rayleighs

dissipation function) is symmetric. For this reason we now develop a method so that the identi-

fied damping matrix is always symmetric. A Lagrange multiplier based constrained optimization

method is adopted for this purpose.

Consider̂λj andẑj for all j = 1, 2, · · ·m to be themeasuredcomplex natural frequencies and

modes. Herêzj ∈ CN where N denotes the number of measurement points on the structure and

the number of modes considered in the study ism. In generalm 6= N , usually N ≥ m. Denote

the complex modal matrix

Ẑ = [ẑ1, ẑ2, · · · , ẑm] ∈ CN×m. (7.1)

If the measured complex mode shapes are consistent with a viscous damping model then from

equation (5.1) the real part of each complex natural frequency gives the undamped natural fre-

quency:

ω̂j = <
(
λ̂j

)
. (7.2)

Similarly from equation (5.2), the real part of the complex modes immediately gives the corre-

sponding undamped modes and the usual mass orthogonality relationship will be automatically

satisfied. Write

Ẑ = Û + iV̂ (7.3)

where

Û = [û1, û2, · · · , ûm] ∈ RN×m

and V̂ = [v̂1, v̂2, · · · , v̂m] ∈ RN×m
(7.4)

are respectively the matrices of real and imaginary parts of the measured complex modes. Now in

view of equation (5.2), expand the imaginary part ofẑj as a linear combination of̂uj:

v̂j =
m∑

k=1

Bkjûk; where Bkj =
ω̂jC

′
kj

ω̂2
j − ω̂2

k

. (7.5)

The constantsBkj should be calculated such that the error in representingv̂j by the above sum is

minimized while the resulting damping matrix remains symmetric. Note that in the above sum we

have included thek = j term although in the original sum in equation (5.2) this term was absent.

This is done to simplify the mathematical formulation to be followed, and has no effect on the
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result. Our interest lies in calculatingC ′
kj from B′

kj through the relationship given by the second

part of the equation (7.5), and indeed fork = j we would obtainC ′
kj = 0. The diagonal termsC ′

jj

are instead obtained from the imaginary part of the complex natural frequencies:

C ′
jj = 2=(λ̂j). (7.6)

For symmetry of the identified damping matrixC, it is required thatC′ is symmetric, that is

C ′
kj = C ′

jk. (7.7)

Using the relationship given by the second part of the equation (7.5) the above condition reads

Bkj

ω̂2
j − ω̂2

k

ω̂j

= Bjk

ω̂2
k − ω̂2

j

ω̂k

. (7.8)

Simplification of equation (7.8) yields

Bkj

ω̂j

= −Bjk

ω̂k

or Bkjω̂k + Bjkω̂j = 0; ∀k 6= j. (7.9)

For further calculations is it convenient to cast the above set of equations in a matrix form. Consider

B ∈ Rm×m to be the matrix of unknown constantsBkj and define

Ω̂ = diag(ω̂1, ω̂2, · · · , ω̂m) ∈ Rm×m (7.10)

to be the diagonal matrix of the measured undamped natural frequencies. From equation (7.9) for

all k, j = 1, 2, · · · , m (includingk = j for mathematical convenience) we have

Ω̂B + BT Ω̂ = 0 (7.11)

This equation must be satisfied by the matrixB in order to make the identified viscous damping

matrixC symmetric. The error from representingv̂j by the series sum (7.5) can be expressed as

εj = v̂j −
m∑

k=1

Bkjûk ∈ RN (7.12)

We need to minimize the above error subject to the constraints given by equation (7.9). The

standard inner product norm ofεj is selected to minimize the error. Considering the Lagrange

multipliersφkj the objective function may be constructed as

χ2 =
m∑

j=1

εT
j εj +

m∑
j=1

m∑
k=1

(Bkjω̂k + Bjkω̂j) φkj (7.13)

To obtainBjk by the error minimization approach set

∂χ2

∂Brs

= 0; ∀r, s = 1, · · · , m. (7.14)
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Substitutingεj from equation (7.12) one has

− 2ûT
r

(
v̂s −

m∑
k=1

Bksûk

)
+ [φrs + φsr] ω̂r = 0

or
m∑

k=1

(
ûT

r ûk

)
Bks +

1

2
[ω̂rφrs + ω̂rφsr] = ûT

r v̂s; ∀r, s = 1, · · · , m.

(7.15)

The above set of equations can be represented in a matrix form as

WB +
1

2

[
Ω̂Φ + Ω̂ΦT

]
= D (7.16)

where

W =ÛT Û ∈ Rm×m

D =ÛT V̂ ∈ Rm×m
(7.17)

andΦ ∈ Rm×m is the matrix ofφrs. Note that bothB andΦ are unknown, so there are in total2m2

unknowns. Equation (7.16) together with the symmetry condition (7.11) provides2m2 equations.

Thus bothB andΦ can be solved exactly provided their coefficient matrix is not singular or badly

scaled. We follow the following procedure to obtainB andΦ.

Because in this studyΦ is not a quantity of interest, we try to eliminate it. Recalling thatΩ̂ is

a diagonal matrix taking transpose of (7.16) one has

BT WT +
1

2

[
ΦT Ω̂ + ΦΩ̂

]
= DT (7.18)

Now postmultiplying equation (7.16) by Ω̂ and premultiplying equation (7.18) by Ω̂ and subtract-

ing one has

WBΩ̂ +
1

2
Ω̂ΦΩ̂ +

1

2
Ω̂ΦT Ω̂− Ω̂BT WT − 1

2
Ω̂ΦT Ω̂− 1

2
Ω̂ΦΩ̂ = DΩ̂− Ω̂DT

or WBΩ̂− Ω̂BT WT = DΩ̂− Ω̂DT .
(7.19)

This wayΦ has been eliminated. However, note that since the above is a rank deficient system of

equations it cannot be used to obtainB and here we need to use the symmetry condition (7.11).

Rearranging equation (7.11) we have

BT = −Ω̂BΩ̂
−1

(7.20)

SubstitutingBT in equation (7.19) and premultiplying bŷΩ
−1

results in

Ω̂
−1

WBΩ̂ + Ω̂BΩ̂
−1

WT = Ω̂
−1

DΩ̂− DT . (7.21)

Observe from equation (7.17) thatW is a symmetric matrix. Now denote

Q =Ω̂
−1

W = Ω̂
−1

WT

P =Ω̂
−1

DΩ̂− DT .
(7.22)
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Using the above definitions, equation (7.21) reads

QBΩ̂ + Ω̂BQ = P. (7.23)

This matrix equation represents a set ofm2 equations and can be solved to obtainB (m2 unknowns)

uniquely. To ease the solution procedure let us define the operationvec: Rm×n → Rmn which

transforms a matrix to a long vector formed by stacking the columns of the matrix in a sequence

one below other. It is known that (seeZhou et al., 1995, page 25) for any three matricesA ∈
Ck×m, B ∈ Cm×n, andC ∈ Cn×l, we havevec (ABC) =

(
CT ⊗ A

)
vec(B) where⊗ denotes

theKronecker product. Using this relationship and takingvec of both side of equation (7.23) one

obtains (
Ω̂⊗Q

)
vec(B) +

(
QT ⊗ Ω̂

)
vec (B) = vec (P)

or [R] vec (B) = vec (P)
(7.24)

where

R =
(
Ω̂⊗Q

)
+
(

QT ⊗ Ω̂
)
∈ Rm2×m2

. (7.25)

SinceR is square matrix equation (7.24) can be solved to obtain

vec (B) = [R]−1 vec (P) . (7.26)

Fromvec (B) the matrixB can be easily obtained by the inverse operation. ObtainingB in such

a way will always make the identified damping matrix symmetric. The coefficients of the modal

damping matrix can be derived from

C ′
kj =

(ω̂2
j − ω̂2

k)Bkj

ω̂j

; k 6= j (7.27)

OnceC′ is obtained, the damping matrix in the original coordinates can be obtained from

equation (5.14). In summary, this procedure can be described by the following steps:

1. Measure a set of transfer functionsHij(ω) at a set ofN grid points. Fix the number of

modes to be retained in the study, saym. Determine the complex natural frequenciesλ̂j

and complex mode shapesẑj from the transfer function, for allj = 1, · · ·m. DenoteẐ =

[ẑ1, ẑ2, · · · ẑm] ∈ CN×m the complex mode shape matrix.

2. Set the ‘undamped natural frequencies’ asω̂j = <(λ̂j). Denote the diagonal matrix

Ω̂ = diag(ω̂1, ω̂2, · · · , ω̂m) ∈ Rm×m.

3. Separate the real and imaginary parts ofẐ to obtainÛ = <
[
Ẑ
]

andV̂ = =
[
Ẑ
]
.

4. From these obtain them × m matricesW = ÛT Û, D = ÛT V̂, Q = Ω̂
−1

W andP =

Ω̂
−1

DΩ̂− DT .
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5. Now denotep = vec (P) ∈ Rm2

and calculateR =
(
Ω̂⊗Q

)
+
(

QT ⊗ Ω̂
)
∈ Rm2×m2

(MATLAB TM commandkron can be used to calculate the Kronecker product).

6. Evaluatevec (B) = [R]−1 p and obtain the matrixB.

7. From theB matrix getC ′
kj =

(ω̂2
j − ω̂2

k)Bkj

ω̂j

for k 6= j andC ′
jj = 2=(λ̂j).

8. Finally, carry out the transformationC =

[(
ÛTU

)−1

ÛT

]T

C′
[(

ÛT Û
)−1

ÛT

]
to get the

damping matrix in physical coordinates.

A numerical illustration of the proposed method is considered next.

7.2.2 Numerical Examples

Numerical studies have been carried out using simulated systems identical to those used in Chap-

ters5 and6. Figure7.1 shows the model systems together with the numerical values used. The

(a)

(b)
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. . .
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u

Figure 7.1: Linear array ofN spring-mass oscillators,N = 30, mu = 1 Kg, ku = 4× 103N/m.

damping elements are associated with masses between thes-th and(s + l)-th (N = 30, s = 8 and

(s+l) = 17 are taken for the numerical calculations). Damping shown in Figure7.1(a) is described

as ‘locally reacting’ and that in Figure7.1(b) is called ‘non-locally reacting’. The dissipative el-

ements shown in Figure7.1 are taken to be linear non-viscous dampers so that the equations of

motion are described by (5.16). The two damping models considered in Chapter5 are used. Here

we seek to identify a symmetric viscous damping matrix using the modal data.
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Figure 7.2: Fitted viscous damping matrix for the local case,γ = 0.02, damping model 2

Results for Smallγ

Whenγ = 0.02 both damping models show near-viscous behaviour. In Section5.4.1it was shown

that for this case the fitted viscous damping matrix is symmetric. For this reason, results obtained

by using the symmetry preserving identification procedure developed in this paper must approach

to the corresponding results obtained by using the procedure outlined in Chapter5. Figure7.2

shows the fitted viscous damping matrix for the local case using damping model 2. One immedi-

ately recognizes that this result is similar to its corresponding result shown in Figure5.2. Figure

7.3shows the fitted viscous damping matrix for non-local case using damping model 2. Again, the

fitted matrix is similar to its corresponding case shown in Figure5.5. Thus, whenγ is small, the

procure developed in the last section and that outlined in Chapter5 yields similar result.

Results for Larger γ

Whenγ is larger the two non-viscous damping models depart from the viscous damping model.

For this case, one obtains an asymmetric fitted viscous damping matrix following the procedure

in Chapter5. It is interesting to see how these results change when symmetry preserving method

developed here is applied. Figure7.4shows the result of running the symmetry preserving fitting

procedure for damping model 1 with locally-reacting damping and the full set of modes. The

result of applying the usual viscous damping identification procedure corresponding to this case

was shown before in Figure5.7. Comparing the Figures5.7 and7.4 it may be observed that all

the features of fitting in Figure5.7, except asymmetry of the damping matrix, reappears in Figure

7.4. From the high non-zero values along the diagonal it is easy to identify the spatial location
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Figure 7.3: Fitted viscous damping matrix for the non-local case,γ = 0.02, damping model 2

of damping. Also observe that all non-zero off-diagonal elements have positive values. This

implies that the damping mechanism maybe locally reacting. In order to understand what result

the symmetry preserving fitting procedure yields when damping is significantly non-viscous we

considerγ = 2 for damping model 1. Figure7.5shows the fitted viscous damping matrix for local

case. The result corresponding to this without using the symmetry preserving method was before

shown in Figure5.9. Again, from Figure7.5 the spatial distribution of damping can be guessed,

however, the accuracy is reduced as the fitted model differs significantly from the actual damping

model.

Figure7.6 shows the symmetric fitted viscous damping matrix for damping model 2 corre-

sponding to the case considered earlier in Figure5.8. Comparing Figures5.8and7.6, observations

similar to the case of damping model 1 can be made. Consider now the effect of modal truncation

on the symmetry preserving damping identification procedure. In practice, one might hope to be

able to use only the first few modes of the system to identify the damping matrix. Figures7.7and

7.8shows the fitted viscous damping matrix using, respectively, the first 20 and the first 10 modes

only. The quality of the fitted damping matrix does not significantly deteriorate as the number

of modes used to fit the damping matrix is reduced. This in turn implies that, if the fitted model

(viscous in this case) is not close to the original one, then by using more modes in the symmetry

preserving identification method does not significantly improve the result.

Figures7.9and7.10show the fitted symmetric viscous damping matrix forγ = 0.5 using the

non-local damping model for damping model 1 and 2. Results corresponding to these obtained

without the symmetry preserving method was shown in Figures5.10and5.11. The spatial distri-
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Figure 7.4: Fitted viscous damping matrix for the local case,γ = 0.5, damping model 1
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Figure 7.5: Fitted viscous damping matrix for the local case,γ = 2.0, damping model 1

bution of the damping is revealed quite clearly and correctly. In both cases, the non-local nature

of the damping is hinted at by the strong negative values on either side of the main diagonal of the

matrix.

Because the symmetry preserving method uses a constrained optimization approach, numerical

accuracy of the fitting procedure might be lower compared to the procedure outlined in Chapter5.
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Figure 7.6: Fitted viscous damping matrix for the local case,γ = 0.5, damping model 2
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Figure 7.7: Fitted viscous damping matrix using first 20 modes for the local case,γ = 0.5,
damping model 2

In order to check numerical accuracy we have reconstructed the transfer functions using the com-

plex modes obtained by using the fitted viscous damping matrix. Comparison between a typical

original and reconstructed transfer functionHkj(ω), for k = 11 andj = 24 is shown in Figure

7.11, based on locally-reacting damping using damping model 1. It is clear that the reconstructed
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Figure 7.8: Fitted viscous damping matrix using first 10 modes for the local case,γ = 0.5,
damping model 2

0

5

10

15

20

25

30

0
5

10
15

20
25

30

0

2

4

6

8

Fi
tte

d 
vi

sc
ou

s 
da

m
pi

ng
 m

at
ri

x 
C

kj

Figure 7.9: Fitted viscous damping matrix for the non-local case,γ = 0.5, damping model 1

transfer function agrees well with the original one. Thus the symmetry preserving viscous damp-

ing matrix identification method developed here does not introduce much error due to the applied

constrains in the optimization procedure.
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Figure 7.10: Fitted viscous damping matrix for the non-local case,γ = 0.5, damping model 2

7.3 Identification of Non-viscous Damping

7.3.1 Theory

As has been mentioned earlier, out of several non-viscous damping models the exponential function

turns out to be the most plausible. In this section we outline a general method to fit an exponential

model to measured data such that the resulting coefficient matrix remains symmetric. We assume

that the mass matrix of the structure is known either directly from a finite element model or by

means of modal updating. Also suppose that the damping has only one relaxation parameter, so

that the matrix of the kernel functions is of the form

G(t) = µe−µt C (7.28)

whereµ is the relaxation parameter andC is the associated coefficient matrix. In Chapter6 a

method was proposed to obtainµ andC from measured complex modes and frequencies. This

method may yield aC matrix which is not symmetric. In this section we develop a method which

will always produce a symmetricC matrix.

The starting point of our discussion is equations (6.12) and (6.13), the expressions for the real

and imaginary parts of the complex modes of a linear system with damping of the form (7.28).

Assume that

X̂ = [x̂1, x̂2, · · · , x̂m] ∈ RN×m (7.29)

is the matrix ofundamped mode shapesandµ̂ is the relaxation parameter andm is the number of
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Figure 7.11: Transfer functions for the local case,γ = 0.5, damping model 1,k = 11, j = 24

modes retained in the study. Rewriting equations (6.12) and (6.13) one has

ûj = <(ẑj) = x̂j +
m∑

k=1
k 6=j

µ̂ω̂j

(µ̂2 + ω̂2
j )

Bkjx̂k (7.30)

and

v̂j = =(ẑj) =
m∑

k=1
k 6=j

fjBkjx̂k; where fj =
µ̂2

(µ̂2 + ω̂2
j )

. (7.31)

The unknown constantsBkj are defined before in equation (7.5). It may be noted that in addition

to Bkj, the relaxation constant̂µ and the undamped modesx̂k are also unknown. Combining the

equations (7.30) and (7.31) one can write

x̂j = ûj −
ω̂j

µ̂
v̂j; ∀j = 1, · · · , m

or X̂ = Û− 1

µ̂

[
V̂Ω̂

]
.

(7.32)

The relaxation constant̂µ has to be calculated by following the procedure described in Chapter6.

To ensure symmetry of the identified coefficient matrix the condition in (7.7) must hold. For

this reason equations (7.9) and (7.11) are also applicable for this case. Now, the error from repre-

sentingv̂j by the series sum (7.31) can be expressed as

εj = v̂j −
m∑

k=1

fjBkjx̂k (7.33)

We need to minimize the above error subjected to the constraint in equation (7.9). The objective

function can be formed using the Lagrange multipliers like equation (7.13). To obtain the unknown
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coefficientsBjk using equation (7.14) one has

− 2x̂T
r

(
v̂s −

m∑
k=1

fsBksx̂k

)
+ + [φrs + φsr] ω̂r = 0

or
m∑

k=1

(
x̂T

r x̂k

)
fsBks +

1

2
[ω̂rφrs + ω̂rφsr] = x̂T

r v̂s; ∀r, s = 1, · · · , m
(7.34)

The above set of equations can be combined in a matrix form and can be conveniently expressed

as

W1BF +
1

2

[
Ω̂Φ + Ω̂ΦT

]
= D1. (7.35)

where them×m matrices

W1 =X̂T X̂

D1 =X̂T V̂

F =diag(f1, f2, · · · , fm).

(7.36)

Equation (7.35) needs to be solved with the symmetry condition (7.11). To eliminateΦ, postmul-

tiplying (7.35) by Ω̂ and premultiplying its transpose by bŷΩ and subtracting we obtain

W1BFΩ̂− Ω̂FT BTW1
T = D1Ω̂− Ω̂D1

T . (7.37)

Substitution ofBT from (7.20) in the above equation and premultiplication byΩ̂
−1

results

Ω̂
−1

W1BFΩ̂ + FT Ω̂BΩ̂
−1

W1
T = Ω̂

−1
D1Ω̂−D1

T . (7.38)

Observe from equation (7.36) thatW1 is a symmetric matrix andF is diagonal matrix. Now denote

Q1 =Ω̂
−1

W1 = Ω̂
−1

W1
T

P1 =Ω̂
−1

D1Ω̂−D1
T

H =FΩ̂ = FT Ω̂.

(7.39)

Using above definitions equation (7.38) reads

Q1BH + HBQ1 = P1. (7.40)

This equation is similar to equation (7.23) obtained for the viscously damped case and can be

solved using a similar procedure by takingvec of both sides. The procedures to be followed later

to obtain the coefficient matrixC also remain similar to the viscously damped case. In summary

the method can be implemented by the following steps:

1. Measure a set of transfer functionsHij(ω) at a set ofN grid points. Fix the number of

modes to be retained in the study, saym. Determine the complex natural frequenciesλ̂j

and complex mode shapesẑj from the transfer function, for allj = 1, · · ·m. DenoteẐ =

[ẑ1, ẑ2, · · · ẑm] ∈ CN×m the complex mode shape matrix.
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2. Set the ‘undamped natural frequencies’ asω̂j = <(λ̂j). Denote the diagonal matrix̂Ω =

diag(ω̂1, ω̂2, · · · , ω̂m) ∈ Rm×m.

3. Separate the real and imaginary parts ofẐ to obtainÛ = <
[
Ẑ
]

andV̂ = =
[
Ẑ
]
.

4. Obtain the relaxation parameterµ̂ =
ω̂1v̂

T
1 M v̂1

v̂T
1 M û1

.

5. Calculate the diagonal matrixF = diag
(

µ̂2

(µ̂2+ω̂2
j )

)
∈ Rm×m.

6. Obtain the ‘undamped modal matrix’̂X = Û− 1

µ̂

[
V̂Ω̂

]
.

7. From these evaluate them×m matricesW1 = X̂T X̂, D1 = X̂T V̂, Q1 = Ω̂
−1

W1,

P1 = Ω̂
−1

D1Ω̂−D1
T andH = FΩ̂.

8. Now denotep1 = vec (P1) ∈ Rm2

and calculateR1 = (H ⊗Q1)+
(
Q1

T ⊗ H
)
∈ Rm2×m2

.

9. Evaluatevec (B) = [R1]
−1 p1 and obtain the matrixB.

10. From theB matrix getC ′
kj =

(ω̂2
j − ω̂2

k)Bkj

ω̂j

for k 6= j andC ′
jj = 2=(λ̂j).

11. Finally, carry out the transformationC =

[(
X̂TX

)−1

X̂T

]T

C′
[(

X̂T X̂
)−1

X̂T

]
to get the

damping matrix in physical coordinates.

7.3.2 Numerical Examples

We again consider the systems shown in Figure7.1to illustrate symmetry preserving fitting of ex-

ponential damping models outlined in last subsection. Three damping models, given by equations

(6.21), (6.21) and (6.23) will be considered. Recall that the relaxation parameter has to be obtained

by the procedure outlined in Chapter6. So here we will only discuss fitting of the coefficient ma-

trix.

Results for Smallγ

It has been mentioned before that whenγ is small, the ordinary viscous damping identification

method (in Chapter5), non-viscous damping identification method (in Chapter6) and symmetry

preserving viscous damping identification method (in Section7.2) yields same result. This is

because all the non-viscous damping models approach to a viscous damping model for small value

of γ. Since the viscous damping model is a special case of the exponential damping model, we

expect this method to produce results like the three previous methods. Figure7.12shows the fitted

coefficient matrix of the exponential model for damping model 2, calculated using the complete set

of 30 modes. It is clear that this result is similar to the corresponding result obtained in Figure6.8
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without using the symmetry preserving method. Figure7.13shows the fitted coefficient matrix for

damping model 2 for the non-local case using the symmetry preserving method. Again, comparing

it with Figure6.9one observes that they are similar. Thus, whenγ is small the symmetry preserving

method for fitting the coefficient matrix for the exponential function and the method described in

Chapter6 yields similar results.
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Figure 7.12: Fitted coefficient matrix of exponential model for the local case,γ = 0.02, damping
model 2

Results for Larger γ

Whenγ is larger the two non-exponential damping models depart from the exponential damping

model. Like previous examples, we considerγ = 0.5. For this case, in Chapter6 it was observed

that the identification method proposed there results an asymmetric coefficient matrix. The degree

of asymmetry of the fitted coefficient depends on how much the original damping model deviates

from the identified exponential model. Specifically, it was concluded that if variation ofµj with

j calculated using equation (6.17) is more, then the fitted coefficient matrix is likely to be more

asymmetric. In this section we want to understand how the proposed method overcomes this

problem and what one could tell from the identified coefficient matrix about the nature of damping.

Figure7.14shows the fitted symmetric coefficient matrix for the local case with damping model

2. The result corresponding to this without using the symmetry preserving method was shown

before in Figure6.11. Comparison of these two figures clearly demonstrates the advantage of the

proposed symmetry preserving method. The identified coefficient matrix is not only symmetric,

but also the correct spatial location of damping can be deduced from the peak along the diagonal.
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Figure 7.13: Fitted coefficient matrix of exponential model for the non-local case,γ = 0.02,
damping model 2

Besides, predominantly positive values of the off-diagonal entries of the fitted coefficient matrix

indicate that damping is locally reacting.
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Figure 7.14: Fitted coefficient matrix of exponential model for the local case,γ = 0.5, damping
model 2

To demonstrate the efficacy of the proposed method we consider a further larger value ofγ.



140 Chapter 7. Symmetry Preserving Methods

Figure7.15shows the fitted coefficient matrix of the exponential functionwithoutusing the sym-

metry preserving method for damping model 2 withγ = 2.0 and local case. Clearly, the large

variation ofµj with j, shown in Figure7.16, is the reason for significant asymmetry of the fitted

coefficient matrix. Application of the symmetry preserving method for this case is shown in Fig-

ure7.17. In spite of large off-diagonal activity one can still guess about the position of damping.

Again, like Figure7.14, non-negative values of the off-diagonal entries indicate that damping is of

local type.
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Figure 7.15: Fitted coefficient matrix of exponential model without using the symmetry preserving
method for the local case,γ = 2.0, damping model 2

The fitted coefficient matrix for the local case with a double exponential damping model (model

3) with γ = 0.5 using the procedure outlined in Chapter6 was shown in Figure6.13. Observe that

this matrix is not asymmetric as the corresponding variation ofµj with j, shown in Figure6.6,

is small. Thus, application of the symmetry preserving method will not be significantly different

from the result obtained using the procedure in Chapter6 and may be verified from Figure7.18.

Finally we turn our attention to the non-local case. Figure7.19 shows the fitted coefficient

matrix for non-local case with damping model 2 andγ = 0.5. Again, improvement of the fitted

coefficient matrix may be observed by comparing it with Figure6.14.

7.4 Conclusions

In this chapter a method is proposed to preserve symmetry of the identified damping matrix. Both

viscous and non-viscous damping models are considered. For fitting a viscous damping model
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Figure 7.16: Values ofγ̂ obtained from different̂µ calculated using equations (6.18)–(6.20) for
the local case, damping model 2
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Figure 7.17: Fitted coefficient matrix of exponential model using the symmetry preserving method
for the local case,γ = 2.0, damping model 2

only complex natural frequencies and mode shapes are required. To fit a non-viscous model, in

addition to the modal data, knowledge of the mass matrix is also required. However, availability

of the complete set of modal data is not a requirement of these methods. The proposed methods

utilize a least-square error minimization approach together with a set of constraints which guaran-
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Figure 7.18: Fitted coefficient matrix of exponential model for the local case,γ = 0.5, damping
model 3
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Figure 7.19: Fitted coefficient matrix of exponential model for the non-local case,γ = 0.5, damp-
ing model 2

tee symmetry of the fitted damping matrix. It was shown that, for the cases when application of

the usual damping identification methods described in Chapters5 and6 produces an asymmetric

matrix, this method not only fits a symmetric matrix but also all the other useful information about

the systems damping properties are preserved.



Chapter 8

Experimental Identification of Damping

8.1 Introduction

In the last three Chapters several methods have been proposed to identify damping in a vibrating

structure. The purpose of this Chapter is to verify some of the developed theories by conducting

vibration experiments. Unlike mass and stiffness properties, damping is a purely dynamic property

of a system,i.e., damping can be measured only by conducting dynamic testing on a structure.

A description of a mechanical structure requires knowledge of the geometry, boundary condi-

tions and material properties. The mass and stiffness matrices of a structure with complicated

geometry, boundary conditions and material properties can be obtained experimentally or nu-

merically (for example, using the finite-element method). Unfortunately, present knowledge of

damping does not allow us to obtain the damping matrix like the mass and stiffness matrices for

complicated systems. For this reason we consider simple systems for which geometry, boundary

conditions and material properties are easy to determine. Specifically, afree-free uniform beamin

bending vibration is considered in this Chapter to implement and verify the damping identification

procedures developed so far in this dissertation. Details of the beam experiment will follow in

Section8.3.

The damping identification procedures developed in Chapters5, 6 and7 rely on complex natu-

ral frequencies and mode shapes. For lightly damped structures, complex natural frequencies can

be expressed in terms of undamped natural frequencies and modal Q-factors. Natural frequencies,

Q-factors and mode shapes are collectively calledmodal parametersor modal data. It should be

noted that, in the context of general multiple-degree-of-freedom systems, these modal parameters

can not be directly measured by conducting a vibration experiment. Typically one measures time

histories of the responses at different degrees of freedom together with time histories of the input

forces. Thetransfer functionsof a system can be obtained by taking ratios of Fourier transforms of

output time histories to that of corresponding input time histories. The modal parameters of a struc-

ture can be extracted from a set of transfer functions obtained in this way. The subject which deals

with extraction of modal parameters is calledexperimental modal analysis. We refer to the books

by Ewins (1984) andMaia and Silva (1997) for further details on experimental modal analysis. It

143
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should be mentioned that the underlying theory behind experimental modal analysis explicitly or

implicitly assumes that damping is viscous. It is legitimate to ask the question: what happens if the

damping of the system is not viscous – does the conventional experimental modal analysis method-

ology extract correct modal parameters? In the next section we address this question and propose

a generic method to extract modal parameters of generally damped multiple-degrees-of-freedom

linear systems.

8.2 Extraction of Modal Parameters

It was mentioned that the starting point of extracting modal parameters is transfer functions. A

transfer functionHjn(ω) is defined as

Hjn(ω) =
uj(ω)

fn(ω)
(8.1)

whereuj(ω) is the response atj-th degree of freedom andfn(ω) is the applied force atn-th degree

of freedom. A closed-form exact expression of the transfer function matrix of a generally damped

N -degrees-of-freedom linear systems was obtained in Section3.3. Taking thejn-th element of the

transfer function matrix given by equation (3.65) one has

Hjn(ω) =
N∑

k=1

[
Rkjn

iω − sk

+
R∗

kjn

iω − s∗k

]
+

m∑
j=2N+1

Rkjn

iω − sk

. (8.2)

In the above expressionRkjn
is thejn-th element of the residue matrix corresponding to polesk.

From equation (3.64) one obtains the relationship between residuesRkjn
and mode shapes as

Rkjn
= γkznkzjk (8.3)

whereznk is then-th element ofk-the mode shape andγk, the normalization constant ofk-th mode,

was defined in equation (3.66). The poles are related to natural frequenciesλk by

sk = iλk. (8.4)

In Chapter3 it was mentioned that the first part of the right hand side of equation (8.2) corre-

sponds to elastic modes and the second part corresponds to non-viscous modes. In general, elastic

modes are complex in nature as damping is non-proportional. For anN -degree-of-freedom linear

system,N elastic modes together with their complex conjugates correspond toN physical vibra-

tion modes. For lightly damped systems, the complex natural frequencies corresponding to the

elastic modes have the form

λk ≈ ωk + i
ωk

2Qk

. (8.5)

In the above equationωk is thek-th undamped natural frequency andQk is thek-th Q-factor. The

Q-factors or quality factors, reciprocal of twice the damping ratios, are expressed as

Qk ≈
<(λk)

2=(λk)
=

1

2ζk

(8.6)
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whereζk are damping ratios. If the damping is sufficiently light then all the elastic modes are sub-

critically damped,i.e., all of them are oscillatory in nature. In this case the transfer functions of

a system has ‘peaks’ corresponding to all the elastic modes. The natural frequencies (ωk) and the

Q-factors (Qk) can be obtained by examining each peak separately, for example using the circle

fitting method (seeEwins, 1984). Estimation ofωk andQk is likely to be good if the peaks are

well separated.

For passive systems, the kind of systems we mostly encounter in practice, non-viscous modes

are usually over-critically damped. Thus, in contrast to elastic modes, they do not produce any

peaks in the transfer functions. As a consequence to this, the modal parameters corresponding

to non-viscous modes cannot be obtained by usual techniques of experimental modal analysis as

discussed above. This is the fundamental difficulty in applying conventional experimental modal

analysis procedure to non-viscously damped systems. However, as shown through an example

in Section3.7.1, the non-viscous part of the response may be quite small compared to that of

the elastic part. Thus, for practical purposes the second part of the right hand side of equation

(8.2) may be neglected. In that case, the transfer functions of generally damped systems can be

represented in way similar to viscously damped systems, that is,

Hjn(ω) ≈
N∑

k=1

[
Rkjn

iω − sk

+
R∗

kjn

iω − s∗k

]
. (8.7)

Once equation (8.7) is assumed as the expression for transfer functions, conventional exper-

imental modal analysis procedure may be applied to deal with non-viscously damped systems.

This, analysis justifies that the conventional experimental modal analysis procedure, whicha pri-

ori assumes the viscous damping model, indeed measures modal parameters of a system even

when it is non-viscously damped. Next, assuming the validity of equation (8.7) a linear-nonlinear

optimization approach is presented to extract complex modal parameters of non-viscously damped

multiple-degrees-of-freedom linear systems.

8.2.1 Linear Least-Square Method

From equation (8.7) it is easy to observe thatHjn(ω) is a linear function of the residues while it is

a nonlinear function of the poles. On the basis of this fact, it is legitimate to separate the extraction

procedure for the poles and the residues. We propose a linear least-square approach to obtain the

residues and a non-linear optimization approach to obtain the poles. RecentlyDuffour (1998) has

proposed a similar method by considering all the residues to be real. His approach is equivalent to

assuming that the systems is proportionally damped and consequently it yields real normal modes.

In this section we extend this method to identify complex residues in order to extract complex

modes.

Depending on what quantity is measured, the transfer functions can be (a) displacement trans-

fer functions (receptance), (b) velocity transfer functions (mobility), and (c) acceleration transfer
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functions (accelerance). Substitutingsk from equation (8.4), in a more general form, the transfer

functions given by equation (8.7) may be expressed as

Hjn(ω) ≈ (iω)r

N∑
k=1

[
Rkjn

iω − iλk

+
R∗

kjn

iω + iλ∗k

]

= (iω)r

N∑
k=1

[
−

iRkjn

ω − λk

+

(
iRkjn

)∗
ω + λ∗k

] (8.8)

where

• r = 0 corresponds to displacement transfer functions

• r = 1 corresponds to velocity transfer functions

• r = 2 corresponds to acceleration transfer functions.

Since the systems we consider are reciprocal, the transfer function matrix and consequently the

residue matrix corresponding to each pole is symmetric, that isRkjn
= Rknj

. For this reason

evaluation of the upper or lower half of the transfer function matrix is sufficient. However, most

often only one row of the transfer matrix is measured in practice. For example, if one uses an

impulse hammer for the excitation, then often the response measurement point is kept fixed while

the excitation point varies according to ana priori selected grid on a structure. Thus, in equation

(8.8) , j is fixed with its value equals to the degree of freedom of the response measurement point.

Suppose the number of channels (i.e., DOF of the system) isN and the number of modes retained

in the study ism. Usuallym ≤ N . For brevity, omitting the subscriptj, from equation (8.8) we

obtain

Hn(ω) ≈
m∑

k=1

[f1k
(ω)Akn + f2k

(ω)A∗
kn] ; ∀n = 1, 2, · · · , N (8.9)

where

f1k
(ω) = − (iω)r

ω − λk

(8.10)

f2k
(ω) =

(iω)r

ω + λ∗k
(8.11)

Akn = iRkjn
. (8.12)

8.2.2 Determination of the Residues

SupposeYn(ω),∀n = 1, 2, · · · , N are set of the measured transfer functions corresponding to

all the channels. We assume that initial estimates ofωk, Qk,∀ k = 1, 2, · · · , m are known, for

example using a circle fitting method. Thus, from equations (8.5), (8.10) and (8.11) it is clear that

the complex functionsf1k
(ω) andf2k

(ω) are known for allω. Our aim is to obtain the matrix

A : {Akn} ∈ Cm×N such that the error in representingYn(ω) by equation (8.9) is minimized.
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We define the frequency dependent error as

εn(ω) = Yn(ω)−Hn(ω). (8.13)

Based on this, further define themerit functionas

χ2 =
N∑

n=1

∫
ω∈Ω

|εn(ω)|2dω

=
N∑

n=1

∫
ω∈Ω

εn(ω)ε∗n(ω)dω

(8.14)

whereΩ is the range of frequency over which the transfer functions are obtained. To obtainAkn

by the error minimization approach, set

∂χ2

∂Apq

= 0; ∀p = 1, · · · , m; q = 1, · · · , N. (8.15)

Substitutingεn from equation (8.13) the preceding equation can be expressed as

−
N∑

n=1

∫
ω∈Ω

[
∂Hn(ω)

∂Apq

{Y ∗
n (ω)−H∗

n(ω)}+ {Yn(ω)−Hn(ω)} ∂H∗
n(ω)

∂Apq

]
dω = 0. (8.16)

Now, from the expression ofHn(ω) in equation (8.9) one obtains the following:

∂Hn(ω)

∂Apq

= 0; ∀n 6= q (8.17)

∂Hq(ω)

∂Apq

= f1p(ω) (8.18)

∂H∗
q (ω)

∂Apq

= f ∗2p
(ω). (8.19)

Using the above three equations, (8.16) may be simplified to∫
ω∈Ω

[
f1p(ω)H∗

q (ω) + f ∗2p
(ω)Hq(ω)

]
dω =

∫
ω∈Ω

[
f1p(ω)Y ∗

q (ω) + f ∗2p
(ω)Yn(ω)

]
dω. (8.20)

Substituting the expression ofHn(ω) in (8.9) for n = q, the preceding equation reduces to

m∑
k=1

WpkAkq + EpkA
∗
kq = Spk (8.21)

where

Wpk =

∫
ω∈Ω

[
f1p(ω)f ∗2k

(ω) + f ∗2p
(ω)f1k

(ω)
]
dω (8.22)

Epk =

∫
ω∈Ω

[
f1p(ω)f ∗1k

(ω) + f ∗2p
(ω)f2k

(ω)
]
dω (8.23)

Spk =

∫
ω∈Ω

[
f1p(ω)Y ∗

q (ω) + f ∗2p
(ω)Yn(ω)

]
dω. (8.24)
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Forp = 1, · · · , m andq = 1, · · · , N equation (8.21) can be rewritten in matrix form as

WA + EA∗ = S (8.25)

whereW, E ∈ Cm×m andS∈ Cm×N . Sinceχ2 is a real function we also have

∂χ2

∂A∗
pq

=

(
∂χ2

∂Apq

)∗
. (8.26)

In view of the above, taking the complex conjugate of (8.25) one has

W∗A∗ + E∗A = S∗

or A∗ = W∗−1

[S∗ − E∗A]
(8.27)

SubstitutingA∗ from the above equation in (8.25) we finally obtain

A =
[
W − EW∗−1

E∗
]−1 [

S− EW∗−1

S∗
]
. (8.28)

Transfer function residues can be calculated from the above formula provided the matrix

W − EW∗−1

E∗ 6= Om (8.29)

whereOm is am×m null matrix. Premultiplying the above equation byE−1 and defining

Q = E−1W (8.30)

the condition for whichA can be determined can be expressed as

Q 6= Q∗−1

or Q∗Q 6= Im. (8.31)

Determination of the Complex Modes

Once the residues are obtained from equation (8.28), the complex modes can be calculated easily.

Combining equations (8.12) and (8.3) one has

Akn = iγkznkzjk. (8.32)

In Chapter4 it was mentioned that the normalization constants can be selected in various ways.

The one which is consistent with conventional modal analysis is whenγk = 1/2iλk. Substituting

this value ofγk, equation (8.32) reads

Akn =
znkzjk

2λk

. (8.33)

Note that in the above equationj is fixed (the response measurement point). Forn = j, from

equation (8.33) one has

zjk =
√

2λkAkj; ∀k = 1, 2, · · · , m (8.34)
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Substitutingzjk from the above into equation (8.33) the mode shapes are obtained as

znk =
2λkAkn

zjk

=
√

2λk
Akn√
Akj

, ∀ k = 1, 2, · · · , m,
n = 1, 2, · · · , N.

(8.35)

Thus, equation (8.35) together with (8.28), provides a closed-form expression for the complex

modes extracted from a set of measured transfer functions.

8.2.3 Non-linear Least-Square Method

In the formulation presented before it was assumed that ‘good’ initial guesses ofωk andQk are

available. However, if substantially good initial values ofωk andQk are not available then it is re-

quired to update them. SinceHn(ω) is a nonlinear function ofωk andQk, a nonlinear optimization

method needs to be employed for this purpose. We use a nonlinear least-square method outlined

in Presset al. (1992, Section 15.5).

For convenience construct the parameter vector

V = {ω1, ω2, · · · , ωm, Q1, Q2, · · · , Qm}T ∈ R2m. (8.36)

Suppose, for some current value ofV , sayVcur, χ2(V) is sufficiently close to minimum. Expanding

χ2(V) aboutVcur in a Taylor series and retaining quadratic terms we have

χ2(V) ≈ χ2(V − Vcur)− (V − Vcur)
T ∇χ2 (Vcur) +

1

2
(V − Vcur)

T D (V − Vcur) (8.37)

where∇(•) =

{
∂(•)
∂Vj

}
, ∀j is the gradient vector andD ∈ R2m×2m is the Hessian matrix. Differ-

entiating equation (8.37) one obtains

∇χ2(V) = ∇χ2 (Vcur) + D (V − Vcur) . (8.38)

If the approximation is good, then by setting∇χ2(V) = 0, the minimizing parametersVmin can

obtained from the current trial parametersVcur as

Vmin = Vcur + D−1
[
−∇χ2 (Vcur)

]
. (8.39)

However, if (8.37) is a poor approximation, then the best we can do is to move down the gradient

(steepest descent method), that is

Vnext = Vcur− constant×∇χ2 (Vcur) (8.40)

Selection procedure of this constant will be discussed shortly. In order to use (8.39) or (8.40) we

need to calculate the gradient ofχ2. Moreover, to use (8.39) calculation of the second derivative

matrix (Hessian matrix) is also required. These issues are discussed next.
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Calculation of the Gradient and Hessian

Differentiating the expression ofχ2 in equation (8.14) with respect toVp the elements of the gra-

dient vector can be obtained as

∂χ2

∂Vp

=
N∑

n=1

∫
ω∈Ω

[
∂εn(ω)

∂Vp

ε∗n(ω) + εn(ω)
∂ε∗n(ω)

∂Vp

]
dω

= −
N∑

n=1

∫
ω∈Ω

[
∂Hn(ω)

∂Vp

ε∗n(ω) + εn(ω)
∂H∗

n(ω)

∂Vp

]
dω.

(8.41)

The preceding equation can further be simplified as

∂χ2

∂Vp

= −2
N∑

n=1

∫
ω∈Ω

<
[
εn(ω)

∂H∗
n(ω)

∂Vp

]
dω. (8.42)

The term
∂H∗

n(ω)

∂Vp

can be calculated following AppendixA. Taking an additional partial derivative

of (8.41) with respect toVq the elements of the Hessian matrix can be obtained as

∂2χ2

∂Vp∂Vq

= −
N∑

n=1

∫
ω∈Ω

[
∂2Hn(ω)

∂Vp∂Vq

ε∗n(ω) +
∂Hn(ω)

∂Vp

∂ε∗n(ω)

∂Vq

+
∂εn(ω)

∂Vq

∂H∗
n(ω)

∂Vp

+ εn(ω)
∂2H∗

n(ω)

∂Vp∂Vq

]
dω.

(8.43)

Substitutingεn from equation (8.13) the preceding equation can be expressed as

∂2χ2

∂Vp∂Vq

= 2
N∑

n=1

∫
ω∈Ω

<
[
∂Hn(ω)

∂Vp

∂H∗
n(ω)

∂Vq

− εn(ω)
∂2H∗

n(ω)

∂Vp∂Vq

]
dω. (8.44)

It is customary to neglect the second term in the above expression becauseεn(ω) and
∂2H∗

n(ω)

∂Vp∂Vq

are

both small quantities. Thus, the elements of the Hessian matrix can be obtained from

∂2χ2

∂Vp∂Vq

≈ 2
N∑

n=1

∫
ω∈Ω

<
[
∂Hn(ω)

∂Vp

∂H∗
n(ω)

∂Vq

]
dω. (8.45)

For convenience, removing the factors 2 from equations (8.42) and (8.45) we define a vectorβ ∈
R2m and a matrixα ∈ R2m×2m such that

βp = −1

2

∂χ2

∂Vp

(8.46)

αpq =
1

2

∂2χ2

∂Vp∂Vq

. (8.47)

The matrixα =
1

2
D is often known as the curvature matrix. Using these relationships, equation

(8.39) can be rewritten as the set of linear equations

α δV = β. (8.48)
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Solving the above set of equations the incrementsδV = Vmin − Vcur can be obtained. These

increments can be added to the current approximation to obtain the new values. Similarly, the

steepest descent formula can be rewritten as

δVq = νqβq. (8.49)

The constantsνq can be selected using the Levenberg-Marquardt method.

Levenberg-Marquardt Method

The Levenberg-Marquardt method varies smoothly between the extreme of the inverse-Hessian

method (8.48) and the steepest descent method (8.49). The latter method is used far from the

minimum, switching continuously to the former as the minimum is approached. The Levenberg-

Marquardt method assumesνq =
1

καqq

, whereκ is known as thefudge factorwith the possibility

of settingκ� 1. Using this, one can rewrite equation (8.49) as

δVq =
1

καqq

βq or καqqδVq = βq. (8.50)

In view of the above equation, (8.48) and (8.49) can be combined into a single equation as

α′ δV = β (8.51)

where the matrixα′ is defined as

α′ = α + κI 2m (8.52)

where I 2m is an identity matrix of size2m. If κ is very large, the matrixα′ becomes strictly

diagonally dominant so that equation (8.52) reduces to the steepest descent method in equation

(8.50). On the other hand, for small values ofκ equation (8.52) reduces to the inverse-Hessian

method in equation (8.48). Overall, the method can be performed by following these steps:

• Calculateχ2(V).

• Select a modest value ofκ, sayκ = 0.001.

• (‡) Solve the linear equations (8.51) for δVq and calculateχ2(V + δV)

• If χ2(V + δV) ≥ χ2(V) increaseκ by a factor of 10 (or any other substantial factor) and go

back to (‡).

• If χ2(V + δV) < χ2(V) decreaseκ by a factor of 10, update the trial solutionV ← V + δV
and go back to (‡).

A stopping condition for the above iteration scheme has to be selected by choosing some acceptable

value ofχ2.
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8.2.4 Summary of the Method

In the last two sections a linear least-square and a nonlinear least-square method have been pro-

posed to obtain the modal parameters. For practical purposes these two methods can unified to

construct a single linear-nonlinear optimization method. Figure8.1 shows the steps to followed

in order to apply this method. A set of MATLAB TM programs have been developed to implement

this method. Several authors, for exampleBalmès (1995), Coleet al.(1995), Lin and Ling (1996),

Balmès (1996) andRosaet al. (1999) have proposed modal identification methods in frequency

domain. Application of the approach developed in this study to a beam in bending vibration is

considered next.

Amplitude coefficients [A] computation
by  linear least square

Input: ,  Q, 

Computation of 2( ,  Q, [A])

Computation of the frequencies and
damping increments: d ,  dQ

Computation of 2( +d ,  Q+ dQ, [A])

| 2( +d , Q+ dQ, [A])- 2( ,  Q, [A])|< 

Yes

No

Solution displayed

linear

non-linear

Figure 8.1: The general linear-nonlinear optimization procedure for identification of modal pa-
rameters
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8.3 The Beam Experiment

We consider a free-free beam for experimental verification of the procedures developed so far in

this dissertation. The physical properties of the beam, the arrangement of the damping mechanism

and the scheme for the grid points will be discussed in Section8.3.2. In the next section, the details

of the equipment used for the experiment are explained.

8.3.1 Experimental Set-up

A schematic diagram of the experimental set-up is shown in Figure8.2 while the details of the

measuring equipment are given in Table8.1. Figure8.2 shows three main components of the

measurement technique implemented:

• Excitation of the structure

• Sensing of the response

• Data acquisition and processing

Details of the above components of the experiment are discussed next.

Excitation of the Structure

A mechanical structure can be excited mainly in two ways, (a) using an exciter or shaker, and

(b) using an impulse hammer. Shaker attachments have the advantage of providing any known

waveform as the driving signal to a structure. This allows one to control the frequency content of

the excitation and consequently to excite the modes in a chosen frequency-band. In addition, the

steady-state sinusoidal driving is probably the only efficient way to measure the frequency response

at different frequencies directly. However, a major disadvantage of attaching shakers as the driving

mechanism is that it becomes a part of the vibrating structure and as a result the stiffness, and more

importantly the damping behaviour, which we want to identify from this experiment, get changed.

Beside this, there are some practical difficulties, for example:

• it not always convenient to mount a shaker to access all the excitation points we choose;

• to obtain a set of transfer functions with high frequency resolution and covering several

modes is very time consuming.

For these reasons, the possibility of using shakers has been ruled out for this experiment.

It is much easier to excite a structure by hitting it with an instrumented hammer. The instru-

mented hammer essentially consists of three main components: a handle, a force transducer and a

hammer tip. With experience it was found that the impulse excitation provided by an instrumented

hammer gave the most reliable results for the present purpose. Impulse excitation using a hammer

has the following advantages:
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• the location of excitation point can be chosen arbitrarily;

• once an impulse has been struck and the hammer separated, the response obtained thereafter

is free from any undesirable interaction with the excitation apparatus;

• depending on the nature of the hammer tip (that is soft or hard) the frequency range can be

selected as desired.

For the hammer used in this experiment, the force transducer was a PCB A218 and a hard plastic

tip was used. With this hard plastic tip we can go up to 2.5KHz.

Sensing of the Response

Response sensors have to be selected on the basis of what quantity one wants to measure and the

size of the structure under test. The relative size and mass of the response transducers have influ-

ence on the vibrational behaviour of the test structure. It is very much desirable that a transducer

has minimum effect on the structure so that one can avoid the corrections required at a later stage

to discard the effect of the transducer.

The response of a structure may be defined in terms of displacement, velocity or accelera-

tion. Accelerometers are the most widely used form of response transducer although, as laser

vibrometers are more readily available, velocity transducers are also gaining popularity. The main

advantage of the laser vibrometer is that the response measurement technique is ‘non-contact’.

Thus, questions of interactions between the response measurement apparatus and the structure do

not arise for laser vibrometers. Beside, laser vibrometers can be used to measure response at points

where accelerometers can not be attached. However, for the simple beam considered in this exper-

iment it was found that traditional piezoelectric accelerometers are sufficient. A DJB piezoelectric

accelerometer is used for the experiment. We have measured the acceleration response at only

one point in the structure (detail will follow in Section8.3.2). A small hole of 3mm diameter was

drilled into the beam and the accelerometer was attached by screwing it through the hole.

Data Acquisition and Processing

(a) Amplifiers

Signals from the impulse hammer and the accelerometer give small charges. As a result the

signals need to be amplified by using a charge amplifier. For this purpose in-house charge am-

plifiers were designed. The acceleration signal was amplified by using a charge amplifier with a

sensitivity of 14mV/pc while the impulse signal was amplified by using a charge amplifier with a

sensitivity of 2.0mV/pc. Both these amplifiers had a frequency range of 0.44Hz to 10KHz.

(b) Data-logging system

A National Instruments DAQCard 1200 was used to log the impulse force and the acceleration

response. This card gives analog-to-digital conversion in 12 bits. The maximum sampling rate was

set to 20kHz, which was sufficient for the frequency bandwidth of interest (i.e., 0-2.5KHz).
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beam
damped 

computer with A/D card

oscilloscope

output charge amplifier

input charge amplifier

hammer

Figure 8.2: Schematic representation of the test set-up

A Visual Basic program running on a Daytek desktop computer controlled the DAQCard. This

program was used to start data logging, set sampling frequencies, check sample saturation and save

the data. After the raw data were measured and saved they were then opened using MATLAB TM and

checked as to whether they were suitable or not by calculating the FRFs.

Item Use

DJB Accelerometers Measuring the acceleration
response of the beam

PCB modal hammer Measuring the force ap-
plied using the impulse
hammer

Impulse charge amplifier Amplifying the impulse
force exerted on the struc-
ture

Response charge amplifier Amplifying the accelera-
tion response

National Instruments DAQ-
Card 1200 data acquisition
personal computer card

Sampling transducer time
signals

Daytek Desktop Computer Control of DAQCard 1200,
data storage and analysis

Table 8.1: Summary of the equipment used

8.3.2 Experimental Procedure

A steel beam with uniform rectangular cross-section is considered for the experiment. Figure8.3

shows the beam with details of the grid and damping mechanism. The physical and geometrical

properties of the steel beam are shown in Table8.2. The damping mechanism of the beam is

through constrained layers (seeUngar, 2000, for a recent review on this topic). For the purpose of

this experiment a double sided glued tape is sandwiched between the beam and a thin aluminum

plate.

The impulse hammer test is performed on the ‘front side’ of the beam (i.e., opposite to the

damping layer side). The impulse is applied at 11 different locations as indicated in Figure8.3(a).

One of the problems that was encountered during impulse testing has the difficulty of exciting the

beam only in the bending mode but not in the torsional mode. Overcoming this difficulty requires

careful application of the impulse along the centre-line of the beam.

We have tried to simulate a free-free condition for the test. The free-free boundary condition is

preferred for several reasons. Firstly, from practical point of view the free-free condition is easiest

to incorporate as it avoids the use of any clamping arrangements. Secondly, and most importantly,

the free-free condition removes uncertainties regarding damping and stiffness properties associated
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grid

two sided tape

1

2

aluminum plate

3

4

5

6

7

8

9

10

measurment point)
11 (response

(a) (b) (c)

constrained
layer damping

points

Figure 8.3: Details of the beam considered for the experiment; (a) Grid arrangement, (b) Back
view showing the position of damping, (c) Side view of the constrained layer damping

Beam Properties Numerical values

Length (L) 1.00 m
Width (b) 39.0 mm
Thickness (th) 5.93 mm
Mass density (ρ) 7800 Kg/m3

Youngs modulus (E) 2.0× 105 GPa
Cross sectional area (a = bth) 2.3127× 10−4 m2

Moment of inertia (I = 1/12bt3h) 6.7772× 10−10 m4

Mass per unit length (ρl) 1.8039 Kg/m
Bending rigidity (EI) 135.5431 Nm2

Table 8.2: Material and geometric properties of the beam considered for the experiment

with boundary conditions, for example, the kind of problems one often encounters with clamped

or pinned boundary conditions. For the purpose of the present experiment a 3mm hole was drilled

in the beam and it was hung by a thread. The thread was chosen thin and long (one and half times

the length of the beam) so as to produce minimum damping to the beam.

Results from initial testing on the ‘undamped beam’, that is without the damping layer, showed

that damping is extremely light (Q-factors in the order of 1000). In fact, the damping is so light

that for most of the modes the measurement of the Q-factor was not possible using the conven-

tional circle fitting method and an alternative sonogram method was used. This ensures that the

significant part of the damping comes from the localized constrained damping layer only. In a

recent paperUngar (2000) has mentioned that such damping is likely to be viscoelastic rather that

viscous. This case is thus analogous to the numerical systems considered in the previous three
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chapters, and we hope to obtain results close to that obtained from the numerical studies. Before

discussing the results we briefly outline the theory of bending vibration of Euler-Bernoulli beams.

8.4 Beam Theory

The equation of motion describing free vibration of an undamped uniform Euler-Bernoulli beam

in bending vibration can be expressed by

EI
∂4Y (x, t)

∂x4
+ ρl

∂2Y (x, t)

∂t4
= 0. (8.53)

Assuming harmonic motion, that isY (x, t) = y(x)eiωt, the above equation can be expressed as

EI
d4y(x)

dx4
− β4y(x) = 0, where β4 =

ω2ρl

EI
. (8.54)

The natural frequencies and the mode shapes can be obtained by solving the differential eigenvalue

problem (8.54) subjected to appropriate boundary conditions. For a free-free beam, the boundary

conditions are expressed as

d2y(x)

dx2
|x=0 = 0,

d3y(x)

dx3
|x=0 = 0, (8.55)

d2y(x)

dx2
|x=L = 0,

d3y(x)

dx3
|x=L = 0. (8.56)

(8.57)

Solving the eigenvalue problem (seeMeirovitch, 1997Section 7.7) the natural frequencies are

obtained approximately as

ωj ≈
(

(2j + 1)π

2

)2
√

EI

ρlL4
. (8.58)

The mode shapes corresponding to the above natural frequencies are approximately

φj(x) ≈bj [(sin αjL− sinh αjL)(sin αjx− sinh αjx)

+(cos αjL + cosh αjL)(cos αjx− cosh αjx)] , where αj =
(2j + 1)π

2L

(8.59)

andbj are normalization constants.

In Chapter6 it was mentioned that in order to fit a non-viscous damping model, the mass matrix

of the system is required. Note that for a continuous system, like the beam as considered here, a

mass matrix of finite dimension essentially requires discretization of the equation of motion. This

discretization can be performed in several ways, for example using the finite element method.

However, for the simple uniform beam considered in the experiment, a discretized mass matrix

can be obtained by following the simple procedure outlined in AppendixB.
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8.5 Results and Discussions

In this section, results obtained from modal testing of the beam are described. All the results are

for the case when damping is attached between the points 2 and 6 (see figure8.3). First, some

measured transfer functions and extracted modal properties are shown. Later, results on damping

identification obtained using the procedures developed in the previous chapters are shown.

8.5.1 Measured and Fitted Transfer Functions

The frequency range for the experiment has to be selected based on the number of modes to be

retained in the study. Because there are eleven grid points along the length of the beam we consider

only the first eleven modes in this study. Table8.3shows the natural frequencies corresponding to

the first eleven modes of the beam obtained from equation (8.58). These values give an indication

Mode Natural frequency (Hz)
number

1 30.6361
2 85.1004
3 166.7968
4 275.7253
5 411.8860
6 575.2788
7 765.9037
8 983.7608
9 1228.8499
10 1501.1713
11 1800.7247

Table 8.3: Natural frequencies using beam theory

of the frequency range to be selected for the experiment. We use a hard plastic tip for the hammer

which produces frequency range of 0− 2.5 KHz. The sampling frequency was selected to be

20KHz and 65536 samples are used for logging the time response data. The transfer functions

corresponding to input forces at the eleven points shown in Figure8.3(a) are calculated by taking

the Fourier transform of the logged time histories. In-house software was used for handling the

data. The measured transfer functions are fitted using the modal identification procedure developed

in Section8.2. Figures8.4 to 8.14show amplitude and phase of the measured and fitted transfer

functions obtained by hitting the hammer at points one to eleven respectively. It may be observed

that the fitting of all the transfer functions is in general good. Results on the identified modal

parameters obtained by this fitting procedure are discussed next.
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Figure 8.4: Amplitude and phase of transfer functionH1(ω),‘—’ measured, ‘−−’ fitted
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Figure 8.5: Amplitude and phase of transfer functionH2(ω),‘—’ measured, ‘−−’ fitted
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Figure 8.6: Amplitude and phase of transfer functionH3(ω),‘—’ measured, ‘−−’ fitted
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Figure 8.7: Amplitude and phase of transfer functionH4(ω),‘—’ measured, ‘−−’ fitted
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Figure 8.8: Amplitude and phase of transfer functionH5(ω),‘—’ measured, ‘−−’ fitted
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Figure 8.9: Amplitude and phase of transfer functionH6(ω),‘—’ measured, ‘−−’ fitted
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Figure 8.10: Amplitude and phase of transfer functionH7(ω),‘—’ measured, ‘−−’ fitted
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Figure 8.11: Amplitude and phase of transfer functionH8(ω),‘—’ measured, ‘−−’ fitted
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Figure 8.12: Amplitude and phase of transfer functionH9(ω),‘—’ measured, ‘−−’ fitted
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Figure 8.13: Amplitude and phase of transfer functionH10(ω),‘—’ measured, ‘−−’ fitted
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Figure 8.14: Amplitude and phase of transfer functionH11(ω),‘—’ measured, ‘−−’ fitted

8.5.2 Modal Data

Figure8.15compares the measured natural frequencies (extracted using the non-linear optimiza-

tion method described in Section8.2.3) and the analytical natural frequencies as shown in Table

8.3. From this diagram it is clear that the natural frequencies obtained from the experiment match

very well to the analytical natural frequencies obtained using simple beam theory. This gives us

the confidence to compare the mode shape associated with each natural frequency.

The modal Q-factors obtained from the experiment are shown in Figure8.16. The values of

the Q-factors lie between 80 and 140. This implies that the beam is moderately damped and the

damping identification procedures developed in the previous three chapters may be applied to this

system.

Mode shapes can be obtained from the identified transfer function residues by using equation

(8.35). It has been mentioned that if the damping is small then the real part of the complex modes
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Figure 8.15: Comparison of measured and analytical natural frequencies
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Figure 8.16: Modal Q-factors obtained from the experiment

obtained from equation (8.35) would be close to the undamped mode shapes. The undamped mode

shapes of the free-free beam under consideration can be obtained from equation (8.59) sampled

at the points corresponding to the grid points shown in Figure8.3(a). In Figures8.17to 8.27the

real and imaginary parts of extracted complex modes and the undamped modes obtained from

the beam theory are shown. From these figures it may be observed that the real parts of the
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extracted complex modes (uj) match very well with the undamped modes obtained from the beam

theory (xj). This agreement confirms the accuracy of the experimental procedure and the computer

program developed to implement the mode extraction method described in Section8.2.
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Figure 8.17: (a) The real part of complex modez1,‘—’ experiment, ‘−−’ theory; (b) The imagi-
nary part of complex modez1 for four sets of experimental data
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Figure 8.18: (a) The real part of complex modez2,‘—’ experiment, ‘−−’ theory; (b) The imagi-
nary part of complex modez2 for four sets of experimental data

It is useful to check the mass orthogonality relationship satisfied by the real parts of extracted

complex modes and the undamped modes obtained from the beam theory. The (tri-diagonal) mass

matrix is obtained using equation (B.8) derived in AppendixB. Figure8.28shows the mass matrix

in the modal coordinates (M ′) using analytical undamped modes. The ‘ridge’ along the diagonal

indicates that the matrixM ′ is diagonally dominant. Also note that the modes are normalized

such thatM ′ is an identity matrix or close to that. From this figure it is clear that the real parts

of extracted complex modes satisfy the mass orthogonality relationship with good accuracy. In
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Figure 8.19: (a) The real part of complex modez3,‘—’ experiment, ‘−−’ theory; (b) The imagi-
nary part of complex modez3 for four sets of experimental data
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Figure 8.20: (a) The real part of complex modez4,‘—’ experiment, ‘−−’ theory; (b) The imagi-
nary part of complex modez4 for four sets of experimental data

Figure8.29the matrixM ′ obtained using the real parts of extracted complex modes is shown.

The imaginary parts of extracted complex modes cannot be compared with ‘theory’ because a

correct theoretical damping model is required in order to produce the imaginary parts of complex

modes. Thus, unlike the real parts of extracted complex modes, there is no simple way in which

one can verify the accuracy of the imaginary parts. Unfortunately, it is the imaginary parts of the

extracted complex modes which are more likely to get affected by any experimental noise because

their magnitudes are much smaller compared to the corresponding real parts (see Figures8.17to

8.27).

Besides numerical accuracy, it also not known if the shapes of the imaginary parts of the ex-

tracted complex modes are at all correct. For the purpose of this study the experiment was repeated

several times and from Figures8.17to 8.27it may be verified that the imaginary parts of the ex-
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Figure 8.21: (a) The real part of complex modez5,‘—’ experiment, ‘−−’ theory; (b) The imagi-
nary part of complex modez5 for four sets of experimental data
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Figure 8.22: (a) The real part of complex modez6,‘—’ experiment, ‘−−’ theory; (b) The imagi-
nary part of complex modez6 for four sets of experimental data

tracted complex modes are reasonably accurately repeatable. This confirms that although they are

small, these quantities are not random noise, but possibly arise due to the physics of the damping

mechanism. Results on identification of the damping properties using the real and imaginary parts

of complex modes are discussed next.

8.5.3 Identification of the Damping Properties

Fitting of the Viscous Damping Model

First, we consider fitting of a viscous damping matrix to the extracted modal data. The procedure

for fitting the viscous damping matrix developed in Chapter5 is applied. Figure8.30shows the

fitted viscous damping matrix of the beam. Observes that this matrix is not symmetric. The
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Figure 8.23: (a) The real part of complex modez7,‘—’ experiment, ‘−−’ theory; (b) The imagi-
nary part of complex modez7 for four sets of experimental data
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Figure 8.24: (a) The real part of complex modez8,‘—’ experiment, ‘−−’ theory; (b) The imagi-
nary part of complex modez8 for four sets of experimental data

negative off-diagonal terms in some places indicate that the damping is not local. However, it

is encouraging that the high portion in the diagram roughly corresponds to the position of the

damping layer used in the beam. This fact is more evident if one takes the diagonal of the fitted

viscous damping matrix as shown in Figure8.31. The features of fitting the viscous damping

matrix observed here are quite similar to the cases discussed in Chapter5 when the damping in the

original system is significantly non-viscous (see, for example Figures5.7,5.8and5.9).

According to the conclusions drawn in Chapter5, we may regard the asymmetry of the fitted

viscous damping matrix as an indication that a wrong damping model has been chosen for fitting.

This indicates that the damping mechanism of the constrained layer damped beam used here is

not viscous. This results also illustrates that the viscous damping model commonly used in the

literature is not correct for this system. Next we consider fitting of an exponential damping model
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Figure 8.25: (a) The real part of complex modez9,‘—’ experiment, ‘−−’ theory; (b) The imagi-
nary part of complex modez9 for four sets of experimental data
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Figure 8.26: (a) The real part of complex modez10,‘—’ experiment, ‘−−’ theory; (b) The imagi-
nary part of complex modez10 for four sets of experimental data

to the measured modal data.

Fitting of Non-Viscous Damping

A procedure for fitting of a non-viscous damping model was developed in Chapter6. In this section

we apply this method to the damped beam considered here. Figure8.32 shows the values of̂γ

obtained from different̂µ calculated using equations (6.18)–(6.20). The trend of this plot is similar

to the one corresponding to the double-exponential model (GHM model) shown in Figure6.6. The

values of fittedγ approximately vary from 53 to 0.9. In view of the discussions in Chapter6, we

select the value ofγ corresponding to the value at the first mode (marked by a∗). For this value of

γ, the damping time function is shown in Figure8.33. The fitted coefficient matrix corresponding

to this function is shown in Figure8.34. The high portion near one end roughly indicates the
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Figure 8.27: (a) The real part of complex modez11,‘—’ experiment, ‘−−’ theory; (b) The imagi-
nary part of complex modez11 for four sets of experimental data
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Figure 8.28: Mass matrix in the modal coordinates using the modes obtained from the beam theory

position of the damping in the beam. The diagonal of the fitted coefficient matrix shown in Figure

8.35clearly reveals this fact. Off-diagonal elements are present in the fitted coefficient matrix, but

since they are all positive, this may indicate that the damping mechanism is approximately local.

Interestingly, observe that the fitted coefficient matrix is symmetric which indicates that the fitted

model might be correct. This is, in a way, contradictory to the result shown in Figure8.32for the

fitted values ofγ. If the original damping model is truly exponential then the values of fittedγ

for all the modes would have been the same, that is, a straight line would be obtained rather than

a line with downward slope as obtained here. In spite of this, the fitted coefficient matrix turns
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Figure 8.29: Mass matrix in the modal coordinates using the modes obtained from measurement
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Figure 8.30: Fitted viscous damping matrix for the beam

out to be symmetric. This is due to the fact that the values ofγ are not very high (in the order

of 50). Recall that similar features were also observed in the simulation studies, see Figures6.6

and6.13. From these results we conclude that the damping mechanism of the constrained layer

damped beam considered here is perhaps close to a single exponential model. This is consistent

with the fact that constrained layer damping is often viscoelastic (seeUngar, 2000).
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Figure 8.31: Diagonal of the fitted viscous damping matrix
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Figure 8.32: Values ofγ̂ obtained from different̂µ calculated using equations (6.18)–(6.20)

Symmetry-Preserving Fitting

In this section the symmetry-preserving damping identification method developed in Chapter7

is applied to the modal data extracted for the damped beam. Because the coefficient matrix of

the identified exponential damping function is symmetric, the symmetry preserving method is

applied to identification of the viscous damping model only. Figure8.36shows the fitted symmetric

viscous damping matrix. The high portion corresponds to the position of the damping layer in the
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Figure 8.33: Fitted damping time function for the beam
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Figure 8.34: Fitted coefficient matrix of exponential model

beam. Comparison of Figures8.36and8.30clearly demonstrates improvement of the fitted viscous

damping matrix for the latter case.
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Figure 8.35: Diagonal of the fitted coefficient matrix of exponential model
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Figure 8.36: Fitted symmetric viscous damping matrix

Discussions

From the results shown so far it may be concluded that the damping characteristics of the beam

considered in study is best represented by the exponential damping model. Application of the usual

method of fitting the viscous damping matrix yields an asymmetric damping matrix. This indicates

that the damping mechanism of the beam is non-viscous. However, recall that both the damping

models are fitted from the same set of poles and residues extracted from the measured transfer
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functions. This demonstrates that two different damping models with different spatial distributions

and parameters can be fitted to the measured transfer functions. On the one hand, this result is

negative because it says that by conducting conventional modal testing it is not possible to identify

unique damping model. On the other hand, this result is positive as any damping model can be

fitted to reconstruct the measured set of poles and residues.

It is now the analyst’s choice to decide on which approach should be adopted. If the interest

lies in understanding the true damping mechanism of a system then a model should be fitted for

which the coefficient matrix is symmetric. If, however, the interest is only to reconstruct a set

of measured transfer functions, then either a viscous or a non-viscous model can be fitted. The

choice of viscous or non-viscous model in this case depends on whether an accurate mass matrix

of the system is available or not. If the identified coefficient matrix is found to be asymmetric,

the symmetry preserving methods can be applied. As shown here, the damping matrix obtained

using the symmetry preserving method can give a reasonable account of the spatial distribution of

damping even for the case when the fitted model is incorrect.

Modal testing of the beam was conducted several times and the results shown so far correspond

to just one set of data. It was observed that in some cases the results on damping identification

were not very good. Figure8.37shows fitted values ofγ for a different set of measurements. The

identified coefficient matrix using the value ofγ1 is shown in Figure8.38. Although general trends
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Figure 8.37: Values ofγ̂ obtained from different̂µ calculated using equations (6.18)–(6.20)

of these two figures are similar to Figures8.32and8.34, the numerical values are quite different.

The value ofγ1 is much higher in Figure8.37compared to that in Figure8.32. Also observe that

the spatial distribution of damping shown in Figure8.38is less accurate than that in Figure8.34.
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Figure 8.38: Fitted coefficient matrix of exponential model

This raises the question – how sensitive are the damping identification procedures to measurement

noise? We take up this issue in the next section.

8.6 Error Analysis

In this section we consider the effects of measurement noise on the identified damping matrix. Due

to the presence of noise or random errors, the measured transfer functions become noisy. This in

turn makes the poles and residues, and consequently the complex natural frequencies and modes

erroneous. Further, recall that for lightly damped systems the imaginary parts of the complex

modes are small compared to their corresponding real parts. Thus, the presence of random errors

is likely to affect the imaginary parts more than the real parts. The effect of errors in the modal

data on identification of viscous and non-viscous damping is considered in the next two sections.

8.6.1 Error Analysis for Viscous Damping Identification

In Chapter5, the method for viscous damping identification was developed by assuming that the

complex natural frequencies as well as the complex modes are obtained exactly. In this section,

how the identified viscous damping matrix behaves due to the presence of errors in the modal data

is investigated. This can be done best by considering the numerical example used in Section5.4.

In order to simulate the effect of noise, we perturb the modal data by adding zero-mean Gaus-

sian random noise to them. Numerical experiments have been performed by adding different levels

of noise to the following four quantities:
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Figure 8.39: Fitted viscous damping matrix for the local case,γ = 0.02, damping model 2, noise
case (a)

1. Real parts of complex natural frequencies(rω)

2. Imaginary parts of complex natural frequencies(rη)

3. Real parts of complex modes(ru)

4. Imaginary parts of complex modes(rv).

Levels of noise, denoted by the quantitiesrω, rη, ru andrv, are expressed as a percentage of their

corresponding original values. In practice we hope to obtain the natural frequencies and Q-factors

with good accuracy. So, in what follows next, we assumerω = rη = 2% for all the modes. The

following cases are considered regarding noise levelsru andrv for all the modes:

(a) ru = 2% andrv = 10%

(b) ru = 10% andrv = 2%

(c) ru = 2% andrv = 30%.

Figures8.39, 8.40and8.41show fitted viscous damping matrix for damping model 2 corre-

sponding to the noise cases (a), (b) and (c) respectively. The locally reacting damping model

shown in Figure5.1(a) is considered andγ = 0.02 is assumed. Observe that for the noise case

(a), the fitted coefficient matrix is not very different from the exact one shown in Figure5.2. This

indicates that2% noise in the real parts of complex modes and10% noise in the imaginary parts

of complex modes do not effect the fitting result significantly. However, as observed from Figure
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Figure 8.40: Fitted viscous damping matrix for the local case,γ = 0.02, damping model 2, noise
case (b)
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Figure 8.41: Fitted viscous damping matrix for the local case,γ = 0.02, damping model 2, noise
case (c)
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8.40, the story becomes completely different for the noise case (b) when the values ofru andrv are

swapped. This clearly shows that the proposed viscous damping identification procedure is much

more sensitive to errors in the real parts of complex modes than to errors in the imaginary parts. To

illustrate this fact further, noise case (c) is considered where the noise level in the imaginary parts

of complex modes is30%. From Figure8.41observe that even for this high value ofrv, the fitted

viscous damping matrix is close to the noise-free case as shown before in Figure5.2.

Numerical experiments have been carried out using different damping models and parameter

sets. The results are in general quite similar. From this simulation study we conclude that errors

in the real parts of complex modes affect the damping fitting procedure much more than errors

in the imaginary parts of complex modes. This fact makes the proposed method very suitable for

practical purposes because the real parts of complex modes can be obtained more accurately and

reliably than their corresponding imaginary parts.

A semi-analytical explanation of this fact may be given by a perturbation analysis. Suppose,

the real and imaginary parts of the complex modal matrix can be expressed as

U =U0 + ∆U

V =V0 + ∆V
(8.60)

where∆(•) denotes the ‘error part’ and(•)0 denotes the ‘error-free part’. Note that, in generalU

andV arenot square matrices. From equation (5.12), one obtains the matrix of constants

B =
[
UT U

]−1
UT V

=
[
(U0 + ∆U)T (U0 + ∆U)

]−1

(U0 + ∆U)T (V0 + ∆V)

=
[
I −

(
UT

0 U0

)−1 (
∆UT U0 + UT

0 ∆U + ∆UT∆U
)]−1

(
UT

0 U0

)−1
(U0 + ∆U)T (V0 + ∆V)

(8.61)

Neglecting second or higher order terms involving∆, the above relationship can be approximated

as

B ≈ B0 +
[(

UT
0 U0

)−1
∆UT V0 −

(
UT

0 U0

)−1 (
∆UT U0 + UT

0 ∆U
) (

UT
0 U0

)−1
UT

0 V0

]
+
[(

UT
0 U0

)−1
UT∆V

]
(8.62)

where

B0 =
(
UT

0 U0

)−1
UT

0 V0. (8.63)

From equation (8.62) observe that there is only one term which contains∆V in the approximate

expression ofB. Also recall that the steps to be followed in order to obtainC′ andC do not involve

V. For this reason the effect of∆V is much less than that of∆U. This simple analysis explains

why errors in the real parts of complex modes effect the viscous damping fitting procedure much

more than errors in the imaginary parts of complex modes.
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8.6.2 Error Analysis for Non-viscous Damping Identification

For identification of the exponential damping model we need to obtain the relaxation parameter

and the coefficient damping matrix. The three noise cases introduced before have been considered.

Again, the locally reacting damping model shown in Figure5.1(a) is used andγ = 0.02 is assumed.

Figure8.42shows the values of fittedγ for the noise case (a). The fitted coefficient matrix
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Figure 8.42: Values ofγ̂ obtained from different̂µ calculated using equations (6.18)–(6.20) for
the local case, damping model 2, noise case (a)

corresponding to this case is shown in Figure8.43. Note that, the pattern of fittedγ for different

modes shown in Figure8.42 is quite different from its corresponding noise-free case shown in

Figure6.2. However, the fitted coefficient matrix in Figure8.43 is not very different from the

noise-free case as shown in Figure6.8except that the matrix become noisy. The spatial distribution

of damping and that the damping is local type is clear from this diagram.

Figure8.44shows the values of fittedγ for the noise case (b). The fitted coefficient matrix

corresponding to this case is shown in Figure8.45. Like the noise case (a), the pattern of fittedγ

for different modes shown in Figure8.44is quite different from its corresponding noise-free case

and also variation in the values of fittedγ is more now. However, unlike noise case (a), the fitted

coefficient matrix in Figure8.45is quite noisy and getting useful information from it becomes very

difficult.

Figure8.42shows the values of fittedγ for the noise case (c). The fitted coefficient matrix

corresponding to this case is shown in Figure8.47. Like the two previous noise cases, the pattern of

fittedγ for different modes shown in Figure8.46is quite different from its corresponding noise-free

case and the values of fittedγ varies to a greater extent now. In spite of this, the fitted coefficient
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Figure 8.43: Fitted coefficient matrix of exponential model for the local case,γ = 0.02, damping
model 2, noise case (a)
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Figure 8.44: Values ofγ̂ obtained from different̂µ calculated using equations (6.18)–(6.20) for
the local case, damping model 2, noise case (b)

matrix in Figure8.47is not very different from the noise-free case shown in Figure6.8. The spatial

distribution of damping and that the damping is local type can be recognized from this diagram.

From these results we conclude that the values of relaxation parameter are sensitive to errors

in both the real and imaginary parts of complex modes. However, the fitted coefficient matrix is
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Figure 8.45: Fitted coefficient matrix of exponential model for the local case,γ = 0.02, damping
model 2, noise case (b)
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Figure 8.46: Values ofγ̂ obtained from different̂µ calculated using equations (6.18)–(6.20) for
the local case, damping model 2, noise case (c)

more sensitive to errors in the real parts of complex modes than the imaginary parts as observed

for identification of the viscous damping matrix.

Explanation of these facts can again be given by a simple perturbation analysis. Since the the

procedure for fitting of the coefficient matrix is similar to that of the viscous damping matrix, we
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Figure 8.47: Fitted coefficient matrix of exponential model for the local case,γ = 0.02, damping
model 2, noise case (c)

will discuss sensitivity analysis for the relaxation parameter only. Suppose for anyj-th mode

uj =u0j
+ ∆uj

vj =v0j
+ ∆vj

ωj =ω0j
+ ∆ωj

(8.64)

Now, from equation (6.17), the expression of the relaxation parameter forj-th mode,µj can be

written as

µj = ωj

vT
j Mv j

vT
j Mu j

=
(
ω0j

+ ∆ωj

) (v0j
+ ∆vj

)T
M
(
u0j

+ ∆uj

)(
v0j

+ ∆vj

)T
M
(
v0j

+ ∆vj

) (8.65)

Neglecting all terms of second or higher order involving∆, the above expression may be approx-

imated as

µj ≈ µ0j
− µ0j

∆vT
j Mu 0j

+ vT
0j

M∆uj

vT
0j

Mu 0j

+ µ0j

∆vT
j Mv 0j

+ vT
0j

M∆vj

vT
0j

Mv 0j

+ µ0j

∆ωj

ω0j

(8.66)

where

µ0j
= ω0j

vT
0j

Mv 0j

vT
0j

Mu 0j

(8.67)

Equation (8.66) describes how approximately the values ofµj get effected due to error in the modal

data. Observe that error in the real and imaginary parts of complex modes as well as error in the

natural frequencies introduces error in the estimate of the relaxation parameter.
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8.7 Conclusions

Identification of damping properties by conducting dynamic testing of structures has been dis-

cussed. It was shown that conventional modal testing theory, the basis of which is viscously

damped linear systems, can be applied to generally damped linear systems with reasonable ac-

curacy. A linear-nonlinear optimization method is proposed to extract complex modal parameters

from a set of measured transfer functions.

A free-free beam with constrained layer damping is considered to illustrate the damping iden-

tification methods developed in the previous chapters of this dissertation. Modal parameters of the

beam were extracted using the newly developed method. It was shown that the transfer functions

can be reconstructed with very good accuracy using this modal extraction procedure. The real parts

of complex frequencies and modes show good agreement with the undamped natural frequencies

and modes obtained from beam theory. It was shown that, in contrast to the traditional viscous

damping assumption, the damping properties of the beam can be adequately represented by an ex-

ponential (non-viscous) damping model. This fact emphasizes the need to incorporate non-viscous

damping models in structural systems.

The effects of noise in the modal data on the identified damping properties has been inves-

tigated. For the case of viscous damping matrix identification, it was observed that the result is

very sensitive to small errors in the real parts of complex modes while it is not very sensitive to

errors in the imaginary parts. For the identification of non-viscous damping model, the relaxation

parameter is sensitive to errors in both the real and imaginary parts, however the associated coef-

ficient damping matrix is not very sensitive to errors in the imaginary parts. This fact makes the

proposed method more suitable for practical problems because the real parts of complex modes

can be obtained more accurately that the imaginary parts.

With this chapter the work taken up in this dissertation comes to an end. The contributions

made in the study are summarized in the next chapter and and a few suggestions for further work

are also made.
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Chapter 9

Summary and Conclusions

The studies taken up in this dissertation have developed fundamental methods for analysis and

identification of damped linear systems. Summary and detailed discussions have been taken up

at the end of relevant chapters. The purpose of this chapter is to recapitulate the main findings,

unifying them and to suggest some further research directions.

9.1 Summary of the Contributions Made

Modal analysis, the most popular tool for solving engineering vibration problems, is based on dy-

namics of undamped systems. However, all real-life structural systems exhibit vibration damping.

The presence of damping give rise to two major problems. Firstly, the classical modal analysis

procedure cannot be applied directly to generally damped systems. Secondly, and possibly more

importantly, unlike the stiffness and inertia forces which have strong theoretical as well as exper-

imental basis, knowledge of the damping forces is largely empirical in nature. For this reason, it

is not obvious what equations of motion should be used at the first place, let alone how to proceed

with a solution procedure. The studies reported in this dissertation address these two problems.

Viscous damping model is the most common form of damping normally considered in the con-

text of general multiple degree-of-freedom systems. This dissertation considers a more general

non-viscous damping model in which the damping forces depend on the past history of motion

via convolution integrals. The importance of considering such general damping models has been

brought out. It was shown that classical modal analysis can be extended to incorporate general

non-viscous damping models, at least when the damping is light. General methodologies for iden-

tification of damping properties have been proposed and through an experimental investigation it

was further shown that the damping mechanism of a system is indeed likely to be non-viscous.

The answer to the question, whether classical modal analysis is directly applicable to a damped

system or not, comes from the concept of existence of classical normal modes in that system. In

this line, classical damping or proportional damping was proposed for viscously damped systems.

In this dissertation, the concept of proportional damping is generalized to non-viscously damped

systems. This result demonstrates that, contrary to the traditional beliefs, the damping mechanism

185
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need not be viscous in order to apply classical modal analysis. This was the initial motivation for

considering more general non-viscous damping models. It was shown that, general non-viscously

damped systems possess two kinds of modes: (a) elastic modes, and (b) non-viscous modes. Elastic

modes are counterparts of the ‘modes’ of viscously damped systems, while non-viscous modes are

intrinsic to the non-viscous damping mechanism and do not appear in viscously damped systems.

For underdamped systems, elastic modes appear in complex conjugate pairs and are oscillatory in

nature. Non-viscous modes are real and not oscillatory in nature. It was shown that the system

response can be expressed exactly in terms of these modes in a manner similar to that used for

undamped or viscously damped systems. Classical mode orthogonality relationships known for

undamped systems were generalized to non-viscously damped systems. It was shown that there

exist unique relationships which relate the system matrices to the natural frequencies and modes

of non-viscously damped systems. These relationships, in turn, enable us to reconstruct the system

matrices from full set of modal data.

The above mentioned results give a strong footing to pursue more fundamental studies regard-

ing damping mechanisms in general vibrating systems. Assuming that the damping is small, a

method is proposed to obtain a viscous damping matrix from complex modes and complex natural

frequencies. It was observed that when the actual damping mechanism of the structure is not vis-

cous, this method fits a viscous damping matrix which is asymmetric, therefore non-physical1. If,

however, the damping mechanism is viscous or close to viscous, this method identifies the correct

viscous damping matrix. Thus, using this method it is possible to tell whether the damping mech-

anism of a structure is effectively viscous or not. This fact makes this method particularly useful

because currently there are no methods available in the literature which address this question, most

of thema priori assume the damping mechanism to be viscous and then try to fit a viscous model.

This study also indicates that when the damping mechanism of a structure is non-viscous, some

particular non-viscous damping model must be used for fitting. As a first step towards this, we have

considered the simplest non-viscous damping model, namely a single relaxation parameter model,

for fitting purposes. Identification of the damping properties using this model offers a greater flex-

ibility than that of the conventional viscous damping model. However, when the original damping

model of the system is not close to the fitted one, the method again yields a non-physical result.

Thus, using this method also, it is possible to understand whether the damping mechanism of the

original system is close to what was considered for the fitting. Another important result to emerge

from these studies is that, when the damping is light, several damping models can be fitted to re-

produce some measured set of transfer functions exactly. In other words, the identified damping

model is non-unique. On the one hand, this result is encouraging and serves as a kind of justifi-

cation of the widespread use of the viscous damping model. On the other hand, it demonstrates

that by conducting conventional modal testing procedure in general it isnotpossible to identify the

true damping model. Motivated by this fact, some methods were developed to identify damping

1According to the definition of Rayleighs dissipation function, see Section1.2.3
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models which will preserve the symmetry of the system. These methods in general yield physically

realistic damping matrix and reconstruct the transfer functions with good accuracy. The symmetry

preserving methods should be used when both the viscous and non-viscous damping identification

method fail to yield a symmetric damping matrix. However, the disadvantage is that the identified

models may have poor predictive power for changes to the system as the actual damping model is

incorrect.

It must be noted that complex modes and frequencies can not be measured directly in order to

apply the damping identification methods developed here. A linear-nonlinear optimization method

was proposed to extract the complex modal data from the measured transfer functions. This method

was applied experimentally to a beam with constrained layer damping and quite good agreement

between the measured and the reconstructed transfer functions was obtained. It was observed that

the damping mechanism of the beam considered for the experiment was not viscous but could be

adequately represented by an exponential damping model. This result clearly demonstrates the

need to use non-viscous damping modes in linear dynamic systems.

In summary, the work conducted in this dissertation achieves the following:

• Redefinition of the concept of proportional damping and generalization of it to the non-

viscous case (Chapter2).

• Extension of modal analysis to deal with non-classical and non-viscously damped linear

systems by introducing the concept ofelastic modesandnon-viscous modes(Chapter3).

• Generalization of the classical mode orthogonality and normalization relationships known

for undamped systems to non-classical and non-viscously damped systems (Chapter4).

• Identification of the full non-proportional viscous damping matrix from incomplete and

noisy modal data (Chapters5 and8).

• Identification of non-viscous damping functions from incomplete and noisy modal data to-

gether with the mass matrix (Chapters6 and8).

• A method for preserving symmetry in damping identification procedures (Chapter7).

• A general procedure for extraction of complex natural frequencies and modes from the mea-

sured transfer functions in the context of non-viscously damped systems (Chapter8).

9.2 Suggestions for Further Work

The study conducted in this dissertation throws open several questions on generally damped vi-

brating systems. The following are some important areas of research which emerge immediately

from this study:
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• Multiple parameter exponential models for damping identification: The non-viscous damp-

ing identification method proposed in Chapter6 considers only single parameter exponential

model for fitting purposes. It was observed that this simple model becomes inadequate when

the true damping mechanism is different from the exponential model. In order to overcome

this problem, it is required to fit a multiple parameter exponential model to measured com-

plex modes and frequencies. Currently there has been very little study in this direction. The

multiple parameter exponential model has several advantages. From a mathematical point

of view, having more parameters offers more flexibility for fitting purposes. From the point

of view of the physics of the damping mechanism, it is perfectly possible that the damping

mechanism of a structure comprises of a linear combination of several relaxation functions.

Thus, there are good physical as well as mathematical reasons to pursue a systematic study

on fitting of multiple parameter exponential models to measured complex modes and fre-

quencies.

• Analysis of complex modes: In spite of extensive research efforts, the nature of complex

modes is not quite clear. Although the results derived in Chapter4 clarify some of the

important theoretical issues,eg., normalization, orthogonalityetc., there are several topics

which need further attention. Upon proper normalization, the real parts of the complex

modes can be understood from our usual knowledge of normal modes (for example, see

Figures8.17 to 8.27). However, nothing so simple can be said about the imaginary parts.

Beside this there are several general questions of interest:

1. How should one quantify the amount of ‘complexity’ in a given complex mode?

2. Does the amount of ‘complexity’ have a direct relationship with the amount of non-

proportionality?

3. What should we except the shape of the imaginary parts of the complex modes to look

like? What are the parameters which govern these shapes?

Some of these questions have been addressed to some extent in the literature for viscously

damped systems. It is required to extend these results to generally damped systems.

• Numerical and experimental study on 2D systems: The experimental and numerical stud-

ies on damping identification conducted here were on one dimensional (1D) systems. It is

required to extend these works to more general two dimensional (2D) systems (plates, for

example). Some preliminary numerical studies were conducted by the author (although the

results are not reported) and it was observed that the methods proposed here can be applied

to such general 2D systems. Further studies are required to exploit the generality of the

proposed damping identification methods.

• Stability and Criticality of non-viscously damped systems: In Chapter3, the nature of the
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eigenvalues of non-viscously damped systems were discussed under simplified assumptions.

Clearly, these assumptions are not valid under general circumstances. For viscously damped

systems, based on the nature of the eigenvalues, there are well established works on when the

damping become critical or the system become unstable. It is important to obtain analogous

results for non-viscously damped systems.

• Asymmetric systems: The studies conducted in Chapters2, 3 and4 are self-contained as long

as systems with symmetric coefficient matrices are considered. However, the dynamical be-

haviour of some systems encountered in practice cannot be expressed in terms of symmetric

coefficient matrices or self-adjoint linear operators. Some examples are− gyroscopic and

circulatory systems (Huseyin and Liepholz, 1973), aircraft flutter (Fawzy and Bishop, 1977),

ship motion in sea water (Bishop and Price, 1979), contact problems (Soom and Kim, 1983)

and many actively controlled systems (Caughey and Ma, 1993). Therefore, for the sake of

generality, it is required to extend the formulation in Chapters2, 3 and4 to linear asymmetric

MDOF systems.

• Distributed parameter systems: In this dissertation we have considered only discrete param-

eter systems or discretized model of distributed parameter systems. Modelling of mechanical

systems through distributed parameters (inertia, stiffness and damping) offers more accurate

treatment of the problem. In this case the equations of motion can be expressed by partial

differential equations. The difficulty in adopting such an approach is that the exact solutions

can be obtained for only very special cases with simple geometry and boundary conditions.

There have been some studies on viscously damped distributed parameter systems but very

little is available in the literature on non-viscously damped distributed parameter systems. It

will be useful to extend the works reported in Chapters2, 3 and4 to distributed parameter

systems.
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Appendix A

Calculation of the Gradient and Hessian of
the Merit Function

The gradient and Hessian of the merit functionχ2 can be obtained from equations (8.42) and (8.45)

respectively. SinceV is a real vector,
∂H∗

n(ω)

∂Vp

=

(
∂Hn(ω)

∂Vp

)∗
. Thus, it is sufficient to obtain an

expression of the term
∂Hn(ω)

∂Vp

only.

First note that, from the definition ofV in equation (8.36) we have

∂Hn(ω)

∂Vp

=
∂Hn(ω)

∂ωp

, ∀p = 1, 2, · · · , m (A.1)

and
∂Hn(ω)

∂Vp

=
∂Hn(ω)

∂Q(p−m)

, ∀p = m + 1, m + 2, · · · , 2m. (A.2)

Consider the expression ofHn(ω) in equation (8.9). Since the residue matrixA is independent of

V , from (8.9) we further have

∂Hn(ω)

∂ωj

=
∂f1j

(ω)

∂ωj

Ajn +
∂f2j

(ω)

∂ωj

A∗
jn (A.3)

and
∂Hn(ω)

∂Qj

=
∂f1j

(ω)

∂Qj

Ajn +
∂f2j

(ω)

∂Qj

A∗
jn, ∀j = 1, 2, · · · , m (A.4)

because, forl = 1, 2,
∂flk(ω)

∂ωj

=
∂flk(ω)

∂Qj

= 0,∀k 6= j.

Using equation (8.5), the functionsf1j
(ω) andf2j

(ω) can be expressed in terms ofωj andQj

as

f1j
(ω) = − (iω)r

d1j
(ω)

, where d1j
(ω) = ω −

(
ωj + i

ωj

2Qj

)
(A.5)

and f2j
(ω) =

(iω)r

d2j
(ω)

, where d2j
(ω) = ω +

(
ωj − i

ωj

2Qj

)
. (A.6)
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Differentiating equations (A.5) and (A.6) with respect toωj andQj we have

∂f1j
(ω)

∂ωj

= − (1 + i/2Qk)
(iω)r

d2
1j

(ω)
(A.7)

∂f2j
(ω)

∂ωj

= − (1− i/2Qk)
(iω)r

d2
2j

(ω)
(A.8)

∂f1j
(ω)

∂Qj

=
(
iωj/2Q

2
k

) (iω)r

d2
1j

(ω)
(A.9)

∂f2j
(ω)

∂Qj

= −
(
iωj/2Q

2
k

) (iω)r

d2
2j

(ω)
, ∀j = 1, 2, · · · , m (A.10)



Appendix B

Discretized Mass Matrix of the Beam

Suppose that the displacement field of the beam is sampled atn points. All the points are equally

spaced with a spacing distance ofa and denoted by0, a, 2a, · · · , (n − 1)a as shown in Figure

B.1. The values of displacement at these points are denoted byu1, n2, · · · , un. Consider the first

.......

a 2a

uk1

un
.....

0

L
x

3u

u1

2u

ka

uk+1

u (x)~

Figure B.1: Discretization of the displacement field

segment and denotẽu1(x) as the value of the displacement in0 ≤ x ≤ a. Assuminglinear

variation ofũ1(x) betweenu1 andu2, one has

u1 − u2

a
=

ũ1(x)− u2

a− x
or ũ1(x) =

u2x + u1(a− x)

a
. (B.1)

Similar expressions can be obtained for other segments also. To obtain the mass matrix, first

consider the kinetic energy of the beam in the frequency domain given by

T = ω2 1

2

∫ L

o

m(x)u2(x)dx. (B.2)
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In the above expressionL denote the length of the beam,m(x) is the mass distribution andu(x) is

the displacement function. Equation (B.2) can be expressed in a discretized form as

T = ω2 1

2

n−1∑
k=0

∫ a

o

mkũ
2
k(x)dx. (B.3)

Assuming uniform mass density and denotingM as the total mass of the beam, the above equation

can be expressed as

T = ω2 1

2

M

(n− 1)

n−1∑
k=0

∫ a

o

ũ2
k(x)dx. (B.4)

Substitutingũ1(x) from (B.1), the first term of the above series reads∫ a

o

ũ2
1(x)dx =

∫ a

o

[
u2x + u1(a− x)

a

]2

dx =
a

3
[u2

1 + u2
2 + u1u2]. (B.5)

Similarly, considering all the terms, from (B.4) the kinetic energy of the beam can be expressed as

T = ω2 1

2
uT Mu (B.6)

where u = {u1, u1, · · · , un}T (B.7)

and M = mu



1 1/2
1/2 2 1/2

.. . ... ...
1/2 2 1/2

... .. .
1/2 1


with mu =

Ma

3(n− 1)
. (B.8)
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