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Abstract

Consistency of objects in a concurrent computing environment is usually ensured by serializing all incom-
ing method calls. However, for high performance parallel computing intra-object parallelism, i.e. concur-
rent execution of methods on an object, is desirable. Currently, languages supporting intra-object
parallelism are based on object models that leave it to the programmer to ensure consistency.

We present an object model, that ensures object consistency while supporting intra-object concurrency
thereby offering both safety and efficiency. The description starts with a simple and safe, but inefficient mod-
el and gradually increases the sophistication by introducing features for expressiveness and greater efficien-
cy while maintaining safety.

Based on this model we define extensions for guarded suspension and data parallel programming. The mod-
el and the extensions are defined as a language proposal for a new version of Sather, Sather 2. The proposal
is based on Sather 1.1, but replaces the parallel extensions of this version.



1 Introduction

With the adventof commodity multi-processorsand cheaphigh-performancenetworks
(Myrinet, ATM), parallelhardwareplatformsare now morewidely availablethanat any
timein thepast.Furthermorethereis a plethoraof applicationghatcouldbenefitfrom this
readily available multi-processorperformance ranging from mathematically-intensive
simulationgthetraditionalusersof high-performanceystems)to databasetp web-serv-
ers.However mostconcurrenprogrammingmodelsareinadequatéor thesesystemsit is
currentlyextremelyhardto realizethe promiseof parallelhardwareon problemsof signif-
icant size, even with highly skilled programmers.

Traditionalprogrammingmodelshaveeitherfocussednwriting safeandcorrectpro-
grams(Actors, Eiffel etc.)or on writing efficient, high-performance@rogramgthreadsn
C, C++ dialects).In reality, of course both safety andefficiency arevitally importantto
realizingthepotentialof theparallelhardwareavailabletoday.To safetyandefficiency,we
alsoaddease of expression asaprimaryconsiderationin orderto minimizetheerrorsthat
occurin realizinga parallelapplication the programmingmnodelmustpermita naturalex-
pressionof the applicationdomain.Thesegoalsarefrequentlyat odds,and previousap-
proaches, such as Emerald [9], have attempted to resolve these conflicts in various ways.

Thislanguageproposals anotheistepin thesamedirection.It proposesnewparallel
extensiorfor the Sathedanguagereplacingthe parallelextensiorof Satherl.1[44]. It is
intendedo becomepartof thenextversion(2.0) of SathercalledSather2. Thebasefor the
extensiorproposedn this documenis serialSatherl.1, althoughit might be changedor
Sather2. Thesepossiblechangesreexpectedo beminorandto haveno significanteffect
on the parallel extension.

The proposechewobjectmodel,thoughappearingo be fundamentalgoesnotinter-
ferewith the objectmodelfor serial Sather becauséhe new propertiesaffectconcurrent
programsonly. However,somequestionsoncerningheintegrationof this parallelexten-
sionwithin Sather2 remainopen,e.g.whetherthe serialSathedibrary will getcomplete
methodandandargumentannotationsorrespondindo the visitor/mutatorconceptintro-
ducedin section2.3. This might be necessaryo usea commonlibrary for serialandcon-
current programs.

The rest of this proposal may be divided into the following sections

» Theremainderof this introductionis devotedto our basicapproachandanoverview of
the other language models that most influenced our design.

» Section2 describeghe objectmodel,startingwith a simple,safe,but inefficient model
andgraduallyincreasinghe sophisticatiorof the model.Subtypingrulesfor this model
are gven in sectior8.

» Sectiord dealswith synchronousindasynchronoumessageletweerobjects.They are
the basic \ay of creating concurreyc

» Section5 introducesa systemfor designingcomplex synchronizatiorconstructswithin
the language.




» While the basicobjectmodelis appropriatfor dealingwith complex objectstructures,
it is notappropriatdor dealingwith arraysandotherflat structuresSection6 describes
the data parallel features whichveebeen intgrated into the basic language design.

* AppendixA explainsthe useof the newv objectmodelby giving a codeexampleof a
shield class implementing a bag.

1.1 Approach

Approachego parallelprogrammingnaybedividedinto two broadcategoriesln implicit
models the parallelismin the applicationis discoveredcandexploitedby the compilerand
run-time system.In explicit modelsthe parallelismis specifiedby the programmerBe-
tweenthesewo extremestherearea variety of systemsn whichthe programmeusesan-
notationsto aid the compiler and run-time. We choosethe explicit approach,and
furthermorewe chooseo avoidrelianceon heroiccompileranalysissinceachievingauto-
matic parallelizationis extremelyhardandthe achievedperformances frequentlyfragile.
We believethatit is possibleto designalanguagen which theannotationsiecessary

for performancelsorevealthe programstructureandmodularity.In otherwords,we are
interestedin application-centricannotationghat revealthe applicationstructure,rather
thansystem-centri@annotationsywhich areconcernedvith hardwaredetails.Application-
centricannotationswhich arerelatedto thelogical parallelisminherentin theapplication,
canbeimportantin designingthe programandresultin softwarethatis easierto maintain
andport. System-centriannotationspntheotherhand arerelatedto the physicalparallel-
ism of the underlyingsystemanddistractfrom the programstructure System-centri@n-
notations also result in non-portable code.

1.2 Related Work

Thereareseveralstrandof relatedwork, thatapproacthe problemof safe,high-perfor-
manceconcurrenprogrammingrom differentanglesin generalthework hasconcentrat-
edon eithersafetyor high performancebut rarely on both. We alsoreviewwork donein
the contextof sequentialanguagesvith theaim of achievingtrue objectencapsulatioty
controlling aliasing.

Efficiency

Some explicitly parallel object-orientedlanguagessuch as Satherl.1 [44][14], Java
[8][24], Ada [6], and C++ extendedwith threadand synchronizationlibraries suchas
POSIXthreadqd36] exposdow-level detailsof memoryandnetworkconsistencynodels
to the programmetradingthe simplicity of the underlyingmodelfor efficiency. The pro-
grammeris presentedvith a system-centrienodelsincethe low-level systemoptimiza-
tions are fully exposedto the programmer.In particular,sucha model enablesmany
softwareandhardwareoptimizationsthatcanreorderinstructions(or evenprogramstate-




ments) to hide the latency of memory and network operations. While this model strives to
achieve the highest possible efficiency, it may unduly compromise programmability by
presenting the programmer with afairly complex view of object states and transitions. Rea-
soning about parallel programs becomes cumbersome as the programmer needsto take into
account the low-level reorderings that are enabled by the weak consistency model. Failure
to do so results in hard-to-find data races. In addition, the portability of programsis by no
means automatic - unless the devel opment platform supports the weakest possible memory
model, a program that compiles and runs correctly during development may display subtle
dataraces when compiled for a platform with a weaker hardware memory model [13].

Safety at the Object Level

Many Actor languages [3] are based on avery simple programming model in which com-
putation is performed by independent entities communicating by atomic non-blocking mes-
sages. The simplicity of the model however is achieved at the cost of expressiveness and
efficiency: the requirement of the state update atomicity either introduces extra copying of
local state or disallows intra-object parallelism; atomicity of all method invocation has a
negative performance impact. The model usually relies on sophisticated compiler optimi-
zations to limit the degree of parallelism in order to reduce queue management overhead
on modern hardware [22]. On the positive side, the absence of intra-object parallelism and
the atomicity of methods eliminates the programming overhead to ensure memory consis-
tency. This, in turn, eliminates the source of pernicious bugs especially well known to pro-
grammers developing software for symmetric multiprocessors. Resulting programs are
usually portable (although not necessarily efficient) across many parallel platforms. For
some contexts, such as functional languages (base of some actors) certain performance and
expressiveness limitations are well justified by the model simplicity and the absence of data
races.

Expressing Object Grouping

In order to resolve the conflict between performance and safety, many programming mod-
els have resorted to controlling safety based on aggregates of objects.

Argus [26] introduced special guardian objects to control access to a set of resources
composing the internal state of a guardian. Within a guardian full sharing of objectsis al-
lowed while no direct sharing of objects between guardiansis permitted. In fact, the inter-
nal state of the guardians was built from standard (sequential) CLU objects [25]. The task
of concurrency and safety management is entirely performed by the guardians. Guardians
zealoudly protect their internal state from other guardians. If necessary, aguardian may cre-
ate a copy of itsinternal objects and pass it to other guardians. Thus passing objects be-
tween guardians has a value semantics. Internal concurrency within aguardian is allowed
and guardians are fully responsible for synchronizing their internal state. The model does
not provide a static safety guarantee.

Similarly, Emerald [9] distinguishes between global and local objectsat theimplemen-
tation level. Emerald is adistributed system and global objects are allowed to move within
the network. They also support remote method invocation. Local objects always remain
within an enclosing object (i.e. the reference is never exported outside), cannot move on
their own and do not support remote invocation.




Maintaining Group Encapsulation

In current object-oriented languages it is not possible to guarantee the encapsulation of a
group of objects within a containing object. The reason is that aliases to the internal state
may be erroneously released outside the containing object. While protectionis provided for
attribute variables, protection for the state that istransitively reachable from the object can-
not be expressed at the language level. This problem has been recognized as one of the most
serious challenges of object-oriented programming [16]. In spite of its importance, there
have been only few proposalsto ameliorate this deficiency. Wewill briefly look at acouple
of proposals for sequential object-oriented languages.

Islands [15] provide a syntactic mechanism for the isolation of groups of objects based
on richer argument and variabl e annotations. Bridges are protector objectswhich isolatein-
terior objects (islands), by controlling the import or export of aliasesto the interior objects.
Absolute modularity is maintained through bridges. Thisis excessively restrictive for our
purposes. Certain objects represent shared resources and it is natural that they be aliased
between different domains (or islands). Furthermore, transfers between domains are not
possible in this model. While the work on islands seeks to prevent all sharing of interna
state between modul es, some sort of object sharing isunavoidablein practical systems. The
Island proposal isimportant methodologically inthat it is specifically targeted at static safe-
ty quarantees rather than optional annotations.

Inasimilar vein, Balloon types[5] demonstrate how asimilar degree of safety may be
provided with fewer annotations and more sophisticated static analysis. However, balloon
types only guarantee safety against static aliasing (i.e. aliases though state variables) and
not against dynamic aliasing (aliasing through local variablethat exist only whileafunction
call isin progress)™. Since any aliasing between object groups, either static or dynamic, can
potentially result in conflicting concurrent object accesses, balloon types areinadequate for
providing safety in the face of concurrency. Furthermore, data may only be shared between
balloon types through the use of copying which essentially limits the usefulness of this
technique in high-performance domains.

The object model proposed in this document is similar in spirit to these approaches,
but adifferent solution is necessitated by the different language goal of supporting safe and
efficient concurrent programming.

Hardware Issues: Memory Consistency Models

Memory consistency models supported by the modern multi-processors are often charac-
terized by subtle, but important differences. Such weak consistency models include TSO
and PSO [38], RSO [39], processor consistency [1], numerous flavors of release consisten-
cy [12], and other models supported only by the individual hardware vendors (DEC AL-
PHA [37], PowerPC [31], PentiumPro [18], etc.). As do many others [2][1][12][13], we
believe that programmers should be presented with a single and simple programming mod-
el to shield them from the intricate details of the underlying hardware. Sequential consis-
tency [23] isthemost natural candidatefor such atop level programming model. Sequential
consistency is central to the notion of object safety in the proposed language. The great

1. Protection against dynamic aliasing using "opaque" balloon typesis mentioned in [5], but the de-
tails presented are only concerned with immutable objects.




challengeis reconciling the high level sequentially consistent model with the weak consis-
tency model supported by the hardware. The latter are responsible for up to 80% or perfor-
mance improvements of modern microprocessors [13]. Unlike other approaches that
concentrate on detection of deviations from sequentially consistent executions by devel op-
ing program analysis tools [2], we provide hard guarantees of sequentially consistent exe-
cution on weak consistency hardware at the programming language level. We will further
discuss the memory consistency issues and the interaction between the safety requirements
and sequential consistency in section section 2.1.




2 The Object Model

Sincethesafetyof themodelis ahardconstraintwe startby consideringadesignthatpro-
videssafetyandintroducefeaturesor expressivenesandgreaterefficiency while main-
taining safety. The following sectionsintroduce successivelymore relaxed models.
Italicized terms are defined in greater detail in their respective sections.

» As astartingpoint, Model A in section2.2 introducesa very simplemodelin which all
operationon objectsare serialized thusensuringsafetyat a high costin performance
(from the performance standpoint, this is similar to pure actors.)

» Theuwisitor/mutator model (Model B) describedn section2.3 permitsintra-objectcon-
curreng by alloving multiple reader methods taexute concurrently

» TheobjectaggrgationModel C describedn section2.4introducescoarsegrainedpro-
tectionby requiringshield objectsto furnish the protectionneededor interior objects
within adomain thatthe shieldclasscontrols.Interior objectscannotmove betweerthe
domains of diferent.

* Model D in section2.5 relaxesthe requirementhatinterior classede fully contained
within adomainby permittingtemporarysharingwhensuchsharingcannotresultin the
object beingaptured by another domain.

» Model E in section2.6 permitspermanentransferof interior objectsto a differentdo-
mains, preided that the objects @ beerfreed from their original domain

* ModelF in section2.7 describeshe dynamicdelegation of protectionandsynchroniza-
tion that enables shield object aggates.

2.1 Object Safety

The Goal

We are primarily concernedvith a somewhamnarrow meaningof objectsafety,namely,
preservingheintendedobjectsemanticsn thefaceof concurrencyBy the objectseman-
ticswe meanthe setof allowedstatetransitiongpermittedoy anobjectdefinition. Preserv-
ing objectsafetythereforemeansonly permittingallowedtransitionsgvenin aconcurrent
execution.In otherwords,in any parallel execution, all objects will only undergo the
transitions allowed by a sequence of callson the public interface of the classthat defines
the object. We referto this propertyin therestof this articleasobject consistency or object
safety.

By objectstatetransitionwe meanmutationof the objectstate By the objectstatewe
mearall referencesvithin theobjectitself (i.e. its statevariables)and,transitively thestate
of all interior objectsthey refer to. The definition of interior objectsis presentedn




section 2.4.2. Encapsulation of the object state requires controlled export of aliases to the
deep state of the object that does not violate our object consistency goal. Alternatively, all
object state transitions must be triggered by the invocations of the public interface methods
rather than silent modifications of the objects transitively reachable through erroneously
captured aliases. The main object consistency goal is achieved by a set of carefully de-
signed method signature annotations and certain restrictions on the allowed call sequences
to prevent the erroneous capture of interior state.

For instance, in our particle simulation example, we would like to avoid a situation
when severa areas erroneoudly try to simulate the same particles. Since particles in one
area can collide with particles with other areas and move between areas, a common pro-
gramming bug of capturing areference to aparticle not managed locally can result in afair-
ly expensive debugging effort. Our goal isto guarantee that this situation cannot happen at
the programming language level in order to avoid a complex posterior runtime analysis.

At thevery basic level, we would like to avoid concurrent mutations of the same mem-
ory locations with unpredictable results. We call such mutations basic data-races similar to
[2]. While this is not sufficient to guarantee object consistency as defined in this section,
thisisthefirst step in that directions and the simplest object model that we will consider in
section 2.2 will dojust that. However, wefirst review sequential consistency at the memory
location level.

Sequential Consistency

While sequential consistency is central to our notion of safety, for performance reasons, all
the SMP systems we are aware of do not provide sequential consistency at the hardware
level. Asdo many others[2][1][12][13], we believe that presenting the programmer with a
model that provides sequential consistency for the purposes of reasoning is indispensable
for building large compositional concurrent systems.

The sequential consistency model was formally defined by Lamport:

[A multiprocessor is sequentially consistent if] the result of any execution is the
same as if the operations of all the processors were executed in some sequential
order, and the operations of each individual processor appear in this sequence in
the order specified by its programs. [23]

Sequential consistency maintains the memory behavior that isintuitively expected by most
programmers. Each processor is required to issue memory operations in program order.
Operations are serviced by memory one-at-a-time and appear to execute atomically with
respect to other memory operations. The memory services operations from different pro-
cessors based on an arbitrary, but fair global schedule. This leads to an arbitrary interleav-
ing of operations from different processors into a single sequential order.

The benefits of such amodel include at |east the following: it matches most closely the
intuitive assumptions that most programmers make about concurrent systems, eliminates
basic data-races, and it makes programs portabl e across hardware platforms with different
weak memory models[13].




Memory Consistency vs. Performance

Thereisatrade-off between performance and the strength of the memory consistency mod-
el. Achieving sequential consistency requires communication between processors about the
state of shared datain order that all processors have a consistent view of the world. Reduc-
ing this communication by relaxing the consistency model enables hardware and software
optimizations and can improve performance by 80-100% on modern platforms [13]. The
challenge isto design alanguage that performs sufficient synchronization over shared data
to provide the programmer with sequential consistency, while at the sametime allowing the
compiler and run-time to fully exploit the optimizations enabled by weaker consistency
models between synchronization points.

It is also important that the object model guarantee such optimizations in the general
case. In other words, the optimizations are not results of (often unpredictable) static com-
piler analysis, but are guaranteed by the underlying language design. We believe that the
level of performanceisimportant enough that we cannot rely on smart compilersto deliver
this performance, as many other models have to (actors, behavior, strict active objects,
etc.).

We believe that it is possible to design alanguage in which the annotations necessary
for performance also reveal the program structure and modularity. In other words, we are
interested in application-centric annotations that reveal the application structure, rather
than system-centric annotations, which are concerned with hardware details. Application-
centric annotations, which are related to the logical parallelism inherent in the application,
can be important in designing the program and result in software that is easier to maintain
and port. System-centric annotations, on the other hand, are related to the physical parallel-
ism of the underlying system and distract from the program structure. System-centric an-
notations also result in non-portable code.

Model A
2.2 The Simple Model

We start with a ssmple, and trivially safe model. A simple way to achieve safety and se-
guential consistency is by requiring that all object accesses be serialized. In other words, a
mutual exclusion lock is associated with each object, and all method accesses to the object
must acquire the lock.

The degree of concurrency can beincreased by sending asynchronous messagesto oth-
er concurrent objects. An executing asynchronous message is also referred to as a thread.




Model B

2.3 Visitor/Mutator Annotations

A relaxation of this smple model isto permit multiple readers to access the object simul-
taneously. To avoid concurrent mutations of the same memory locations, it is sufficient that
all calls on object methods that may mutate object state be mutually exclusive, while calls
that merely examine or visit the object state may coexist with other visiting methods. We
refer to thisrestriction as object-level visitor/mutator protection.

In order to provide protection for the object state, all attribute accessor methodsareim-
plicitly annotated.

2.3.1 Basic Protection: Attribute Annotations

Provided that the primitive data access operations on the object (the reader and writer meth-
ods of the object attributes) are correctly annotated as visitors and mutators (respectively),
sequentially consistent accessis guaranteed. Since Sather definesimplicit reader and writer
methods associated with each attribute, we define all implicit attribute reader methods to
bevisitorsand all implicit writer methods to be mutators. Thisis sufficient to guarantee se-
quential consistency for this model. For instance, the definition of an attribute a of type T:

attr a:T;
implies the reader and writer methods:

visit a:T;

mutate a(val:T);
Since these accessor methods are used for all accessesto the attribute, the appropriate |ock-
ing is guaranteed for all modifications.

Such basic attribute accessors annotations (that can be trivially generated by the com-
piler) are enough to avoid concurrent modifications of the same memory locationsthat isa
source of many hard-to-find bugs especially well known to SMP programmers. Note how-
ever, that we are along way from achieving object level consistency. For instance, the in-
ternal implementation of objects can be freely aliased and, as a result, objects can go
through transitions that are not prescribed through the public interfaces of the outer layers.
In other words, the goal of the deep state encapsulation is not addressed. Another problem
with thisbasic model is performance - excessive locking at each attribute access essentially
disables many hardware and compiler optimizations such as instruction reordering. It also
results in repeated flushes of the store buffers and increased bus traffic of the bus based
SMPs.

2.3.2 Coarsening Protection by Annotating Methods

In this subsection we address the performance problem and make the first stepstowards ad-
dressing the object consistency problem. We do so by allowing visit and mutate annota-
tions of the class interface methods. Such methods are synchronized according to the
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concept of visitor/mutator protection. This has both semantic and performance benefits. In
terms of performance, marking methods as visitor or mutators has the effect of coarsening
the granularity of synchronization and reducing the number of times synchronization isre-
qui red?. In terms of semantics, coarseni ng the granularity of the synchronization hasthe ef-
fect of preventing changes to the object for the duration of the method execution.

Methods without annotation do not synchronize. See the example of the equality test
in sets, shown below.

2.3.3 Coarsening Protection by Annotating Arguments

It is sometimes necessary to claim exclusive access to severa objects at once, so that they
may be modified without any intervening callsi.e. to further restrict the allowed transitions
of the object, by disallowing certain external calls for awhile. Thisis achieved by jointly
locking multiple objects, either for visiting or for mutating. We aready annotate the lock-
ing of self by the keywords visit anOd mutate. Syntactically, joint locking is accomplished
by applying visit or mutate annotations al so to method parameters.

Our running example while describing the object model will consist of a set class. We
start by considering the basic operations on the set class such as insert and streaming
through the elements>.

class CONC_SET{T}is
mutate insert(e:T) is...
mutate delete(e:T):T is...
visit elt!: T is...
visit contains(visit e:T):BOOL is...
visit is_eq(visit s:SAME):BOOL is...
end;
In the above exampl e the contains and is_eq methods may be called concurrently on the set.
The equality test for two concurrent sets can be done by the following:
visit is_eq(visit arg_set: CONC_SET{E}):BOOL is
if size /= set.size then return false; end;
loop
if ~contains(arg_set.elt!) then return false end;
end;
return true;
end;
In this example, both self and set are claimed atomically for visiting at method entry. More-
over, thelock on both objectsis maintained for the entire method invocation and hence nei-
ther set can change until the equality test method terminates.

2.3.4 Problems

There are two kinds of problems with the object model so far.

2. Since the synchronization of object state accesses inside such methods may be trivially lifted by the compiler.
3. All objects at this stage are assumed to provide their own independent protection.
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» semantics: all methodsensureprotectionon their own - this may betoo fine-grainedas
in thegenerakaseét is morecornvenientto think abouta sequencef methodsasexecut-
ing atomically and anextra protection is both unnecessary and cumbersome.

* performance: astraightforvardimplementatiorof suchamodelresultsin areader/writer
synchronizatiompermethodnvocation.We wouldlik eto guarantedigh performancdy
theobjectmodel,notmerelyrely onthecompileroptimizationssuchasinlining andstat-
ic analysigo try to lift extrasynchronizationln theabsencédor failure)of theseoptimi-
zations,our naive modelwill prohibitmary instructionreorderingsoutinely performed
by modern parallel platforms with weak memory consistenc

Model C

2.4 Shield Classes and Interior Classes:
Encapsulation and Performance

While locking at the level of individual objectaccesses adequateo satisfybasicsafety
requirementt the memorylocationlevel (no concurrenimodificationof the sameunpro-
tected state), it suffers from drawbacks.

 Locking of frequentlyaccessednethodscanresultin significantoverheadandmay be
unnecessaryf the objectis alwaysinvoked within a safecontext i.e. containedwithin
some other object that prides the needed locking.

» Furthermorethoughthelocking guaranteesequentiatonsisteng in the basicmemory
locationsenseit doesnotguarantesafety:;it is upto theuserto ensurehatobject-level
safetyis maintainedin theCONC_SETexample for instanceif themethoddeleteis not
marked asa mutator the objectmay well go throughtransitionsthat cannotariseby a
sequence of calls on the object inbesd.

Many researcherfiave observedthat in both serial and parallel object-basedsystems,
groupsof objectsareoftenaggregate@ndfor manysemantiqurposest is conveniento
think aboutthe aggregatesa whole, ratherthana compositionof individual objects.For
concurrensystemssuchaggregatiordoesnot merelyimprovereasoningaboutprograms,
but can, in fact, affect the synchronization patterns.

Our solutionis to relaxthe objectmodelin wayssimilar to Emeraldand Argus. The
Sather2 modelhastwo kinds of objects:shieldobjectsandinterior objects.Therelation-
shipbetweershieldandinterior objectsis similarto thatbetweerguardiansandtheirlocal
statein Argusandglobalandlocal objectsin Emerald However theimportantdifference
is that Sather2 guarantees by a combinationof staticanddynamictechniqueshatthis re-
lationshipalways holds(it is notjust ensuredy goodprogrammingstyle). Thisis impor-
tantsince,unlike EmeraldandArgus,the proposedsather2 objectmodelallows dynamic
sharing of objects between different object groups while maintaining proper protection.

Theapproachs somewhasimilarto theideaof balloontypes[5], butshieldandinte-
rior objectsallow furthermechanisméke temporarysharingandtransferof interior object
as described in sections 2.5, 2.6, and 2.7.
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An executingSather2 programconsistf a collectionof shield andinterior objects
thatmay sendsynchronous andasynchronous messaget eachother.Objectsarecreated
at run-time and combine data representing the object state and program text.

All concurrencyis generatedy asynchronousnethodcalls on shieldobjects,there-
fore, for completenesshe classcontainingthe program’smain routine mustalso be a
shield class. Figuré presents a view of an executing Sathprogram.

asynchronous
call .”

thread

shield object
interior objects
domain
synchron

) call/return
protection
(synchronization)
boundary

Figure 1: The Sathé& Object Model

2.4.1 Shield Objects

Shield objectsprovide protectionfor containednterior objects.A shield objecttogether
with interior objectsthatrely onit for protectioncomposeanobjectdomainor simply do-
main. Intra-objectparallelismis permittedbut constrainedo prohibit conflicts between
visiting and mutating methods.
Shieldclassesnayblockacallerof amethodto provideprotectionin thefaceof shield
accesattemptsintuitively, they maybe viewedas“master” objectsthat protecta collec-
tion of interior objects. Theyareresponsibldor providingthe protectionfor all interior ob-
jects within their domain. All interior objects are protected by an enclosing shield object.
Shield objects have the following properties:

A shield class pnades (blocking) protection agnst shield access.

Intra-objectconcurreng is allowed, safeandis basedon single writer/multiple reader
paradigm.

In theabsencef pendingsynchronousallsfrom onedomaininto anothedomain there
are no inteidomain references to interior objects.

To afirstapproximationinterior classesnaynotappeain ashieldclasspublicinterface.
This requirement will be relaxl in the net sections.

We illustrate shield classes by using a concurrent set of interior objects.

shield class CONC_SET{INTERIOR_T} is
-- a concurrent set of interior elements
private arr:ARRAY{INTERIOR_T};-- protected array - internal representation
int size; -- set current size
mutate create:SAME is
res:SAME:= new;
res.arr;= #ARRAY{INTERIOR_T}(res.asize);
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res.size = 0;
return res;
end;
end;
We will extendthe setclassaswe concentraten differentfeaturesof the Sather2 object
modeland provideenoughinformationaboutSather2 to enablesuchstep-by-ste@xten-
sion.

2.4.2 Interior Objects

Interior classegely on shield classedor protectionin the face of concurrencyThe lan-

guagehasbeencarefullydesignedo keepinterior objectsfrom silently escapingrom one
domaininto another.Thisis essentiakinceonly shieldobjectscontrolinternalconcurren-
cy. In orderto enforcethe correctprotectionof interior classmethodsall interior class
methods must be correctly annotated.

Visitor/Mutator Propagation in Interior Classes

Sinceinterior classeslo not furnish protectionon their own, they mustpropagateprotec-
tion providedby the enclosingshieldclassedo their internaldeepstate. Protectionfor in-
terior objectsmustalwaysbe providedat leastby thefirst enclosingshieldclassanda set
of methodsannotationdhasbeendesignedo ensurethis staticallyfor all interior classes
duringnormalstatictype-checkingphaseWe now describetherulesthatmakesuchtype-
checking possible statically:

All methodghatinvokeavisitor methodof aninterior classmustbe markedasvisitors.All
methodsthat invoke a mutatormethodof an interior classmustbe markedas mutators.
Thus,anyshieldor interior classmethodthatcallsavisitor methodof aninterior classmust
bemarkedaseitheravisitor or amutator.Similarly, anyshieldor interior classmethodthat
calls a mutator method of a interior class must be marked as a mutator.

2.4.3 Ensuring Object Consistency

In order to see that sequential consistency is ensured, we first note that

» All accessesf shieldobjectstatearesafe(asbefore),sincethereaderandwriter meth-
odsof shieldclassesare visitors and mutators respectrely, andthe reader/writersyn-
chronization succeeds beforeyrae accessed.

» All accessesf interiorobjectstatemustgothroughashieldclassinterface All referenc-
esto interior objectsareonly visible within their shieldclassandfrom otherinterior ob-
jectsin thesamedomain.Thus,all methodcallsonainterior classmusteitheroccurfrom
(a)thecontainingshieldclassor from (b) anotheiinterior classin thedomain.Callsfrom
anotherinterior classin the domainmustalsooccurfrom either(a) or (b). Sincesucha
chainof calls (i.e. thread)may not originatein ainterior class,by transitvity the chain
of calls must originate in case (a).
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Objectlevel consistencys alsoensuredThe primitive attributereaderandwriter access
methodsof interior classesareimplicitly annotatedOur rule for visitor/mutatorpropaga-
tion ensureghatat everycall alonga call pathto anattributereaderor writer of a interior
objecteithermaintainsor strengthengwhena call to a visitor occursin amutatormethod)
therequiredprotection.Thus,anymethodchanginganobject’sstate(its statevariablesand
all reachablenterior state)mustbe markedasa mutatorandwill be executedexclusively
on thatobject.Hence for eachobjectthe sequencef all statetransitionsduringprogram
executioncanbedescribedy a sequencef public methodcallsi.e. atanytime a method
is calledthe objectis in a statethatcanbereachedy a calling sequencen the public in-
terface; no intermediate state is possible.

2.4.4 Problems

Themainproblemwith thisdomain-basedbjectmodelis thattransferringnterior objects
betweendomainsis not supported.Thus, all communicatiorbetweenthreadsmusttake
place through shield classes.

Model D
2.5 Temporary Sharing of Interior Objects

Unlike objectmodelsproposedyy otherresearchersnter-domaincalls arealsoallowed.
However aswith intra-objectparallelism acarefullycraftedsetof semanticonstrainten-
suressafetyby controlling the objectreferencealiasing.In this section,we considertem-
porary sharingof interior objectsbetweenobjectdomains.In the following sectionwe
consider permanent transfers between object domains.

2.5.1 Exporting Interior Aliases

In orderto relaxtheconstrainbnthecontainmenbof interior classesywe investigatehecas-
esin which transferringnterior classedetweerdomainsgs safe.In generaltherearetwo
waysby which referencego interior objectsmay be exportedoutsidetheir domain.Both
situations may arise from inter-domain calls:

« a public interhice method of a shield claakes interior objects as arguments
* a public interhce method of a shield class$urns a interior object
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Both situations areillustrated in the following figure.

Sseta setb
call
return

Figure 2: Interior objects and inter-domain calls

2.5.2 Object Capture

We first consider the problems that may arise when ainterior object (or, more precisely, a
reference to it) is passed as an argument in an inter-domain call. This case is graphically
depicted in the left part of Figure 2. In the absence of any control over aliasing, areab can
create a copy of the passed reference to object p and storeit locally in areab, as an attribute
of any object in areab domain. We call this capture of a reference or simply capture. Thus,
even after call termination, area b will keep a reference to object p in area a as shown in
Figure 3.

after call

Figure 3: Reference capture and static inter-domain aliasing

The situation as depicted in the figure is inherently unsafe. After the call terminates,
areab keeps areference to an object in areaaand can modify it concurrently with any other
methods invoked on object p from area a.

While static analysis techniques can be used in order to detect problemswith reference
capture, we are dealing with ageneral aliasing problem. The problem is statically undecid-
able (although conservative heuristics do exist). This prompted other systems, such as Ar-
gusto disallow passing reference to interior data across domain boundaries. Instead, value
semanticsis assumed for all such calls and all objects are copied.

Such a solution may be fine for loosely coupled distributed system with high network
latencies. However, for ahigh-performance system, especially if it isbased on shared mem-
ory multiprocessors, the overhead of forcing value semantics for inter-domain calls re-
stricts expressiveness of the language and has a negative performance impact.
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2.5.3 Safe Exporting of Aliases

Insteadof disallowingall inter-domainaliaseswe disallowonly the dangerougkindsthat
can compromise safety. Let us introduce some necessary terminology.

Aliasing Paths

Let path to an object or simply path be a sequencef variablenamesvhereeachvariable
namebindsanobjectandthelastvariablebindstheobjectin questionThebindingof each
successiveariableis evaluatedn thecontextof the objectboundby thepreviousvariable.
Forinterior objectswe aregenerallyinterestedn pathsthatoriginateat shieldobjects.In-

ter-domainaliasingof aninterior objectexistsif thereareat leasttwo pathsto the object
originatingfrom differentshieldobjects Inter-domairaliasingis dynamicif two suchpaths
exist only while the inter-domain call is in progress. Otherwise, aliasing is static.

Safe Paths

Not all kindsinter-domainaliasingaredangerousndthereforeundesirableForinstance,
consider a function in the AREA class that determines whether a function

visit is_member(visit e:INTERIOR_T):BOOL

mustreceiveareferenceao anelementf anothershieldareaasanargumentDisallowing
this would unduly restrict language expressiveness.

We permitasubclas®f inter-domainaliasingthatcanbeeasilystaticallyprovento be
dynamic(i.e. existsonly while themethodcall is in progress)Suchaliasingis safe- acaller
maintainghe necessaraccespermissionsvhile thecall is in progressandreferencesre
guaranteedotto becapturedoy thecallee.This appliesonly to synchronougnon-thread-
ed)calls.We will dealwith asynchronousallsandsemanticqulesandrestrictionsneces-
sary to maintain safety in the following sections.

Thekey observations thatfor areferenceo be captureda writer method for some
attribute in an object in another domain must be executed. Suchwriter methodgand
possiblysomeothermethodsvrappedaroundit) areguaranteedo be markedasmutators.
Hence to eliminateall capturingof referenceso interior objects,it is sufficient(although
not necessary) to disallow passing such references to mutator methods.

Rule for Temporary Sharing

In summary, these rules ensure the safety of inter-domain calls:

» Only visitor methodsof shieldclasspublic interfacesmay have interior (referencepb-
jects as gguments.

Example

Theseaulessignificantlyimprovelanguagexpressivenesshile notcompromisingsafety.
For instancethey validatethe signatureof is_member thatwe havepreviouslyused.The
implementatiorof is_member is safesincethe passedeferenceo ainterior objectcannot
be captured. We now reexamine is_eq to make sure that its implementation is correct.
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visit is_eq(visit arg_set:CONC_SET{PROT_E}):BOOL is
if size /= arg_set.size then return false; end;
-- now check for all element matches
loop
e;PROT _E:=eltl;
if ~arg_set.contains(e) then return false end;
end;
return true;
end;
In this example, the only call that crosses domain boundary isarg_set.contains(e) The call

is both legal and safe since it has a signature:
visit contains(visit e:T);

Since the called method is a visitor, it cannot capture a passed reference, and hence the
passed element is shared only while the call isin progress.

We now have almost all information necessary to implement the rest of the concurrent set
class. However, what is missing is the ability to transfer interior objects between domains.

2.5.4 Ensuring Object Consistency

Object sharing meansthat two different domains may have aliasesto the sameinterior state.
While each domain will provide adequate protection on its own, accesses from the different
domains may conflict with each other. Thus, both object consistency and even sequential
consistency may be violated since encapsulation is violated. In order to maintain object
consistency in the face of transient sharing of interior stateit is necessary that

(A) No unsafe operations occur during the transient sharing of state and

(B) No interior state references remain after the sharing i.e. that the sharing of stateisin-
deed transient.

Asapreliminary, we reiterate the fact that all interior state is protected by a shield object,
including any that comes in as an argument. Thus, a shield object method must be marked
as a mutator if *any* interior objects are modified (including any that comes in as argu-
ments). However, we only permit the passing of interior objectsinto visitor shield methods.
Thus during such avisitor method, the callee domain may not modify any interior state, in-
cluding the shared interior state. Furthermore, since the interior state belongs to the caller
and is being accessed by the caller, the caller must also be marked as either a visitor or a
mutator (it cannot be unmarked). In other words, the caller has, at the very least, obtained
permission to visit the interior state. Since the call into the callee domain does not modify
the shared state, any transitionsin the shared state must take placein thecaller. Thisreduces
to the standard case for protecting interior state, as described in Section 2.4.3. Thus (A) is
maintained. As described in Section 2.5.3, our rules prevent permanent capture of the
shared state. Thus, (B) isalso preserved and thus object consistency is preserved. Since ob-
ject consistency implies sequential consistency, temporary sharing of state obviously pre-
serves the sequential consistency of the programming model.
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2.5.5 Why Not Use Copying?

Theargumentmay be madethatvaluesemanticsnay be usedwhenevera domainwishes
to accesgheinterior stateof anotherdomain.Therearetwo main argumentsgainstthis
approach:

» Performancevaluesemanticsnayrequirethe copying of a potentiallylarge amountof
interior state If thesharingrequireds notcomputationallyntensve, thecostof copying
may dominatethe performanceThe extensve work doneon compileroptimizationsof
suchcopying cancertainlyhelp;however, the performancenaybefragile andunpredict-
able.

» Moreimportantly valuesemanticarefundamentallydifferentthanreferencesemantics,
andthe programmemay well desireoneratherthanthe otherin a particularcontext.
While our modelpermitsthe programmeto usevaluesemanticsit doesnotrequirehim
to do so, as is the case withghis and Balloon types.

2.5.6 Why Not Use Shield Objects?

It is alsopossibleto shareinternalstateby protectingthat statefrom conflicting accesses
by makingit aseparatshieldobject.While this solutionprovidestheright notionof object
identity, it may unnecessarilaffectsperformanceAll accessew the object,evenwithin
theirowndomain,will requirelocking. In ourexamplejf particlesareturnedinto concur-
rentobjectstheywill needto belockedoneveryaccessincludingthesafeaccessewithin
their own area. This essentially forces us to use the conservative object model.

Thus,if possiblewe wishto shareinterior objectswhensuchsharingcannotcompro-
misetheir safety.In casesvheremultiple domainsmay needto modify the samestate we
canstill resortto shieldedobjects but this may be ata muchfiner granularitythanwould
otherwise be needed.

In our example for instancethe newlocationmay be updatedoy the original areaor
by any of the neighborareasandis thereforea shieldedobject. The particle,asa whole,
howeverjncludingits old locationwhichis usedduringthe O(n*2)computationsneednot
be shielded.Thius,the old locationis representedsingan interior object,which permits
usto greatlydecreas¢éhe amountof locking required,sinceparticlesandold locationsdo
not require locking.

Model E

2.6 Transferring Interior Objects

It is sometimesecessaryo transferobjectshetweerinterior objectsbetweerdifferentob-
ject domains.For the reasongnentionedin Section2.5.5,copyingis not desirable.The
safetyof aninterior objectthat is transferredbetweendomainsmay be compromisedf

morethanonedomaingpossesseanaliasto the object- in this case accesset theobject
may passhroughdifferentinterfacesandthereforeviolate both objectsafetyandevense-
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guentialconsistencyThus,in orderto ensureobjectsafety,it is necessaryo ensurehatat
notimedobothdomaingmaintainpointersto thetransferrednterior state Thisensureshat
all interior accesseare controlledby a single shieldinterface,which providesadequate
protection.

Sather2 providesa mechanisnfor transferringinterior objectsbetweerdifferentdo-
mains,suchthatthe safetyof thetransfermay be dynamicallydeterminedIn orderto per-
mit thetransferof interior objectsbetweerdomainswe first definefree objectswhich may
betransferred betweerdomainsSinceinterior objectsarealwayscreatedvithin shieldob-
jects,atsomepointtheconnectiorbetweertheinteriorgroupandtheshieldobjectmustbe
severedTheseverancef thisconnectioris definedin two stagesWefirst definetransfer-
ablegroupsof interior objectswhich areonly reachabléhrougha singleexternal We then
define a free operation which destroys the last remaining external reference.

An interior objectp definesa transferrable objectgroup,consistingof itself andall
objectreachabldrom it, iff all pathsto objectsin thegroupgo throughp andthereis only
a single reference to p.

A transferablesubgrougs freeif therearenoreferenceso theroot objectp from any
local variableor attributeof a shieldclass.Figure4 displaysthe objectgroupsassociated
with several free objects.

"o N

omain A

Domain B b c

free

N /

Figure 4: Free Object Groups

A transferablesubgroupwith rootp is freedby the fr ee operationappliedto p, which
releaseshereferenceo theroot objectandverifiesthatthe groupreachabldrom theroot
objectis indeedfree.It returnsthevalueof thereferenceandmaythusbeusedin callsas
shownin theexample$elow.Objectsb andc definetransferablgroupswhile a is theroot
of a free group in Figuré.

Free interior objects relax the last constraint on the interfaces of shield classes.

* Free objects may be passed agiarents to methods in shield classes.

* For therulesfor visitor/mutatorpropagtion applyingfreeto a interior objectis equiva-
lent to calling a mutator on it.

2.6.1 The Transfer Mechanism

Transferat the point of call is performedby usinga modespecifierfree with a methodar-
gumenffor boththemethoddefinitionandthemethodcall. Theargumenmodefree applies
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thefree operationby destroyingthe original referenceo the free object. Any methodthat
performs a transfer must be marked as a mutator method.

Transferat the point of returnis specifiedusingthe built-in free operationwhich acts
similarly to thefreeargumenimodeandsetsareferenceo ainterior objectpasse@sargu-
mentto void andreturnsa free objectof the sametype. It is anerrorif thereexistsa path
from anyshieldclassto any objectin the objectgroupto bereleasedhatdoesnot contain
areferencgpassedisargumento free. This lastrestrictionensureshattheresultingobject
groupis truly free andthereare no referencegrom original shield hostleft behind.The
compiler emits code for a run-time check of this condition.

2.6.2 Run-time Checking

While all thesafetymechanismgresentedofar havebeenstaticallycheckablethetrans-
fer mechanisnis not. Determiningthat an objectgroupis transferableor free requiresa
run-timecheckof referenceshatmaybeperformedwith theaid of referenceounté. Ref-
erencecountingwill exacta certainperformancepenalty. The approachwe pursueis to
leavethe decisionup to thefinal userby providing a compileroption thatwill enableor
disablethe run-timecheck.Thisis similar to the Satherapproacho otherexpensiveests
suchasarrayboundsandvoid dereferencehecking.In practice the checkis usedduring
thedebuggingtageandnotusedn theproductionsystemThefollowing pointsmaygreat-
ly reduce the performance of reference counting:

» Referenceountingneednot be performedatall in visitor methodsTheinterior stateis
notmodifiedby avisitor method(i.e. no new references)andall local variableswill dis-
appeanafterthe call terminateslf avisitor methodcalls a shieldclassmutatormethod,
it cannotpassary interior stateasanargument,sinceit cannotfree theinterior state(if
interior state is freed then the method must be ethds a mutator).

» Referenceountingneednotbeperformedonlocalvariablesn certainmutatormethods.
Let usdefineatransferringnethodasa mutatormethodin which afree operations per-
formedor from which a transferringmethodis called(i.e. a transferringmethodis one
from which a free operationis transitvely reachableby a seriesof calls). Reference
countingneedonly be performedon local variablesof transferringmethodsReference
countingmustalwaysbe performedon attribute modifications however, in all mutator
methods.

 Private (objectprivate) attributesthat are never aliasedmay be transferredwvithout any
test.

Transferringmaybeviewedasanoptimizationovercopyingdatabetweerdomainsn the
restricted case where the original domain no longer references the state being transferred.

2.6.3 Shield Class Interface Restrictions

In summary, then the restrictions on shield class methods are as follows:

4. Thecheckbasicallyensureshattheinterior statebeingtransferreds self-contained all pointers
to objects in the group come from other objects within the group.
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* Visitor methods of a shield class maydaly interior objects as guments.

» Mutatormethodof ashieldclassmayonly take freeinterior objectsasargumentsWith-
in themethodbody, only freeobjectsmaybeobtainedoy callsto othershieldclassmeth-
ods.

2.6.4 Example

We may now extend the concurrent set class by adding the insert method:

mutate insert(free e:PROT_T) is
if(size+1 > asize) then double_and copy; end;
-- double the array and copy the original state

arr[size] := e;
size := size+1;
end;

Freeinganobjectis alsousefulfor operationsuchasdeletewhich removeall currentref-
erencego the object.Forinstancethefollowing methodreleasesinelementhatmatches
its argument:

mutate delete(e:PROT_T): free PROT_T is
-- release and return a set element matching e, if found
res:PROT_T,;
loop
i::=0.upto!(size-1);
if(e = arr[i]) is res = arr]i]; shift_left(arr, i, 1); break!; end,;
end;
return free res;
end;

visit intersect(visit arg_set:CONC_SET{PROT_T}): CONC_SET{PROT _T}is
-- computes an intersection of self with ‘set’ and returns it as a new set
res: C_SET:=#;
loop
e:= arg_set.elt!; -- create a dynamic alias
if contains(e) then res.insert(free e.copy) end;
end;
return res;
end;

visit union(visit arg_set:CONC_SET{PROT_T}): CONC_SET{PROT_T}is
-- computes a union of self and ‘set’ and returns it as a new set
res: C_SET:=#;
loop res.insert(free elt!.copy); end;
loop
e:= arg_set.elt!;
if ~res.contains(e) then res.insert(free e.copy) end;
end;
return res;
end,;

Theabovecodeassumetheexistencef acopy methodn PROT_T thatreturnsafreecopy
of self and has a signature:

copy: free PROT_T,;
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Model F
2.7 Synchronization Aggregation

An importantsemantidoenefitof the objectaggregatiorschemedescribedn the proceed-
ing sectionthatgroupsof protectedobjectsmay be accessedvithin a concurrenimethod
body,with the assurancef no externalinterferenceThis coarseningf locking is useful,
for instance, when computing the sum of all the elements of a container.

Forsemantiaeasonsit is desirableo supportasimilar coarseningf lockingon con-
currentobjects While annotatingnethodargumentgasdescribedn Section2.3.3)allows
usto conjunctivelylock smallnumbersof concurrenbbjectsiit is frequentlyusefulto be
ableto lock alargeraggregatiorof objects.This permitsoperationgo beperformedon el-
ements of the aggregate without external interference.

Aggregateprotectionmaybeachievedf the protectionfor thewholegroupis consol-
idatedin some“protector” objectwhich providesprotectionfor the groupasa whole.To
achievethis transferof protectionwe definetheprotector of a concurrenbbject.All syn-
chronizedobjectshavean attributeprotectorboundto the protectorobject.A concurrent
object is either protected by itself, in which case:

a.protector = a

or it is protected by some other object, b:

a.protector = b
Transfer of the protection of ‘a’ to ‘b’ must be signalled explicitly:

a.protector:= b;

Transfer of the protection of an object back to itself is achieved by:
a.protector:= a;

‘a’ is protectedy ‘b’ impliesthatanyvisitor of ‘a’ is avisitor of ‘b’ andanymutatorof ‘a’
is a mutator of ‘b’.

Notethatthe synchronizatioraggregatiorof concurrentlassesloesnot restricttheir
usage theymaystill befreely usedin othercontexts However,anyaccesswill resultin
thelock for the overallaggregatdeingclaimed.Thus,if asetaggregatesynchronization
onall its elementsthe elementsnay still beaccessedutsidethe set.However,acquiring
the lock on any of the elements will result in the aggregate lock being claimed.

Group Protector

Figure 5: Tee of Aggrgated Concurrent Objects
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2.7.1 Performance Implications

The compiler and runtime may usethisinformation to get rid of somefine-grained synchro-
nization and consolidate all synchronization in the protector object. For instance, al ele-
ments of a concurrent array may be protected by the array object itself. Iterating over the
elements of the array will acquire little or no synchronization overhead in addition to syn-
chronizing on the array object. Concurrent array elements may be freely exported outside
the array object boundary (unlike protected attributes). However, synchronization will re-
main coarse-grained even when such objects are used not as array elements.

2.7.2 Determining the Protection of Aggregates

Performing aggregation in a naive manner can require time linear in the size of the aggre-
gate to determine the protector of an object. However, we have been investigating the use
of modified union-find operations to reduce the average cost of aggregation:

A semi-dynamic problem occurs when there is a notion of state of objects that goes beyond
only considering the attributes of that object. Assume the state of an object to be defined
by its value attributes and the state of its reference attributes that are marked as owned. Ad-
ditionally, it isrequired the each object knowsits master. A master of an object o is defined
asfollows: (i) the master of o iso iff it has never been assigned to an attribute marked as
owned or (ii) the master of o isthe master of the object that contains the owned attribute o
is assigned to®. Initially, each object isits master. Ownership may get coarser by assigning
an object to an attribute marked as owned.

Simple Algorithm

The simple application of the Union-Find data structure would solves the problem: As-
sume, initially each object is asingleton set. The operation fiid applied on aobject o iden-
tifies the master of 0. Assigning an object o to an (marked owned) attribute of an object o’
should have the effect that, according to the definition of master, find(o) becomes find(o")
and find(o") remains the same. However, this behavior cannot be guaranteed by the union
operation. The reason isthat find(o") remains the unchanged iff | find(o)| < |find(o") 6. For
afirst algorithm, we drop thisinvariance. For various probability assumptions, the expected
running timeis linear for the above algorithm, cf. [4].

Advanced Algorithm

The next algorithm is an easy extension of the Union-Find data structure. First of all, we
observe that the Union-Find data structure works aso for on-line problems: Obvioudly, it
IS no problem to create new objects, i.e. to add new singleton sets, on-line. We add an op-
eration master which, applied to an object, returns its master. As an invariance of the new
data structure, each object o representing a set computes master(o) in time O(1), e.g. by

5. In Sather, e.g., synchronization is done by the master of an object. This master must therefore be accessed when an object
is called.

6. Notethat fird (0") denotes a set and | fird (0)| the cardinality of this set.
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storing them in special attribute. Obviously, the invariance can be guaranteed for the initial
singletons. For objects that do not represent a set, master(o) is defined by master(find(o)).
It is aso invariant that for any object o, master(o) is the master object of o (as defined
above). Let o0 be an object to be assigned to an (marked owned) attribute of another object
o’. In this case we find the master of o’, assign it to some auxiliary variable, say
new_master, then execute union(o,0’), and finally redefine master(o) = master(o’) =
new_master. Of course, this can beimplemented in O(find). Obviously, it holdsthe follow-
ing:

For any sequence of assignments and requests to find a master object, for
each object o, master(o) computes the master of 0. Any sequence of n as-
signments and m >=n requests to find the master object requires time
O(n +m x a(m, n)) with the above implementation where a(m, n) is the
inverse of Ackermann's function.

25



3 Safety and Subtyping

Our object model so far has been mainly concerned with ensuring safety in concrete class-
es. We now turn our attention to abstract classes (interfaces) and the need to ensure safe
substitutability with subtyping. The subtyping rulein Sather is contravariant providing safe
substitutability of classes by subclasses. This subtyping rule is extended to ensure better
substitutability in the face of concurrency. Abstract classes may either be interior or shield.
Thetyperulesfor abstractions are similar to the type rulesfor their concrete counter parts.

3.1 Abstract Interior Classes

Methods in abstract interior classes may be annotated as visitable or mutable. Methods
marked visitable are considered visitor methods and methods marked mutable are consid-
ered mutator methods; protection for such methods must be propagated to al method calls,
just as it is with concrete interior classes as described in Section 2.4.2. Abstract interior
classes may only subtype from other abstract interior classes.

3.2 Abstract Shield Classes

Methods in abstract shield classes may also be unmarked or annotated as visitable or mu-
table. Methods marked visitable are considered visitor methods and methods marked mu-
table are considered mutator methods. Just as with concrete shield classes, method
protection need not be propagated through calls. The same restrictions on public interfaces
for concrete shield class apply to abstract shield classes.

Method arguments of abstract shield classes may also be marked as visitable or muta-
ble. Return types may be unmarked or marked as free.

3.3 Subtyping between Shield and Interior
Abstractions

Shield classes may subtype from abstract interior classes, provided, of coursethat they con-
form to the interior class interface. However, interior classes may not subtype from shield
abstractions.

Informally, this subtyping constraint may bejustified asfollows. A visitor or amutator
method of ainterior abstraction has the implicit precondition that the caller has become a
visitor or mutator of the object before the method is called. The visitor/mutator propagation
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rule ensureshetruth of this precondition A visitor or mutatormethodof ashieldclasshas
theimplicit preconditiorthatthe executinghreadcanbecomea visitor or mutatorat some
pointin thefuture (i.e. doingsowill notresultin deadlock).Hence the preconditionon
interior classmethodgqi.e. thatthecalleris alreadyavisitor or mutator)naturallyimply the
preconditionsof shieldclassegi.e. thatit canbecomea visitor or mutator).The synchro-
nization behavior of a method provides no specific postcondition guarantee.

Visitable vs. Visit

We chooseto usethe termvisitablein abstractiongo indicatethatimplementationsnay
electto not performa synchronizationif theydo not needto do so.Hence thetermvisit-
ablein theabstractlassinterfaceindicatesthatthe userof the interfaceis not guaranteed
thatanysynchronizationvill takeplacejtheusemustensurehattrying to becomeavisitor
will not result in deadlock.

3.4 From Abstraction to Implementation

If theamethodarguments annotatedsa‘visitable”, thenanimplementatiorsubtypemay
annotatehe arguments“visit”. Fromthe pointof view of preconditionsthis meansvis-
itableimpliesvisit. If anarguments of typevisitable,the modifier stateghatit shouldbe
possibleto becomeavisitor of theargumen({or, alternatelythatcalleralreadyis a visitor).
Thevisit annotatiorhasexactlythe samerequirementandadditionally,performsthe ac-
tion of actually taking the lock.

We havethefollowing subtypingruleswith respecto visit, mutate visitableandmu-
table:

mutable
visitable mutate

ViSit unmarled

FIGURE 6. Extending Sather subtyping rules

3.5 Example

We usetheabovesubtypingrulesto illustratehow a moresophisticatedersionof the par-
ticle simulationalgorithmcanbe built. Until now, the simulateduniversehasbeensubdi-
videdinto rectangulacellsof equalsize.However for anon-uniformparticledistributions
moreefficientadaptivemesheganbeused.Thus,theuniverses nolongersubdividednto
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identicalgrid cells.To enablepossibleuturealgorithmsrefinementswe candeclareanab-
stract class $AREA that captures area’s essential interface:

abstract shield class $AREA is
visitable print;  -- print information for local particles
mutable simulate;-- perform a simulation step
mutable perform_transfers; -- transfer particles to the neighbors
-- other interface signatures;
end;

-- A rectangular area - subtypes from the abstract interface $AREA
shield class RECT_AREA < $AREA is

visit print is ... end;

mutate perform_transfers is ... end;

mutate simulate is ... end,;

-- other methods
end;

A classimplementingthe rectangulamlareassubtypedrom the abstracttlass$AREA and
the compiler uses the above extended subtyping rules during the type-checking phase.
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4 Threads and Concurrency

Similarto a“standard’object-orientednodel,a Sathelcomputatiorinvolvesmessagethat
triggermethodexecution Sathemessageareactive- theycantriggeranactionatthedes-
tination object without cooperation of other threads, processes, or “bodies”.

4.1 Active Messages

There are two kinds of messages: synchronous and asynchronous:

» Synchronous calls. A threadexecutinga synchronousall relocatestself to the destina-
tion objectby sendingan active messagéeo thatobject. Messageshatdo not satisfya
proceed criterion,i.e. thatarewaiting for synchronizationarequeueduntil it is satisfied.
Onmethoderminationanactive messageontainingthereturnvalue,if arny, is sentback
to the sourceobject. Executionresumesmmediatelyuponthe arrival of a returnmes-
sage.

Themostcommonandtrivial caseof anactive messagearryingasynchronousall is a
methodcall onalocal object,whichis executedwith norun-timesysenoverheador the
message.

» Asynchronous calls. Non-blockingcalls areperformedoby creatinga new threadandlo-
catingit to thedestinatiorobjectby sendinganactive messagelhe sendinghreadcon-
tinuesexecutionimmediately The startof a new threadsignifiesthe creationof a new
domain.Active messagesarryingasynchronousalls canonly be sentto shield(or im-
mutable)objects.Suchcallscanhave agumentof shieldtypes,valuetypes,andfreein-
terior types.

While generatingsynchronousgallsis alreadycoveredby serialSathernewlanguagedea-
tures are requoired to express asynchronous calls.

4.1.1 Fork Expressions

While generatingsynchronougallsis alreadycoveredoy serialSathernewlanguagdea-
turesare requoiredto specify asynchronousgalls. Asynchronouscalls are performedby
fork expressions with the following syntax:

fork_expr 0 fork [bundle,] call_expression

Fork expressiondiavethetype FUTURE, if themethodhasno returnvalue,or FUTURE({T},

if the methodinsidefork returnsa valueof type T. The following examplecreatesa new
threadto computea sumof two immutableintegersNotethatin Sather+2 is justsyntactic
sugar forl.plus(2). The original thread then blocks until the result is available:
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t:FUTURE{INT}:= fork (1+2);
sum:INT :=t.get; -- wait until the thread terminates

4.1.2 Futures

Theinterfaceof futureshasonly two methodsget andis_done. get is blocking - athread
thattriesto performa getoperationon the future blocksuntil the correspondinghreadis
terminatedIf the call hasareturnvalue,it is returnedby get. is_done is non-blockingand
returns a boolean informing the caller about the state of the future.

4.1.3 Thread Bundles

Threadbundleis anoptionalargumentor athreadcreationexpressionit servesasahandle
onacollectionof threadsandcanbeused for instanceto wait until all threadsn thatcol-
lectionterminate.The nextsectionwill providemoreinformationon bundlesbundleop-
erations, and thread scheduling.

4.1.4 Example

We now changethe original sequentialersionof intersect() to exploit parallelism Thefol-
lowing codesegmentsesavery simpleparallelalgorithm:a separatehreadis createdor
eachelementof the setto seeif the elementbelongsto a setpassecsanargumentlf so,
acopyof theelementetsinsertednto theresultingconcurredset.Sincethreadsarevisit-
ing self andargumentset’, the bulk of threadbodiescanexecuteconcurrently.The only
mutually exclusive part is due to the insertion of new elements to the resulting set.

visit Intersect(visit set: CONC_SET{PROT_T}):CONC_SET{PROT_T}is
-- a parallel version of intersect
res:SAME:= #;
bundle:$3BUNDLE:= #BUNDLE; -- create a new default bundle
loop
i:= 0.upto!(size-1);
future::= fork bundle, intersect_chunk(i, set, res);
end;
-- now simply wait until all done
bundle.join; -- wait until all threads in a bundle terminate
return res;
end;

private visit intersect_chunk(i:INT, visitable set:SAME, mutable res;SAME) is
-- compute an intersection of a range of elements in self starting with ‘start’
-- of size ‘range’ with set ‘set’. Add the results to ‘res’
loop
e::= arrlil;
if set.contains(e) then
res.insert(e.copy);
end;
end;
end;
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In this example,a new bundleof the defaultbundletype is createdandis usedto signal
whenall createcthreadgerminate.The original threadblocksinsidebundle.join until this
happens.

4.2 Bundles and Scheduling

In this sectionwe discussSatherthread bundles. Threadbundlesor simply bundles, area
collectionof logically relatedthreadsnith commonpropertiesThe mostimportantshared
property is that all groups in a bundle share the same scheduling policy.

Bundles fulfill several purposes:

» Similarto concurrentlasseshatprovide aggreationof objects bundlesprovide aggre-
gation of acwities.

» “Standard”threadsynchronizatioroperationanapplyto entirebundles.For instance,
a join method can be called on thentdle to vait until all threads in aundle terminate.

« Differentbundlessupportdifferentschedulingpolicies.Similarto objecthierarchiesac-
tivities canalsobe combinednto hierarchiesy associatinghemwith appropriatéoun-
dles.

Although we haven'tmentionedthreadbundlesmuch earlier,they havebeenaroundall
along.All Satherthreadsjncludingthe original threadthatexecuteshe main methodbe-
longto bundlesTheability to aggregatgarallelactivitieswill comevery handyin thedata
parallel extension of Sather.

We now examine the fork expression in more detail:

f:FUTURE{T}:= fork([bundle:$BUNDLE,] method(args));

In theabsencef anoptionalbundleargumentanewthreads addedo thecurrentthread’s
bundle.If thebundleargumenis presentathreadis addedto the specifiedbundle.When
the thread terminates, it is automatically removed from its bundle.

4.2.1 Bundle Hierarchies

Bundlescanform hierarchiesA newly createdbundleis automaticallyaddedasa child to
the bundleof the currentthread Fig showsa bundlehierarchyof anevolving Sathercom-

putation.
Al A

:

Figure 7: Creation of nebundles (left) and a resulting Bundle hierartight)
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A built-in expressioreurrent_bundle:$BUNDLE returnsa bundleof the calling thread.Any
bundle implementation must conform to the following interface:

abstract class $BUNDLE < $IS_EQ is

parent:$BUNDLE: -- returns the parent of a bundle
child!:$BUNDLE; -- iterates through child bundles
num_threads:INT; -- a “current” number of threads in the bundle
num_blocked_threads:INT; --"current” number of blocked threads
join; -- called from outside: blocks until all threads terminate
barrier_init; -- “unit” the barrier; the following barrier will be done
-- for the # of threads at the moment of the call
barrier; -- blocking barrier
name:STR; -- “name” for debugging purposes
end;

$BUNDLE providesmerelyaninterfaceall bundlesmustconformto. Onecanenvisionan-
other abstract class for bundles that support priority-based scheduling:

$PRIORITY_BUNDLE < $BUNDLE is
set_current_priority(p:INT); -- sets the priority of a calling thread
get_current_priority:INT;  -- returns priority of a calling thread
end;
Sincewe haveatwo level systenthatcaptureghestateof activities(threadsandbundles),
two kinds of scheduling decisions have to be made:

» scheduling of threads in aibdle
» scheduling of dierent lundles

4.2.2 Bundle Scheduling Policies

The currentdistribution of Active Threads(a compilationtargetfor Sather)currently
comes with the following bundles:

* threadsschedulingpolicy: FIFO,LIFO, MCS andversionsof thesewith lazy stackallo-
cation.

* bundle scheduling polc FIFO

4.2.3 Discussion

Superficially, Satherbundlesarereminiscentof the Javathreadgroups[8]. Both entities
serveto aggregateactivities and can be combinedinto hierarchiesThey also shareone
commongoal- theaggregatiorof controlovermultiple activities.However therestof the

goalsarequitedifferent: Javathreadgroupsaremainly neededo ensuresecurityin adis-

tributedmulti-userenvironmentin contrastSathetbundlessnablecompositionatievelop-
mentof parallelsoftwareandencapsulationf schedulingpoliciesin programmodulesFor

very fine-grainedparallelapplicationsa carefuluseof bundlesthatsupportmemory-con-
sciousthreadscheduling(to minimize the numberof cachemisses)leadsto significant
speedupsanddrasticallyreducednemoryrequirementsBoth runtimeandmemoryusage
hasbeenshownto improveby asmuchasan orderof magnitudefor someparallel plat-

forms [47].
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5 Guarded Methods and Properties

A main goal of our object model is sequential consistency on the object level. Thisimplies
synchronization of concurrent threads acting on objects. The concept of visitors and muta-
tors provide away to synchronize threads that can be used e.g. to protect a shared resource.
But in general, athreaded concurrent programming language like Sather 2 should provide
further means for synchronization than just reader/writer exclusion.

Condition variables, for example, cannot be implemented by the means of our object
model without busy waiting which in the most cases leads to poor performance. Further-
more, a busy waiting implementation would mix synchronization code and general code.
Readability would be poor and the condition variables could not be considered when stati-
cally checking for substitutability.

Thischapter introduces guarded methods and properties extending the synchronization
facilities of our object model. After stating the design goals in section 5.1, syntax and se-
mantics of guarded methods and properties are introduced stepwise. Single guarded meth-
ods and basic properties are described in section 5.2. The basic concepts are extended in
section 5.3 (extended properties) and section 5.4 (disjunctive guarded methods). Examples
aregivenfor all new language features. Section 5.5 discusses how they can beimplemented
efficiently.

5.1 Design Goals

The synchronization constructs introduced in this chapter meet the design goals of the
whole language, namely safety, performance, and ease of expression. Additionaly, they
extend the object model in anatural way.

5.1.1 Natural Extension

In order to be consistent with our object model, we use the same synchronization points. A
thread may synchronize with others only when it enters or leaves amethod. Thisis support-
ed by many synchronizing constructs of object-oriented concurrent programming languag-
es like body methods of active objects (e.g. [7]), accept sets [19], enabled sets [46], and
method guards (e.g. [10][29]). But only methods guards expose the synchronization con-
straint of a method at its signature and thereby allows save subtyping with respect to syn-
chronization behavior like our object model does. Also syntactically, adding a guard to a
method is closer to the visitor/mutator annotation of the object model.
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5.1.2 Safety

Therearethreeaspect®f safetyto be consideredkeepingthe safetyof our objectmodel,
safe subtyping, and deadlock detection.

Keeping the Safety of the Object Model

In orderto keepthe safetyof the objectmodel,visitors/mutator@andguardsarecombined
conservativelyA threadis blocked,if atleastoneof thesetwo mechanismblocksit. Fur-
thermore calling a guardednethodmay not changethe statusof the callerbeingareader
or a writer, even if the call blocks.

Safe Subtyping

Safesubtypingis requiredto ensuresubstitutabilityof classedy their subclasse$?articu-
larly for thedesignof robustclasdlibraries,substitutabilityis essentialAccordingto Mey-
er'sconcepbf design by contract [32], thecalling object(client) of amethodhasto ensure
apreconditiorto holdwhencalling.In turn,thecalledobject(server)guaranteeapostcon-
ditionto holdwhenthemethodreturns Now, aclasscansafelybesubstitutedy asubclass,
if for all of its methodsholdsthatthe preconditionimplies the preconditionof the corre-
spondingmethodof thesubclasandthatthe postconditioris implied by the postcondition
of the corresponding method of the subclass.

In absencef concurrencyt is asevereun-timeerror,if a preconditionor postcondi-
tion doesnot hold. Systemscapableof detectingsuchan error usuallyraisean exception
whenthe contractis violated.For concurrensystemshe situationis different. A precon-
dition beingfalsewhenathreadcalls a method,might become&rue on accountof another
thread Hence it mightmakesenseo block thethreaduntil the preconditionbecomedrue
instead of raising an exception.

To solvethis conflict, we partitionthe preconditionof a methodin two parts,the im-
mediate precondition andthe blocking precondition. While a violation of the immediate
preconditions arun-timeerror,aviolation of the blocking preconditiorblocksthe calling
threaduntil the conditionbecomedrue. The blocking preconditionis alsoreferredto as
synchronization constraint, method guard, or simply aguard.

Thereis no needto partition postconditionsn a similar way, sincethey haveto be
guaranteedby the methodwhenreturning.But in orderto increaseeadabilityandto sup-
port an efficient implementation we also partition postconditions (see below).

In Sathempreconditionandpostconditiorarepartof a methodssignaturethoughusu-
ally specifiedincompletely.By interpretingthe methodguardaspartof the precondition,
we canachievesafesubstitutabilityalsoconcerningsynchronizatiorconstraintsThis al-
lows static checking blocking preconditions for subtypes, at least for basic cases.

Deadlock Detection

A safetygoal of any multi-threadedanguageshouldbe to avoid deadlocksby statically
checkableaestrictions But usually,too strongrestrictionghoughprovidinghigh safetyare
not desirable pecausehey reduceexpressibilityand might forbid the implementatiorof
commondesignpatternsHence multi-threadedanguageslonotavoiddeadlockentirely.
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In orderto compensatéhis weaknessa furthergoalis to detectdeadlocksat run-time
asfar aspossible Sincerun-timechecksmight havesevereperformancemplications,we
tried to reducethe synchronizatiompointsandto allow a schemeof signalingsynchroniza-
tion eventsbetweerthreadsthatallowsto detecta lot of deadlocksituationswith low ef-
fort. This supportdevelopmenof deadlockfree code,but doesnot give completesafety,
because not all deadlocks can be detected.

5.1.3 Performance

An efficient implementatiorof visitor/mutatorsynchronizatiorcan makeuseof existing
low level reader/writedocks or canbe built easilyuponothersynchronizatiorprimitives
asmutexesor semaphoresBut for guardedmethodshe problemis muchmorecomplex.
Severaldesignissuesbeing critical for performancehaveto be discussedncluding the
guestions when, how often, and by which thread a blocking guard is re-evaluated.

Synchronization Points

We supportalow numberof re-evaluation®y thelanguagelefinition. Guardsarerestrict-

edto expression®sn properties, specialattributes(basicpropertiesjor methodgextended
propertiespf shieldobjects.Changedo basicpropertiesareonly possiblewhena method
returns.Hence,re-evaluatiorof guardsdependingon anobject’'sbasicpropertiess only

required,if amethodcalledon this objectreturns.Thesesynchronizatiorpoints,blocking

on methodentryandsignalingon methodreturn,arethe sameasin the objectmodel,sup-
porting a simple andefficientimplementatiorfor the combinationof both. We keepthis

synchronizatiorschemealsofor extendedoroperties gventhoughthey might changebe-

fore a modifying method returns.

Number of Re-Evaluations

Theremainingnumberof necessarguardre-evaluatiorcanbe reducedoy staticanalysis
anddynamictrackingof guarddependencie3.heanalysisof dependencieis supportedy
demandinaall changego propertieseingstatedn amethodgpostconditionLike precon-
ditions,postconditiongresplitin two parts.Thefirst one,thecheckingpostconditiongcon-
cernseverythingbut propertiesand may be incomplete.The secondone, the signaling
postconditiondescribeshe changedo propertieanadeby this methodcompletely. These
changesrestatedn the signalingpostconditioronly. Thus,the signalingpostconditions
aswell anassertiorasit is executableode.This simplifies programmingandthe analysis
of guarddependenciedt avoidscontradictiondbetweenmethodbody and postcondition
andavoidsundecidablesituationswhich couldoccurif changeso propertiesvould appear
in the method body, e.g. in conditional branches.

Avoiding Context Switches

A further guestionconcerningperformances which threadevaluates blockedguard.In
Javafor example pnly the blockedthreaditself canre-evaluatets guardrequiringcontext
switchingfor eachre-evaluation8]. By restrictingguardgo expressionsnpropertiesany

35



threadcanre-evaluatea guard.In particulara threadsignalingthe needfor are-evaluation
can re-evaluate all blocked guards without any context switch.

5.1.4 Ease of Expression

Parallelprogrammingaddscomplexityto sequentiaprogrammingln orderto reduceer-

rorsthatoccurin realizingparallelapplicationsthe programmingnodelmustpermitanat-

uralexpressiorof commondesignpatternsn theapplicationdomain.We achievedaclear

expressiomf synchronizatiorconstraintdy separatingynchronizatiorrodefrom method
bodiesandby makingthema part of the signature With the synchronizatiorbehaviorof

an objectbeing reflectedby its interface,it is possibleto reasonaboutsynchronization
without knowing the implementationCodere-useis supportedoy avoiding mostof the

known inheritance anomalies caused by inherited synchronization code.

Object Properties

We clarified the specificatiorof guardsby addingproperties to objects Propertiesndicate
statesf the objectwith respecto its synchronizatiorbehavior.In our eyes the mostnat-
ural way of specifyingsynchronizatiorbehavioris to say’executethis methodwhenthe
objecthascertainproperties’.Accordingly, we define guardsas booleanexpression®n
propertiesExtendedpropertiesallow sharingof complex(partial) blocking preconditions
between methods by.

Separation of Synchronization Code

Partitioningpreconditionsand postconditionseparatesynchronizatiorcodefrom other
actionson the objectandallows designingt andreasoningaboutit separatelyrom other
code . Furthermorethedifferentsemanticbetweenmmediatepreconditionsandchecking
postcondition®nonesideandblockingpreconditionsandsignalingpostcondition®nthe
othersideis reflectedby the languageThe formerareassertionshatmay be omittedand
thatmaydescribehecorrespondingonditiononly partially. Thearecompiledto run-time
checkghatcanbeturnedon or off by compilerswitchesThelatteralwaysdescribehecor-
respondingconditioncompletelyandarecompiledto codethatis essentiafor execution.
The separatioralso simplifies specifyingsynchronizatiorconstraintsas part of aninter-
face.

Avoiding Inheritance Anomalies

Another importantissueconcerningthe easeof expressions code re-use.Inheritance
anomaliesj.e. codeinheritanceand synchronizatiorconstraintconflict with eachother,
requirere-definitionsof inheritedmethodsn orderto maintaintheintegrity of synchroniz-
ing objectsIn general Sathereducesnheritanceanomaliedy separatingnterfaceinher-
itance(subtyping)andcodeinheritancere-use) Sincethe blocking preconditionsandthe
signalingpostconditiongrepartof theinterface codeinheritancas notnecessarilaffect-
ed by changes of synchronization constraints.
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FurthermoreMatsuokaandYonezawd30] showedthatmethodguardsavoidalot of
inheritanceanomaliesThey characterizedhe remaininganomaliesashistory-only sensi-
tiveness. Theseanomaliecanoccurwhena subclasaddsa methodwith a guarddepend-
ing onthecallingsequencef inheritedmethoddeforetheactualcall. Theseanomaliesre
hardto avoid, eventhe advancedolutionMatsuokaand Yonezawgproposen [30] does
not avoidthemcompletely.Otheranomaliesn conjunctionwith guardednethodswhich
areclaimedin this paperdonotoccurin Sather2, becauseheyviolatethe subtypingrules,
in particularthe implication of the bocking preconditionin the subclassyy the blocking
precondition in the superclass.

5.2 Guarded Methods and Basic Properties

Guardedmethodsandpropertiesareintroducedstepwise Similar to the objectmodel,we
startwith a safeand simplebut restricteddesign.This designalreadyoffers high perfor-
mancelts extensioris mainly drivenby gainingexpressibilitywhile keepingperformance
but slightly relaxingsafety.This sectionintroducesanddiscussesyntaxandsemanticof
our starting point: single guarded methods and basic properties.

Syntax and Semantics

Any methodof a shieldclassmaybeguardedoy ablocking precondition. Like a(immedi-
ate)Satheipreconditionablockingpreconditions partof themethod’sprologueandspec-
ified by a booleanexpressionA threadmay entera guardedmethodonly if the blocking
preconditionis true. At thesametime, it mustcomplywith therulesfor visitorsandmuta-
tors. Otherwise the threadis blocked,until it may enter.Evaluatinga blocking precondi-
tion and becoming a visitor or a mutator, resp. is one atomic operation.

The only identifiersvisible insidea blocking preconditionareproperties. A property
is aspecialbooleanattributeof ashieldclass It is read-onlyfrom outsidethe classandits
declaration is preceded by the keywepraperty.

property_definition O property property_identifier_list : BOOL
blocking_precondition O blocking_pre property_expression

Besideghe blocking preconditiona methodof a shieldclassmay havea signaling post-
condition. Like the blocking precondition|t is specifiedby a booleanexpressionbut the
expressions restricted It exclusivelyconsistsof comparisongor equalitybetweerprop-
ertiesandaninitial expressioron propertiesor a booleanliteral. Thesecomparisonsre
combined by the boolean and-operation.

signaling_postcondition O signaling_post signaling_post_expression
signaling_post_expression O property_comparison

| signaling_post_expression and property_comparison
property_comparison O property_identifier =initial_property_expression
initial_property_expression O initial ( property_expression )| true | false

Thoughsyntacticallybeinga booleanexpressionthe signalingpostconditiormutateshe
objectsstateby modifying the objectspropertiessuchthatitself becomegrue. |t is afatal
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error,if thisis not possible.Therequiredoperationson the propertiesareexecutedatomi-
cally whenthe methodreturns.If a signalingpostconditionis presentthe corresponding
method is a mutator.

Signaling postconditionshave further semanticsThey trigger the re-evaluationof
blocking preconditiongor threadsbeingblocked.Sincethe signalingpostconditiongde-
scribethestatetransitionsof propertiesexactly,it canbedecidedstatically,whichblocking
preconditionhasto bere-evaluateaftera methodwith a blockingpostconditiorhasbeen
executedThesere-evaluationareexecutedftertheguardednethods left andbeforeany
othersynchronizednethodof the objectis enteredby any thread.If a blockedthread’s
blocking preconditionis implied by a signalingpostconditionjt evendoesnot haveto be
re-evaluatedBy this meansthe numberof re-evaluation®f blocking conditionscanbe
minimized.

A blockingpreconditionanda signalingpostconditiorarepartof the method’ssigna-
ture. Theinheritancerule of co/contravariancappliesalsoto them,i.e., the blocking pre-
condition of the supertypemustimply the blocking preconditionof the subtypeandthe
signalingpostconditionspecifiedfor the subtypemustimply the signalingpostcondition
specified for the supertype. Consequently, properties are part of the class interface.

Discussion

In generalguardedmethodsextendthe reader/writeiprotectionof objectsto a moregen-
eralrestrictionof the legal calling sequencesn objects.Legal sequenceare ensuredoy
blockingillegal calls. A call canbeinterpretedasa transitionof the object’ssynchroniza-
tion statewith basicpropertiedeingthe statevariablesIf no methodcontainscallsto fur-
therblocking objects thenthe synchronizatiorbehaviorof the objectcanbe describedas
adeterministidinite statemaching(DFSM) andall legal calling sequenceareregularex-
pression®vertheinterfaceIn thisnotion,subtypingmeansxtendinghe DFSM suchthat
theDFSM of thesuperclasss containedn thesubclass’®FSM. Subtypingof suchclasses
can be checked efficiently.

As anexampleasimpleparametrizetufferclasshasbeenchosencapableof keeping
asingleobjectof typeT. TheabstractlasssBUFFER{T} definestheinterfaceincludingthe
completespecificationof the synchronizatiorbehavior.The concreteshield classBUFF-
ER{T} gives an implementation of the interface.

abstract shield class $BUFFER{T} is
property ful:BOOL,;
create:SAME;
mutator put(item:T) blocking_pre ~full signaling_post full = true;
mutator get: T blocking_pre full signaling_post full = false;
end;

shield class BUFFER{T} < $BUFFER{T} is
attr buffer:T;
property ful:BOOL,;
create:SAME is
return new.init; end;
private mutator init: SAME signaling_post full = true is
return self; end;
mutator put(item:T) blocking_pre ~full signaling_post full = true is
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buffer:= item; end;
mutator get:T blocking_pre full signaling_post full = false is
return buffer; end;
end;
Hereis avery similar class afuturebuffer (setonce readmultiple times)havingthe same
interface as the buffer above except for the postcondition of mgéhod

shield class FUTURE_BUFFER{T} is
property ful:BOOL,;
create:SAME;
mutator put(item:T) blocking_pre ~full signaling_post full = true;
visitor get:T blocking_pre full;
end;

shield class FUTURE_BUFFER{T} is
attr buffer:T;
property ful:BOOL,;
create:SAME is return new.init; end;
mutator init: SAME signaling_post full = false is return self; end;
mutator put(item:T) blocking_pre ~full signaling_post full = true is buffer := item; end,;
visitor get:T blocking_pre full is return buffer; end;
end;
Their synchronizatiorbehaviorof theseclassess entirelyvisible attheir interfacesWith-
outspecifyingit in theinterface $BUFFER and$FUTURE_BUFFER would beidentical,even
thoughtheyarenot substitutabldor eachotherin bothways.An Analysisof thesynchro-
nizationbehaviorshowsthata $FUTURE_BUFFER cansafelybesubstitutedy a $BUFFER,
butnotvice versa Correspondinglyanapplicationof our subtypingrulesconsideringsyn-
chronization behavior shows that $BUFFER is a subtype of $FUTURE_BUFFER, but
$FUTURE_BUFFER is nota subtypeof $BUFFER. So,a staticcheckcanguarantesafesub-
stitution with respect to synchronization.

The calling sequencef objectsof type $BUFFER is the regularexpressionput get)*,
for SFUTURE_BUFFER it is put (get)*. Theanalogyto finite statemachiness obvious.This
providesapowerfulway of reasoningaboutthebehavior It alsogivesmeango checksub-
typing efficiently.

However,aprogrammemightrequirea synchronizatiorbehaviorthatfinite statema-
chinescannotcapture Furthermorehemightwishto avoid codingeachstateandpreferto
collapserelatedstatesnto one.Both leadto synchronizatiorbehavioranot beingentirely
captured by the interface. To express such behaviors we extend properties.

5.3 Extended Properties

After introducingthe singleguardednethodsandbasicpropertiesthe nextstepis extend-
ing propertiesThis includesthe introductionof the new booleanliteral ’?’ to be usedin

postconditionsThe extensionveakenghe safetybut increasegxpressibility.It doesnot
affect the high performance that can be achieved with the basic version.
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Syntax and Semantics

Propertieanay alsobe booleanmethodsLike basicpropertiesthesemethodsmusthave
visitor semantichutdonotblock. Theydonothaveanyparametergreconditionsor post-
conditions and their return typeBoOL.

property_definition O ... | property property_identifier : BOOL is statement_list end;

Obviously,extendegropertieannotbe setby signalingpostconditionsbuttheymaybe
setby sideeffectsof mutatormethodsSofar, the correspondingtatetransitionsare not
visible at the interface.To indicateat least,thatthe propertymight changethe syntaxof
signaling postconditions is extended.

initial_property_expression 0 ... | ?

Thevalueof thebooleariteral ' 2’ is alwaysunknownandcomparisonsvith it arealways
true. It may be usedin signalingpostconditiongo expresghatthe value of an extended
property might havechanged Eachmethodthat possiblychangesan extendedproperty
musthavea correspondingermin its postconditiorstatingthis possiblechangeThisdoes
notimply thateachmethodchanginganattributemustexecutesucha statementor all ex-
tendedoropertiegdependingn this attribute.So, the codemay specifythereal postcondi-
tion of a method incompletely concerning the synchronization behavior.

Sincepropertycomparisonsvith ? arealwaystrue, they havenot effect on substitut-
ability andarenotconsideredy subtypingrules.A propertycomparisorwith ? in asuper-
classis implied by anypostconditiorin the subclassnda propertycomparisorwith 2 in a
subclassloesnotimply anythingin thesuperclasgdence propertycomparisonsvith ? are
notaspecificatiorof thesynchronizatiomehaviorof thecorrespondingnethod putanop-
erationbelongingto the implementationof an interface,that re-evaluates property, if
guards of blocked threads depend on it.

Discussion

By extendingpropertieswe generalizehe synchronizatiorbehaviorfrom a deterministic
finite statemachineto anon-deterministione.In theabsencef extendedropertiessig-
naling postconditionspecifya uniquetransitionof the synchronizatiorstate,but a com-
parisonwith 2 in a postconditiondescribeswo possibletransitionsof a statevariableand
hence doublesthe numberof possibletransitionsof the synchronizatiorstate.The inter-
faceis nolongera completedescriptionof the synchronizatiorbehavior because¢he sig-
naling postconditiormaybeincomplete change®f extendedropertieamay be specified
by the implementation of a method.

So,if extendedropertiesareused substitutabilityof synchronizatiorbehavioris not
guaranteetty thelanguagebut mustbeensuredy theimplementationasit is thecasefor
semanticsubstitutabilityof subclasse€xtendednethodsveakensafety,butincreasesx-
pressibility as the example of a bounded LIFO buffer demonstrates.

abstract shield class $LIFO{T} is
property empty,full:BOOL,;
create(capacity:INT):SAME;
mutator put(item:T) blocking_pre ~full signaling_post full = ? and empty = ?;
mutator get:T blocking_pre ~empty signaling_post full = ? and empty = ?;
end;
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shield class LIFO{T} < $LIFO{T} is
attr buffer:ARRAY{T};
attr capacity,counter:INT;
property full:BOOL is return counter = capacity;
property empty:BOOL is return counter = 0 end;

create(capacity:INT):SAME is
ri:=new;
r.buffer := #(capacity);
r.capacity := capacity;
r.counter := 0;
returnr;

end;

mutator put(item:T) blocking_pre ~full signaling_post full = ? and empty = ? is
buffer[counter] := item;
counter := counter + 1,

end;

mutator get:T blocking_pre ~empty signaling_post full = ? and empty = ? is
counter := counter - 1;
return buffer[counter];
end;
end;

5.4 Disjunctive Guarded Methods

Our second extension of single guarded methods and basic properties al so increases the ex-
pressibility of the language, but without weakening safety as the first extension did. Also
performanceis not affected. Digunctive guarded methods provide away to handle threads
that are blocked or going to be blocked by a guarded method.

Syntax and Semantics

Guarded methods of an object with signatures differing in their blocking precondition and
signaling postcondition only are called disjunctive guarded methods. The blocking precon-
ditions determine dynamically which method is chosen, if acall complying with the com-
mon part of the signature occurs. The blocking preconditions must be digoint.

For subtyping, digunctive methods are one method. The blocking precondition of this
method is the digunction of all disunctive methods. Its signaling postcondition is a con-
junction of precondition - postcondition implications.

Formally: Let m be a method consisting of » digunctive methods m; each with the
blocking preconditions pre; and the signaling postconditions post, . The blocking precondi-
tion pre,, of m isdefined by:

pre,, = presUpre, 0...
The blocking postcondition post,,. of m isdefined by:

post,, = (initial(pre,) O posty) O(initial(pre,) O post,) O ... .
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Discussion

Digunctive guarded methods help us to cope with problems arising when a thread is
blocked or is to be blocked. These problems does not occur in sequential programs, they
are caused by the introduction of guarded methods.

For example, we might want to initiate an action in synchronization with other threads,
but react with an aternative, if thisis not possible. The means guarded methods give us,
alow only to block unconditionally until synchronization is established. This is demon-
strated by class smutex_no_Try implementing a synchronization primitive that is commonly
used to provide mutual exclusion. But differently to common designs as POSIX threads
[17] and Solaris Threads [41], there is no way to implement a method trylock Which acts like
method 1ock but returns immediately, if the blocking precondition is not fulfilled.

shield class MUTEX_NO_TRY is
property locked:BOOL,;
create:SAME is return new.init; end,;
init: SAME signaling_post locked; blocking_pre is return self; end;
mutator lock is blocking_pre ~locked signaling_post locked=true is end;
mutator unlock is blocking_pre locked signaling_post locked=false is end;
end;

With digunctive guarded methods we can add a method trylock that conditionally reacts on
the value of property locked. The following example shows an implementation.

shield class MUTEX is
property locked:BOOL;
create:SAME is return new.init; end;
init: SAME blocking_post locked=false is return self; end;
mutator lock blocking_pre ~locked signaling_post locked=true is end;
mutator trylock:BOOL
blocking_pre ~locked signaling_post locked=true is
return true end;
trylock:BOOL blocking_pre locked is return false; end;
mutator unlock blocking_pre locked signaling_post locked=false is end;
end;

In general, disunctive guarded methods offer away to switch on synchronization events.
Thisallows not only trying a guard asin the example above, but also more complex appli-
cations, e.g. multiplexing of asynchronously incoming messages and save termination of
blocked threads. Class MUTEX_WITH_TERMINATION demonstrates safe termination of
blocked threads.

shield class MUTEX_WITH_TERMINATION is
property locked:BOOL;
property terminated:BOOL,;
create:SAME is return new.init; end;
init: SAME blocking_post locked=false and terminated=false is return self; end;
mutator lock blocking_pre ~locked signaling_post locked=true is end;
mutator lock blocking_pre terminated is raise termination_exception end;
mutator trylock:BOOL
blocking_pre ~locked signaling_post locked=true is
return true end;
trylock:BOOL blocking_pre locked is return false; end,;
mutator unlock blocking_pre locked signaling_post locked=false is end;
end;
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It extends class MUTEX by two lines, the declaration of property terminated and an alterna
tive method for lock that unblocks all threads waiting to lock and raises an exception to han-
dle termination.

5.5 Implementation

Guarded Methods have been designed for high performance applications. This section
demonstrates how they can be implemented efficiently. We suggest a common synchroni-
zation scheme for guarded methods and reader/writer protection that requires no context
switches for guard re-evaluation and that helps reducing the number of necessary re-eval-
uations.

5.5.1 Integration with reader/writer synchronization

The synchronization required to implement guarded methods can be integrated with the
reader/writer synchronization already required by the object model. Since the synchroniza-
tion points are exactly the same, a common scheme can be used to implement both.

We suggest a simple scheme that efficiently realizes reader/writer protection and
method guards:

1. Before athread enters a somehow protected method, it triesto satisfy all synchronization
constraints and either enters the method or blocks itself. The synchronization constraints
may contain reader/writer synchronization for the object the method is called on, reader/
writer synchronization for arguments, and the guard of the called method.

2. After athread leaves a protected method, it checks all blocked threads that might satisfy
their synchronization constraints because the current thread has | eft the method, and un-
blocks all threads that do so.

Integration of both synchronization mechanismsis not really necessary but intended by the
design of guarded methods. It simplifies the run-time system and has no negative impact
on performance.

5.5.2 Avoiding Context Switches

Since properties are attributes or methods of the shield object, the re-evaluation of a guard
can be executed by threads other than the blocked one. Hence, a thread leaving a method
and executing step 2 of the scheme above can exactly determine which of the blocked
threads satisfies its synchronization constraints and unblock those without any context
switch. We mention this, because it distinguishes Sather 2 from languages like Java which
require each thread to re-evaluate aguard or asimilar condition variableitself. This proce-
dure produces a significant overhead of context switching and synchronization.
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5.5.3 Reducing the Number of Guard Re-Evaluations

Dependenciesbetween blocking preconditionsand signaling postconditionscan be
checkedstatically.For eachpair of theseoneof threekinds of dependenciesanbedeter-
mined:

1.A signaling postcondition implies a blocking precondition to be true.
2.A signaling postcondition implies a blocking precondition to be false.
3.A signaling postcondition might affect a blocking precondition.

4.A signaling postcondition does not affect a blocking precondition.

Fordependencies, 2, and4, athreadleavinga guardednethoddoesnot haveto re-eval-
uatethe guardof the correspondingplockedthreadin orderto decide whetherthis thread
can be unblocked. Only for dependency 3, the guard has to be re-evaluated.

Ourdesignallowsto reducethe numberof pairswith dependencs by staticanalysis.
Sinceblockingpreconditionsrerestrictedo expressionsn propertiesandsignalingpost-
conditionsspecifyexactlywhich propertiesnightbeaffectedandwhichnot, staticanalysis
can reduce the number of these pairs close to the minimum.

This analysis,checkingblocking preconditionsandsignalingpostconditiononly, is
quietsimple.In generalevena furtherreductionis possiblejn particularwhen’?’ is used
in a postconditionBut this analysiswould includethe methodbodiesandmight be signif-
icantly more complex.

5.5.4 Deadlock Detection

Fordeadlockdetectionwe suggesstaticanddynamicchecks A simpledeadlocksituation
thatcanbecheckedstaticallyoccursf avisitor oramutatormethodcallsaguardednethod
onthesameobject.If suchacallis blockedbecaus®f apropertyof thisobject,it cannever
beunblockedsinceit still is avisitor or mutatorandno otherthreadcanchangeany prop-
erty of the object.

Further static deadlockdetectioncan be basedon either the dependencygraph of
guardedmethodsor the propertytransitiongraph.The dependencgraphcontainsa node
for eachguardednethodandanedgefor eachdependencyf type 1, 2, or 3 definedin the
previoussection.The propertytransitiongraphof an objectwith n propertiescontains2”
nodesrepresentingropertystatesandedgesepresentingransitionsof the propertystate.
A guardednethoddefinestransitiondor all propertystatessatisfyingtheblockingprecon-
dition. In absenc®f a’?’ in the signalingpostconditionpnetransitionperpropertyis de-
fined by a method. Each’’doubles the number of transitions.

Eachof thesegraphsdescribeall legalcalling sequencesn ashieldobject.Deadlock
detectioncanbebasednthecomparisorof thelegalsequencewith thecalling sequences
of aprogramBut sincein generalacalling sequencesf aprogramcanbedeterminecbnly
partially, this detection of deadlocks is restricted.

Differentto staticchecksdynamicdeadlockdetectiordoesnot preventdeadlocksbut
is a debuggingool thatmay provide helpful run-timeinformation. While staticdeadlock
detectionis mainlyusedfor intra-objectdeadlocksgdynamicdeadlockdetections mostim-
portantfor inter-objectdeadlocksge.g.two threadseachalreadybeingvisitor of anobject
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and each being blocked by aguard of the other object, respectively. This deadlock can nev-
er be solved, because only awriter may change properties and no writers can access the ob-
jects as long as there are (blocked) readers. This problem of nested synchronization is not
introduced by guarded methods, it already occurs with the object model, e.g. two threads
each already being mutator of an object and each trying to become avisitor of the other ob-
ject, respectively.
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6 Data-Parallel Features

The following section describes the data-parallel features of the language design. For con-
venience, the data-parallel features are described in terms of syntactic sugar over the basic
object model; however, they make use of unprotected attributes, since protection is ensured
by other means.

6.1 Definition of pardo and syncdo statements

Threads can be created explicitly with the pardo or the syncdo statement. They consist of a
header and a body.

statements O ... | pardo | syncdo
pardo O for all header do in parallel body end
syncdo O for all header do in synchrony body end

The header contains an identifier v and either an expression of an array type a or iterator.
Thearray and the iterator, resp., must have an element type and areturn type, resp., assign-
able the type of v. The pardo and the syncdo statement create a.asize threads and as many
threads as the iterator object can be called without breaking, respectively.

header O identifier in iterator | expression

All threads share the concurrent attributes of the object and concurrent parameters and con-
current local variables of the method the pardo or the syncdo statement occursin. Inthread
i, visassigned the value of a[i] or the return value of the i-th call to iter. Variables defined
in the body of the pardo or syncdo statements are local to each thread. All threads execute
the code specified in the body.

body O statement_list

All threads of apardo statement run asynchronously. All threads of a syncdo statement run
in lock step manner, i.e, a barrier synchronization occurs after each read from and each
write to concurrent variables.

A thread terminates if it has executed its last statement. A pardo or the syncdo state-
ment isfinished if all its threads terminated.

Remarks

Creating threads with an iterator in general requires linear time since the iterator hasto be
called sequentially. The creation of threads with an index array can be implemented in log-
arithmic time. In practice, the optimal broadcast tree technique [21] can be applied to im-
prove the speed compared to the iterator version.
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Many parallelalgorithmsaredesignedn PRAM [20] like style.In this specialcase,
thevariablev is of typeint andthevaluesof v for thesinglethreadgangedrom somelower
uptosomeupperbound.lt maybeimplementedy aniteratoriower_bound.upto!(upper_bount the
pardoor syncdoheader.This notationdoesnot differ in the time complexityfor creating
threadssinceupto is a build-in iteratorin the build-in classint. It cannotbe changedHence
the numberof threadsandtheir valuesv aredeterminedf thelower andthe upperbound
aredeterminedThis permitsthe samefastthreadcreationwhich not possiblefor general
iterators.

In generahthreadsdentificationv is notanintegerandthe shareddatastructures not
anarray,seeexampleprogramselow. Furthermorewe don’t restrictto synchronougx-
ecution of parallel threads.

6.2 Pardo and Syncdo Statements as Syntactic Sugar

Thefeaturegdescribedabovemaybeimplementedn termsof thebasicparallelconstructs.
This sectiondescribes naiveimplementatiorthatworks correctly.For optimizationswe

referto techniqueslescribeck.g.in [49][27][28] thatremovesynchronizatiorbarriersand

distribute the shared data structures.

Foreachpardoor syncdostatemens, we createa methodmg anda fork statement,,
The signatureof mg declaregparametergonformingto concurrentattributesof the class
andthe concurrenfparameterandconcurreniocal variablesof the methodcontainings.
If sis a pardostatementthe body of mg equalsthe body of the s exceptfor anadditional
barriersynchronizatiorattheendof themg's body. If sis asyncdostatementthe body of
mg equalsthe body of s exceptfor additionalbarriersynchronizationsifter eachreador
write access tag's parameters and at the endwfs body.

Thenumberof forks fg on mg guaranteethe correctnumberof threadsEachfs passes
the concurrentttributes concurrenparametersandconcurrentocal variablesasparam-
etersto mg. Additionally, it passesinobjectthathandleshe barriersynchronization.sis
replaced by thés .

Thereis a build-in classthat handlesthe barriersynchronizatiorcalledsarrier. Ob-
jectsof this classarecreatedandinitializesatthe beginningof mg. Whenevembarriersyn-
chronization is required, the methgghchronize is called by the threads.

Examples

Thefollowing methodcopiesthe upperright trianglematrix to the lower left trianglema-
trix.

matrix ::= # SHIELD_ARRAY2 {INT}(10,10);

copy_triangle_matrix is
i,j o INT;
for i in O.upto!(9) do in parallel
for j in 0.upto!(9) do in parallel
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matrix[i,j] := matrix[j,iJ;
end;
end;
end; -- copy_triangle_matrix

This program is the translated according to the naive implementation.

matrix ::= # SHIELD_ARRAY?2 {INT}(10,10);

copy_triangle_matrix’ is
b::=# BARRIER;
loop
i ;= 0.upto!(9)
fork(parloopl(matrix,i,b));
end;
b.init(11);
b.synchronize;
end; -- copy_triangle_matrix’

parloopl(matrix : SHIELD_ARRAY2{INT}; i : INT; barrier: BARRIER is
b ::= #BARRIER
j T INT;
loop
j :=i.upto!(9);
fork(parloop2(matrix,i,j,b));
end;
b.init(11-i);
b.synchronize;
barrier.synchronize;
end; -- parloopl

parloop2(matrix : SHIELD _ARRAY2{INT}; i,j : INT; barrier: BARRIER is
matrix[i,j] := matrix[j,i];
barrier.synchronize;

end; -- parloop2

The next examples implement the algorithm of pointer jumping on arrays and lists. The
threadsin thefirst two examples execute their programsin lock-step manner whilein third
example all threads work asynchronously.

a = # SHIELD_ARRAY{INT};
pointer_jumping is
i,j o INT;
foriin O.upto!(n-1) do in synchrony
loop j :=1.upto!(n.log.ceil);
a[i] := afali];
end;
end;
end; -- pointer_jumping

anchor : SHIELD_LINKED_LIST{T};
pointer_jumping’ is
j o INT;
list_node : SHIELD_ _LINKED_LIST{T};
for list_node in anchor.elts! do in synchrony
loop j :=1.upto!(anchor.size.log.ceil);
list_node.next ;= list_node.next.next;
end;
end;
end; -- pointer_jumping’
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pointer_jumping” is
j o INT;
list node : SHIELD LINKED_LIST{T};
for list_node in anchor.elts! do in parallel
while list_node.next /= list_node.next.next loop
list_node.next := list_node.next.next;
end;
end;
end; -- pointer_jumping”
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Appendix A: Shield Bag (Abstract Class)

abstract shield class $SHIELD_ BAG{ETP} < $RO_BAG{ETP}, $VAR

-- An unordered container in which the elements are not unique.

-- This is a reference abstraction and supports operations that modify
-- self. Instances of subtypes may be viewed as variables with a value
-- of $VBAG{ETP}

-- For pointers to other documentation please see the class comment in
-- the read-only abstraction SRO_BAG

is

mutable visitable as_value:$VBAG{ETP};
-- Return the current value associated with self

mutable add(visitable able e:ETP);
-- Add the element ‘e’ to self
-- self <- initial(self).add(e)

mutable delete(visiitable e:ETP);
-- Delete at most one occurance of ‘e’ from self
-- self <- initial(self).delete(e)

mutable delete_all(visitable e:ETP);
-- Delete all occurrences of ‘e’ from self
-- self <- initial(self).delete(e)

mutable clear;
-- Delete all elements of self. post result.size = 0

mutable to_concat(mutable arg:$RO_BAG{ETP});
-- Concatenate the elemetns of ‘arg’ to this bag
-- self <- initial(self).add_bag(arg)

mutable to_union(visitable arg: $RO_BAG{ETP});
-- Turn this bag into the union of self and ‘arg’
-- self <- initial(self).union(arg)

mutable to_intersection(visitable arg:$RO_BAG{ETP});
-- Turn this bag into the intersection of self and ‘arg’
-- self <- initial(self).intersection(arg)

mutable add(visitable e:ETP):$SHIELD_BAG{ETP};
-- Result is a new bag containing all the elements of self and ‘e’

mutable delete(visitable e:ETP):$SHIELD_BAG{ETP};

-- Result is a new bag containing all the elements of self except for
-- an element equal to ‘e’, if one exists. If more than one element
-- is equal to ‘e’, delete only one of them

mutable delete_all(visitable e:ETP):$SHIELD_BAG{ETP};
-- Result is a new bag containing all the elements of self except for
-- any elements equal to ‘e’
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visitable count(visitable e:ETP):INT,;
-- Return the number of occurences of ‘e’ in self

visitable unique!:ETP;
-- Yield the unique elements of self. Equivalent to self.as_set.elt!

mutable n_unique: INT;
-- Returns the number of unique elements in the bag

-- result = number of unique elements

visitable is_subset_of(visitable arg: $RO_BAG{ETP}): BOOL,;

-- Returns true if ‘self’ is a subset of ‘arg’. For elements that occur

-- multiple times, the number of occurences of the element in ‘arg’
-- must be greater than or equal to the number of occurences in self

-- result=true iff for all e in self: count(e) <= arg.count(e)

visitable concat(visitable arg:$ELT{ETP}): $RO_BAG{ETP};

-- Returns a bag containing all the elements of self and ‘arg’.
-- For elements that occur multiple times, the result contains
-- the sum of the number of occurences in self and ‘arg’

-- result=bag of all e s.t. result.count(e)=self.count(e)+arg.count(e) > 0

visitable union(visitable arg: $RO_BAG{ETP}): $RO_BAG{ETP};
-- Returns a bag containing the elements of ‘self’ and ‘arg’.

-- For elements that occur multiple times, the result contains

-- the maximum number of occurences in either self or ‘arg’

-- This definition permits the union of sets to be consistent

-- with the union of bags.

-- result=bag of all e s.t.

-- result.count(e)=max(self.count(e),arg.count(e)) > 0

visitable intersection(visitable arg: $RO_BAG{ETP}):$RO_BAG{ETP};
-- Returns a bag containing the elements common to self and ‘arg’

-- For elements that occur multiple times, the result contains

-- the minimum number of occurrences in either self or ‘arg’

-- result=bag of all e s.t.

-- result.count(e)=min(self.count(e),arg.count(e)) > 0

visitable is_empty:BOOL,;
-- Returns true if the size of the container = 0

mutable size: INT;
-- Number of elements contained

visitable copy: SAME;
-- Return a copy of the current container

visitable has(visitable e: ETP): BOOL;
-- True if the container contains the element “e”

visitable equals(visitable c:3RO_BAG{ETP}):BOOL;

-- Return true if both containers contain the same elements with
-- the same number of repetitions, irrespective of the order of the
-- elements

visitable as_array:ARRAY{ETP};
-- Return the elements of the container in an array
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visitable elt:ETP;
-- Yield all the elements of self. The order is not defined.

visitable str:STR;
-- Yield a string version of self

end; - $SHIELD_BAG{ETP}
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