
���������	��
��
������
����	�����	������� ������������� �������
� �
�!���

"$#$%'&)(+*�,$-.*�/102-�354)056�7 -8*:9�;�;)4=<+*�/?>@*�A *�B$C'(ED�A 7 FHG'/?,�7IDJ#$%'&�;$%LK@"�"M#�NO4QP8RS"$;�TU9L%WVMK #2"�R'V)4=XZY\[�P8R]"$;�TJ9L%'VZK &�9�N$%

Sather 2: A Language Design for
Safe, High-Performance Computing

Benedict Gomes, Welf Löwe,
Jürgen W. Quittek, Boris Weissman

TR-97-035
December 1997

Abstract

Consistency of objects in a concurrent computing environment is usually ensured by serializing all incom-
ing method calls. However, for high performance parallel computing intra-object parallelism, i.e. concur-
rent execution of methods on an object, is desirable. Currently, languages supporting intra-object
parallelism are based on object models that leave it to the programmer to ensure consistency.
We present an object model, that ensures object consistency while supporting intra-object concurrency
thereby offering both safety and efficiency. The description starts with a simple and safe, but inefficient mod-
el and gradually increases the sophistication by introducing features for expressiveness and greater efficien-
cy while maintaining safety.
Based on this model we define extensions for guarded suspension and data parallel programming. The mod-
el and the extensions are defined as a language proposal for a new version of Sather, Sather 2. The proposal
is based on Sather 1.1, but replaces the parallel extensions of this version.

2

1 Introduction

With the adventof commoditymulti-processorsand cheaphigh-performancenetworks
(Myrinet, ATM), parallelhardwareplatformsarenow morewidely availablethanat any
timein thepast.Furthermore,thereis aplethoraof applicationsthatcouldbenefitfrom this
readily available multi-processorperformance,ranging from mathematically-intensive
simulations(thetraditionalusersof high-performancesystems),to databases,to web-serv-
ers.However,mostconcurrentprogrammingmodelsareinadequatefor thesesystems;it is
currentlyextremelyhardto realizethepromiseof parallelhardwareonproblemsof signif-
icant size, even with highly skilled programmers.

Traditionalprogrammingmodelshaveeitherfocussedonwriting safeandcorrectpro-
grams(Actors,Eiffel etc.)or on writing efficient, high-performanceprograms(threadsin
C, C++ dialects).In reality, of course,both safety andefficiency arevitally importantto
realizingthepotentialof theparallelhardwareavailabletoday.To safetyandefficiency,we
alsoaddease of expression asaprimaryconsideration:in orderto minimizetheerrorsthat
occurin realizingaparallelapplication,theprogrammingmodelmustpermitanaturalex-
pressionof the applicationdomain.Thesegoalsarefrequentlyat odds,andpreviousap-
proaches, such as Emerald [9], have attempted to resolve these conflicts in various ways.

This languageproposalis anotherstepin thesamedirection.It proposesanewparallel
extensionfor theSatherlanguage,replacingtheparallelextensionof Sather1.1 [44]. It is
intendedto becomepartof thenextversion(2.0)of SathercalledSather2.Thebasefor the
extensionproposedin this documentis serialSather1.1,althoughit might bechangedfor
Sather2.Thesepossiblechangesareexpectedto beminorandto havenosignificanteffect
on the parallel extension.

Theproposednewobjectmodel,thoughappearingto befundamental,doesnot inter-
ferewith theobjectmodelfor serialSather,becausethenewpropertiesaffectconcurrent
programsonly. However,somequestionsconcerningtheintegrationof thisparallelexten-
sionwithin Sather2 remainopen,e.g.whethertheserialSatherlibrary will getcomplete
methodandandargumentannotationscorrespondingto thevisitor/mutatorconceptintro-
ducedin section2.3.This might benecessaryto usea commonlibrary for serialandcon-
current programs.

The rest of this proposal may be divided into the following sections

• Theremainderof this introductionis devotedto our basicapproachandanoverview of
the other language models that most influenced our design.

• Section2 describestheobjectmodel,startingwith a simple,safe,but inefficient model
andgraduallyincreasingthesophisticationof themodel.Subtypingrulesfor this model
are given in section3.

• Section4 dealswith synchronousandasynchronousmessagesbetweenobjects.They are
the basic way of creating concurrency.

• Section5 introducesa systemfor designingcomplex synchronizationconstructswithin
the language.

3

• While thebasicobjectmodelis appropriatefor dealingwith complex objectstructures,
it is not appropriatefor dealingwith arraysandotherflat structures.Section6 describes
the data parallel features which have been integrated into the basic language design.

• AppendixA explains the useof the new objectmodelby giving a codeexampleof a
shield class implementing a bag.

1.1 Approach

Approachesto parallelprogrammingmaybedividedinto two broadcategories.In implicit
models,theparallelismin theapplicationis discoveredandexploitedby thecompilerand
run-timesystem.In explicit modelsthe parallelismis specifiedby the programmer.Be-
tweenthesetwo extremes,thereareavarietyof systemsin whichtheprogrammerusesan-
notations to aid the compiler and run-time. We choosethe explicit approach,and
furthermorewechooseto avoidrelianceonheroiccompileranalysissinceachievingauto-
maticparallelizationis extremelyhardandtheachievedperformanceis frequentlyfragile.

We believethatit is possibleto designa languagein which theannotationsnecessary
for performancealsorevealtheprogramstructureandmodularity.In otherwords,we are
interestedin application-centricannotationsthat reveal the applicationstructure,rather
thansystem-centricannotations,which areconcernedwith hardwaredetails.Application-
centricannotations,whicharerelatedto thelogicalparallelisminherentin theapplication,
canbeimportantin designingtheprogramandresultin softwarethatis easierto maintain
andport.System-centricannotations,ontheotherhand,arerelatedto thephysicalparallel-
ism of theunderlyingsystemanddistractfrom theprogramstructure.System-centrican-
notations also result in non-portable code.

1.2 Related Work

Thereareseveralstrandsof relatedwork, thatapproachtheproblemof safe,high-perfor-
manceconcurrentprogrammingfrom differentangles.In general,thework hasconcentrat-
edon eithersafetyor high performance,but rarelyon both.We alsoreviewwork donein
thecontextof sequentiallanguageswith theaimof achievingtrueobjectencapsulationby
controlling aliasing.

Efficiency

Some explicitly parallel object-orientedlanguagessuch as Sather1.1 [44][14], Java
[8][24], Ada [6], and C++ extendedwith threadand synchronizationlibraries suchas
POSIXthreads[36] exposelow-level detailsof memoryandnetworkconsistencymodels
to theprogrammertradingthesimplicity of theunderlyingmodelfor efficiency.Thepro-
grammeris presentedwith a system-centricmodelsincethe low-level systemoptimiza-
tions are fully exposedto the programmer.In particular,such a model enablesmany
softwareandhardwareoptimizationsthatcanreorderinstructions(or evenprogramstate-

4

ments) to hide the latency of memory and network operations. While this model strives to
achieve the highest possible efficiency, it may unduly compromise programmability by
presenting the programmer with a fairly complex view of object states and transitions. Rea-
soning about parallel programs becomes cumbersome as the programmer needs to take into
account the low-level reorderings that are enabled by the weak consistency model. Failure
to do so results in hard-to-find data races. In addition, the portability of programs is by no
means automatic - unless the development platform supports the weakest possible memory
model, a program that compiles and runs correctly during development may display subtle
data races when compiled for a platform with a weaker hardware memory model [13].

Safety at the Object Level

Many Actor languages [3] are based on a very simple programming model in which com-
putation is performed by independent entities communicating by atomic non-blocking mes-
sages. The simplicity of the model however is achieved at the cost of expressiveness and
efficiency: the requirement of the state update atomicity either introduces extra copying of
local state or disallows intra-object parallelism; atomicity of all method invocation has a
negative performance impact. The model usually relies on sophisticated compiler optimi-
zations to limit the degree of parallelism in order to reduce queue management overhead
on modern hardware [22]. On the positive side, the absence of intra-object parallelism and
the atomicity of methods eliminates the programming overhead to ensure memory consis-
tency. This, in turn, eliminates the source of pernicious bugs especially well known to pro-
grammers developing software for symmetric multiprocessors. Resulting programs are
usually portable (although not necessarily efficient) across many parallel platforms. For
some contexts, such as functional languages (base of some actors) certain performance and
expressiveness limitations are well justified by the model simplicity and the absence of data
races.

Expressing Object Grouping

In order to resolve the conflict between performance and safety, many programming mod-
els have resorted to controlling safety based on aggregates of objects.

Argus [26] introduced special guardian objects to control access to a set of resources
composing the internal state of a guardian. Within a guardian full sharing of objects is al-
lowed while no direct sharing of objects between guardians is permitted. In fact, the inter-
nal state of the guardians was built from standard (sequential) CLU objects [25]. The task
of concurrency and safety management is entirely performed by the guardians. Guardians
zealously protect their internal state from other guardians. If necessary, a guardian may cre-
ate a copy of its internal objects and pass it to other guardians. Thus passing objects be-
tween guardians has a value semantics. Internal concurrency within a guardian is allowed
and guardians are fully responsible for synchronizing their internal state. The model does
not provide a static safety guarantee.

Similarly, Emerald [9] distinguishes between global and local objects at the implemen-
tation level. Emerald is a distributed system and global objects are allowed to move within
the network. They also support remote method invocation. Local objects always remain
within an enclosing object (i.e. the reference is never exported outside), cannot move on
their own and do not support remote invocation.

5

Maintaining Group Encapsulation

In current object-oriented languages it is not possible to guarantee the encapsulation of a
group of objects within a containing object. The reason is that aliases to the internal state
may be erroneously released outside the containing object. While protection is provided for
attribute variables, protection for the state that is transitively reachable from the object can-
not be expressed at the language level. This problem has been recognized as one of the most
serious challenges of object-oriented programming [16]. In spite of its importance, there
have been only few proposals to ameliorate this deficiency. We will briefly look at a couple
of proposals for sequential object-oriented languages.

Islands [15] provide a syntactic mechanism for the isolation of groups of objects based
on richer argument and variable annotations. Bridges are protector objects which isolate in-
terior objects (islands), by controlling the import or export of aliases to the interior objects.
Absolute modularity is maintained through bridges. This is excessively restrictive for our
purposes. Certain objects represent shared resources and it is natural that they be aliased
between different domains (or islands). Furthermore, transfers between domains are not
possible in this model. While the work on islands seeks to prevent all sharing of internal
state between modules, some sort of object sharing is unavoidable in practical systems. The
Island proposal is important methodologically in that it is specifically targeted at static safe-
ty guarantees rather than optional annotations.

In a similar vein, Balloon types [5] demonstrate how a similar degree of safety may be
provided with fewer annotations and more sophisticated static analysis. However, balloon
types only guarantee safety against static aliasing (i.e. aliases though state variables) and
not against dynamic aliasing (aliasing through local variable that exist only while a function
call is in progress)1. Since any aliasing between object groups, either static or dynamic, can
potentially result in conflicting concurrent object accesses, balloon types are inadequate for
providing safety in the face of concurrency. Furthermore, data may only be shared between
balloon types through the use of copying which essentially limits the usefulness of this
technique in high-performance domains.

The object model proposed in this document is similar in spirit to these approaches,
but a different solution is necessitated by the different language goal of supporting safe and
efficient concurrent programming.

Hardware Issues: Memory Consistency Models

Memory consistency models supported by the modern multi-processors are often charac-
terized by subtle, but important differences. Such weak consistency models include TSO
and PSO [38], RSO [39], processor consistency [1], numerous flavors of release consisten-
cy [12], and other models supported only by the individual hardware vendors (DEC AL-
PHA [37], PowerPC [31], PentiumPro [18], etc.). As do many others [2][1][12][13], we
believe that programmers should be presented with a single and simple programming mod-
el to shield them from the intricate details of the underlying hardware. Sequential consis-
tency [23] is the most natural candidate for such a top level programming model. Sequential
consistency is central to the notion of object safety in the proposed language. The great

1. Protection against dynamic aliasing using "opaque" balloon types is mentioned in [5], but the de-
tails presented are only concerned with immutable objects.

6

challenge is reconciling the high level sequentially consistent model with the weak consis-
tency model supported by the hardware. The latter are responsible for up to 80% or perfor-
mance improvements of modern microprocessors [13]. Unlike other approaches that
concentrate on detection of deviations from sequentially consistent executions by develop-
ing program analysis tools [2], we provide hard guarantees of sequentially consistent exe-
cution on weak consistency hardware at the programming language level. We will further
discuss the memory consistency issues and the interaction between the safety requirements
and sequential consistency in section section 2.1.

7

2 The Object Model

Sincethesafetyof themodelis ahardconstraint,westartby consideringadesignthatpro-
videssafetyandintroducefeaturesfor expressivenessandgreaterefficiencywhile main-
taining safety. The following sections introduce successivelymore relaxed models.
Italicized terms are defined in greater detail in their respective sections.

• As a startingpoint,Model A in section2.2 introducesa very simplemodelin which all
operationson objectsareserialized,thusensuringsafetyat a high costin performance
(from the performance standpoint, this is similar to pure actors.)

• Thevisitor/mutator model (ModelB) describedin section2.3permitsintra-objectcon-
currency by allowing multiple reader methods to execute concurrently.

• TheobjectaggregationModelC describedin section2.4introducescoarsergrainedpro-
tectionby requiringshield objectsto furnish the protectionneededfor interior objects
within a domain thattheshieldclasscontrols.Interior objectscannotmove betweenthe
domains of different.

• Model D in section2.5 relaxesthe requirementthat interior classesbe fully contained
within adomainby permittingtemporarysharingwhensuchsharingcannotresultin the
object beingcaptured by another domain.

• Model E in section2.6 permitspermanenttransferof interior objectsto a differentdo-
mains, provided that the objects have beenfreed from their original domain.

• Model F in section2.7describesthedynamicdelegationof protectionandsynchroniza-
tion that enables shield object aggregates.

2.1 Object Safety

The Goal

We areprimarily concernedwith a somewhatnarrowmeaningof objectsafety,namely,
preservingtheintendedobjectsemanticsin thefaceof concurrency.By theobjectseman-
ticswemeanthesetof allowedstatetransitionspermittedby anobjectdefinition.Preserv-
ing objectsafetythereforemeansonly permittingallowedtransitions,evenin aconcurrent
execution.In otherwords, in any parallel execution, all objects will only undergo the
transitions allowed by a sequence of calls on the public interface of the class that defines
the object. Wereferto thispropertyin therestof thisarticleasobject consistency or object
safety.

By objectstatetransitionwemeanmutationof theobjectstate.By theobjectstatewe
meanall referenceswithin theobjectitself (i.e.its statevariables)and,transitively,thestate
of all interior objects they refer to. The definition of interior objects is presentedin

8

section 2.4.2. Encapsulation of the object state requires controlled export of aliases to the
deep state of the object that does not violate our object consistency goal. Alternatively, all
object state transitions must be triggered by the invocations of the public interface methods
rather than silent modifications of the objects transitively reachable through erroneously
captured aliases. The main object consistency goal is achieved by a set of carefully de-
signed method signature annotations and certain restrictions on the allowed call sequences
to prevent the erroneous capture of interior state.

For instance, in our particle simulation example, we would like to avoid a situation
when several areas erroneously try to simulate the same particles. Since particles in one
area can collide with particles with other areas and move between areas, a common pro-
gramming bug of capturing a reference to a particle not managed locally can result in a fair-
ly expensive debugging effort. Our goal is to guarantee that this situation cannot happen at
the programming language level in order to avoid a complex posterior runtime analysis.

At the very basic level, we would like to avoid concurrent mutations of the same mem-
ory locations with unpredictable results. We call such mutations basic data-races similar to
[2]. While this is not sufficient to guarantee object consistency as defined in this section,
this is the first step in that directions and the simplest object model that we will consider in
section 2.2 will do just that. However, we first review sequential consistency at the memory
location level.

Sequential Consistency

While sequential consistency is central to our notion of safety, for performance reasons, all
the SMP systems we are aware of do not provide sequential consistency at the hardware
level. As do many others [2][1][12][13], we believe that presenting the programmer with a
model that provides sequential consistency for the purposes of reasoning is indispensable
for building large compositional concurrent systems.

The sequential consistency model was formally defined by Lamport:

[A multiprocessor is sequentially consistent if] the result of any execution is the
same as if the operations of all the processors were executed in some sequential
order, and the operations of each individual processor appear in this sequence in
the order specified by its programs. [23]

Sequential consistency maintains the memory behavior that is intuitively expected by most
programmers. Each processor is required to issue memory operations in program order.
Operations are serviced by memory one-at-a-time and appear to execute atomically with
respect to other memory operations. The memory services operations from different pro-
cessors based on an arbitrary, but fair global schedule. This leads to an arbitrary interleav-
ing of operations from different processors into a single sequential order.

The benefits of such a model include at least the following: it matches most closely the
intuitive assumptions that most programmers make about concurrent systems, eliminates
basic data-races, and it makes programs portable across hardware platforms with different
weak memory models [13].

9

Memory Consistency vs. Performance

There is a trade-off between performance and the strength of the memory consistency mod-
el. Achieving sequential consistency requires communication between processors about the
state of shared data in order that all processors have a consistent view of the world. Reduc-
ing this communication by relaxing the consistency model enables hardware and software
optimizations and can improve performance by 80-100% on modern platforms [13]. The
challenge is to design a language that performs sufficient synchronization over shared data
to provide the programmer with sequential consistency, while at the same time allowing the
compiler and run-time to fully exploit the optimizations enabled by weaker consistency
models between synchronization points.

It is also important that the object model guarantee such optimizations in the general
case. In other words, the optimizations are not results of (often unpredictable) static com-
piler analysis, but are guaranteed by the underlying language design. We believe that the
level of performance is important enough that we cannot rely on smart compilers to deliver
this performance, as many other models have to (actors, behavior, strict active objects,
etc.).

We believe that it is possible to design a language in which the annotations necessary
for performance also reveal the program structure and modularity. In other words, we are
interested in application-centric annotations that reveal the application structure, rather
than system-centric annotations, which are concerned with hardware details. Application-
centric annotations, which are related to the logical parallelism inherent in the application,
can be important in designing the program and result in software that is easier to maintain
and port. System-centric annotations, on the other hand, are related to the physical parallel-
ism of the underlying system and distract from the program structure. System-centric an-
notations also result in non-portable code.

Model A

2.2 The Simple Model

We start with a simple, and trivially safe model. A simple way to achieve safety and se-
quential consistency is by requiring that all object accesses be serialized. In other words, a
mutual exclusion lock is associated with each object, and all method accesses to the object
must acquire the lock.

The degree of concurrency can be increased by sending asynchronous messages to oth-
er concurrent objects. An executing asynchronous message is also referred to as a thread.

10

Model B

2.3 Visitor/Mutator Annotations

A relaxation of this simple model is to permit multiple readers to access the object simul-
taneously. To avoid concurrent mutations of the same memory locations, it is sufficient that
all calls on object methods that may mutate object state be mutually exclusive, while calls
that merely examine or visit the object state may coexist with other visiting methods. We
refer to this restriction as object-level visitor/mutator protection.

In order to provide protection for the object state, all attribute accessor methods are im-
plicitly annotated.

2.3.1 Basic Protection: Attribute Annotations
Provided that the primitive data access operations on the object (the reader and writer meth-
ods of the object attributes) are correctly annotated as visitors and mutators (respectively),
sequentially consistent access is guaranteed. Since Sather defines implicit reader and writer
methods associated with each attribute, we define all implicit attribute reader methods to
be visitors and all implicit writer methods to be mutators. This is sufficient to guarantee se-
quential consistency for this model. For instance, the definition of an attribute a of type T:

attr a:T;

implies the reader and writer methods:

visit a:T;
mutate a(val:T);

Since these accessor methods are used for all accesses to the attribute, the appropriate lock-
ing is guaranteed for all modifications.

Such basic attribute accessors annotations (that can be trivially generated by the com-
piler) are enough to avoid concurrent modifications of the same memory locations that is a
source of many hard-to-find bugs especially well known to SMP programmers. Note how-
ever, that we are a long way from achieving object level consistency. For instance, the in-
ternal implementation of objects can be freely aliased and, as a result, objects can go
through transitions that are not prescribed through the public interfaces of the outer layers.
In other words, the goal of the deep state encapsulation is not addressed. Another problem
with this basic model is performance - excessive locking at each attribute access essentially
disables many hardware and compiler optimizations such as instruction reordering. It also
results in repeated flushes of the store buffers and increased bus traffic of the bus based
SMPs.

2.3.2 Coarsening Protection by Annotating Methods
In this subsection we address the performance problem and make the first steps towards ad-
dressing the object consistency problem. We do so by allowing visit and mutate annota-
tions of the class interface methods. Such methods are synchronized according to the

11

concept of visitor/mutator protection. This has both semantic and performance benefits. In
terms of performance, marking methods as visitor or mutators has the effect of coarsening
the granularity of synchronization and reducing the number of times synchronization is re-
quired2. In terms of semantics, coarsening the granularity of the synchronization has the ef-
fect of preventing changes to the object for the duration of the method execution.

Methods without annotation do not synchronize. See the example of the equality test
in sets, shown below.

2.3.3 Coarsening Protection by Annotating Arguments
It is sometimes necessary to claim exclusive access to several objects at once, so that they
may be modified without any intervening calls i.e. to further restrict the allowed transitions
of the object, by disallowing certain external calls for a while. This is achieved by jointly
locking multiple objects, either for visiting or for mutating. We already annotate the lock-
ing of self by the keywords visit an0d mutate. Syntactically, joint locking is accomplished
by applying visit or mutate annotations also to method parameters.

Our running example while describing the object model will consist of a set class. We
start by considering the basic operations on the set class such as insert and streaming
through the elements3.

class CONC_SET{T} is
mutate insert(e:T) is...
mutate delete(e:T):T is...
visit elt!:T is...
visit contains(visit e:T):BOOL is...
visit is_eq(visit s:SAME):BOOL is...

end;

In the above example the contains and is_eq methods may be called concurrently on the set.
The equality test for two concurrent sets can be done by the following:

visit is_eq(visit arg_set:CONC_SET{E}):BOOL is
if size /= set.size then return false; end;
loop

if ~contains(arg_set.elt!) then return false end;
end;
return true;

end;

In this example, both self and set are claimed atomically for visiting at method entry. More-
over, the lock on both objects is maintained for the entire method invocation and hence nei-
ther set can change until the equality test method terminates.

2.3.4 Problems
There are two kinds of problems with the object model so far.

2. Since the synchronization of object state accesses inside such methods may be trivially lifted by the compiler.
3. All objects at this stage are assumed to provide their own independent protection.

12

• semantics: all methodsensureprotectionon their own - this maybetoo fine-grainedas
in thegeneralcaseit is moreconvenientto think aboutasequenceof methodsasexecut-
ing atomically and any extra protection is both unnecessary and cumbersome.

• performance: astraightforwardimplementationof suchamodelresultsin areader/writer
synchronizationpermethodinvocation.Wewouldliketo guaranteehighperformanceby
theobjectmodel,notmerelyrely onthecompileroptimizationssuchasinlining andstat-
ic analysisto try to lift extrasynchronization.In theabsence(or failure)of theseoptimi-
zations,our naive modelwill prohibitmany instructionreorderingsroutinelyperformed
by modern parallel platforms with weak memory consistency.

Model C

2.4 Shield Classes and Interior Classes:
Encapsulation and Performance

While locking at the level of individual objectaccessesis adequateto satisfybasicsafety
requirementat thememorylocationlevel (no concurrentmodificationof thesameunpro-
tected state), it suffers from drawbacks.

• Locking of frequentlyaccessedmethodscanresultin significantoverheadandmaybe
unnecessaryif the object is alwaysinvoked within a safecontext i.e. containedwithin
some other object that provides the needed locking.

• Furthermore,thoughthelockingguaranteessequentialconsistency in thebasicmemory
locationsense,it doesnotguaranteesafety;it is up to theuserto ensurethatobject-level
safetyis maintained.In theCONC_SETexample,for instance,if themethoddeleteis not
marked asa mutator, the objectmay well go throughtransitionsthat cannotariseby a
sequence of calls on the object interface.

Many researchershaveobservedthat in both serial and parallel object-basedsystems,
groupsof objectsareoftenaggregatedandfor manysemanticpurposesit is convenientto
think abouttheaggregateasa whole,ratherthana compositionof individual objects.For
concurrentsystems,suchaggregationdoesnotmerelyimprovereasoningaboutprograms,
but can, in fact, affect the synchronization patterns.

Our solutionis to relax theobjectmodelin wayssimilar to EmeraldandArgus.The
Sather2 modelhastwo kindsof objects:shieldobjectsandinterior objects.Therelation-
shipbetweenshieldandinteriorobjectsis similar to thatbetweenguardiansandtheir local
statein Argusandglobalandlocal objectsin Emerald.However,theimportantdifference
is thatSather2 guarantees by acombinationof staticanddynamictechniquesthatthis re-
lationshipalways holds(it is not just ensuredby goodprogrammingstyle).This is impor-
tantsince,unlikeEmeraldandArgus,theproposedSather2 objectmodelallowsdynamic
sharing of objects between different object groups while maintaining proper protection.

Theapproachis somewhatsimilar to theideaof balloontypes[5], butshieldandinte-
rior objectsallow furthermechanismslike temporarysharingandtransferof interiorobject
as described in sections 2.5, 2.6, and 2.7.

13

An executingSather2 programconsistsof a collectionof shield andinterior objects
thatmaysendsynchronous andasynchronous messagesto eachother.Objectsarecreated
at run-time and combine data representing the object state and program text.

All concurrencyis generatedby asynchronousmethodcallson shieldobjects,there-
fore, for completeness,the classcontainingthe program’smain routine must also be a
shield class. Figure1 presents a view of an executing Sather2 program.

2.4.1 Shield Objects
Shieldobjectsprovideprotectionfor containedinterior objects.A shieldobject together
with interiorobjectsthatrely on it for protectioncomposeanobjectdomainor simply do-
main. Intra-objectparallelismis permittedbut constrainedto prohibit conflicts between
visiting and mutating methods.

Shieldclassesmayblockacallerof amethodto provideprotectionin thefaceof shield
accessattempts.Intuitively, theymaybeviewedas“master”objectsthatprotecta collec-
tion of interiorobjects.Theyareresponsiblefor providingtheprotectionfor all interiorob-
jects within their domain. All interior objects are protected by an enclosing shield object.

Shield objects have the following properties:

• A shield class provides (blocking) protection against shield access.

• Intra-objectconcurrency is allowed,safeandis basedon singlewriter/multiple reader
paradigm.

• In theabsenceof pendingsynchronouscallsfrom onedomaininto anotherdomain,there
are no inter-domain references to interior objects.

• To afirst approximation,interiorclassesmaynotappearin ashieldclasspublicinterface.
This requirement will be relaxed in the next sections.

We illustrate shield classes by using a concurrent set of interior objects.

shield class CONC_SET{INTERIOR_T} is
-- a concurrent set of interior elements

private arr:ARRAY{INTERIOR_T};-- protected array - internal representation
int size; -- set current size
mutate create:SAME is

res:SAME:= new;
res.arr:= #ARRAY{INTERIOR_T}(res.asize);

Figure 1: The Sather2 Object Model

domain
interior objects

protection
(synchronization)
boundary

shield object
thread

asynchronous
call

synchronous
call/return

14

res.size = 0;
return res;

end;
end;

We will extendthesetclassaswe concentrateon different featuresof theSather2 object
modelandprovideenoughinformationaboutSather2 to enablesuchstep-by-stepexten-
sion.

2.4.2 Interior Objects
Interior classesrely on shieldclassesfor protectionin the faceof concurrency.The lan-
guagehasbeencarefullydesignedto keepinteriorobjectsfrom silentlyescapingfrom one
domaininto another.This is essentialsinceonly shieldobjectscontrolinternalconcurren-
cy. In order to enforcethe correctprotectionof interior classmethods,all interior class
methods must be correctly annotated.

Visitor/Mutator Propagation in Interior Classes

Sinceinterior classesdo not furnishprotectionon their own, theymustpropagateprotec-
tion providedby theenclosingshieldclassesto their internaldeepstate.Protectionfor in-
terior objectsmustalwaysbeprovidedat leastby thefirst enclosingshieldclassanda set
of methodsannotationshasbeendesignedto ensurethis staticallyfor all interior classes
duringnormalstatictype-checkingphase.Wenowdescribetherulesthatmakesuchtype-
checking possible statically:

All methodsthatinvokeavisitor methodof aninteriorclassmustbemarkedasvisitors.All
methodsthat invoke a mutatormethodof an interior classmustbe markedasmutators.
Thus,anyshieldor interiorclassmethodthatcallsavisitor methodof aninteriorclassmust
bemarkedaseitheravisitor or amutator.Similarly,anyshieldor interiorclassmethodthat
calls a mutator method of a interior class must be marked as a mutator.

2.4.3 Ensuring Object Consistency
In order to see that sequential consistency is ensured, we first note that

• All accessesof shieldobjectstatearesafe(asbefore),sincethereaderandwriter meth-
odsof shieldclassesarevisitors andmutators,respectively, andthe reader/writersyn-
chronization succeeds before they are accessed.

• All accessesof interiorobjectstatemustgothroughashieldclassinterface.All referenc-
esto interiorobjectsareonly visiblewithin their shieldclassandfrom otherinteriorob-
jectsin thesamedomain.Thus,all methodcallsonainteriorclassmusteitheroccurfrom
(a)thecontainingshieldclassor from (b) anotherinteriorclassin thedomain.Callsfrom
anotherinterior classin thedomainmustalsooccurfrom either(a) or (b). Sincesucha
chainof calls (i.e. thread)maynot originatein a interior class,by transitivity thechain
of calls must originate in case (a).

15

Objectlevel consistencyis alsoensured.Theprimitive attributereaderandwriter access
methodsof interior classesareimplicitly annotated.Our rule for visitor/mutatorpropaga-
tion ensuresthatat everycall alonga call pathto anattributereaderor writer of a interior
objecteithermaintainsor strengthens(whenacall to avisitor occursin amutatormethod)
therequiredprotection.Thus,anymethodchanginganobject’sstate(its statevariablesand
all reachableinterior state)mustbemarkedasa mutatorandwill beexecutedexclusively
on thatobject.Hence,for eachobjectthesequenceof all statetransitionsduringprogram
executioncanbedescribedby a sequenceof public methodcallsi.e. at anytime a method
is calledtheobjectis in a statethatcanbereachedby a calling sequenceon thepublic in-
terface; no intermediate state is possible.

2.4.4 Problems
Themainproblemwith thisdomain-basedobjectmodelis thattransferringinteriorobjects
betweendomainsis not supported.Thus,all communicationbetweenthreadsmust take
place through shield classes.

Model D

2.5 Temporary Sharing of Interior Objects

Unlike objectmodelsproposedby otherresearchers,inter-domaincallsarealsoallowed.
However,aswith intra-objectparallelism,acarefullycraftedsetof semanticconstraintsen-
suressafetyby controllingtheobjectreferencealiasing.In this section,we considertem-
porary sharingof interior objectsbetweenobject domains.In the following sectionwe
consider permanent transfers between object domains.

2.5.1 Exporting Interior Aliases
In orderto relaxtheconstraintonthecontainmentof interiorclasses,weinvestigatethecas-
esin which transferringinterior classesbetweendomainsis safe.In general,therearetwo
waysby which referencesto interior objectsmaybeexportedoutsidetheir domain.Both
situations may arise from inter-domain calls:

• a public interface method of a shield classtakes interior objects as arguments

• a public interface method of a shield classreturns a interior object

16

Both situations are illustrated in the following figure.

2.5.2 Object Capture
We first consider the problems that may arise when a interior object (or, more precisely, a
reference to it) is passed as an argument in an inter-domain call. This case is graphically
depicted in the left part of Figure 2. In the absence of any control over aliasing, area b can
create a copy of the passed reference to object p and store it locally in area b, as an attribute
of any object in area b domain. We call this capture of a reference or simply capture. Thus,
even after call termination, area b will keep a reference to object p in area a as shown in
Figure 3.

The situation as depicted in the figure is inherently unsafe. After the call terminates,
area b keeps a reference to an object in area a and can modify it concurrently with any other
methods invoked on object p from area a.

While static analysis techniques can be used in order to detect problems with reference
capture, we are dealing with a general aliasing problem. The problem is statically undecid-
able (although conservative heuristics do exist). This prompted other systems, such as Ar-
gus to disallow passing reference to interior data across domain boundaries. Instead, value
semantics is assumed for all such calls and all objects are copied.

Such a solution may be fine for loosely coupled distributed system with high network
latencies. However, for a high-performance system, especially if it is based on shared mem-
ory multiprocessors, the overhead of forcing value semantics for inter-domain calls re-
stricts expressiveness of the language and has a negative performance impact.

Figure 2: Interior objects and inter-domain calls

Figure 3: Reference capture and static inter-domain aliasing

set a set b

call

return

set a set b
call

return

p

set a set b

call

return

p

set a set b

p

after call

17

2.5.3 Safe Exporting of Aliases
Insteadof disallowingall inter-domainaliases,we disallowonly thedangerouskindsthat
can compromise safety. Let us introduce some necessary terminology.

Aliasing Paths

Let path to an object or simply path bea sequenceof variablenameswhereeachvariable
namebindsanobjectandthelastvariablebindstheobjectin question.Thebindingof each
successivevariableis evaluatedin thecontextof theobjectboundby thepreviousvariable.
For interiorobjects,wearegenerallyinterestedin pathsthatoriginateatshieldobjects.In-
ter-domainaliasingof an interior objectexistsif thereareat leasttwo pathsto theobject
originatingfromdifferentshieldobjects.Inter-domainaliasingisdynamicif twosuchpaths
exist only while the inter-domain call is in progress. Otherwise, aliasing is static.

Safe Paths

Not all kindsinter-domainaliasingaredangerousandthereforeundesirable.For instance,
consider a function in the AREA class that determines whether a function

visit is_member(visit e:INTERIOR_T):BOOL

mustreceivea referenceto anelementof anothershieldareaasanargument.Disallowing
this would unduly restrict language expressiveness.

Wepermitasubclassof inter-domainaliasingthatcanbeeasilystaticallyprovento be
dynamic(i.e.existsonlywhile themethodcall is in progress).Suchaliasingissafe- acaller
maintainsthenecessaryaccesspermissionswhile thecall is in progressandreferencesare
guaranteednot to becapturedby thecallee.Thisappliesonly to synchronous(non-thread-
ed)calls.We will dealwith asynchronouscallsandsemanticrulesandrestrictionsneces-
sary to maintain safety in the following sections.

Thekey observationis thatfor a referenceto becaptured,a writer method for some
attribute in an object in another domain must be executed. Suchwriter methods(and
possiblysomeothermethodswrappedaroundit) areguaranteedto bemarkedasmutators.
Hence,to eliminateall capturingof referencesto interior objects,it is sufficient(although
not necessary) to disallow passing such references to mutator methods.

Rule for Temporary Sharing

In summary, these rules ensure the safety of inter-domain calls:

• Only visitor methodsof shieldclasspublic interfacesmayhave interior (reference)ob-
jects as arguments.

Example

Theserulessignificantlyimprovelanguageexpressivenesswhile notcompromisingsafety.
For instance,theyvalidatethesignatureof is_member thatwe havepreviouslyused.The
implementationof is_member is safesincethepassedreferenceto a interior objectcannot
be captured. We now reexamine is_eq to make sure that its implementation is correct.

18

visit is_eq(visit arg_set:CONC_SET{PROT_E}):BOOL is
if size /= arg_set.size then return false; end;
-- now check for all element matches
loop

e;PROT_E:= elt!;
if ~arg_set.contains(e) then return false end;

end;
return true;

end;

In this example, the only call that crosses domain boundary is arg_set.contains(e) The call
is both legal and safe since it has a signature:

visit contains(visit e:T);

Since the called method is a visitor, it cannot capture a passed reference, and hence the
passed element is shared only while the call is in progress.

We now have almost all information necessary to implement the rest of the concurrent set
class. However, what is missing is the ability to transfer interior objects between domains.

2.5.4 Ensuring Object Consistency
Object sharing means that two different domains may have aliases to the same interior state.
While each domain will provide adequate protection on its own, accesses from the different
domains may conflict with each other. Thus, both object consistency and even sequential
consistency may be violated since encapsulation is violated. In order to maintain object
consistency in the face of transient sharing of interior state it is necessary that

 (A) No unsafe operations occur during the transient sharing of state and

 (B) No interior state references remain after the sharing i.e. that the sharing of state is in-
deed transient.

As a preliminary, we reiterate the fact that all interior state is protected by a shield object,
including any that comes in as an argument. Thus, a shield object method must be marked
as a mutator if *any* interior objects are modified (including any that comes in as argu-
ments). However, we only permit the passing of interior objects into visitor shield methods.
Thus during such a visitor method, the callee domain may not modify any interior state, in-
cluding the shared interior state. Furthermore, since the interior state belongs to the caller
and is being accessed by the caller, the caller must also be marked as either a visitor or a
mutator (it cannot be unmarked). In other words, the caller has, at the very least, obtained
permission to visit the interior state. Since the call into the callee domain does not modify
the shared state, any transitions in the shared state must take place in the caller. This reduces
to the standard case for protecting interior state, as described in Section 2.4.3. Thus (A) is
maintained. As described in Section 2.5.3, our rules prevent permanent capture of the
shared state. Thus, (B) is also preserved and thus object consistency is preserved. Since ob-
ject consistency implies sequential consistency, temporary sharing of state obviously pre-
serves the sequential consistency of the programming model.

19

2.5.5 Why Not Use Copying?
Theargumentmaybemadethatvaluesemanticsmaybeusedwhenevera domainwishes
to accessthe interior stateof anotherdomain.Therearetwo mainargumentsagainstthis
approach:

• Performance:valuesemanticsmayrequirethecopying of a potentiallylargeamountof
interiorstate.If thesharingrequiredis notcomputationallyintensive,thecostof copying
maydominatetheperformance.Theextensive work doneon compileroptimizationsof
suchcopying cancertainlyhelp;however, theperformancemaybefragileandunpredict-
able.

• Moreimportantly, valuesemanticsarefundamentallydifferentthanreferencesemantics,
andthe programmermay well desireoneratherthanthe other in a particularcontext.
While ourmodelpermitstheprogrammerto usevaluesemantics,it doesnot requirehim
to do so, as is the case with Argus and Balloon types.

2.5.6 Why Not Use Shield Objects?
It is alsopossibleto shareinternalstateby protectingthatstatefrom conflicting accesses
by makingit aseparateshieldobject.While thissolutionprovidestheright notionof object
identity, it mayunnecessarilyaffectsperformance.All accessesto theobject,evenwithin
theirowndomain,will requirelocking.In ourexample,if particlesareturnedinto concur-
rentobjects,theywill needto belockedoneveryaccess,includingthesafeaccesseswithin
their own area. This essentially forces us to use the conservative object model.

Thus,if possible,wewish to shareinteriorobjectswhensuchsharingcannotcompro-
misetheir safety.In caseswheremultipledomainsmayneedto modify thesamestate,we
canstill resortto shieldedobjects,but this maybeat a muchfiner granularitythanwould
otherwise be needed.

In our example,for instance,thenewlocationmaybeupdatedby theoriginal areaor
by any of the neighborareasandis thereforea shieldedobject.The particle,asa whole,
however,includingits old locationwhichis usedduringtheO(n^2)computations,neednot
beshielded.Thius,theold locationis representedusingan interior object,which permits
usto greatlydecreasetheamountof locking required,sinceparticlesandold locationsdo
not require locking.

Model E

2.6 Transferring Interior Objects

It is sometimesnecessaryto transferobjectsbetweeninteriorobjectsbetweendifferentob-
ject domains.For the reasonsmentionedin Section2.5.5,copying is not desirable.The
safetyof an interior object that is transferredbetweendomainsmay be compromisedif
morethanonedomainspossessesanaliasto theobject- in thiscase,accessesto theobject
maypassthroughdifferentinterfaces,andthereforeviolatebothobjectsafetyandevense-

20

quentialconsistency.Thus,in orderto ensureobjectsafety,it is necessaryto ensurethatat
notimedobothdomainsmaintainpointersto thetransferredinteriorstate.Thisensuresthat
all interior accessesarecontrolledby a singleshield interface,which providesadequate
protection.

Sather2 providesa mechanismfor transferringinterior objectsbetweendifferentdo-
mains,suchthatthesafetyof thetransfermaybedynamicallydetermined.In orderto per-
mit thetransferof interiorobjectsbetweendomains,wefirst definefree objectswhichmay
betransferred betweendomains.Sinceinteriorobjectsarealwayscreatedwithin shieldob-
jects,atsomepoint theconnectionbetweentheinteriorgroupandtheshieldobjectmustbe
severed.Theseveranceof thisconnectionis definedin two stages.Wefirst definetransfer-
ablegroupsof interiorobjectswhichareonly reachablethroughasingleexternal.Wethen
define a free operation which destroys the last remaining external reference.

An interior objectp definesa transferrable objectgroup,consistingof itself andall
objectreachablefrom it, iff all pathsto objectsin thegroupgo throughp andthereis only
a single reference to p.

A transferablesubgroupis free if therearenoreferencesto therootobjectp from any
local variableor attributeof a shieldclass.Figure4 displaystheobjectgroupsassociated
with several free objects.

A transferablesubgroupwith root p is freedby thefree operationappliedto p, which
releasesthereferenceto therootobjectandverifiesthatthegroupreachablefrom theroot
objectis indeedfree.It returnsthevalueof thereference,andmaythusbeusedin callsas
shownin theexamplesbelow.Objectsb andc definetransferablegroups,while a is theroot
of a free group in Figure4.

Free interior objects relax the last constraint on the interfaces of shield classes.

• Free objects may be passed as arguments to methods in shield classes.

• For therulesfor visitor/mutatorpropagationapplyingfreeto a interior objectis equiva-
lent to calling a mutator on it.

2.6.1 The Transfer Mechanism
Transferat thepoint of call is performedby usinga modespecifierfree with a methodar-
gumentfor boththemethoddefinitionandthemethodcall.Theargumentmodefree applies

Figure 4: Free Object Groups

a
b c

free

Domain A
Domain B

21

thefreeoperationby destroyingtheoriginal referenceto thefreeobject.Any methodthat
performs a transfer must be marked as a mutator method.

Transferat thepoint of returnis specifiedusingthebuilt-in free operation,which acts
similarly to thefreeargumentmodeandsetsareferenceto ainteriorobjectpassedasargu-
mentto void andreturnsa freeobjectof thesametype.It is anerror if thereexistsa path
from anyshieldclassto anyobjectin theobjectgroupto bereleasedthatdoesnot contain
areferencepassedasargumentto free. This lastrestrictionensuresthattheresultingobject
groupis truly free andthereareno referencesfrom original shieldhost left behind.The
compiler emits code for a run-time check of this condition.

2.6.2 Run-time Checking
While all thesafetymechanismspresentedsofar havebeenstaticallycheckable,thetrans-
fer mechanismis not. Determiningthat an objectgroupis transferableor free requiresa
run-timecheckof references,thatmaybeperformedwith theaidof referencecounts4. Ref-
erencecountingwill exacta certainperformancepenalty.The approachwe pursueis to
leavethedecisionup to the final userby providinga compileroption thatwill enableor
disabletherun-timecheck.This is similar to theSatherapproachto otherexpensivetests
suchasarrayboundsandvoid dereferencechecking.In practice,thecheckis usedduring
thedebuggingstageandnotusedin theproductionsystem.Thefollowing pointsmaygreat-
ly reduce the performance of reference counting:

• Referencecountingneednot beperformedat all in visitor methods.Theinterior stateis
notmodifiedby avisitor method(i.e.nonew references),andall localvariableswill dis-
appearafter thecall terminates.If a visitor methodcallsa shieldclassmutatormethod,
it cannotpassany interior stateasanargument,sinceit cannotfreetheinterior state(if
interior state is freed then the method must be marked as a mutator).

• Referencecountingneednotbeperformedonlocalvariablesin certainmutatormethods.
Let usdefineatransferringmethodasamutatormethodin whichafreeoperationis per-
formedor from which a transferringmethodis called(i.e. a transferringmethodis one
from which a free operationis transitively reachableby a seriesof calls). Reference
countingneedonly beperformedon local variablesof transferringmethods.Reference
countingmustalwaysbeperformedon attributemodifications,however, in all mutator
methods.

• Private(objectprivate)attributesthatarenever aliasedmaybe transferredwithout any
test.

Transferringmaybeviewedasanoptimizationovercopyingdatabetweendomainsin the
restricted case where the original domain no longer references the state being transferred.

2.6.3 Shield Class Interface Restrictions
In summary, then the restrictions on shield class methods are as follows:

4. Thecheckbasicallyensuresthattheinteriorstatebeingtransferredis self-contained- all pointers
to objects in the group come from other objects within the group.

22

• Visitor methods of a shield class may take any interior objects as arguments.

• Mutatormethodsof ashieldclassmayonly takefreeinteriorobjectsasarguments.With-
in themethodbody, only freeobjectsmaybeobtainedby callsto othershieldclassmeth-
ods.

2.6.4 Example
We may now extend the concurrent set class by adding the insert method:

mutate insert(free e:PROT_T) is
if(size+1 > asize) then double_and copy; end;
-- double the array and copy the original state
arr[size] := e;
size := size+1;

end;

Freeinganobjectis alsousefulfor operationssuchasdeletewhich removeall currentref-
erencesto theobject.For instance,thefollowing methodreleasesanelementthatmatches
its argument:

mutate delete(e:PROT_T): free PROT_T is
-- release and return a set element matching e, if found
res:PROT_T;
loop

i::=0.upto!(size-1);
if(e = arr[i]) is res = arr[i]; shift_left(arr, i, 1); break!; end;

end;
return free res;

end;

visit intersect(visit arg_set:CONC_SET{PROT_T}): CONC_SET{PROT_T}is
-- computes an intersection of self with ‘set’ and returns it as a new set
res: C_SET:= #;
loop

e:= arg_set.elt!; -- create a dynamic alias
if contains(e) then res.insert(free e.copy) end;

end;
return res;

end;

visit union(visit arg_set:CONC_SET{PROT_T}): CONC_SET{PROT_T}is
-- computes a union of self and ‘set’ and returns it as a new set
res: C_SET:= #;
loop res.insert(free elt!.copy); end;
loop

e:= arg_set.elt!;
if ~res.contains(e) then res.insert(free e.copy) end;

end;
return res;

end;

Theabovecodeassumestheexistenceof acopy methodin PROT_T thatreturnsafreecopy
of self and has a signature:

copy: free PROT_T;

23

Model F

2.7 Synchronization Aggregation

An importantsemanticbenefitof theobjectaggregationschemedescribedin theproceed-
ing sectionthatgroupsof protectedobjectsmaybeaccessedwithin a concurrentmethod
body,with theassuranceof no externalinterference.This coarseningof locking is useful,
for instance, when computing the sum of all the elements of a container.

Forsemanticreasons,it is desirableto supportasimilarcoarseningof lockingoncon-
currentobjects.While annotatingmethodarguments(asdescribedin Section2.3.3)allows
usto conjunctivelylock smallnumbersof concurrentobjects,it is frequentlyusefulto be
ableto lock a largeraggregationof objects.Thispermitsoperationsto beperformedonel-
ements of the aggregate without external interference.

Aggregateprotectionmaybeachievedif theprotectionfor thewholegroupis consol-
idatedin some“protector” objectwhich providesprotectionfor thegroupasa whole.To
achievethis transferof protection,we definetheprotector of a concurrentobject.All syn-
chronizedobjectshaveanattributeprotectorboundto theprotectorobject.A concurrent
object is either protected by itself, in which case:

a.protector = a

or it is protected by some other object, b:

a.protector = b

Transfer of the protection of ‘a’ to ‘b’ must be signalled explicitly:

a.protector:= b;

Transfer of the protection of an object back to itself is achieved by:

a.protector:= a;

‘a’ is protectedby ‘b’ impliesthatanyvisitor of ‘a’ is avisitor of ‘b’ andanymutatorof ‘a’
is a mutator of ‘b’.

Notethatthesynchronizationaggregationof concurrentclassesdoesnot restricttheir
usage- theymaystill befreely usedin othercontexts.However,anyaccesswill resultin
thelock for theoverallaggregatebeingclaimed.Thus,if a setaggregatessynchronization
on all its elements,theelementsmaystill beaccessedoutsidetheset.However,acquiring
the lock on any of the elements will result in the aggregate lock being claimed.

Figure 5: Tree of Aggregated Concurrent Objects

Group Protector

24

2.7.1 Performance Implications
The compiler and runtime may use this information to get rid of some fine-grained synchro-
nization and consolidate all synchronization in the protector object. For instance, all ele-
ments of a concurrent array may be protected by the array object itself. Iterating over the
elements of the array will acquire little or no synchronization overhead in addition to syn-
chronizing on the array object. Concurrent array elements may be freely exported outside
the array object boundary (unlike protected attributes). However, synchronization will re-
main coarse-grained even when such objects are used not as array elements.

2.7.2 Determining the Protection of Aggregates
Performing aggregation in a naive manner can require time linear in the size of the aggre-
gate to determine the protector of an object. However, we have been investigating the use
of modified union-find operations to reduce the average cost of aggregation:

A semi-dynamic problem occurs when there is a notion of state of objects that goes beyond
only considering the attributes of that object. Assume the state of an object to be defined
by its value attributes and the state of its reference attributes that are marked as owned. Ad-
ditionally, it is required the each object knows its master. A master of an object o is defined
as follows: (i) the master of o is o iff it has never been assigned to an attribute marked as
owned or (ii) the master of o is the master of the object that contains the owned attribute o
is assigned to5. Initially, each object is its master. Ownership may get coarser by assigning
an object to an attribute marked as owned.

Simple Algorithm

The simple application of the Union-Find data structure would solves the problem: As-
sume, initially each object is a singleton set. The operation find applied on a object o iden-
tifies the master of o. Assigning an object o to an (marked owned) attribute of an object o'
should have the effect that, according to the definition of master, find(o) becomes find(o')
and find(o') remains the same. However, this behavior cannot be guaranteed by the union
operation. The reason is that find(o') remains the unchanged iff | find(o)| | find(o')|6. For
a first algorithm, we drop this invariance. For various probability assumptions, the expected
running time is linear for the above algorithm, cf. [4].

Advanced Algorithm

The next algorithm is an easy extension of the Union-Find data structure. First of all, we
observe that the Union-Find data structure works also for on-line problems: Obviously, it
is no problem to create new objects, i.e. to add new singleton sets, on-line. We add an op-
eration master which, applied to an object, returns its master. As an invariance of the new
data structure, each object o representing a set computes master(o) in time O(1), e.g. by

5. In Sather, e.g., synchronization is done by the master of an object. This master must therefore be accessed when an object
is called.
6. Note that find (o') denotes a set and | find (o)| the cardinality of this set.

≤

25

storing them in special attribute. Obviously, the invariance can be guaranteed for the initial
singletons. For objects that do not represent a set, master(o) is defined by master(find(o)).
It is also invariant that for any object o, master(o) is the master object of o (as defined
above). Let o be an object to be assigned to an (marked owned) attribute of another object
��� . In this case we find the master of ��� , assign it to some auxiliary variable, say
new_master, then execute union(o,���), and finally redefine master(o) = master(���) =
new_master. Of course, this can be implemented in O(find). Obviously, it holds the follow-
ing:

For any sequence of assignments and requests to find a master object, for
each object o, master(o) computes the master of o. Any sequence of n as-
signments and requests to find the master object requires time

with the above implementation where is the
inverse of Ackermann's function.

m n≥
O n m+ α m n,()×() α m n,()

26

3 Safety and Subtyping

Our object model so far has been mainly concerned with ensuring safety in concrete class-
es. We now turn our attention to abstract classes (interfaces) and the need to ensure safe
substitutability with subtyping. The subtyping rule in Sather is contravariant providing safe
substitutability of classes by subclasses. This subtyping rule is extended to ensure better
substitutability in the face of concurrency. Abstract classes may either be interior or shield.
The type rules for abstractions are similar to the type rules for their concrete counter parts.

3.1 Abstract Interior Classes

Methods in abstract interior classes may be annotated as visitable or mutable. Methods
marked visitable are considered visitor methods and methods marked mutable are consid-
ered mutator methods; protection for such methods must be propagated to all method calls,
just as it is with concrete interior classes as described in Section 2.4.2. Abstract interior
classes may only subtype from other abstract interior classes.

3.2 Abstract Shield Classes

Methods in abstract shield classes may also be unmarked or annotated as visitable or mu-
table. Methods marked visitable are considered visitor methods and methods marked mu-
table are considered mutator methods. Just as with concrete shield classes, method
protection need not be propagated through calls. The same restrictions on public interfaces
for concrete shield class apply to abstract shield classes.

Method arguments of abstract shield classes may also be marked as visitable or muta-
ble. Return types may be unmarked or marked as free.

3.3 Subtyping between Shield and Interior
Abstractions

Shield classes may subtype from abstract interior classes, provided, of course that they con-
form to the interior class interface. However, interior classes may not subtype from shield
abstractions.

Informally, this subtyping constraint may be justified as follows. A visitor or a mutator
method of a interior abstraction has the implicit precondition that the caller has become a
visitor or mutator of the object before the method is called. The visitor/mutator propagation

27

ruleensuresthetruthof thisprecondition.A visitor or mutatormethodof ashieldclasshas
theimplicit preconditionthattheexecutingthreadcanbecomeavisitor or mutatoratsome
point in the future(i.e. doingsowill not resultin deadlock).Hence,thepreconditionson
interiorclassmethods(i.e. thatthecalleris alreadyavisitor or mutator)naturallyimply the
preconditionsof shieldclasses(i.e. that it canbecomea visitor or mutator).Thesynchro-
nization behavior of a method provides no specific postcondition guarantee.

Visitable vs. Visit

We chooseto usethe termvisitablein abstractionsto indicatethat implementationsmay
electto not performa synchronization,if theydo not needto do so.Hence,thetermvisit-
ablein theabstractclassinterfaceindicatesthattheuserof theinterfaceis not guaranteed
thatanysynchronizationwill takeplace;theusermustensurethattrying tobecomeavisitor
will not result in deadlock.

3.4 From Abstraction to Implementation

If theamethodargumentis annotatedasa“visitable”, thenanimplementationsubtypemay
annotatetheargumentas“visit”. Fromthepoint of view of preconditions,this meansvis-
itableimpliesvisit. If anargumentis of typevisitable,themodifier statesthatit shouldbe
possibleto becomeavisitor of theargument(or,alternately,thatcalleralreadyis avisitor).
Thevisit annotationhasexactlythesamerequirement,andadditionally,performstheac-
tion of actually taking the lock.

Wehavethefollowing subtypingruleswith respectto visit, mutate,visitableandmu-
table:

3.5 Example

Weusetheabovesubtypingrulesto illustratehowamoresophisticatedversionof thepar-
ticle simulationalgorithmcanbebuilt. Until now, thesimulateduniversehasbeensubdi-
videdinto rectangularcellsof equalsize.However,for anon-uniformparticledistributions
moreefficientadaptivemeshescanbeused.Thus,theuniverseis nolongersubdividedinto

FIGURE 6. Extending Sather subtyping rules

mutable

visitable mutate

visit unmarked

28

identicalgrid cells.To enablepossiblefuturealgorithmsrefinements,wecandeclareanab-
stract class $AREA that captures area’s essential interface:

abstract shield class $AREA is
visitable print; -- print information for local particles
mutable simulate;-- perform a simulation step
mutable perform_transfers; -- transfer particles to the neighbors
-- other interface signatures;

end;

-- A rectangular area - subtypes from the abstract interface $AREA
shield class RECT_AREA < $AREA is

visit print is ... end;
mutate perform_transfers is ... end;
mutate simulate is ... end;
-- other methods

end;

A classimplementingthe rectangularareassubtypesfrom theabstractclass$AREA and
the compiler uses the above extended subtyping rules during the type-checking phase.

29

4 Threads and Concurrency

Similartoa“standard”object-orientedmodel,aSathercomputationinvolvesmessagesthat
triggermethodexecution.Sathermessagesareactive- theycantriggeranactionatthedes-
tination object without cooperation of other threads, processes, or “bodies”.

4.1 Active Messages

There are two kinds of messages: synchronous and asynchronous:

• Synchronous calls. A threadexecutinga synchronouscall relocatesitself to thedestina-
tion objectby sendingan active messageto thatobject.Messagesthatdo not satisfya
proceed criterion,i.e. thatarewaitingfor synchronization,arequeueduntil it is satisfied.
Onmethodtermination,anactivemessagecontainingthereturnvalue,if any, is sentback
to the sourceobject.Executionresumesimmediatelyuponthe arrival of a returnmes-
sage.
Themostcommonandtrivial caseof anactivemessagecarryingasynchronouscall is a
methodcall onalocalobject,whichis executedwith norun-timesysemoverheadfor the
message.

• Asynchronous calls. Non-blockingcallsareperformedby creatinga new threadandlo-
catingit to thedestinationobjectby sendinganactivemessage.Thesendingthreadcon-
tinuesexecutionimmediately. Thestartof a new threadsignifiesthecreationof a new
domain.Active messagescarryingasynchronouscallscanonly besentto shield(or im-
mutable)objects.Suchcallscanhaveargumentsof shieldtypes,valuetypes,andfreein-
terior types.

While generatingsynchronouscallsis alreadycoveredby serialSather,newlanguagefea-
tures are requoired to express asynchronous calls.

4.1.1 Fork Expressions
While generatingsynchronouscallsis alreadycoveredby serialSather,newlanguagefea-
turesarerequoiredto specifyasynchronouscalls. Asynchronouscalls areperformedby
fork expressions with the following syntax:

fork_expr fork [bundle,] call_expression

ForkexpressionshavethetypeFUTURE, if themethodhasno returnvalue,or FUTURE{T},
if themethodinsidefork returnsa valueof typeT. The following examplecreatesa new
threadto computeasumof two immutableintegers.Notethatin Sather1+2 is justsyntactic
sugar for1.plus(2). The original thread then blocks until the result is available:

⇒

30

t:FUTURE{INT}:= fork (1+2);
sum:INT := t.get; -- wait until the thread terminates

4.1.2 Futures
The interfaceof futureshasonly two methods:get and is_done. get is blocking- a thread
that tries to performa getoperationon thefutureblocksuntil thecorrespondingthreadis
terminated.If thecall hasa returnvalue,it is returnedby get. is_done is non-blockingand
returns a boolean informing the caller about the state of the future.

4.1.3 Thread Bundles
Threadbundleisanoptionalargumentfor athreadcreationexpression.It servesasahandle
onacollectionof threadsandcanbeused,for instance,to wait until all threadsin thatcol-
lectionterminate.Thenextsectionwill providemoreinformationon bundles,bundleop-
erations, and thread scheduling.

4.1.4 Example
Wenowchangetheoriginalsequentialversionof intersect() to exploitparallelism.Thefol-
lowing codesegmentusesaverysimpleparallelalgorithm:aseparatethreadis createdfor
eachelementof thesetto seeif theelementbelongsto a setpassedasanargument.If so,
acopyof theelementgetsinsertedinto theresultingconcurredset.Sincethreadsarevisit-
ing self andargument‘set’, thebulk of threadbodiescanexecuteconcurrently.Theonly
mutually exclusive part is due to the insertion of new elements to the resulting set.

visit lntersect(visit set:CONC_SET{PROT_T}):CONC_SET{PROT_T} is
-- a parallel version of intersect
res:SAME:= #;
bundle:$BUNDLE:= #BUNDLE; -- create a new default bundle
loop

i:= 0.upto!(size-1);
future::= fork bundle, intersect_chunk(i, set, res);

end;
-- now simply wait until all done
bundle.join; -- wait until all threads in a bundle terminate
return res;

end;

private visit intersect_chunk(i:INT, visitable set:SAME, mutable res;SAME) is
-- compute an intersection of a range of elements in self starting with ‘start’
-- of size ‘range’ with set ‘set’. Add the results to ‘res’
loop

e::= arr[i];
if set.contains(e) then

res.insert(e.copy);
end;

end;
end;

31

In this example,a new bundleof the defaultbundletype is createdandis usedto signal
whenall createdthreadsterminate.Theoriginal threadblocksinsidebundle.join until this
happens.

4.2 Bundles and Scheduling

In thissection,wediscussSatherthread bundles. Threadbundles,or simplybundles, area
collectionof logically relatedthreadswith commonproperties.Themostimportantshared
property is that all groups in a bundle share the same scheduling policy.

Bundles fulfill several purposes:

• Similar to concurrentclassesthatprovideaggregationof objects,bundlesprovideaggre-
gation of activities.

• “Standard”threadsynchronizationoperationscanapplyto entirebundles.For instance,
a join method can be called on the bundle to wait until all threads in a bundle terminate.

• Differentbundlessupportdifferentschedulingpolicies.Similar to objecthierarchies,ac-
tivitiescanalsobecombinedinto hierarchiesby associatingthemwith appropriatebun-
dles.

Although we haven’tmentionedthreadbundlesmuchearlier,they havebeenaroundall
along.All Satherthreads,includingtheoriginal threadthatexecutesthemainmethodbe-
longto bundles.Theability to aggregateparallelactivitieswill comeveryhandyin thedata
parallel extension of Sather.

We now examine the fork expression in more detail:

f:FUTURE{T}:= fork([bundle:$BUNDLE,] method(args));

In theabsenceof anoptionalbundleargument,anewthreadis addedto thecurrentthread’s
bundle.If thebundleargumentis present,a threadis addedto thespecifiedbundle.When
the thread terminates, it is automatically removed from its bundle.

4.2.1 Bundle Hierarchies
Bundlescanform hierarchies.A newlycreatedbundleis automaticallyaddedasachild to
thebundleof thecurrentthread.Fig showsabundlehierarchyof anevolvingSathercom-
putation.

Figure 7: Creation of new bundles (left) and a resulting Bundle hierarchy (right)

32

A built-in expressioncurrent_bundle:$BUNDLE returnsa bundleof thecalling thread.Any
bundle implementation must conform to the following interface:

abstract class $BUNDLE < $IS_EQ is
parent:$BUNDLE: -- returns the parent of a bundle
child!:$BUNDLE; -- iterates through child bundles
num_threads:INT; -- a “current” number of threads in the bundle
num_blocked_threads:INT; --”current” number of blocked threads
join; -- called from outside: blocks until all threads terminate
barrier_init; -- “unit” the barrier; the following barrier will be done

-- for the # of threads at the moment of the call
barrier; -- blocking barrier
name:STR; -- “name” for debugging purposes

end;

$BUNDLE providesmerelyaninterfaceall bundlesmustconformto. Onecanenvisionan-
other abstract class for bundles that support priority-based scheduling:

$PRIORITY_BUNDLE < $BUNDLE is
set_current_priority(p:INT); -- sets the priority of a calling thread
get_current_priority:INT; -- returns priority of a calling thread

end;

Sincewehaveatwo levelsystemthatcapturesthestateof activities(threadsandbundles),
two kinds of scheduling decisions have to be made:

• scheduling of threads in a bundle

• scheduling of different bundles

4.2.2 Bundle Scheduling Policies
The current distribution of Active Threads(a compilation target for Sather)currently
comes with the following bundles:

• threadsschedulingpolicy: FIFO,LIFO, MCSandversionsof thesewith lazystackallo-
cation.

• bundle scheduling policy: FIFO

4.2.3 Discussion
Superficially,Satherbundlesarereminiscentof the Javathreadgroups[8]. Both entities
serveto aggregateactivitiesandcanbe combinedinto hierarchies.They alsoshareone
commongoal- theaggregationof controlovermultipleactivities.However,therestof the
goalsarequitedifferent:Javathreadgroupsaremainly neededto ensuresecurityin a dis-
tributedmulti-userenvironment.In contrast,Satherbundlesenablecompositionaldevelop-
mentof parallelsoftwareandencapsulationof schedulingpoliciesin programmodules.For
very fine-grainedparallelapplications,a carefuluseof bundlesthatsupportmemory-con-
sciousthreadscheduling(to minimize the numberof cachemisses)leadsto significant
speedupsanddrasticallyreducedmemoryrequirements.Both runtimeandmemoryusage
hasbeenshownto improveby asmuchasan orderof magnitudefor someparallelplat-
forms [47].

33

5 Guarded Methods and Properties

A main goal of our object model is sequential consistency on the object level. This implies
synchronization of concurrent threads acting on objects. The concept of visitors and muta-
tors provide a way to synchronize threads that can be used e.g. to protect a shared resource.
But in general, a threaded concurrent programming language like Sather 2 should provide
further means for synchronization than just reader/writer exclusion.

Condition variables, for example, cannot be implemented by the means of our object
model without busy waiting which in the most cases leads to poor performance. Further-
more, a busy waiting implementation would mix synchronization code and general code.
Readability would be poor and the condition variables could not be considered when stati-
cally checking for substitutability.

This chapter introduces guarded methods and properties extending the synchronization
facilities of our object model. After stating the design goals in section 5.1, syntax and se-
mantics of guarded methods and properties are introduced stepwise. Single guarded meth-
ods and basic properties are described in section 5.2. The basic concepts are extended in
section 5.3 (extended properties) and section 5.4 (disjunctive guarded methods). Examples
are given for all new language features. Section 5.5 discusses how they can be implemented
efficiently.

5.1 Design Goals

The synchronization constructs introduced in this chapter meet the design goals of the
whole language, namely safety, performance, and ease of expression. Additionally, they
extend the object model in a natural way.

5.1.1 Natural Extension
In order to be consistent with our object model, we use the same synchronization points. A
thread may synchronize with others only when it enters or leaves a method. This is support-
ed by many synchronizing constructs of object-oriented concurrent programming languag-
es like body methods of active objects (e.g. [7]), accept sets [19], enabled sets [46], and
method guards (e.g. [10][29]). But only methods guards expose the synchronization con-
straint of a method at its signature and thereby allows save subtyping with respect to syn-
chronization behavior like our object model does. Also syntactically, adding a guard to a
method is closer to the visitor/mutator annotation of the object model.

34

5.1.2 Safety
Therearethreeaspectsof safetyto beconsidered:keepingthesafetyof our objectmodel,
safe subtyping, and deadlock detection.

Keeping the Safety of the Object Model

In orderto keepthesafetyof theobjectmodel,visitors/mutatorsandguardsarecombined
conservatively.A threadis blocked,if at leastoneof thesetwo mechanismsblocksit. Fur-
thermore,calling a guardedmethodmaynot changethestatusof thecallerbeinga reader
or a writer, even if the call blocks.

Safe Subtyping

Safesubtypingis requiredto ensuresubstitutabilityof classesby their subclasses.Particu-
larly for thedesignof robustclasslibraries,substitutabilityis essential.Accordingto Mey-
er’sconceptof design by contract [32], thecallingobject(client)of amethodhasto ensure
apreconditionto holdwhencalling.In turn,thecalledobject(server)guaranteesapostcon-
dition toholdwhenthemethodreturns.Now,aclasscansafelybesubstitutedbyasubclass,
if for all of its methodsholdsthat thepreconditionimplies thepreconditionof thecorre-
spondingmethodof thesubclassandthatthepostconditionis impliedby thepostcondition
of the corresponding method of the subclass.

In absenceof concurrencyit is asevererun-timeerror,if apreconditionor postcondi-
tion doesnot hold. Systemscapableof detectingsuchanerrorusuallyraiseanexception
whenthecontractis violated.For concurrentsystemsthesituationis different.A precon-
dition beingfalsewhena threadcallsa method,might becometrueon accountof another
thread.Hence,it mightmakesenseto block thethreaduntil thepreconditionbecomestrue
instead of raising an exception.

To solvethis conflict, we partitionthepreconditionof a methodin two parts,the im-
mediate precondition andthe blocking precondition. While a violation of the immediate
preconditionis arun-timeerror,aviolationof theblockingpreconditionblocksthecalling
threaduntil the conditionbecomestrue.The blocking preconditionis alsoreferredto as
synchronization constraint, method guard, or simply asguard.

Thereis no needto partition postconditionsin a similar way, sincethey haveto be
guaranteedby themethodwhenreturning.But in orderto increasereadabilityandto sup-
port an efficient implementation we also partition postconditions (see below).

In Satherpreconditionandpostconditionarepartof amethodssignature,thoughusu-
ally specifiedincompletely.By interpretingthemethodguardaspartof theprecondition,
we canachievesafesubstitutabilityalsoconcerningsynchronizationconstraints.This al-
lows static checking blocking preconditions for subtypes, at least for basic cases.

Deadlock Detection

A safetygoal of any multi-threadedlanguageshouldbe to avoid deadlocksby statically
checkablerestrictions.But usually,toostrongrestrictionsthoughprovidinghighsafetyare
not desirable,becausethey reduceexpressibilityandmight forbid the implementationof
commondesignpatterns.Hence,multi-threadedlanguagesdonotavoiddeadlocksentirely.

35

In orderto compensatethisweakness,a furthergoalis to detectdeadlocksat run-time
asfar aspossible.Sincerun-timechecksmight havesevereperformanceimplications,we
tried to reducethesynchronizationpointsandto allow aschemeof signalingsynchroniza-
tion eventsbetweenthreads,thatallowsto detecta lot of deadlocksituationswith low ef-
fort. This supportsdevelopmentof deadlockfreecode,but doesnot give completesafety,
because not all deadlocks can be detected.

5.1.3 Performance
An efficient implementationof visitor/mutatorsynchronizationcanmakeuseof existing
low level reader/writerlocksor canbebuilt easilyuponothersynchronizationprimitives
asmutexesor semaphores.But for guardedmethodstheproblemis muchmorecomplex.
Severaldesignissuesbeingcritical for performancehaveto be discussedincluding the
questions when, how often, and by which thread a blocking guard is re-evaluated.

Synchronization Points

Wesupporta low numberof re-evaluationsby thelanguagedefinition.Guardsarerestrict-
edto expressionson properties, specialattributes(basicproperties)or methods(extended
properties)of shieldobjects.Changesto basicpropertiesareonly possiblewhenamethod
returns.Hence,re-evaluationof guardsdependingon anobject’sbasicpropertiesis only
required,if a methodcalledon this objectreturns.Thesesynchronizationpoints,blocking
onmethodentryandsignalingonmethodreturn,arethesameasin theobjectmodel,sup-
portinga simpleandefficient implementationfor thecombinationof both.We keepthis
synchronizationschemealsofor extendedproperties,eventhoughtheymight changebe-
fore a modifying method returns.

Number of Re-Evaluations

Theremainingnumberof necessaryguardre-evaluationcanbereducedby staticanalysis
anddynamictrackingof guarddependencies.Theanalysisof dependenciesis supportedby
demandingall changesto propertiesbeingstatedin amethodspostcondition.Like precon-
ditions,postconditionsaresplit in two parts.Thefirst one,thecheckingpostcondition,con-
cernseverythingbut propertiesand may be incomplete.The secondone, the signaling
postcondition,describesthechangesto propertiesmadeby thismethodcompletely.These
changesarestatedin thesignalingpostconditiononly. Thus,thesignalingpostconditionis
aswell anassertionasit is executablecode.Thissimplifiesprogrammingandtheanalysis
of guarddependencies.It avoidscontradictionsbetweenmethodbody andpostcondition
andavoidsundecidablesituationswhichcouldoccurif changesto propertieswouldappear
in the method body, e.g. in conditional branches.

Avoiding Context Switches

A furtherquestionconcerningperformanceis which threadevaluatesa blockedguard.In
Javafor example,only theblockedthreaditself canre-evaluateits guardrequiringcontext
switchingfor eachre-evaluation[8]. By restrictingguardsto expressionsonproperties,any

36

threadcanre-evaluateaguard.In particulara threadsignalingtheneedfor a re-evaluation
can re-evaluate all blocked guards without any context switch.

5.1.4 Ease of Expression
Parallelprogrammingaddscomplexityto sequentialprogramming.In orderto reduceer-
rorsthatoccurin realizingparallelapplications,theprogrammingmodelmustpermitanat-
uralexpressionof commondesignpatternsin theapplicationdomain.Weachievedaclear
expressionof synchronizationconstraintsby separatingsynchronizationcodefrom method
bodiesandby makingthema partof thesignature.With thesynchronizationbehaviorof
an objectbeing reflectedby its interface,it is possibleto reasonaboutsynchronization
without knowing the implementation.Codere-useis supportedby avoidingmostof the
known inheritance anomalies caused by inherited synchronization code.

Object Properties

Weclarifiedthespecificationof guardsby addingproperties to objects.Propertiesindicate
statesof theobjectwith respectto its synchronizationbehavior.In our eyes,themostnat-
ural way of specifyingsynchronizationbehavioris to say’executethis methodwhenthe
objecthascertainproperties’.Accordingly,we defineguardsasbooleanexpressionson
properties.Extendedpropertiesallow sharingof complex(partial)blockingpreconditions
between methods by.

Separation of Synchronization Code

Partitioningpreconditionsandpostconditionsseparatessynchronizationcodefrom other
actionson theobjectandallowsdesigningit andreasoningaboutit separatelyfrom other
code.Furthermore,thedifferentsemanticsbetweenimmediatepreconditionsandchecking
postconditionsononesideandblockingpreconditionsandsignalingpostconditionsonthe
othersideis reflectedby thelanguage.Theformerareassertionsthatmaybeomittedand
thatmaydescribethecorrespondingconditiononly partially.Thearecompiledto run-time
checksthatcanbeturnedonoroff bycompilerswitches.Thelatteralwaysdescribethecor-
respondingconditioncompletelyandarecompiledto codethat is essentialfor execution.
The separationalsosimplifies specifyingsynchronizationconstraintsaspart of an inter-
face.

Avoiding Inheritance Anomalies

Another important issueconcerningthe easeof expressionis code re-use.Inheritance
anomalies,i.e. codeinheritanceandsynchronizationconstraintsconflict with eachother,
requirere-definitionsof inheritedmethodsin orderto maintaintheintegrityof synchroniz-
ing objects.In general,Satherreducesinheritanceanomaliesby separatinginterfaceinher-
itance(subtyping)andcodeinheritance(re-use).Sincetheblockingpreconditionsandthe
signalingpostconditionsarepartof theinterface,codeinheritanceis notnecessarilyaffect-
ed by changes of synchronization constraints.

37

Furthermore,MatsuokaandYonezawa[30] showedthatmethodguardsavoida lot of
inheritanceanomalies.Theycharacterizedtheremaininganomaliesashistory-only sensi-
tiveness. Theseanomaliescanoccurwhena subclassaddsa methodwith a guarddepend-
ing onthecallingsequenceof inheritedmethodsbeforetheactualcall.Theseanomaliesare
hardto avoid,eventheadvancedsolutionMatsuokaandYonezawaproposein [30] does
not avoidthemcompletely.Otheranomaliesin conjunctionwith guardedmethods,which
areclaimedin thispaperdonotoccurin Sather2, becausetheyviolatethesubtypingrules,
in particularthe implication of the bockingpreconditionin the subclassby the blocking
precondition in the superclass.

5.2 Guarded Methods and Basic Properties

Guardedmethodsandpropertiesareintroducedstepwise.Similar to theobjectmodel,we
startwith a safeandsimplebut restricteddesign.This designalreadyoffershigh perfor-
mance.Its extensionis mainlydrivenby gainingexpressibilitywhile keepingperformance
but slightly relaxingsafety.This sectionintroducesanddiscussessyntaxandsemanticsof
our starting point: single guarded methods and basic properties.

Syntax and Semantics

Any methodof ashieldclassmaybeguardedby a blocking precondition. Like a (immedi-
ate)Satherprecondition,ablockingpreconditionis partof themethod’sprologueandspec-
ified by a booleanexpression.A threadmayentera guardedmethodonly if theblocking
preconditionis true.At thesametime, it mustcomplywith therulesfor visitorsandmuta-
tors.Otherwise,thethreadis blocked,until it mayenter.Evaluatinga blockingprecondi-
tion and becoming a visitor or a mutator, resp. is one atomic operation.

Theonly identifiersvisible insidea blockingpreconditionareproperties. A property
is aspecialbooleanattributeof ashieldclass.It is read-onlyfrom outsidetheclassandits
declaration is preceded by the keywordproperty.

property_definition property property_identifier_list : BOOL
blocking_precondition blocking_pre property_expression

Besidestheblockingprecondition,a methodof a shieldclassmayhavea signaling post-
condition. Like theblockingprecondition,it is specifiedby a booleanexpression,but the
expressionis restricted.It exclusivelyconsistsof comparisonsfor equalitybetweenprop-
ertiesandan initial expressionon propertiesor a booleanliteral. Thesecomparisonsare
combined by the boolean and-operation.

signaling_postcondition signaling_post signaling_post_expression
signaling_post_expression property_comparison

| signaling_post_expression and property_comparison
property_comparison property_identifier = initial_property_expression
initial_property_expression initial (property_expression)| true | false

Thoughsyntacticallybeinga booleanexpression,thesignalingpostconditionmutatesthe
objectsstateby modifying theobjectspropertiessuchthat itself becomestrue.It is a fatal

⇒
⇒

⇒
⇒

⇒
⇒

38

error,if this is not possible.Therequiredoperationson thepropertiesareexecutedatomi-
cally whenthemethodreturns.If a signalingpostconditionis present,thecorresponding
method is a mutator.

Signalingpostconditionshave further semantics.They trigger the re-evaluationof
blocking preconditionsfor threadsbeingblocked.Sincethe signalingpostconditionsde-
scribethestatetransitionsof propertiesexactly,it canbedecidedstatically,whichblocking
preconditionhasto bere-evaluatedaftera methodwith a blockingpostconditionhasbeen
executed.Thesere-evaluationsareexecutedaftertheguardedmethodis left andbeforeany
othersynchronizedmethodof the object is enteredby any thread.If a blockedthread’s
blockingpreconditionis implied by a signalingpostcondition,it evendoesnot haveto be
re-evaluated.By this meansthe numberof re-evaluationsof blocking conditionscanbe
minimized.

A blockingpreconditionandasignalingpostconditionarepartof themethod’ssigna-
ture.Theinheritancerule of co/contravarianceappliesalsoto them,i.e., theblockingpre-
conditionof the supertypemust imply the blocking preconditionof the subtypeandthe
signalingpostconditionspecifiedfor the subtypemustimply the signalingpostcondition
specified for the supertype. Consequently, properties are part of the class interface.

Discussion

In general,guardedmethodsextendthereader/writerprotectionof objectsto a moregen-
eral restrictionof the legal calling sequenceson objects.Legalsequencesareensuredby
blockingillegal calls.A call canbeinterpretedasa transitionof theobject’ssynchroniza-
tion statewith basicpropertiesbeingthestatevariables.If nomethodcontainscallsto fur-
therblockingobjects,thenthesynchronizationbehaviorof theobjectcanbedescribedas
adeterministicfinite statemachine(DFSM)andall legalcallingsequencesareregularex-
pressionsovertheinterface.In thisnotion,subtypingmeansextendingtheDFSMsuchthat
theDFSMof thesuperclassis containedin thesubclass’sDFSM.Subtypingof suchclasses
can be checked efficiently.

Asanexample,asimpleparametrizedbufferclasshasbeenchosen,capableof keeping
asingleobjectof typeT. Theabstractclass$BUFFER{T} definestheinterfaceincludingthe
completespecificationof the synchronizationbehavior.The concreteshieldclassBUFF-
ER{T} gives an implementation of the interface.

abstract shield class $BUFFER{T} is
property full:BOOL;
create:SAME;
mutator put(item:T) blocking_pre ~full signaling_post full = true;
mutator get:T blocking_pre full signaling_post full = false;

end;

shield class BUFFER{T} < $BUFFER{T} is
attr buffer:T;
property full:BOOL;
create:SAME is

return new.init; end;
private mutator init:SAME signaling_post full = true is

return self; end;
mutator put(item:T) blocking_pre ~full signaling_post full = true is

39

buffer:= item; end;
mutator get:T blocking_pre full signaling_post full = false is

return buffer; end;
end;

Hereis averysimilarclass,a futurebuffer (setonce,readmultiple times)havingthesame
interface as the buffer above except for the postcondition of methodget.

shield class FUTURE_BUFFER{T} is
property full:BOOL;
create:SAME;
mutator put(item:T) blocking_pre ~full signaling_post full = true;
visitor get:T blocking_pre full;

end;

shield class FUTURE_BUFFER{T} is
attr buffer:T;
property full:BOOL;
create:SAME is return new.init; end;
mutator init:SAME signaling_post full = false is return self; end;
mutator put(item:T) blocking_pre ~full signaling_post full = true is buffer := item; end;
visitor get:T blocking_pre full is return buffer; end;

end;

Theirsynchronizationbehaviorof theseclassesis entirelyvisibleat their interfaces.With-
outspecifyingit in theinterface,$BUFFER and$FUTURE_BUFFER wouldbeidentical,even
thoughtheyarenot substitutablefor eachotherin bothways.An Analysisof thesynchro-
nizationbehaviorshowsthata$FUTURE_BUFFER cansafelybesubstitutedby a$BUFFER,
butnotviceversa.Correspondingly,anapplicationof oursubtypingrulesconsideringsyn-
chronization behavior shows that $BUFFER is a subtype of $FUTURE_BUFFER, but
$FUTURE_BUFFER is notasubtypeof $BUFFER. So,astaticcheckcanguaranteesafesub-
stitution with respect to synchronization.

Thecalling sequenceof objectsof type$BUFFER is the regularexpression(put get)*,
for $FUTURE_BUFFER it is put (get)*. Theanalogyto finite statemachinesis obvious.This
providesapowerfulwayof reasoningaboutthebehavior.It alsogivesmeansto checksub-
typing efficiently.

However,aprogrammermightrequireasynchronizationbehaviorthatfinite statema-
chinescannotcapture.Furthermore,hemightwishto avoidcodingeachstateandpreferto
collapserelatedstatesinto one.Both leadto synchronizationbehaviorsnot beingentirely
captured by the interface. To express such behaviors we extend properties.

5.3 Extended Properties

After introducingthesingleguardedmethodsandbasicproperties,thenextstepis extend-
ing properties.This includesthe introductionof thenewbooleanliteral ’?’ to beusedin
postconditions.Theextensionweakensthesafetybut increasesexpressibility.It doesnot
affect the high performance that can be achieved with the basic version.

40

Syntax and Semantics

Propertiesmayalsobebooleanmethods.Like basicproperties,thesemethodsmusthave
visitor semanticsbutdonotblock.Theydonothaveanyparameters,preconditions,orpost-
conditions and their return type isBOOL.

property_definition ... | property property_identifier : BOOL is statement_list end;

Obviously,extendedpropertiescannotbesetby signalingpostconditions,but theymaybe
setby sideeffectsof mutatormethods.So far, thecorrespondingstatetransitionsarenot
visible at the interface.To indicateat least,that thepropertymight change,thesyntaxof
signaling postconditions is extended.

initial_property_expression ... | ?

Thevalueof thebooleanliteral ’?’ is alwaysunknownandcomparisonswith it arealways
true. It may be usedin signalingpostconditionsto expressthat the valueof an extended
propertymight havechanged.Eachmethodthat possiblychangesan extendedproperty
musthaveacorrespondingtermin its postconditionstatingthispossiblechange.Thisdoes
not imply thateachmethodchanginganattributemustexecutesuchastatementfor all ex-
tendedpropertiesdependingon thisattribute.So,thecodemayspecifytherealpostcondi-
tion of a method incompletely concerning the synchronization behavior.

Sincepropertycomparisonswith ? arealwaystrue,theyhavenot effecton substitut-
ability andarenotconsideredby subtypingrules.A propertycomparisonwith ? in asuper-
classis impliedby anypostconditionin thesubclassandapropertycomparisonwith ? in a
subclassdoesnotimply anythingin thesuperclass.Hence,propertycomparisonswith ? are
notaspecificationof thesynchronizationbehaviorof thecorrespondingmethod,butanop-
erationbelongingto the implementationof an interface,that re-evaluatesa property,if
guards of blocked threads depend on it.

Discussion

By extendingpropertieswe generalizethesynchronizationbehaviorfrom a deterministic
finite statemachineto a non-deterministicone.In theabsenceof extendedproperties,sig-
nalingpostconditionsspecifya uniquetransitionof thesynchronizationstate,but a com-
parisonwith ? in a postconditiondescribestwo possibletransitionsof a statevariableand
hence,doublesthenumberof possibletransitionsof thesynchronizationstate.The inter-
faceis no longera completedescriptionof thesynchronizationbehavior,becausethesig-
nalingpostconditionmaybeincomplete.changesof extendedpropertiesmaybespecified
by the implementation of a method.

So,if extendedpropertiesareused,substitutabilityof synchronizationbehavioris not
guaranteedby thelanguage,butmustbeensuredby theimplementation,asit is thecasefor
semanticsubstitutabilityof subclasses.Extendedmethodsweakensafety,but increaseex-
pressibility as the example of a bounded LIFO buffer demonstrates.

abstract shield class $LIFO{T} is
property empty,full:BOOL;
create(capacity:INT):SAME;
mutator put(item:T) blocking_pre ~full signaling_post full = ? and empty = ?;
mutator get:T blocking_pre ~empty signaling_post full = ? and empty = ?;

end;

⇒

⇒

41

shield class LIFO{T} < $LIFO{T} is
attr buffer:ARRAY{T};
attr capacity,counter:INT;
property full:BOOL is return counter = capacity;
property empty:BOOL is return counter = 0 end;

create(capacity:INT):SAME is
r ::= new;
r.buffer := #(capacity);
r.capacity := capacity;
r.counter := 0;
return r;

end;

mutator put(item:T) blocking_pre ~full signaling_post full = ? and empty = ? is
buffer[counter] := item;
counter := counter + 1;

end;

mutator get:T blocking_pre ~empty signaling_post full = ? and empty = ? is
counter := counter - 1;
return buffer[counter];

end;
end;

5.4 Disjunctive Guarded Methods

Our second extension of single guarded methods and basic properties also increases the ex-
pressibility of the language, but without weakening safety as the first extension did. Also
performance is not affected. Disjunctive guarded methods provide a way to handle threads
that are blocked or going to be blocked by a guarded method.

Syntax and Semantics

Guarded methods of an object with signatures differing in their blocking precondition and
signaling postcondition only are called disjunctive guarded methods. The blocking precon-
ditions determine dynamically which method is chosen, if a call complying with the com-
mon part of the signature occurs. The blocking preconditions must be disjoint.

For subtyping, disjunctive methods are one method. The blocking precondition of this
method is the disjunction of all disjunctive methods. Its signaling postcondition is a con-
junction of precondition - postcondition implications.

Formally: Let be a method consisting of disjunctive methods each with the
blocking preconditions and the signaling postconditions . The blocking precondi-
tion of is defined by:

The blocking postcondition . of is defined by:

.

m n mi

prei posti

prem m

prem pre1 pre2 …∨ ∨=

postm m

postm initial pre1() post1⇒() initial pre2() post2⇒() …∧ ∧=

42

Discussion

Disjunctive guarded methods help us to cope with problems arising when a thread is
blocked or is to be blocked. These problems does not occur in sequential programs, they
are caused by the introduction of guarded methods.

For example, we might want to initiate an action in synchronization with other threads,
but react with an alternative, if this is not possible. The means guarded methods give us,
allow only to block unconditionally until synchronization is established. This is demon-
strated by class $MUTEX_NO_TRY implementing a synchronization primitive that is commonly
used to provide mutual exclusion. But differently to common designs as POSIX threads
[17] and Solaris Threads [41], there is no way to implement a method trylock which acts like
method lock but returns immediately, if the blocking precondition is not fulfilled.

shield class MUTEX_NO_TRY is
property locked:BOOL;
create:SAME is return new.init; end;
init:SAME signaling_post locked; blocking_pre is return self; end;
mutator lock is blocking_pre ~locked signaling_post locked=true is end;
mutator unlock is blocking_pre locked signaling_post locked=false is end;

end;

With disjunctive guarded methods we can add a method trylock that conditionally reacts on
the value of property locked. The following example shows an implementation.

shield class MUTEX is
property locked:BOOL;
create:SAME is return new.init; end;
init:SAME blocking_post locked=false is return self; end;
mutator lock blocking_pre ~locked signaling_post locked=true is end;
mutator trylock:BOOL

blocking_pre ~locked signaling_post locked=true is
return true end;

trylock:BOOL blocking_pre locked is return false; end;
mutator unlock blocking_pre locked signaling_post locked=false is end;

end;

In general, disjunctive guarded methods offer a way to switch on synchronization events.
This allows not only trying a guard as in the example above, but also more complex appli-
cations, e.g. multiplexing of asynchronously incoming messages and save termination of
blocked threads. Class MUTEX_WITH_TERMINATION demonstrates safe termination of
blocked threads.

shield class MUTEX_WITH_TERMINATION is
property locked:BOOL;
property terminated:BOOL;
create:SAME is return new.init; end;
init:SAME blocking_post locked=false and terminated=false is return self; end;
mutator lock blocking_pre ~locked signaling_post locked=true is end;
mutator lock blocking_pre terminated is raise termination_exception end;
mutator trylock:BOOL

blocking_pre ~locked signaling_post locked=true is
return true end;

trylock:BOOL blocking_pre locked is return false; end;
mutator unlock blocking_pre locked signaling_post locked=false is end;

end;

43

It extends class MUTEX by two lines, the declaration of property terminated and an alterna-
tive method for lock that unblocks all threads waiting to lock and raises an exception to han-
dle termination.

5.5 Implementation

Guarded Methods have been designed for high performance applications. This section
demonstrates how they can be implemented efficiently. We suggest a common synchroni-
zation scheme for guarded methods and reader/writer protection that requires no context
switches for guard re-evaluation and that helps reducing the number of necessary re-eval-
uations.

5.5.1 Integration with reader/writer synchronization
The synchronization required to implement guarded methods can be integrated with the
reader/writer synchronization already required by the object model. Since the synchroniza-
tion points are exactly the same, a common scheme can be used to implement both.

We suggest a simple scheme that efficiently realizes reader/writer protection and
method guards:

1. Before a thread enters a somehow protected method, it tries to satisfy all synchronization
constraints and either enters the method or blocks itself. The synchronization constraints
may contain reader/writer synchronization for the object the method is called on, reader/
writer synchronization for arguments, and the guard of the called method.

2. After a thread leaves a protected method, it checks all blocked threads that might satisfy
their synchronization constraints because the current thread has left the method, and un-
blocks all threads that do so.

Integration of both synchronization mechanisms is not really necessary but intended by the
design of guarded methods. It simplifies the run-time system and has no negative impact
on performance.

5.5.2 Avoiding Context Switches
Since properties are attributes or methods of the shield object, the re-evaluation of a guard
can be executed by threads other than the blocked one. Hence, a thread leaving a method
and executing step 2 of the scheme above can exactly determine which of the blocked
threads satisfies its synchronization constraints and unblock those without any context
switch. We mention this, because it distinguishes Sather 2 from languages like Java which
require each thread to re-evaluate a guard or a similar condition variable itself. This proce-
dure produces a significant overhead of context switching and synchronization.

44

5.5.3 Reducing the Number of Guard Re-Evaluations
Dependenciesbetween blocking preconditionsand signaling postconditionscan be
checkedstatically.For eachpair of theseoneof threekindsof dependenciescanbedeter-
mined:

1.A signaling postcondition implies a blocking precondition to be true.

2.A signaling postcondition implies a blocking precondition to be false.

3.A signaling postcondition might affect a blocking precondition.

4.A signaling postcondition does not affect a blocking precondition.

For dependencies1, 2, and4, a threadleavinga guardedmethoddoesnot haveto re-eval-
uatetheguardof thecorrespondingblockedthreadin orderto decide,whetherthis thread
can be unblocked. Only for dependency 3, the guard has to be re-evaluated.

Ourdesignallowsto reducethenumberof pairswith dependency3 by staticanalysis.
Sinceblockingpreconditionsarerestrictedto expressionsonpropertiesandsignalingpost-
conditionsspecifyexactlywhichpropertiesmightbeaffectedandwhichnot,staticanalysis
can reduce the number of these pairs close to the minimum.

This analysis,checkingblockingpreconditionsandsignalingpostconditionsonly, is
quietsimple.In general,evena furtherreductionis possible,in particularwhen’?’ is used
in apostcondition.But thisanalysiswould includethemethodbodiesandmightbesignif-
icantly more complex.

5.5.4 Deadlock Detection
Fordeadlockdetectionwesuggeststaticanddynamicchecks.A simpledeadlocksituation
thatcanbecheckedstaticallyoccursif avisitor or amutatormethodcallsaguardedmethod
onthesameobject.If suchacall is blockedbecauseof apropertyof thisobject,it cannever
beunblocked,sinceit still is avisitor or mutatorandnootherthreadcanchangeanyprop-
erty of the object.

Furtherstatic deadlockdetectioncan be basedon either the dependencygraphof
guardedmethodsor thepropertytransitiongraph.Thedependencygraphcontainsa node
for eachguardedmethodandanedgefor eachdependencyof type1, 2, or 3 definedin the
previoussection.Thepropertytransitiongraphof anobjectwith n propertiescontains2n

nodesrepresentingpropertystatesandedgesrepresentingtransitionsof thepropertystate.
A guardedmethoddefinestransitionsfor all propertystatessatisfyingtheblockingprecon-
dition. In absenceof a ’?’ in thesignalingpostcondition,onetransitionperpropertyis de-
fined by a method. Each ’?’ doubles the number of transitions.

Eachof thesegraphsdescribesall legalcallingsequencesonashieldobject.Deadlock
detectioncanbebasedonthecomparisonof thelegalsequenceswith thecallingsequences
of aprogram.But sincein general,acallingsequencesof aprogramcanbedeterminedonly
partially, this detection of deadlocks is restricted.

Differentto staticchecks,dynamicdeadlockdetectiondoesnotpreventdeadlocks,but
is a debuggingtool thatmayprovidehelpful run-timeinformation.While staticdeadlock
detectionismainlyusedfor intra-objectdeadlocks,dynamicdeadlockdetectionismostim-
portantfor inter-objectdeadlocks,e.g.two threadseachalreadybeingvisitor of anobject

45

and each being blocked by a guard of the other object, respectively. This deadlock can nev-
er be solved, because only a writer may change properties and no writers can access the ob-
jects as long as there are (blocked) readers. This problem of nested synchronization is not
introduced by guarded methods, it already occurs with the object model, e.g. two threads
each already being mutator of an object and each trying to become a visitor of the other ob-
ject, respectively.

46

6 Data-Parallel Features

The following section describes the data-parallel features of the language design. For con-
venience, the data-parallel features are described in terms of syntactic sugar over the basic
object model; however, they make use of unprotected attributes, since protection is ensured
by other means.

6.1 Definition of pardo and syncdo statements

Threads can be created explicitly with the pardo or the syncdo statement. They consist of a
header and a body.

statements ... | pardo | syncdo
pardo for all header do in parallel body end
syncdo for all header do in synchrony body end

The header contains an identifier v and either an expression of an array type a or iterator.
The array and the iterator, resp., must have an element type and a return type, resp., assign-
able the type of v. The pardo and the syncdo statement create a.asize threads and as many
threads as the iterator object can be called without breaking, respectively.

header identifier in iterator | expression

All threads share the concurrent attributes of the object and concurrent parameters and con-
current local variables of the method the pardo or the syncdo statement occurs in. In thread
i, v is assigned the value of a[i] or the return value of the i-th call to iter. Variables defined
in the body of the pardo or syncdo statements are local to each thread. All threads execute
the code specified in the body.

body statement_list

All threads of a pardo statement run asynchronously. All threads of a syncdo statement run
in lock step manner, i.e, a barrier synchronization occurs after each read from and each
write to concurrent variables.

A thread terminates if it has executed its last statement. A pardo or the syncdo state-
ment is finished if all its threads terminated.

Remarks

Creating threads with an iterator in general requires linear time since the iterator has to be
called sequentially. The creation of threads with an index array can be implemented in log-
arithmic time. In practice, the optimal broadcast tree technique [21] can be applied to im-
prove the speed compared to the iterator version.

⇒
⇒

⇒

⇒

⇒

47

Many parallelalgorithmsaredesignedin PRAM [20] like style. In this specialcase,
thevariablev is of typeINT andthevaluesof v for thesinglethreadsrangesfrom somelower
uptosomeupperbound.It maybeimplementedby aniteratorlower_bound.upto!(upper_bound)in the
pardoor syncdoheader.This notationdoesnot differ in the time complexityfor creating
threadssinceupto is abuild-in iteratorin thebuild-in classINT. It cannotbechanged.Hence
thenumberof threadsandtheir valuesv aredeterminedif the lower andtheupperbound
aredetermined.This permitsthesamefast threadcreationwhich not possiblefor general
iterators.

In generalathreadsidentificationv is notanintegerandtheshareddatastructureis not
anarray,seeexampleprogramsbelow. Furthermore,wedon’t restrictto synchronousex-
ecution of parallel threads.

6.2 Pardo and Syncdo Statements as Syntactic Sugar

Thefeaturesdescribedabovemaybeimplementedin termsof thebasicparallelconstructs.
This sectiondescribesa naiveimplementationthatworkscorrectly.For optimizationswe
referto techniquesdescribede.g.in [49][27][28] thatremovesynchronizationbarriersand
distribute the shared data structures.

For eachpardoor syncdostatements, we createa methodms anda fork statementfs.
The signatureof ms declaresparametersconformingto concurrentattributesof the class
andtheconcurrentparametersandconcurrentlocal variablesof themethodcontainings.
If s is a pardostatement,thebodyof ms equalsthebodyof thes exceptfor anadditional
barriersynchronizationat theendof thems’s body. If s is asyncdostatement,thebodyof
ms equalsthe body of s exceptfor additionalbarriersynchronizationsafter eachreador
write access toms’s parameters and at the end ofms’s body.

Thenumberof forks fs onms guaranteesthecorrectnumberof threads.Eachfs passes
theconcurrentattributes,concurrentparameters,andconcurrentlocal variablesasparam-
etersto ms. Additionally, it passesanobjectthathandlesthebarriersynchronization.s is
replaced by thefss .

Thereis a build-in classthat handlesthe barriersynchronizationcalledBARRIER. Ob-
jectsof thisclassarecreatedandinitializesat thebeginningof ms. Wheneverabarriersyn-
chronization is required, the methodsynchronize is called by the threads.

Examples

Thefollowing methodcopiestheupperright trianglematrix to thelower left trianglema-
trix.

matrix ::= # SHIELD_ARRAY2 {INT}(10,10);

copy_triangle_matrix is
i,j : INT;
for i in 0.upto!(9) do in parallel

for j in 0.upto!(9) do in parallel

48

matrix[i,j] := matrix[j,i];
end;

end;
end; -- copy_triangle_matrix

This program is the translated according to the naive implementation.

matrix ::= # SHIELD_ARRAY2 {INT}(10,10);

copy_triangle_matrix’ is
b::=# BARRIER;
loop

i := 0.upto!(9)
fork(parloop1(matrix,i,b));

end;
b.init(11);
b.synchronize;

end; -- copy_triangle_matrix’

parloop1(matrix : SHIELD_ARRAY2{INT}; i : INT; barrier: BARRIER is
b ::= #BARRIER
j : INT;
loop

j := i.upto!(9);
fork(parloop2(matrix,i,j,b));

end;
b.init(11-i);
b.synchronize;
barrier.synchronize;

end; -- parloop1

parloop2(matrix : SHIELD_ARRAY2{INT}; i,j : INT; barrier: BARRIER is
matrix[i,j] := matrix[j,i];
barrier.synchronize;

end; -- parloop2

The next examples implement the algorithm of pointer jumping on arrays and lists. The
threads in the first two examples execute their programs in lock-step manner while in third
example all threads work asynchronously.

a ::= # SHIELD_ARRAY{INT};
pointer_jumping is

i,j : INT;
for i in 0.upto!(n-1) do in synchrony

loop j :=1.upto!(n.log.ceil);
a[i] := a[a[i]];

end;
end;

end; -- pointer_jumping

anchor : SHIELD_LINKED_LIST{T};
pointer_jumping’ is

j : INT;
list_node : SHIELD_ LINKED_LIST{T};
for list_node in anchor.elts! do in synchrony

loop j :=1.upto!(anchor.size.log.ceil);
list_node.next := list_node.next.next;

end;
end;

end; -- pointer_jumping’

49

pointer_jumping’’ is
j : INT;
list_node : SHIELD_ LINKED_LIST{T};
for list_node in anchor.elts! do in parallel

while list_node.next /= list_node.next.next loop
list_node.next := list_node.next.next;

end;
end;

end; -- pointer_jumping’’

50

Appendix A: Shield Bag (Abstract Class)

abstract shield class $SHIELD_BAG{ETP} < $RO_BAG{ETP}, $VAR
-- An unordered container in which the elements are not unique.
--
-- This is a reference abstraction and supports operations that modify
-- self. Instances of subtypes may be viewed as variables with a value
-- of $VBAG{ETP}
--
-- For pointers to other documentation please see the class comment in
-- the read-only abstraction $RO_BAG
--

is

mutable visitable as_value:$VBAG{ETP};
-- Return the current value associated with self

mutable add(visitable able e:ETP);
-- Add the element ‘e’ to self
-- self <- initial(self).add(e)

mutable delete(visiitable e:ETP);
-- Delete at most one occurance of ‘e’ from self
-- self <- initial(self).delete(e)

mutable delete_all(visitable e:ETP);
-- Delete all occurrences of ‘e’ from self
-- self <- initial(self).delete(e)

mutable clear;
-- Delete all elements of self. post result.size = 0

mutable to_concat(mutable arg:$RO_BAG{ETP});
-- Concatenate the elemetns of ‘arg’ to this bag
-- self <- initial(self).add_bag(arg)

mutable to_union(visitable arg: $RO_BAG{ETP});
-- Turn this bag into the union of self and ‘arg’
-- self <- initial(self).union(arg)

mutable to_intersection(visitable arg:$RO_BAG{ETP});
-- Turn this bag into the intersection of self and ‘arg’
-- self <- initial(self).intersection(arg)

mutable add(visitable e:ETP):$SHIELD_BAG{ETP};
-- Result is a new bag containing all the elements of self and ‘e’

mutable delete(visitable e:ETP):$SHIELD_BAG{ETP};
-- Result is a new bag containing all the elements of self except for
-- an element equal to ‘e’, if one exists. If more than one element
-- is equal to ‘e’, delete only one of them

mutable delete_all(visitable e:ETP):$SHIELD_BAG{ETP};
-- Result is a new bag containing all the elements of self except for
-- any elements equal to ‘e’

51

visitable count(visitable e:ETP):INT;
-- Return the number of occurences of ‘e’ in self

visitable unique!:ETP;
-- Yield the unique elements of self. Equivalent to self.as_set.elt!

mutable n_unique: INT;
-- Returns the number of unique elements in the bag
--
-- result = number of unique elements

visitable is_subset_of(visitable arg: $RO_BAG{ETP}): BOOL;
-- Returns true if ‘self’ is a subset of ‘arg’. For elements that occur
-- multiple times, the number of occurences of the element in ‘arg’
-- must be greater than or equal to the number of occurences in self
--
-- result=true iff for all e in self: count(e) <= arg.count(e)

visitable concat(visitable arg:$ELT{ETP}): $RO_BAG{ETP};
-- Returns a bag containing all the elements of self and ‘arg’.
-- For elements that occur multiple times, the result contains
-- the sum of the number of occurences in self and ‘arg’
--
-- result=bag of all e s.t. result.count(e)=self.count(e)+arg.count(e) > 0

visitable union(visitable arg: $RO_BAG{ETP}): $RO_BAG{ETP};
-- Returns a bag containing the elements of ‘self’ and ‘arg’.
-- For elements that occur multiple times, the result contains
-- the maximum number of occurences in either self or ‘arg’
-- This definition permits the union of sets to be consistent
-- with the union of bags.
--
-- result=bag of all e s.t.
-- result.count(e)=max(self.count(e),arg.count(e)) > 0

visitable intersection(visitable arg: $RO_BAG{ETP}):$RO_BAG{ETP};
-- Returns a bag containing the elements common to self and ‘arg’
-- For elements that occur multiple times, the result contains
-- the minimum number of occurrences in either self or ‘arg’
--
-- result=bag of all e s.t.
-- result.count(e)=min(self.count(e),arg.count(e)) > 0

visitable is_empty:BOOL;
-- Returns true if the size of the container = 0

mutable size: INT;
-- Number of elements contained

visitable copy: SAME;
-- Return a copy of the current container

visitable has(visitable e: ETP): BOOL;
-- True if the container contains the element “e”

visitable equals(visitable c:$RO_BAG{ETP}):BOOL;
-- Return true if both containers contain the same elements with
-- the same number of repetitions, irrespective of the order of the
-- elements

visitable as_array:ARRAY{ETP};
-- Return the elements of the container in an array

52

visitable elt!:ETP;
-- Yield all the elements of self. The order is not defined.

visitable str:STR;
-- Yield a string version of self

end; -- $SHIELD_BAG{ETP}

53

References

[1] S. V. Adve, K. Gharachorloo,SharedMemory Consistency Models: A Tutorial. IEEE
Computer, December 1996, pp. 66-76.

[2] S. V. Adve, M. D. Hill, B. P. Miller, R. H. B. Netzer, DetectingData Raceson Weak
Memory Systems,18th Annual InternationalSymposiumon ComputerArchitecture,June
1991.

[3] G. Agha, Actors, A Model of ConcurrentComputationin DistributedSystems,MIT Press,
1986.

[4] A.V. Aho, J.E.Hopcroft, J.D. Ullman, The DesignandAnalysisof ComputerAlgorithms.
Addison-Wesley, 1974.

[5] P.S. Almeida, Balloon Types:Controlling Sharingof Statein Data Types,Proceedingsof
ECOOP ’97, pp. 32-59, 1997.

[6] American National StandardsInstitute, Inc., The ProgrammingLanguageAda Reference
Manual, LNCS 155, Springer-Verlag, 1983.

[7] G.R.Andrews et al., An overview of SRlanguageandimplementation,ACM transactionsof
Programming Languages and Systems 10(1):51-86, January 1988.

[8] D. Berg. Java Threads, A Whitepaper. Sun Microsystems, March 1996.

[9] A. Black, N. Hutchinson,E. Jul, H. Levy, Object Structuresin the Emerald System.
OOPSLA ‘86, ACM SIGPLAN Notices, vol 21, no 11, pp. 78-86, Nov 1986.

[10] D. Decouchantet al., A synchronizationmechanismfor typed objects in a distributed
system,in: Proceedingsof the1988ACM SIGPLAN Workshopon Object-BasedConcurrent
Programming, SIGPLAN Notices 24:105-107, ACM Press, April 1989.

[11] C. Fleiner, Parallel Optimizations.AdvancedConstructsandCompilerOptimizationsfor a
Parallel , Object-OrientedSharedMemory Languagerunningon a DistributedSystem.Ph.
D. Thesis, Institute of Informatics of the University of Fribourg, Switzerland, 1997.

[12] K. Gharachorloo,S. V. Adve, A. Gupta, J. L. Hennessy, M. D. Hill, Programmingfor
DifferentMemory Consistency Models.Journalof Parallel andDistributedComputing15,
1992, 399-407.

[13] K. Gharachorloo,Memory Consistency Modelsfor Shared-MemoryMultiprocessors.Ph.D.
Thesis. Department of Electrical Engineering, Stanford University, 1996.

[14] B. Gomes,D. P. Stoutamire,B. Weissman,H. Klawitter, Sather1.1 LanguageEssentials.
InternationalComputerScienceInstitute.Availableat http://www.icsi.berkeley.edu/~sather/
Documentation/LanguageDescription/contents.html.

54

[15] J. Hogg, Islands:Aliasing Protectionin Object-OrientedLanguages,OOPSLA 1991, pp.
271-285.

[16] J. Hogg, D. Lea, A. Wills, D. deChampeaux,and R. Holt. The Geneva convention on the
treatmentof objectaliasing.Follow-up reporton ECOOP’91workshopW3: Object-oriented
formal methods. OOPS Messanger, 3(2):11-16, April 1992.

[17] Institute of Electrical and Electronics Engineers.Portable Operating System Interface
(POSIX) - Part 1: Amendment2: ThreadsExtensions[C Language].POSIX P1003.4a/D7.
April, 1993.

[18] Intel Corporation,PentiumPro Family Developer’s Manual. Volume 3: OperatingSystem
Writer’s Guide. Order Number 242692. December 1995.

[19] D.G. Kafura,K.H. Lee,Inheritancein Actor basedconcurrentobject-orientedlanguages,in:
Proceedings of ECOOP’89, Cambridge University Press, 1989, pp. 131-145.

[20] R.M. Karp, V. Ramachandran,Parallel algorithms for shared memory machines. In
Handbook of theoretical Computer Science Vol. A, pp. 871-941. MIT-Press, 1990.

[21] R.M. Karp, A. Sahay, E.E.Santos,K.E. Schauser, OptimalBroadcastandSummationin the
logp Model. ACM Symposium on Parallel Algorithms and Architectures, 1993.

[22] W. Kim. Thal: An Actor Systemfor Efficient andScalableConcurrentComputing.Ph. D.
Thesis. University of Illinois at Urbana-Champaign, 1997.

[23] L. Lamport.How to make a multiprocessorcomputerthat correctlyexecutesmultiprocessor
programs. IEEE Transactions on Computers, C-28(9):690-691, September 1979.

[24] D. Lea, Concurrent Programming in Java, Addison-Wesley, Reading, Massachusetts, 1997.

[25] B. Liskov, A. Snyder, R. Atkinson,C. Schaffert, AbstractionMechanismsin CLU, CACM,
August 1977.

[26] B. Liskov, R. Scheifler. GuardiansandActions: Linguistic Supportfor Robust, Distributed
Programs. ACM TOPLAS, Vol. 5, No. 3, July 1983, pp. 381-404.

[27] W. Löwe,W. Zimmermann,On finding optimalclusteringsof taskgraphs.In Proceedingsof
the First Aizu InternationalSymposiumon Parallel Algorithms andArchitectureSynthesis,
pp. 241-247. IEEE Computer Society Press, 1995.

[28] W. Löwe, W. Zimmermann,J. Eisenbiegler, Optimizationof ParallelProgramson Machines
with Expensive Communication.Will appear in ProceedingsEUROPAR’96, Springer-
Verlag, 1996.

[29] S.E.Lucco,ParallelProgrammingin a virtual objectspace,in: Proceedingsof OOPSLA’87,
SIGPLAN Notices 22:26-34, ACM Press, October 1987.

[30] S.Matsuoka,A. Yonezawa,Analysisof InheritanceAnomalyin Object-OrientedConcurrent
Programming Languages, in Research Directions in Concurrent Object-Oriented
Programming,eds.G. Agha, P. Wegner, andA. Yonezawa. The MIT Press,1993.pp. 107-
150.

55

[31] C. May, E. Silha,R. Simpson,H, Warren,Eds.,ThePowerPCArchitecture:A Specification
for a New Family of RISC Processors. Morgan Kaufman Publishers Inc., 1994.

[32] B. Meyer, Object-oriented software construction, Prentice-Hall, Englewood Cliffs, NJ, 1988.

[33] S. Murer, S. Omohundro,D. StoutamireandC. Szyperski, IterationAbstractionin Sather.
Transactions on Programming Languages and Systems, Vol. 18, No. 1, Jan 1996 p. 1-15.

[34] M. L. Powell, S. R. Kleinman, S. Barton, D. Shah, D. Stein, M. Weeks. SunOS 5.0
Multithreaded Architecture. A White Paper. Sun Microsystems, 1991.

[35] J.W. Quittek, B. Weissman,Efficient ExtensibleSynchronizationin Sather, will appearin:
Proceedingsof the 1997 InternationalScientific Computing in Object-OrientedParallel
Environments Conference (ISCOPE '97), Springer-Verlag, 1997.

[36] The Institute of Electrical and ElectronicsEngineers.PortableOperatingSystemInterface
(POSIX) - Part 1: Amendment2: ThreadsExtensions[C Language].POSIX P1003.4a/D7.
April, 1993

[37] R. Sites, Ed., Alpha Architecture Reference Manual. Digital Press 1992.

[38] The SPARC Architecture Manual. Version 8. SPARC International, Inc., Prentice Hall, 1992

[39] SPARC InternationalInc., The SPARC ArchitectureManual.Version9. Eds.D. L. Weaver,
T. Germond. Prentic Hall, 1994

[40] Sun Microelectronics. UltraSPARC User’s Manual, 1996.

[41] Sun Microsystems,Solaris MultithreadedProgrammingGuide, PrenticeHall, Englewood
Cliffs, New Jersey, 1995.

[42] SunMicrosystems,TheUltra Enterprise1 and2 Server Architecture.TechnicalWhite Paper.
April 1996.

[43] D. Stein,D. Shah,ImplementingLightweightThreads.Summer‘92 USENIX, SanAntonio,
Tx

[44] D.P. Stoutamire,S. Omohundro,Sather1.1 Specification.InternationalComputerScience
Institute, Berkeley Ca. Technical Report TR-96-012.

[45] D. Stoutamire,W. Zimmermann,and M. Trapp, An Analysis of the Divergenceof Two
Sather Dialects. International Computer Science Institute TR-96-037, 1996.

[46] C. Tomlinson,V. Singh,Inheritanceandsynchronizationwith Enabled-sets,in: Proceedings
of OOPSLA’89, SIGPLAN Notices 24:103-112, ACM Press, October 1989.

[47] B. Weissman,Active Threads:an Extensibleand PortableLight-Weight ThreadSystem.
International Computer Science Institute TR-97-036 1997.

[48] B. Weissman,B. Gomes,J.W. Quittek,M. Holtkamp,Efficient Fine-GrainThreadMigration
with Active Threads.Submittedto the12thInternationalParallelProcessingSymposiumand
9th Symposium on Parallel and Distributed Processing (IPPS/SPDP 1998)

56

[49] W. Zimmermann,W. Löwe, An Approachto Machine-IndependentParallel Programming.
LNCS 854, Parallel Processing:CONPAR’94 - VAPP VI, pp. 277-288,Springer-Verlag,
1994.

	Sather�2: A Language Design for Safe, High-Performance Computing
	Benedict Gomes, Welf Löwe,
	Jürgen W. Quittek, Boris Weissman
	TR-97-035
	December 1997
	Abstract

	1 Introduction
	1.1 Approach
	1.2 Related Work
	Efficiency
	Safety at the Object Level
	Expressing Object Grouping
	Maintaining Group Encapsulation
	Hardware Issues: Memory Consistency Models

	2 The Object Model
	2.1 Object Safety
	The Goal
	Sequential Consistency
	Memory Consistency vs. Performance
	Model A

	2.2 The Simple Model
	Model B

	2.3 Visitor/Mutator Annotations
	2.3.1 Basic Protection: Attribute Annotations
	2.3.2 Coarsening Protection by Annotating Methods
	2.3.3 Coarsening Protection by Annotating Arguments
	2.3.4 Problems
	Model C

	2.4 Shield Classes and Interior Classes: Encapsulation and Performance
	Figure 1: The Sather�2 Object Model
	2.4.1 Shield Objects
	2.4.2 Interior Objects
	Visitor/Mutator Propagation in Interior Classes

	2.4.3 Ensuring Object Consistency
	2.4.4 Problems
	Model D

	2.5 Temporary Sharing of Interior Objects
	2.5.1 Exporting Interior Aliases
	Figure 2: Interior objects and inter-domain calls

	2.5.2 Object Capture
	Figure 3: Reference capture and static inter-domain aliasing

	2.5.3 Safe Exporting of Aliases
	Aliasing Paths
	Safe Paths
	Rule for Temporary Sharing
	Example

	2.5.4 Ensuring Object Consistency
	(A) No unsafe operations occur during the transient sharing of state and
	(B) No interior state references remain after the sharing i.e. that the sharing of state is indee...

	2.5.5 Why Not Use Copying?
	2.5.6 Why Not Use Shield Objects?
	Model E

	2.6 Transferring Interior Objects
	Figure 4: Free Object Groups
	2.6.1 The Transfer Mechanism
	2.6.2 Run-time Checking
	2.6.3 Shield Class Interface Restrictions
	2.6.4 Example
	Model F

	2.7 Synchronization Aggregation
	Figure 5: Tree of Aggregated Concurrent Objects
	2.7.1 Performance Implications
	2.7.2 Determining the Protection of Aggregates
	Simple Algorithm
	Advanced Algorithm

	3 Safety and Subtyping
	3.1 Abstract Interior Classes
	3.2 Abstract Shield Classes
	3.3 Subtyping between Shield and Interior Abstractions
	Visitable vs. Visit

	3.4 From Abstraction to Implementation
	FIGURE 6. Extending Sather subtyping rules

	3.5 Example

	4 Threads and Concurrency
	4.1 Active Messages
	4.1.1 Fork Expressions
	4.1.2 Futures
	4.1.3 Thread Bundles
	4.1.4 Example

	4.2 Bundles and Scheduling
	4.2.1 Bundle Hierarchies
	Figure 7: Creation of new bundles (left) and a resulting Bundle hierarchy (right)

	4.2.2 Bundle Scheduling Policies
	4.2.3 Discussion

	5 Guarded Methods and Properties
	5.1 Design Goals
	5.1.1 Natural Extension
	5.1.2 Safety
	Keeping the Safety of the Object Model
	Safe Subtyping
	Deadlock Detection

	5.1.3 Performance
	Synchronization Points
	Number of Re-Evaluations
	Avoiding Context Switches

	5.1.4 Ease of Expression
	Object Properties
	Separation of Synchronization Code
	Avoiding Inheritance Anomalies

	5.2 Guarded Methods and Basic Properties
	Syntax and Semantics
	Discussion

	5.3 Extended Properties
	Syntax and Semantics
	Discussion

	5.4 Disjunctive Guarded Methods
	Syntax and Semantics

	.
	Discussion
	5.5 Implementation
	5.5.1 Integration with reader/writer synchronization
	1. Before a thread enters a somehow protected method, it tries to satisfy all synchronization con...
	2. After a thread leaves a protected method, it checks all blocked threads that might satisfy the...

	5.5.2 Avoiding Context Switches
	5.5.3 Reducing the Number of Guard Re-Evaluations
	1. A signaling postcondition implies a blocking precondition to be true.
	2. A signaling postcondition implies a blocking precondition to be false.
	3. A signaling postcondition might affect a blocking precondition.
	4. A signaling postcondition does not affect a blocking precondition.

	5.5.4 Deadlock Detection

	6 Data-Parallel Features
	6.1 Definition of pardo and syncdo statements
	Remarks

	6.2 Pardo and Syncdo Statements as Syntactic Sugar
	Examples

	Appendix A: Shield Bag (Abstract Class)
	References
	[1] S. V. Adve, K. Gharachorloo, Shared Memory Consistency Models: A Tutorial. IEEE Computer, Dec...
	[2] S. V. Adve, M. D. Hill, B. P. Miller, R. H. B. Netzer, Detecting Data Races on Weak Memory Sy...
	[3] G. Agha, Actors, A Model of Concurrent Computation in Distributed Systems, MIT Press, 1986.
	[4] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Algorithms. Addison...
	[5] P.S. Almeida, Balloon Types: Controlling Sharing of State in Data Types, Proceedings of ECOOP...
	[6] American National Standards Institute, Inc., The Programming Language Ada Reference Manual, L...
	[7] G.R. Andrews et al., An overview of SR language and implementation, ACM transactions of Progr...
	[8] D. Berg. Java Threads, A Whitepaper. Sun Microsystems, March 1996.
	[9] A. Black, N. Hutchinson, E. Jul, H. Levy, Object Structures in the Emerald System. OOPSLA ‘86...
	[10] D. Decouchant et al., A synchronization mechanism for typed objects in a distributed system,...
	[11] C. Fleiner, Parallel Optimizations. Advanced Constructs and Compiler Optimizations for a Par...
	[12] K. Gharachorloo, S. V. Adve, A. Gupta, J. L. Hennessy, M. D. Hill, Programming for Different...
	[13] K. Gharachorloo, Memory Consistency Models for Shared-Memory Multiprocessors. Ph.D. Thesis. ...
	[14] B. Gomes, D. P. Stoutamire, B. Weissman, H. Klawitter, Sather�1.1 Language Essentials. Inter...
	[15] J. Hogg, Islands: Aliasing Protection in Object-Oriented Languages, OOPSLA 1991, pp. 271-285.
	[16] J. Hogg, D. Lea, A. Wills, D. deChampeaux, and R. Holt. The Geneva convention on the treatme...
	[17] Institute of Electrical and Electronics Engineers. Portable Operating System Interface (POSI...
	[18] Intel Corporation, Pentium Pro Family Developer’s Manual. Volume 3: Operating System Writer’...
	[19] D.G. Kafura, K.H. Lee, Inheritance in Actor based concurrent object-oriented languages, in: ...
	[20] R.M. Karp, V. Ramachandran, Parallel algorithms for shared memory machines. In Handbook of t...
	[21] R.M. Karp, A. Sahay, E.E. Santos, K.E. Schauser, Optimal Broadcast and Summation in the logp...
	[22] W. Kim. Thal: An Actor System for Efficient and Scalable Concurrent Computing. Ph. D. Thesis...
	[23] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocessor pro...
	[24] D. Lea, Concurrent Programming in Java, Addison-Wesley, Reading, Massachusetts, 1997.
	[25] B. Liskov, A. Snyder, R. Atkinson, C. Schaffert, Abstraction Mechanisms in CLU, CACM, August...
	[26] B. Liskov, R. Scheifler. Guardians and Actions: Linguistic Support for Robust, Distributed P...
	[27] W. Löwe, W. Zimmermann, On finding optimal clusterings of task graphs. In Proceedings of the...
	[28] W. Löwe, W. Zimmermann, J. Eisenbiegler, Optimization of Parallel Programs on Machines with ...
	[29] S.E. Lucco, Parallel Programming in a virtual object space, in: Proceedings of OOPSLA’87, SI...
	[30] S. Matsuoka, A. Yonezawa, Analysis of Inheritance Anomaly in Object-Oriented Concurrent Prog...
	[31] C. May, E. Silha, R. Simpson, H, Warren, Eds., The PowerPC Architecture: A Specification for...
	[32] B. Meyer, Object-oriented software construction, Prentice-Hall, Englewood Cliffs, NJ, 1988.
	[33] S. Murer, S. Omohundro, D. Stoutamire and C. Szyperski , Iteration Abstraction in Sather. Tr...
	[34] M. L. Powell, S. R. Kleinman, S. Barton, D. Shah, D. Stein, M. Weeks. SunOS 5.0 Multithreade...
	[35] J.W. Quittek, B. Weissman, Efficient Extensible Synchronization in Sather, will appear in: P...
	[36] The Institute of Electrical and Electronics Engineers. Portable Operating System Interface (...
	[37] R. Sites, Ed., Alpha Architecture Reference Manual. Digital Press 1992.
	[38] The SPARC Architecture Manual. Version 8. SPARC International, Inc., Prentice Hall, 1992
	[39] SPARC International Inc., The SPARC Architecture Manual. Version 9. Eds. D. L. Weaver, T. Ge...
	[40] Sun Microelectronics. UltraSPARC User’s Manual, 1996.
	[41] Sun Microsystems, Solaris Multithreaded Programming Guide, Prentice Hall, Englewood Cliffs, ...
	[42] Sun Microsystems, The Ultra Enterprise 1 and 2 Server Architecture. Technical White Paper. A...
	[43] D. Stein, D. Shah, Implementing Lightweight Threads. Summer ‘92 USENIX, San Antonio, Tx
	[44] D.P. Stoutamire, S. Omohundro, Sather�1.1 Specification. International Computer Science Inst...
	[45] D. Stoutamire, W. Zimmermann, and M. Trapp, An Analysis of the Divergence of Two Sather Dial...
	[46] C. Tomlinson, V. Singh, Inheritance and synchronization with Enabled-sets, in: Proceedings o...
	[47] B. Weissman, Active Threads: an Extensible and Portable Light-Weight Thread System. Internat...
	[48] B. Weissman, B. Gomes, J. W. Quittek, M. Holtkamp, Efficient Fine-Grain Thread Migration wit...
	[49] W. Zimmermann, W. Löwe, An Approach to Machine-Independent Parallel Programming. LNCS 854, P...

