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Abstract

Stackelberg games have garnered significant attention in recent years given
their deployment for real world security. Most of these systems, such as
ARMOR, IRIS and GUARDS have adopted the standard game-theoretical
assumption that adversaries are perfectly rational, which is standard in the
game theory literature. This assumption may not hold in real-world security
problems due to the bounded rationality of human adversaries, which could
potentially reduce the effectiveness of these systems.

In this paper, we focus on relaxing the unrealistic assumption of perfectly
rational adversary in Stackelberg security games. In particular, we present
new mathematical models of human adversaries’ behavior, based on using two
fundamental theory/method in human decision making: Prospect Theory
(PT) and stochastic discrete choice model. We also provide methods for
tuning the parameters of these new models. Additionally, we propose a
modification of the standard quantal response based model inspired by rank-
dependent expected utility theory. We then develop efficient algorithms to
compute the best response of the security forces when playing against the
different models of adversaries. In order to evaluate the effectiveness of the
new models, we conduct comprehensive experiments with human subjects
using a web-based game, comparing them with models previously proposed
in the literature to address the perfect rationality assumption on part of the
adversary.

Our experimental results show that the subjects’ responses follow the
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assumptions of our new models more closely than the previous perfect ratio-
nality assumption. We also show that the defender strategy produced by our
new stochastic discrete choice model outperform the previous leading con-
tender for relaxing the assumption of perfect rationality.Furthermore, in a

separate set of experiments, we show the benefits of our modified stochastic
model (QRRU) over the standard model (QR) [[]

Keywords:
Bounded Rationality, Stackelberg Games, Decision-making

1. Introduction

Stackelberg game models have recently become important tools for an-
alyzing real-world security resource allocation problems, such as critical in-
frastructure protection [2] and robot patrolling strategies [3, 4]. These mod-
els provide a sophisticated approach for generating unpredictable, random-
ized strategies that mitigate the ability of attackers to find weaknesses using
surveillance. The ARMOR [5], IRIS [6], GUARDS[7] and PROTECT [§]
systems are notable examples where this approach has been used to develop
decision-support systems for real-world security problems. One of the key
sets of assumptions that these systems make are about how attackers will
choose attack strategies based on their preferences and observations of the
security policy. Typically, such systems have applied the standard game-
theoretic assumption that attackers are perfectly rational and will strictly
maximize their expected utility. This is a reasonable starting point for the
first generation of deployed systems. Unfortunately, this standard game-
theoretic assumption leaves open the possibility that the defender’s strategy
is not robust against attackers using different decision procedures, and it fails
to exploit known weaknesses in the decision-making of human attackers.

It is widely accepted that standard game-theoretic assumptions of perfect
rationality are not ideal for predicting the behavior of humans in multi-agent

!This paper significantly extends our previous conference paper [I] by providing (i) new
methods for setting parameters of the Prospect Theory model; (ii) an additional variant
of Quantal Response model and a new algorithm to compute defender strategies against
the new model; (iii) a more comprehensive set of experiments which includes multiple new
algorithms and updated settings for the algorithms; (iv) new analysis of the robustness of
different defender strategies and the predictive accuracy of different models. (v) additional
discussion of related work.



decision problems [9, [10]. A large variety of alternative models have been
studied in behavioral game theory and cognitive psychology that capture
some of the deviations of human decisions from perfect rationality. In the
multi-agent systems community there is a growing interest in adopting these
models to improve decisions in agents that interact with humans or to pro-
vide better advice to human decision-makers in multi-agent decision-support
systems [11], 12]. Our work in this paper focuses on integrating these more
realistic models of human behavior into the computational analysis of S-
tackelberg game models in security settings, which are often referred to as
Stackelberg security games [13] [14, [15]. We also provide a case study in this
general paradigm of introducing more realistic models of human behavior
into game theoretic analysis. While there are quite a few studies looking
at the problem of predicting human behavior, there are very few examples
where this is actually included in a real decision-making system. Our work
here is one of the first examples showing that this is possible, and actually
improves performance in an important class of games.

In order to move beyond perfect rationality assumptions to integrate more
realistic models of human decision-making in real-world security systems,
we address several key challenges. First, the literature has introduced a
multitude of potential models on human decision making [16, 9] 17, [10],
but each of these models has its own set of assumptions and there is little
consensus on which model is best for different types of domains. Therefore,
there is an important empirical question of which model best represents the
salient features of human behavior in the important class of applied security
games. Second, integrating any of the proposed models into a decision-
support system (even for the purpose of empirically evaluating the model)
requires developing new algorithms for computing solutions to Stackelberg
security games, since most existing algorithms are based on mathematically
optimal attackers [I8] [I9]. One notable exception is COBRA developed by
Pita et al. [20]. COBRA is one example of modeling bounded rationality of
human adversaries by taking into account (i) the anchoring bias of humans
while interpreting the probabilities of several events [21], 22]; (ii) the limited
computational ability of humans which may lead to deviation from their
best response. To the best of our knowledge, COBRA is the best performing
strategy for Stackelberg security games in experiments with human subjects.
Thus, the open question is whether there are other approaches that allow
for fast solutions and outperform COBRA in addressing human behavior in
security games.



In this paper, we significantly expand the previous work on modeling hu-
man behavior in Stackelberg security games by implementing and evaluating
strategies based on two very important methods in literature of modeling
human decision-making. The first relates to Prospect Theory (PT), which
provides a descriptive framework for decision-making under uncertainty that
accounts for both risk preferences (e.g. loss aversion) and variations in how
humans interpret probabilities through a weighting function [16]. The oth-
er method adapts the ideas in the literature on discrete choice problems
[23, 241, 25| 26] to a game-theoretic framework with the basic premise that
humans will choose better actions more frequently, but with some noise in
the decision-making process that leads to stochastic choice probabilities fol-
lowing a logit distribution. We first propose two mathematical models of
the adversary’s decision-making based on Prospect Theory: one of them as-
sumes the adversary maximizes ‘prospect’ in their decision making process
and the other assumes the adversary makes bounded error in computing such
‘prospect’ so he may deviate to a sub-optimal solution within a bound. We
then propose two mathematical models of how an adversary makes decision-
s based on using a logit discrete choice models. One model (QR) couples
the quantal response of the adversary with the expected utility for attack-
ing each target; the other model (QRRU) modifies the expected utility by
adding extra weight to the target covered with minimum resources, inspired
by rank-dependent expected utility theory [27].

Based on the above models of adversary decision making, computing the
defender’s corresponding best response is also challenging since it involves
solving non-convex and nonlinear optimization problems. We develop new
techniques to address these problems. In particular, we develop a Mixed
Integer Linear Program to compute the defender optimal strategy against
the PT based models by representing the non-linear functions from Prospec-
t Theory with piecewise approximations. Furthermore, we present a local
search method with random restarts to compute the defender optimal strat-
egy against the stochastic models of the adversary.

In order to compare the performance of different adversary models, we
conduct an extensive empirical evaluation using the crowd-source platform
Amazon Mechanical TurkE](AMT). First, we design an online game called
“The Guard and the Treasure” to simulate a security scenario similar to

https://www.mturk.com



the ARMOR program for the Los Angeles International (LAX) airport [5].
We then develop classification techniques to select payoft structures for ex-
periments such that the models are well separated from each other and the
payoff structures are representative of the game space. We compare our new
methods against a robust baseline algorithm MAXIMIN, a perfect rationality
baseline (DoBSS) and the previous leading contender (COBRA) in the ex-
periments. Our experimental results show that: (i) our new models more
accurately represent the adversaries’ behavior in security games than pre-
vious methods; (ii) strategies based on our new models lead to statistically
(and practically) significant higher defender expected utility than the previ-
ous leading contender (COBRA). Moreover, we identify situations where the
QRRU model of adversary leads to significantly better strategies than the
QR model.

The rest of the paper is organized as follows. Section [2| provides neces-
sary background information of Stackelberg security games and defines the
notation that will be used in the paper. Section |3| presents the new models of
adversary decision-making based on Prospect Theory and Quantal Response
Equilibrium. Following that, Section [4| describes the algorithms we develope-
d to compute optimal defender strategy against these new adversary models.
In Section [5, we explain the methods we used to decide the parameters of
different models. Section [6] presents our experimental setup and results. We
then discuss additional related work in Section [7] and summarize the paper
in Section [l

2. Stackelberg Security Games

In this section, we first define Stackelberg security games as well as the
notation used in this paper. We then introduce an online game designed as a
testbed to collect data and evaluate performance of the different algorithms
introduced in this paper for solving Stackelberg security games.

2.1. Definition and Notation

We consider a Stackelberg Security Game (SSG) [I, 28] with a single
leader and one follower, where the defender plays the role of the leader and
the adversary plays the role of the follower. The defender has to protect
a set of targets from being attacked by the adversary. The defender has a
limited number of resources, e.g., she may need to protect 8 targets with 3
guards. Each player has a set of pure strategies. In SSGs, a pure strategy



Table 1: Notations used in this paper
T | Set of targets; ¢; in T denotes the i’ target

x; | Probability that target ¢; is covered by a resource

q; | Probability that target ¢; is attacked by the adversary
R? | Defender reward when covering t; if it’s attacked

P¢ | Defender penalty when not covering ¢, if it’s attack
R? | Attacker reward for attacking ¢; if it’s not covered

P? | Attacker penalty on attacking ¢; if it’s covered

M | Total number of resources

of an adversary is defined as attacking a single target; and a pure strategy
of a defender is defined as an assignment of all the security resources to the
set of targets (e.g. assigning the three resources to targets 1, 3 and 6). An
assignment of a security resource to a target is also referred to as covering a
target. A mixed-strategy is defined as a probability distribution over the set
of all possible pure strategies.

We use the following notation to describe a SSG, also listed in Table[I} the
defender has a total of M resources to protect a set of targets 7 = {¢;}. The
outcomes of the SSG depend only on whether or not the attack is successful.
Given a target t;, the defender receives reward RY if the adversary attacks
a target that is covered by the defender; otherwise, the defender receives
penalty P¢. Correspondingly, the attacker receives penalty P? in the former
case; and reward R? in the latter case. A key property of SSG is that while
the games may be non-zero-sum, R¢ > P? and R? > P¢#, Vi [28]. In other
words, adding resources to cover a target helps the defender and hurts the
attacker.

We represent the defender’s mixed-strategy by x which describes the prob-
ability that each target will be protected by a resource and denote these
individual probabilities by x;. So we have x = (x;) as the marginal distri-
bution on each target. In the example where the defender has to protect
8 targets with 3 resources (guards), the defender’s mixed-strategy can be
written as © = (z1,...,x5). We focus on generating marginal distributions
rather than distributions over the original defender pure strategies (e.g., the
original (2) pure strategies) for improved algorithmic efficiency [19, 29]. In
this paper, we consider the case without any constraints on assigning the
resources, which models important domains such as ARMOR deployed at
LAX [5]. Korzhyk et al show in [29] that the marginal probability distribu-



tion of covering each target is equivalent to a mixed-strategy over the original
combinational defender pure strategies in such domains. Moreover, given the
marginal coverage on each target, we could use a technique called ‘comb sam-
pling’ [30] to implement the corresponding mixed-strategy over the set of the
actual assignments of the resources.

In SSGs, the defender (leader) first commits to a mixed-strategy, assum-
ing the attacker (follower) decides on a pure strategy after observing the
defender’s strategy. This models the situation where an attacker conduct-
s surveillance to learn the defender’s mixed-strategy and then launches an
attack on a single target. We denote the attacker’s choice using a vector
of variables ¢ = (¢;) for t; € T, where ¢; € [0,1] represents the probability
that target t; will be attacked. Furthermore, we could compute the expected
utility for the adversary assuming the target ¢; is attacked by the adversary
as

Ui (i) = P+ (1 — ) R} (1)

and the expected utility for the defender in this case is
U(z;) = 2:R{ + (1 — ;) P! (2)

2.2. A Simulated Online SSG

We develop a game, called “The Guards and The Treasure”, to simulate
the security model at the LAX airport, which has eight terminals that can be
targeted in an attack [5]. Fig.[l|shows the interface of the game. Players are
introduced to the game through a series of explanatory screens describing how
the game is played. In each game instance a subject is asked to choose one
of the eight gates to open (attack). They are told that guards are protecting
three of the eight gates, but not which ones. The defender’s mixed strategy,
represented as the marginal probability of covering each target, < x; >, is
given to the subjects. At the same time, the subjects are also told the reward
on successfully attacking each target as well as the penalty of getting caught
at each target. The three gates protected by the guards are drawn randomly
from the probability shown on the game interface. If subjects select a gate
protected by the guards, they receive a penalty; otherwise, they receive a
reward. Subjects are rewarded based on the reward/penalty shown for each
gate. For example, in the game shown in Figure[I] the probability that gate 1
(target 1) will be protected by a guard is 0.59. Assuming the subjects choose
gate 1, he/she gets reward of 8 if gate 1 is not protected by the guard; or get
a penalty of -3 if gate 1 is protected by a guard.



Please choose a door to attack. Press the Submit Button Below to confirm your selection.

Probability
of Guard

Guards' Rewards

Guards' Penalties -8

Submit

Figure 1: Game interface for our simulated online SSG

3. New Models for Predicting Attacker Behaviors

Existing models of adversary behavior in SSGs have poor performance in
predicting the behavior of human adversaries [20]. In order to design better
defender strategy, better models of adversary decision-making need to be
developed. In this section, we present three models of adversary’s behavior
in SSGs, based on using Prospect Theory and Quantal Response Equilibrium.
All of the models have key parameters. We describe in the next section our
methodology for setting these parameters in each case.

3.1. Prospect Theory

Prospect Theory provides a descriptive model of how humans make de-
cision among alternatives with risk, which is a process of maximizing the
‘prospect’, which will be defined soon, rather than the expected utility. More
formally, the prospect of a certain alternative is defined as

> w @)V (Cy) (3)

!
In Equation (3)), z; denotes the probability of receiving C; as the outcome.
The weighting function m(-) describes how probability x; is perceived by
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Figure 2: Prospect Theory empirical function forms

individuals. An empirical function form of 7(-) (Equation (4])) is shown in

Fig. 131]. .
m(z) = S (4)
(x7+ (1 —2)7)~

The key concepts of a weighting function are that individuals overestimate
low probability and underestimate high probability [16, [31]. Also, 7() is not
consistent with the definition of probability, i.e. 7(z) + 7(1 —x) < 1 in
general.

The value function V(C}) in Equation (3)) reflects the value of the outcome
C;. PT predicts that individuals are risk averse regarding gain but risk
seeking regarding loss, implying an S-shaped value function [16] 31]. A key
component of Prospect Theory is the reference point. Outcomes lower than
the reference point are considered as loss and higher as gain.

B o C>0 -
€)= —0(-C)*, C<0 )

Equation (5)) is a general form for the value function where C is the relative
outcome to the reference. In Equation , we assume the reference point to
be at 0. a and 8 determine the extent of non-linearity in the curves. If the
parameters a = 1.0 and 8 = 1.0, the function would be linear; typical values
for both o and § are 0.88 [31]. @ captures the idea that the loss curve is
usually steeper than the gains curve, a typical value of 6 is 2.25 [31], which



reflects a finding that losses are a little more than twice as painful as gains
are pleasurable. The function is also displayed in Fig. [31]. Given these
parameters, we will henceforth denote this value function with V,, 5
In a SSG, the prospect of attacking target ¢; for the adversary is computed
as
prospect(t;) = m(x:)Vas0(PY) + (L — 2,)Vas(RY) (6)

According to Prospect Theory, subjects will choose the target with the high-
est prospect. Thus,

(7)

_ | 1, if prospect(t;) > prospect(ty),Vty € T
7= 0, otherwise

3.2. Quantal Response

Quantal Response Equilibrium (QRE) is an important solution concept
in behavioral game theory [I7]. It is based on a long history of work in single-
agent problems and brings that work into a game-theoretic setting [32, [33].
It assumes that instead of strictly maximizing utility, individuals respond
stochastically in games: the chance of selecting a non-optimal strategy in-
creases as the cost of such an error decreases. Given the strategy profile of all
the other players, the response of a player is modeled as a quantal response
(QR model): he/she selects action i with a probability given by

UL @)

Ztk €T i le)

where, Uf(x) is the expected utility for the attacker for selecting pure strategy
i. Here, A € [0, 00| is the parameter that captures the rational level of player
p: one extreme case is A=0, when player p plays uniformly random; the other
extreme case is A — 0o, when the quantal response is identical to the best
response. Combining Equation and ,

gi(z) (8)

ARE o= A(RE—P)z;

%) = Zt €T e M e AEL Pk ©)
k

In applying the QR model to the security game domain, we only consider
noise in the response of the adversary. The defender uses a computer deci-
sion support system to choose her strategy hence is able to compute optimal

10



strategy. On the other hand, since the attacker observes the defender’s strat-
egy first to decides his response, it can only hurt the defender to add noise in
her response. Recent work [33] shows Quantal Level-k [32] to be best suited
for predicting human behavior in simultaneous move games. The key idea of
level-k is that humans can perform only a bounded number of iterations of
strategic reasoning: a level-0 player plays randomly, a level-k (k > 1) player
best response to the level-(k — 1) player. We applied QR instead of Quan-
tal Level-k to model the attacker’s response because in Stackelberg security
games the attacker observes the defender’s strategy, so level-k reasoning is
not applicable.

3.3. Quantal Response with Rank-related Fxpected Utility

We modify the Quantal Response Model by taking into consideration the
fact that individuals are attracted to extreme events, such as the less uncer-
tain and highest payoff. This idea is inspired by the rank-dependent Expected
Utility Model [27], in which the utilities of choosing different alternatives are
based on the their ranks. We adapt this idea to security games, but we only
consider such effect on the target covered with minimum resources. That is
the adversary would prefer the target covered with minimum resources since
he is most likely to be successful attacking that target. This could signifi-
cantly reduce the defender’s reward in the case when this target with fewest
resources also gives a large penalty to the defender.

We modify the QR model by adding extra weight to the target covered
with minimum resources. We refer this modified model as Quantal Response
with Rank-related expected Utility (QRRU) model, where the probability
that the attacker attacks target t; is computed as

e)xuUia (aci)e/\s Si(x)

(10)

BAUU]?(xk)e)\sSk (37)

gi(z) = >

treT

where S;(z) € {0, 1} indicating whether ¢; is covered with least resource.

Si(z) = (11)

1, if €T; < SC;, th/ eT
0, otherwise

The denominator in Equation is only for normalizing the probability
distribution so all the ¢; sum up to 1. In the numerator, we have two terms
deciding the probability that target ¢; will be chosen by the adversary. The
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first term eV (#:) relates to the expected utility for the adversary to choose

target t;. Uf(x;) is computed as in Equation (1)). The parameter A, > 0
represents the level of error in adversary’s computation of the expected utility,
which is equivalent to A in Equation (8)). The second term e*s%(®) relates
to the adversary’s preference for the least covered target. Note that if ¢; is
not covered with the minimum resource, this term equals to 1 so there is
no extra weight added to the non-minimum covered targets; if ¢; is covered
with minimum resource, this term will be > 1, adding extra weight to the
probability that adversary will choose t;. The parameter Ay > 0 represents
the level of the adversary’s preference to the minimum covered target. Ay = 0
indicates no preference to the minimum covered target. As A, increase, this
preference becomes stronger.

4. Computing Optimal Defender Strategy

Given the new models of adversary behavior in SSG, new algorithms need
to be developed to compute the optimal defender strategy since the existing
algorithms are based on the assumption of a perfectly rational adversary.
We now describe efficient computation of the optimal defender mixed strat-
egy assuming a human adversary whose response follows one of the three
models we proposed: Prospect Theory (PT-Adversary), Quantal Response
(QR-Adversary) or Quantal Response with Rank-related Utility (QRRU-
Adversary).

4.1. Computing against a PT-Adversary

Assuming that the adversary’s response follows Prospect Theory (PT-
adversary), we developed two methods to compute the optimal defender s-
trategy.

4.1.1. BRPT

Best Response to Prospect Theory (BRPT) is a mixed integer program-
ming formulation for computing the optimal leader strategy against players
whose responses follow a PT model. We first present an abstract version of
our formulation of BRPT in Equations —, and then present a more
detailed operational version in Equations — that uses piecewise linear
approximation to provide the BRpT MILP (Mixed Integer Linear Program).

12



max d (12)

x7q7a7d7z

s.t. le <M (13)
i=1

> q=1, ¢ {01} (14)
=1

0<a— (n(z)V(P) + (1 — 2)V(R)) < K(1—q).Vi  (15)
K(1— )+ (2RI 4+ (1— 2)PY) > d.Vi (16)

The objective is to maximize d, the defender’s expected utility. Equation
enforces that the constraint on the total amount of resources is met. In
Equation , the integer variables ¢; represent the attacker’s pure strategy.
In BRPT, ¢; is constrained to be binary variable, since, as justified and ex-
plained in [I8], we assume the adversary has a pure strategy best response:
q; = 1 if t; is attacked and 0 otherwise. Equation (|15)) is the key to decide the
attacker’s strategy, given a defender’s mixed strategy x =< x; >. The vari-
able a represents the attacker’s ‘benefit’ of choosing a pure strategy < ¢; >.
Since we are modeling attacker’s decision making using Prospect Theory, the
benefit perceived by the adversary for attacking target t; is the attacker’s
‘prospect’, which is calculated as (w(x;)V(P?) + n(1 — z;)V(R?)) following
Equation . The attacker tries to maximize a by choosing the target with
the highest ‘prospect’, as enforced by Equation . In particular, the in-
equality on the left side of Equation ([15]) enforces that a is greater or equal
to the ‘prospect’ of attacking any target. On the right hand of Equation
, we have a constant parameter K with a very large positive value. For
targets with ¢; = 0, the upper bound of the difference between a and the
‘prospect’ is K, therefore, the bounds is not operational. For target with
¢; = 1 (i.e. the target chosen by the attacker), the value of a is forced to be
equal to the actual ‘prospect’ of attacking that target. In Equation , the
constant parameter K enforces that d is only constrained by the target that
is attacked by the adversary (i.e. ¢; = 1).

We now present the BRPT MILP based on our piecewise linear approxi-
mation of the weighting function as discussed earlier. We use the empirical
functions introduced in Section for the weighting function 7(-) and value
function V(-). Let (P#) = V(P#) and (R?) = V(R?) denote the adversary’s

13



value of penalty P? and reward R, which are both given as input to the
optimization formula in Equations -. The key challenge to solve that
optimization problem is that the 7(-) function is non-linear and non-convex.
If we apply the function directly, we have to solve a nonlinear and non-convex
mixed-integer optimization problem, which is difficult. Therefore, we approx-
imately solve the problem by representing the non-linear 7(+) function as a
piecewise linear function. This transforms the problem into a MILP, which

is shown in Equations (17)-(29).

max d (17)
T,q,a,d,z
n 5
s.t. szlk <M (18)
i=1 k=1
5
D (wi + Ta) = 1,Vi (19)
k=1

0 < &g, Tigp < cx — Cp—1, Vi, bk =1.5 (20)
zig - (e — cpo1) <y, Vi k= 1.4 (21)
Zik - (cp — k1) < Ty, Vi k= 1.4 (22)
Tigy1) < Zik, Vi, k= 1.4 (23)
Tigey1) < Zir, Vi, k= 1.4 (24)
Zik, Ziw € {0,1},Vi,k =1.4 (25)

5 5
v =) bpxig, T =Y bpZi, Vi (26)
k=1

k=1

Z%’ =1, ¢ €{0,1} (27)
i=1

0<a— (z(F) +z(RY)) < M(1— ), Vi (28)
5
M1 —q)+ > (zaR{ + 2w P) > d,Vi (29)
k=1

Let 7(+) denote the use of a piecewise linear approximation of the weight-
ing function 7(+), as shown in Figure . We empirically set 5 segmentﬁ for

3This piecewise linear representation of 7(-) achieves a small approximation error:
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Figure 3: Piecewise approximation of the weighting function

7(-). This function is defined by {cklco = 0,¢5 = 1, ¢, < cgy1,k = 0,...,5}
that represent the endpoints of the linear segments and {bg|k = 1,...,5}
that represent the slope of each linear segment. In order to represent the
piecewise linear approximation, i.e. 7(x;) (and simultaneously 7(1 —x;)), we
partition z; (and 1 — z;) into five segments, denoted by variables x;;, (and
Zir). Therefore, 2 which equals 7(x;) can be calculated as the sum of the
linear function in each segment

5
= 7(w) =) br - wak
k=1

which is shown in Equation . At the same time, we can enforce the
correctness of partitioning z; (and 1 — ;) by ensuring that segment z;; (and
Z;r) is positive only if the previous segment is used completely. This is
enforced in Equations N by using the auxiliary integer variable z;
(and Zy). zix = 0 indicates that the k™ segment of z; (i.e. z;) has not
been completely used, therefore, the following segments can only be set to 0,

sup.efo,1 |7 (2) — 7(2)|| < 0.03.
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and vice versa. Equation defines x}=7(z;) as the value of the piecewise
linear approximation of z;, and Z,=7(1 — x;) as the value of the piecewise
linear approximation of 1 — x; .

4.1.2. RPT

Robust-PT (RPT) modifies the base BRPT method to account for the
possible uncertainty in adversary’s choice caused (for example) by imprecise
computations [34]. Similar to COBRA, RPT assumes that the adversary may
choose any strategy within € of the best choice, defined here by the prospect
of each action. It optimizes the worst-case outcome for the defender among
the set of strategies that have the prospect for the attacker within e of the
optimal prospect.

max d (30)

x7h7q7a7d7'z

s.t. Constraints ~

> hi>1 (31)

e(1—h) <a— (2y(PH) +Z(R)) < M(1—h;) +6€Vi (33)

5
M(1—hi)+ > (wa R + 74P > d, Vi (34)
k=1
We modify the BRPT optimization problem as follows: the first 11 con-
straints are equivalent to those in BRPT (Equation —); in Equation
, the binary variable h; indicates the e-optimal strategy for the adversary;
the e-optimal assumption is embedded in Equation (33)), which forces h; = 1
for any target ¢; that leads to a prospect within € of the optimal prospect, i.e.
a; Equation (34]) enforces d to be the minimum expected utility for defender
on the targets that lead to e-optimal prospect for the attacker. RPT attempt-
s to maximize the minimum for the defender over the e-optimal targets for
the attacker, thus providing robustness against attacker (human) deviations
within that e-optimal set of targets.

4.2. Computing an optimal strateqy against a Quantal Response adversary
Assuming the adversary follows a quantal response (QR-adversary), we
now present the algorithm to compute the defender’s optimal strategy a-
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gainst a QR-adversary. Given the quantal response of the adversary, which
is described in Equation @, the best response of defender is to maximize
her expected utility:

max Ud(x) = Z g;(z)Uf (x)

Combined with Equation @D and , the problem of finding the optimal
mixed strategy for the defender can be formulated as

Pper e MR ((RY — P + PY)

e D ter Mk e AEL =P )z (33)
k
st. Yz <M (36)
i=1

Algorithm 1 BrRQR
1: opty <= —00;
2: for it < 1, ..., Iter N do

3: 2 « randomly generate a feasible starting point
4: (opt;, v*) + Find-Local-Minimum(z®)

5: if opt, > opt; then

6: opt, < opt;, x% + z*

7: end if

8: end for

9: return opt,, x°"

Unfortunately, since the objective function in Equation (35)) is non-linear
and non-convex, finding the global optimum is extremely difficult. There-
fore, we focus on methods to find local optima. To compute an approximately
optimal strategy against a QR-adversary efficiently, we develop the Best Re-
sponse to Quantal Response (BRQR) heuristic described in Algorithm . We
first take the negative of Equation (35), converting the maximization prob-
lem to a minimization problem. In each iteration, we find the local minimum
using the fmincon() function in Matlab with the Interior Point Algorithm
with a given starting point. If there are multiple local minima, by randomly
setting the starting point in each iteration, the algorithm will reach different
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local minima with a non-zero probability. By increasing the iteration num-
ber, Iter N, the probability of reaching the global minimum increases. We
empirically set Iter N to 300 in our experiments.

4.3. Computing against a QRRU-adversary

We now present the algorithm to compute defender optimal strategy as-
suming the adversary’s behavior follows the QRRU model. The adversary’s
response given this model is computed as in Equation . The optimal
defender strategy against a QRRU-adversary is computed by solving the fol-
lowing optimization problem:

S er R R F Mss (RE — Pz + PA)

X > er B oM (RE—PE)zr phssy (38)
s.t. Constraint ,
d si=1 (40)
t; €T
S; € {0, 1},‘v’ti e’T (41)

where the integer variables s; are introduced to represent the function S;(x)
as shown in Equation . In constraint , K is a constant with a very
large value. Constraints and enforces ,,;, to be the minimum
value among all the z;. Simultaneously, s; is set to 1 if target ¢; has the min-
imum coverage probability assigned; and is set to 0 otherwise. The above
optimization problem is a non-linear and non-convex mixed integer program-
ming problem, which is difficult to solve directly. Therefore, we developed
Best Response to a QRRU-Adversary (BRQRRU), an algorithm that iter-
atively computes the defender’s optimal strategy. The iterative approach
breaks down the mixed-integer non-linear programming problem into sub-
problems without integer variables. For each sub-problem, one of the target
is assumed to be the least covered target. Then, under this constraint, the
maximum defender expected utility and the associated defender mixed strat-
egy are computed by solving a non-linear programming problem (similar to
BRQR). Finally, the sub-problem generating the highest maximum defender
expected utility is found as the ‘actual’ optimal solution, and the associ-

ated defender mixed-strategy is the optimal defender strategy assuming a
QRRU-adversary.

18



Algorithm [2| shows the pseudo code of the algorithm. Algorithm [2] de-
scribes BRQRRU. In each iteration, one target ¢, is conditioned to be covered

Algorithm 2 BRQRRU
1: opty <= —00;
2: for t;y € T do
3 (opt;, x*) <— Find-Optimal-Defender-Strategy(s; = 1)
4 if opt, > opt; then
5: opt, < opty, xP  z*
6
7
8

end if
: end for
. return opt,, %"

with minimum resource, therefore s;« = 1. This reduces the optimization
problem to the following

Ser e MU ER S (RY — Py, + )

42
= ZtkET Ml e~ ARy —Fl)k eAssi (42)
s.t. Constraint ,

where there are no integer variables involved since s;,Vt; € T are all pre-
defined parameters of the optimization problem. Therefore, we could solve it
using the same method of local search with random restart as that in BRQR.
Find-Optimal-Defender-Strategy(sy = 1) on Line (3) in Algorithm [2]calls
Algorithm [1] to solve the optimization problem in Equation ([42))-({43)).

5. Parameter Estimation

In this section, we describe our methodology for setting the values of
the parameters for the different models of human behavior introduced in the
previous section. We set the parameters for our later experiments using data
collected in a preliminary set of experiments with human subjects playing the
online game we introduced in Section We posted the game on Amazon
Mechanical Turk as a Human Intelligent Task (HIT) and asked subjects to
play the game. Subjects played the role of the adversary and were able to
observe the defender’s mixed strategy (i.e., randomized allocation of security
resources). In order to avoid non-compliant participants, we only allowed
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workers whose HIT approval rates were greater than 95% and who had more
than 100 approved HITs to participate in the experiment.

Let G denote a game instance, which is a combination of a payoff struc-
ture {(R¢, P, RY, P4),t; € T}, and a defender’s strategy x. Given a game
instance G, we denote the choice of the j* subject as TjG € T. We include
seven payoff structures in the experiments: four of which are selected based
on using a classification method we explain in detail in Section [5.1} the other
three are taken directly from Pita et al.[20]. For each payoff structure we
tested five different defender strategies. This results in 7 * 5 = 35 differen-
t game instances. Each of the subjects played all 35 games. In total, 80
subjects participated in the preliminary experiment.

5.1. Selecting Payoff Structures

Even for a restricted class of games such as security games, there are an
infinite number of possible game instances depending on the specific values
of the payoffs for each of the targets. Since we cannot conduct experiments
on every possible game instance we need a method to select a set of payoffs
structures to use in our experiments. Our main criteria for selecting payoffs
structures are (1) to select a diverse set of payoff structures that cover dif-
ferent regions in the space of possible security games and (2) to select payoff
structures that will differentiate between the different behavioral models (in
other words, the models should make different predictions in different test
conditions). In the first round our goal was to select game instance that would
distinguish between the three key families of prediction methods (BRPT, RP-
T, BRQR). In the second round of selection we need to further differentiate
within the families. Since there is not yet a well-understood method to select
such game instances in the literature, we introduce a procedure for making
such selections below.

We first sample randomly 1000 different payoff structures, each with 8
targets. R% and RY are integers drawn from Z*[1,10]; P® and P¢ are integers
drawn from Z~[—10, —1]. This scale is similar to the payoff structures used in
[20]. We then use k-means clustering to group the 1000 payoff structures into
four clusters based on eight features, which are defined in Table[2] Intuitively,
features 1 and 2 describe how good the game is for the adversary, features
3 and 4 describe how good the game is for the defender, and features 5~8
reflect the level of conflict between the two players in the sense that they
measure the ratio of one player’s gain over the other player’s loss.
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Table 2: A-priori defined features

Feature 1 | Feature 2 | Feature 3 | Feature 4
R R& R‘,i R‘,j
mean(|P—Z; ) std(|P—Z; ) mean(|P—;l ) std(|P—1; )
Feature 5 | Feature 6 | Feature 7 | Feature 8
Re R& Rd R‘,j
mean(|P—i3 ) Std('P_:d ) mean(|P—Z; ) std(|P—i; )

2" PCA Component

oo PO+ x + -

cluster 1
cluster 2
cluster 3
cluster 4
Payoff 1
Payoff 2
Payoff 3
Payoff 4
Payoff 5,6,7

-6 !
-4

2

4

1% PCA Component

Figure 4: Payoff Structure Clusters (color)
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In Fig. [4 all 1000 payoff structures are projected onto the first two Prin-
cipal Component Analysis (PCA) dimensions for visualization. The three
payoff structures (5-7) that were first used in Pita et al.[20] are marked in
Fig. [4 All three of these payoff structures belong to cluster 3, indicating
that the game instances used in the previous experiments we all similar in
terms of the features we used for classificationl!]

To select specific payoff structures from these clusters we first generated
five defender strategies based on the following families of algorithms: DOBSS,
CoBRrA, BrpT, RPT and BRQR. Here we select only one algorithm from
each family (e.g., only one version of BRQR). At this point we did not
have preliminary data to set the parameters of the algorithms, since we are
deciding which payoff structures to test on. Instead, we set the parameters
as follows: DOBSS has no parameters; for COBRA we use parameters drawn
from [20]; BRPT and RPT use the empirical parameter settings for Prospect
Theory [31]; BRQR uses a value of A = 0.76 which we set using the data
reported in [20] (using the method to be described in Section [5.3).

We use the following the criteria to select payoff structures that differen-
tiate among the different families of algorithms:

e We define the distance between two mixed strategies, ¥ and 2!, using
the Kullback-Leibler divergence: D(z*,2') = Dy (a|2')+ Dy (2!|2%),
where Dy (z¥|a!) = S0 a¥ log(aF /t).

e For each payoff structure, D(z*, 2!) is measured for every pair of strate-
gies. With five strategies, we have 10 such measurements.

e We remove payoff structures that have a mean or minimum of these 10
quantities below a given threshold. This results in a subset of about
250 payoft structures in total for all four clusters. We then select one
payoff structure closest to the cluster center from each of these subsets.

The four payoff structures (1-4) we selected from different clusters and
are marked in Fig. [

4In [20], there were four payoff structures used, but we only use three of those here. The
fourth payoff structure is a zero-sum game, and the deployed Stackelberg security games
have not been zero sum [5l [6]. Furthermore, in zero-sum games, defender’s strategies
computed from DoOBSS, COBRA and MAXIMIN collapse into one — they turn out to be
identical.
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5.2. Parameter Estimation for Prospect Theory

An empirical setting of parameter values is suggested in the literature
[31] based on various experiments conducted with human subjects. We also
include this setting of parameter values in our experiments to evaluate the
benchmark performance of the prospect theory. At the same time, we provide
a method to estimate the parameter values for the PT model using a set of
empirical response data collected for the SSG domain. In this section, we
describe our method of estimating the parameter values based on using grid
search.

The empirical functions we used in the PT model for the adversary have
four parameters that must be specified: «,(,60,~, as shown in Equations
and . Varying the values for these four parameters will change the
responses predicted by the PT-model. We denote the weighting and value
function as m,(-) and V,, g¢(+), for a given a set of parameter values. We then
define the fit of a parameter setting to a given data set of subjects’ choices
as the percentage of subjects who choose the target predicted by the model.
The fit can be computed as

: 1 N;

F1t<a’6a 6)’7 | G) = N Z QTJG(Oé’ﬁ?Ha’Y | G) = Z W%(avﬁaea’y | G)

j=1..N t,eT

where ¢;(-) € {0, 1} indicates whether the PT model predicts target ¢; to be
chosen by the subjects and is computed using Equation ,Ni is the number
of subjects who choose target ¢;, and N = ZtieT N; is the total number of
subjects.

We estimate the parameter setting with the best fit for PT model by
maximizing the fit function over all 35 game instances

max Fit(a,B3,0,v | G 44
o S Fit( A1 6) (4
st. 0<a,f<1,0>1,0<y<1 (45)

The constraints in restrict the feasible range of all the four parameters,
as defined in the prospect theory model. The objective function in Equa-
tion cannot be expressed as a closed-form expression of «, 3,6 and 7.
Without a closed form it is difficult to apply gradient descent or any other
analytical search algorithm to find the optimal solution. Therefore, we use
grid search [35, 136] to solve the problem as follows:
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(1) We first uniformly sample a set of values for each parameter across the
feasible ranges, with the following grid intervals: A, = 0.05, Ag = 0.05,
A, = 0.05, and Ay = 0.1. This gives a set of different values for each
of the four parameters. For simplicity, we represents the four sets of
sampled values as the following: {ay, = oy+ki-A,}, where g is the lower
bound of the region; similarly {8, = i + k2 - Ag}; {0k, = 60 + ks - Ap};
and {yg, = 7 + ks - A,}. The feasible region of 6 does not have upper
bound, so we set it to 5 which is twice as the suggested empirical value
[31].

(2) In total, we have 20-20-20-40 = 320k different combinations of the four
parameter values. We then evaluate the objective function on each of
the combinations (g, , Bk, , Oks, Yk, ) and take the parameter combination
with the best aggregate fit as the solution:

(04*76*70*,7*) = arg max Flt(ak1)5k270k377k4 | G)
k1,ka, ks, ky

The parameter settings estimated using the method described above are:
(a*, 5%, 6%, v*) = (1.0,0.6,2.2,0.6)

5.8. Parameter Estimation for the QR Model

We now explain how we estimate the parameter for the Quantal Response
Model (QR Model). The parameter A in the QR model represents the level of
noise in the adversary’s response function. We employ Maximum Likelihood
Estimation (MLE) to fit A using data we collected. Given a game instance
G and N samples of the subjects’ choices {7;(G),j = 1..N}, the likelihood
of X is

LA G = ] ae(X]G)
j=1..N
where, T]-G € T denotes the target attacked by the j* player and quc(/\ | G)
can be computed by Equation @[) For example, if player j attacks target
ts in game G, we would have ¢.¢(A | G) = ¢3(A | G). Furthermore, the
log-likelihood of A is ’

log L(\ | G) = Zloqu (A G) =) Nilogg())

t; €T
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Combining with Equation (8)),

log L(A | G) = A Z N,Uf (x;) — Nlog(z AV (@)

t, €T t, €T

We learn the optimal parameter setting for A by maximizing the total
log-likelihood over all 35 game instances:

max Zlog LN | G) (46)
G
st. A>0 (47)

The objective function in Equation is concave, since for each G, a
log L(A | x) is a concave function. This can be demonstrated by showing
that the second order derivative of log L(A | G) is non-positive VG:

Plog L _ Yoy —(U(ws) = Uy (wy) X ) .
a2z (3, eXUi@y? S

Therefore, log L(A | ) only has one local maximum. We use gradient descent
solve the above optimization problem. The MLE of ) is

A* = 0.55

5.4. Parameter Estimation for the QRRU Model

For the QRRU Model, we need to estimate two parameters: A\, and \; as
defined in Equation . We again apply Maximum Likelihood Estimation,
similar to the method for the QR model. Given a game instance G, and the
responses of N subjects {7;(G), j = 1..N}, the log-likelihood of a parameter
setting (Ay, Ag) is

N
lOgL()\u, )\s | G) = Zlogq’Tj(G)<)\u7>\S ‘ G) = Z Nz log Qi(Auy)\s)

j=1 t;eT

Combining with Equation ,

log LA, As | G) = Ay > NiUP i)+, Y NiSi(w)—Nlog( )y ~ erlirarssitan)

t, €T t, €T t,eT
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We learn the optimal parameter settings for the QRRU Model by maxi-
mizing the total log-likelihood over all 35 game instances:

UH7\S

max Y log L(Ay, A | G) (48)
G
st. A >0,0,>0 (49)

The objective function in Equation is a concave function, since VG the
Hessian matrix of log L(A,, As | G) is negative semi-definite. We include the
details of proof in the appendix and only show here that V(\,, As)

<)\U7 )\s> : H()\uu )\s | G) : <)\u7 )\5>T S O

where H (A, As | G) is the Hessian matrix of log L(A,, As | G) computed as
the following

2i< (UlquJq)zeAH—Aj 2icy (Uf*U;l)(Sifsj)eAi+Aj
= (Z%‘GT efi)? (ZQET efi)2
H()\u, > | G> - Zi<j(Ug_U;)(Si_Sj)eAi+Aj Ei<j(si*5j)2€Ai+Aj
(X ere’i)? (Cr,er )2

where, A; = AU (x;) + A\sSi(x). Therefore, we can use gradient descent
to solve the optimization problem in Equation and . The MLE
parameters based on our data set are:

(A%, A%) = (0.6,0.77)

6. Experimental Results and Discussion

We evaluated the performances of defender strategies as well as the the
accuracy of different adversary models with human subjects using the online
game “The Guard and The Treasure” introduced in Section[2.2] We conduct-
ed two set of evaluations: the first set includes the same 7 payoff structures
used in the experiments in the previous section; the second set focuses on
comparison between the QR model and the QRRU model.
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6.1. Experimental Settings

The design of the simulated game was already provided in Section[2.2] We
now present a detailed description of the experimental settings. In total, we
included 70 game instances (comprising 7 payoff structures and 10 strategies
for each payoff structure) in the first set and 12 game instances (comprising
4 new payoff structures and 3 strategies for each payoff structure) in the
second set. To avoid confusion between these two sets of payoff structures,
we will number the first seven payoff structures as 1.1-1.7, and the next four
as 2.1-2.4.

Each game instance is played by at least 80 different participants (the
actual number of subjects for each game instance ranges between 80 to 91).
Each subject is asked to play 40 out of the 70 games. For the purpose
of a within-subject comparison, we want a subject to play the 10 different
strategies for the same payoff structure. Therefore, the 40 games is composed
of 4 payoft structures and 10 defender strategies for each. Furthermore, in
order to mitigate the ordering effect on subject responses, we randomize the
order of the game instances played by each subject. We generated 40 different
orderings of the games using latin square design. The order played by each
subject was drawn uniformly randomly from the 40 possible orderings. To
further mitigate ordering effect, no feedback on success or failure is given to
the subjects until the end of the experiment. As motivation to the subjects,
they earn or lose money based on whether or not they succeed in attacking
a gate; if the subject opens a gate not protected by the guards, they win;
otherwise, they lose.

The participants were recruited on Amazon Mechanical Turk. Note that
these participants differ from those who played the game to provide data
for estimating the parameter, as discussed in the previous section. In order
to avoid non-compliant participants, we only allowed workers whose HIT
approval rates were greater than 95% and who had more than 100 approved
HITs to participate in the experiment. They were first given a detailed
instruction of the game explaining to them how the game is played. Then
two practical rounds of games were provided to help them get familiar with
the game. After all the learning and practising, they were given enough time
to finish all the games.

Each participant first received 50 cents for participating in the game.
Then they gain bonus based on the outcomes of the games they played, with
each point worth 1 cent. On average, the subjects who participated in the
first set of experiment (i.e. payoff 1.1-1.7) received $1.45 as bonus based on
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Payoff 1.1 1.2 |13 (14 |15 |16 1.7
CoOBRA-a | 0.15 | 0.15 ] 0.15 ] 0.15 | 0.37 | O 0.25
COBRA-€ |25 |29 [20 [275|25 [25]25
BrpT-E | (0, 5,0,7) = (0.88,0.88,2.25,0.64)

RPT-E | (a,3,0,7) = (0.88,0.88,2.25,0.64), ¢ = 2.5
BrprT-L | (o, 3,0,7) = (1,0.6,2.2,0.6)

RPT-L | (o, 3,6,7) = (1,0.6,2.2,0.6), € = 2.5
BRQR-76 | A =0.76

BRQR-55 | A =0.55

BRQRRU | (A4, As) = (0.6,0.77)

Table 3: Parameter settings for different algorithms

their total scores across 40 game instances they played; the subjects who
participated in the second set of experiment (i.e. payoff 2.1-2.4) received
$0.44 as bonus based on their total scores across 12 game instances they
played. Participants were given 5 hours in total to finish the experiment
which was shown to be sufficiently long given that the average time they
spent was 28 minutes for the first set of 40 games and 8 minutes for the
second set of 12 games.

In the following part of this section, we first describe the parameter set-
tings for the different leader strategies. We then provide our experimental
results, and follow that up with analysis. We compare both the quality of dif-
ferent defender strategies against the human participants and the accuracy of
different adversary models in the sense that how well the human participants
follow the assumption of these models.

6.2. Algorithm Parameters

For the seven payoff structures (1.1-1.7) introduced in Section [5, we test-
ed ten different mixed strategies generated from seven different algorithms:
MaxiMIN, Dosss [1§], CoBrAa [20], BrpT, RpPT, BRQR, BRQRRU. We
include MAXIMIN as a benchmark algorithm. MAXIMIN assumes that ad-
versary always selects the target that is worst to the defender. Table |3 lists
the parameter settings of these ten strategies for each of the seven payoff
structures.

e DoBss and MAXIMIN have no parameters.
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e For COBRA, we set the parameters following the methodology pre-
sented in [20] as closely as possible for payoff structures 1.1~1.4,. In
particular, the values we set for a meet the entropy heuristic discussed
in that work. For payoff structures 1.5~1.7 that are identical to payoff
structures first used by Pita et al., we use the same parameter settings
as in their work.

e For both BRPT-E and RPT-E, the parameters for Prospect Theory are
empirical values suggested by literatures [31]. For RPT-E, we empiri-
cally set € to 25% of the maximum potential reward for the adversary,
which is 10 in our experimental settings.

e We tried another set of parameters for Prospect Theory, which are
learned from our first set of experiment as described in Section[5.2] We
denote these two algorithms as BRpT-L and RpT-L.

e For BRQR, we tried two different values for the parameter A\, A = 0.76
is the values learned from the data reported by Pita et al.[20]; A = 0.55
is the value learned from data collected in our first set of experiments
with participants from Amazon Mechanical Turk. We will refer to the
strategies resulting from these two parameter settings of the BRQR
algorithm as BRQR-76 and BRQR-55 respectively.

e For BRQRRU, the parameters are learned from the data collected our
first set of experiments.

6.3. Quality Comparison

We evaluated the performance of different defender strategies using the
defender’s expected utility and the statistical significance of our results using
the bootstrap-t method [37].

6.53.1. Average Performance
We first evaluated the average defender expected utility, UZ, (), of dif-
ferent defender strategies based on the subjects’ choices:

N
1 1
d _ d( d
Uig®) = 7 DU (@) = 7 D N (w)
7j=1 t; €T
where 7; is the target selected by the j™* subject, N; is the number of subjects
that chose target t; and N is the total number of subjects. Fig. |p| displays
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Figure 5: Defender average expected utility achieved by different strategies
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U gvg(x) for the different strategies in each payoff structure. We also displayed
the normalized defender average expected utility of different strategies within
each payoff structure in Figure @ After normalization, Ug, (x) for each

defender strategy varies between 0 and 1, with the highest U% (z) in each

payoft structure scaled to 1 and the lowest U, gvg(x) scaled to 0. ’

Overall, BRQR-76, BRQR-55 and BRQRRU performed better than other
algorithms. We compare the performance of three algorithms with each of
the other seven algorithms and report the level of statistical significance in

Table [4, 5] and [6] We summarize the results below:

e MAXIMIN is outperformed by all three algorithms with statistical sig-
nificance in all seven payoff structures. DOBSS is also outperformed
by all three algorithms with statistical significance except for payoff
structure 1.6.

e In five of the seven payoff structures, COBRA is outperformed by all
three algorithms with statistical significance. In payoff structure 1.3,
the performance of COBRA is very close to the three algorithms, but
there is no statistical significanc