
The Ruby Intermediate Language

Michael Furr Jong-hoon (David) An Jeffrey S. Foster Michael Hicks
Department of Computer Science

University of Maryland
College Park, MD 20742

{furr,davidan,jfoster,mwh}@cs.umd.edu

ABSTRACT
Ruby is a popular, dynamic scripting language that aims to
“feel natural to programmers”and give users the“freedom to
choose” among many different ways of doing the same thing.
While this arguably makes programming in Ruby easier, it
makes it hard to build analysis and transformation tools that
operate on Ruby source code. In this paper, we present the
Ruby Intermediate Language (RIL), a Ruby front-end and
intermediate representation that addresses these challenges.
Our system includes an extensible GLR parser for Ruby, and
an automatic translation into RIL, an easy-to-analyze inter-
mediate form. This translation eliminates redundant lan-
guage constructs, unravels the often subtle ordering among
side effecting operations, and makes implicit interpreter op-
erations explicit in its representation.

We demonstrate the usefulness of RIL by presenting a sim-
ple static analysis and source code transformation to elimi-
nate null pointer errors in Ruby programs. We also describe
several additional useful features of RIL, including a pretty
printer that outputs RIL as syntactically valid Ruby code,
a dataflow analysis engine, and a dynamic instrumentation
library for profiling source code. We hope that RIL’s fea-
tures will enable others to more easily build analysis tools
for Ruby, and that our design will inspire the creation of
similar frameworks for other dynamic languages.

1. INTRODUCTION
Ruby is a popular, object-oriented, dynamic scripting lan-

guage inspired by Perl, Python, Smalltalk, and LISP. Over
the last several years, we have been developing tools that in-
volve static analysis and transformation of Ruby code. The
most notable example is Diamondback Ruby (DRuby), a
system that brings static types and static type inference to
Ruby [4, 3].

As we embarked on this project, we quickly discovered
that working with Ruby code was going to be quite chal-
lenging. Ruby aims to “feel natural to programmers” [9] by
providing a rich syntax that is almost ambiguous, and a se-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DLS ’09 Orlando, Florida USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

mantics that includes a significant amount of special case,
implicit behavior. While the resulting language is arguably
easy to use, its complex syntax and semantics make it hard
to write tools that work with Ruby source code.

In this paper, we describe the Ruby Intermediate Lan-
guage (RIL), a parser and intermediate representation de-
signed to make it easy to extend, analyze, and transform
Ruby source code. As far as we are aware, RIL is the only
Ruby front-end designed with these goals in mind. RIL is
written in OCaml, which provides strong support for work-
ing with the RIL data structure, due to its data type lan-
guage and pattern matching features.

RIL provides four main advantages for working with Ruby
code. First, RIL’s parser is completely separated from the
Ruby interpreter, and is defined using a Generalized LR
(GLR) grammar, which makes it much easier to modify and
extend. In particular, it was rather straightforward to ex-
tend our parser grammar to include type annotations, a key
part of DRuby. (Section 2.) Second, RIL translates many
redundant syntactic forms into one common representation,
reducing the burden on the analysis writer. For example,
Ruby includes four different variants of if-then-else (stan-
dard, postfix, and standard and postfix variants with unless),
and all four are represented in the same way in RIL. Third,
RIL makes Ruby’s (sometimes quite subtle) order of evalua-
tion explicit by assigning intermediate results to temporary
variables, making flow-sensitive analyses like data flow anal-
ysis simpler to write. Finally, RIL makes explicit much of
Ruby’s implicit semantics, again reducing the burden on the
analysis designer. For example, RIL replaces empty Ruby
method bodies by return nil to clearly indicate their behav-
ior. (Section 3.)

In addition to the RIL data structure itself, our RIL imple-
mentation has a number of features that make working with
RIL easier. RIL includes an implementation of the visitor
pattern to simplify code traversals. The RIL pretty printer
can output RIL as executable Ruby code, so that trans-
formed RIL code can be directly run. To make it easy to
build RIL data structures (a common requirement of trans-
formations, which often inject bits of code into a program),
RIL includes a partial reparsing module [?]. RIL also has
a dataflow analysis engine, and extensive support for run-
time profiling. We have found that profiling dynamic feature
use and reflecting the results back into the source code is a
good way to perform static analysis in the presence of highly
dynamic features, such as eval [3]. (Section 4.)

Along with DRuby [4, 3], we have used RIL to build
DRails, a tool that brings static typing to Ruby on Rails

applications (a work in progress). In addition, several stu-
dents in a graduate class at the University of Maryland used
RIL for a course project. The students were able to build a
working Ruby static analysis tool within a few weeks. These
experiences lead us to believe that RIL is a useful and ef-
fective tool for analysis and transformation of Ruby source
code. We hope that others will find RIL as useful as we have,
and that our discussion of RIL’s design will be valuable to
those working with other dynamic languages with similar
features. RIL is available as part of the DRuby distribution
at http://www.cs.umd.edu/projects/PL/druby.

2. PARSING RUBY
The major features of Ruby are fairly typical of dynamic

scripting languages. Among other features, Ruby includes
object-orientation (every value in Ruby is an object, includ-
ing integers); exceptions; extensive support for strings, reg-
ular expressions, arrays, and hash tables; and higher-order
programming (code blocks). We assume the reader is famil-
iar with, or at least can guess at, the basics of Ruby. An
introduction to the language is available elsewhere [10, 2].

The first step in analyzing Ruby is parsing Ruby source.
One option would be to use the parser built in to the Ruby
interpreter. Unfortunately, that parser is tightly integrated
with the rest of the interpreter, and uses very complex parser
actions to handle the near-ambiguity of Ruby’s syntax. We
felt these issues would make it difficult to extend Ruby’s
parser for our own purposes, e.g., to add a type annotation
language for DRuby.

Thus, we opted to write a Ruby parser from scratch. The
fundamental challenge in parsing Ruby stems from Ruby’s
goal of giving users the “freedom to choose” among many
different ways of doing the same thing [11]. This philoso-
phy extends to the surface syntax, making Ruby’s grammar
highly ambiguous from an LL/LR parsing standpoint. In
fact, we are aware of no clean specification of Ruby’s gram-
mar.1 Thus, our goal was to keep the grammar specification
as understandable (and therefore as extensible) as possible
while still correctly parsing all the potentially ambiguous
cases. Meeting this goal turned out to be far harder than
we originally anticipated, but we were ultimately able to
develop a robust parser.

We illustrate the challenges in parsing Ruby with two ex-
amples. First, consider an assignment x = y. This looks
innocuous enough, but it requires some care in the parser:
If y is a local variable, then this statement copies the value
of y to x. But if y is a method (method names and local
variables names are described by the same production), this
statement is equivalent to x = y(), i.e., the right-hand side
is a method call. Thus we can see that the meaning of an
identifier is context-dependent.

Such context-dependence can manifest in even more sur-
prising ways. Consider the following code:

1 def x() return 4 end
2 def y()
3 if false then x = 1 end
4 x + 2 # error , x is nil , not a method call
5 end

1There is a pseudo-BNF formulation of the Ruby grammar
in the on-line Ruby 1.4.6 language manual, but it is ambigu-
ous and ignores the many exceptional cases [?].

Even though the assignment on line 3 will never be executed,
its existence causes Ruby’s parser to treat x as a local vari-
able from there on. At run-time, the interpreter will initial-
ize x to nil after line 3, and thus executing x + 2 on line 4
is an error. In contrast, if line 3 were removed, x + 2 would
be interpreted as x() + 2, evaluating successfully to 6. (Pro-
grammers might think that local variables in Ruby must be
initialized explicitly, but this example shows that the parsing
context can actually lead to implicit initialization.)

As a second parsing challenge, consider the code

6 f () do |x| x + 1 end

Here we invoke the method f, passing a code block (higher-
order method) as an argument. In this case the code block,
delimited by do ... end, takes parameter x and returns x + 1.

It turns out that code blocks can be used by several dif-
ferent constructs, and thus their use can introduce potential
ambiguity. For example, the statement

7 for x in 1..5 do |x| puts x end

prints the values 1 through 5. Notice that the body of for is
also a code block—and hence if we see a call

8 for x in f () do ... end ...

then we need to know whether the code block is being passed
to f() or is used as the body of the for. (In this case, the
code block is associated with the for.)

Of course, such ambiguities are a common part of many
languages, but Ruby has many cases like this, and thus using
standard techniques like refactoring the grammar or using
operator precedence parsing would be quite challenging to
maintain.

To meet these challenges and keep our grammar as clean
as possible, we built our parser using the dypgen general-
ized LR (GLR) parser generator, which supports ambigu-
ous grammars [8]. Our parser uses general BNF-style pro-
ductions to describe the Ruby grammar, and without fur-
ther change would produce several parse trees for conflicting
cases like those described above. To indicate which tree to
prefer, we use helper functions to prune invalid parse trees,
and we use merge functions to combine multiple parse trees
into a single, final output.

An excerpt from our parser is given in Figure 1. The pro-
duction primary, defined on line 6, handles expressions that
may appear nested within other expressions, like a method
call (line 7) or a for loop (line 8). On line 10, the ac-
tion for this rule calls the helper function well formed do to
prune ill-formed sub-trees. The well formed do function is
defined in the preamble of the parser file, and is shown on
lines 1–4. This function checks whether an expression ends
with a method call that includes a code block and, if so, it
raises the Dyp.Giveup exception to tell dypgen to abandon
this parse tree. This rule has the effect of disambiguating
the for...do..end example by only allowing the correct parse
tree to be valid. Crucially, this rule does not require mod-
ifying the grammar for method calls, keeping that part of
the grammar straightforward.

By cleanly separating out the disambiguation rules in this
way, the core productions are relatively easy to understand,
and the parser is easier to maintain and extend. For exam-
ple, as we discovered more special parsing cases baked into
the Ruby interpreter, we needed to modify only the disam-

1 let well formed do guard body = match ends with guard with
2 | E MethodCall(, ,Some (E CodeBlock(false, , ,)),) →
3 raise Dyp.Giveup
4 | →()
5 %%
6 primary:
7 | command name[cmd] code block[cb] { ... }
8 | K FOR[pos] formal arg list [vars] K IN arg[guard]
9 do sep stmt list [body] K lEND

10 { well formed do guard body; E For(vars ,range,body,pos) }

Figure 1: Example GLR Code

biguation rules and could leave the productions alone. Sim-
ilarly, adding type annotations to individual Ruby expres-
sions required us to only change a single production and for
us to add one OCaml function to the preamble. We believe
that our GLR specification comes fairly close to serving as
a standalone Ruby grammar: the production rules are quite
similar to the pseudo-BNF used now [?], while the disam-
biguation rules describe the exceptional cases. Our parser
currently consists of 75 productions and 513 lines of OCaml
for disambiguation and helper functions.

3. RUBY INTERMEDIATE LANGUAGE
Parsing Ruby source produces an abstract syntax tree,

which we could then try to analyze and transform directly.
However, like most other languages, Ruby AST’s are large,
complex, and difficult to work with. Thus, we developed the
Ruby Intermediate Language (RIL), which aims to be low-
level enough to be simple, while being high-level enough to
support a clear mapping between RIL and the original Ruby
source. This last feature is important for tools that report
error messages (e.g., the type errors produced by DRuby),
and to make it easy to generate working Ruby code directly
from RIL.

RIL provides three main advantages: First, it uses a com-
mon representation of multiple, redundant source constructs,
reducing the number of language constructs that an analysis
writer must handle. Second, it makes the control-flow of a
Ruby program more apparent, so that flow-sensitive analy-
ses are much easier to write. Third, it inserts explicit code
to represent implicit semantics, making the semantics of RIL
much simpler than the semantics of Ruby.

We discuss each of these features in turn.

3.1 Eliminating Redundant Constructs
Ruby contains many equivalent constructs to allow the

programmer to write the most “natural” program possible.
We designed RIL to include only a small set of disjoint primi-
tives, so that analyses need to handle fewer cases. Thus, RIL
translates several different Ruby source constructs into the
same canonical representation.

As an example of this translation, consider the following
Ruby statements:

(1) if p then e end (3) e if p

(2) unless (not p) then e end (4) e unless (not p)

All of these statements are equivalent, and RIL translates
them all into form (1).

As another example, there are many different ways to
write string literals, and the most appropriate choice de-
pends on the contents of the string. For instance, below

result =
begin

if p then a() end
rescue Exception => x

b()
ensure

c()
end

begin
if p then

t1 = a()
else

t1 = nil
end

rescue Exception => x
t1 = b()

ensure
c()

end
result = t1

(a) Ruby code (b) RIL Translation

Figure 2: Nested Assignment

lines 1, 2, 3, and 4–6 all assign the string Here′s Johnny to s:

1 s = ”Here’s Johnny”
2 s = ’Here\’s Johnny’
3 s = %{Here’s Johnny}
4 s = <<EOF
5 Here’s Johnny
6 EOF

RIL represents all four cases internally using the third form.
RIL performs several other additional simplifications. Op-

erators are replaced by the method calls they represent, e.g.,
x + 2 is translated into x.+(2); while and until are coalesced;
logical operators such as and and or are expanded into se-
quences of conditions, similarly to CIL [7]; and negated
forms (e.g., ! =) are translated into a positive form (e.g.,
==) combined with a conditional.

All of these translations serve to make RIL much smaller
than Ruby, and therefore there are many fewer cases to han-
dle in a RIL analysis as compared to an analysis that would
operate on Ruby ASTs.

3.2 Linearization
In Ruby, almost any construct can be nested inside of any

other construct, which makes the sequencing of side effects
tricky and tedious to unravel. In contrast, each statement in
RIL is designed to perform a single semantic action such a
branch or a method call. As a result, the order of evaluation
is completely explicit in RIL, which makes it much easier to
build flow-sensitive analyses, such as data flow analysis [1].

To illustrate some of the complexities of evaluation order
in Ruby, consider the code in Figure 2(a). Here, the result
of an exception handling block is stored into the variable
result. If an analysis needs to know the value of the right-
hand side and only has the AST to work with, it would need
to descend into exception block and track the last expression
on every branch, including the exception handlers.

Figure 2(b) shows the RIL translation of this fragment,
which inlines an assignment to a temporary variable on ev-
ery viable return path. Notice that the value computed by
the ensure clause (this construct is similar to finally in Java)
is evaluated for its side effect only, and is not returned. Also
notice that the translation has added an explicit nil assign-
ment for the fall-through case for if. (This is an example
of implicit behavior, discussed more in Section 3.3.) These
sorts of details can be very tricky to get right, and it took
a significant effort to find and implement these cases. RIL
performs similar translations for ensuring that every path

Ruby Method Order RIL

a (). f = b().g a,b,g, f=

t1 = a()
t3 = b()
t2 = t3.g()
t1. f=(t2)

a (). f ,x = b().g b,g,a, f=

t2 = b()
t1 = t2.g()
(t4, x) = t1
t3 = a()
t3. f=(t4)

Figure 3: RIL Linearization Example

through a method body ends with a return statement and
that every path through a block ends with a next statement.

Another tricky case for order-of-evaluation in Ruby arises
because of Ruby’s many different assignment forms. In Ruby,
fields are hidden inside of objects and can only be manipu-
lated through method calls. Thus using a “set method” to
update a field is very common, and so Ruby includes special
syntax for allowing a set method to appear on the left hand
side of an assignment. The syntax a.m = b is equivalent to
sending the m= message with argument b to the object a.
However, as this syntax allows method calls to appear on
both sides of the assignment operator, we must be sure to
evaluate the statements in the correct order. Moreover, the
evaluation order for these constructs can vary depending on
the whether the assignment is a simple assignment or a par-
allel assignment.

Figure 3 demonstrates this difference. The first column
lists two similar Ruby assignment statements whose only
difference is that the lower one assigns to a tuple (the right-
hand side must return an two-element array, which is then
split and assigned to the two parts of the tuple). The second
column lists the method call order—notice that a is evalu-
ated at a different time in the two statements. The third
column gives the corresponding RIL code, which makes the
evaluation order clear. Again, these intricacies were hard to
discover, and eliminating them makes RIL much easier to
work with.

3.3 Materializing Implicit Constructs
Finally, Ruby’s rich syntax tries to minimize the effort re-

quired for common operations. As a consequence, many ex-
pressions and method calls are inserted “behind the scenes”
in the Ruby interpreter. We already saw one example of
this above, in which fall-though cases of conditionals return
nil. A similar example is empty method bodies, which also
evaluate to nil by definition.

There are many other constructs with implicit semantics.
For example, it is very common for a method to call the
superclass’s implementation using the same arguments that
were passed to it. In this case, Ruby allows the programmer
to omit the arguments all together and implicitly uses the
same values passed to the current method. For example, in

1 class A
2 def foo(x,y) ... end
3 end
4 class B < A
5 def foo(x,y)
6 ...
7 super
8 end
9 end

the call on line 7 is the same as super(x,y), which is what
RIL translates the call to. Without this transformation,
every analysis would have to keep track of these parameters
itself, or worse, mistakenly model the call on line 7 as having
no actual arguments.

One construct with subtle implicit semantics is rescue.
In Figure 2(b), we saw this construct used with the syn-
tax rescue C => x, which binds the exception to x if it is
an instance of C (or a subclass of C). However, Ruby also
includes a special abbreviated form rescue => x, in which
the class name is omitted. The subtlety is that, contrary
to what might be expected, a clause of this form does not
match arbitrary exceptions, but instead only matches in-
stances of StandardError, which is a superclass of many, but
not all exceptions. To make this explicit, RIL requires ev-
ery rescue clause to have an explicit class name, and inserts
StandardError to mimic this sugar.

Finally, Ruby is often used to write programs that manip-
ulate strings. As such, it contains many useful constructs for
working with strings, including the # operator, which inserts
a Ruby expression into the middle of a string. For example,
‘‘ Hi #{x.name}, how are you?’’ computes x.name, invokes its
to s method to convert it to a string, and then inserts the
result using concatenation. Notice that the original source
code does not include the call to to s. Thus, RIL both re-
places uses of # with explicit concatenation and makes the
to s calls explicit. The above code is translated as

1 t1 = x.name
2 t2 = ‘‘Hi ’ ’ + t1.to s
3 t2 + ‘‘, how are you?’ ’

Similarly to linearization, by making implicit semantics
of constructs explicit, RIL enjoys a much simpler seman-
tics than Ruby. In essence, like many other intermediate
languages, the translation to RIL encodes a great deal of
knowledge about Ruby and thereby lowers the burden on
the analysis designer. Instead of having to worry about
many complex language constructs, the RIL user has fewer,
mostly disjoint cases to be concerned with, making it easier
to develop correct Ruby analyses.

4. USING RIL
In this section, we demonstrate RIL using three examples.

First, we develop a simple transformation that uses dynamic
instrumentation to prevent methods from being called on nil.
Second, we construct a simple dataflow analysis to improve
the performance of the transformed code. Finally, we de-
scribe an instrumentation library we built to enable profile-
driven static analysis, discussing type inference in DRuby as
a motivating example. Along the way, we illustrate some of
the additional features our implementation provides to make
it easier to work with RIL.

A complete grammar for RIL appears in Appendix A. In
our implementation, RIL is represented as an OCaml data
structure, and hence all our examples below are written in
OCaml [6].

4.1 Transformation
As a first example, we define a Ruby-to-Ruby transforma-

tion written with RIL. Our transformation modifies method
calls such that if the receiver object is nil then the call is ig-
nored rather than attempted. In essence this change makes
Ruby programs oblivious [?] to method invocations on nil,

which typically cause exceptions. (In fact, nil is a valid ob-
ject in Ruby and does respond to a small number of meth-
ods, so some method invocations on nil would be valid.) As
an optimization, we will not transform a call if the receiver
is self, since self can never be nil. This particular trans-
formation may or may not be useful, but it works well to
demonstrate the use of RIL.

The input to our transformation is the name of a file,
which is then parsed, transformed, and printed back to std-
out. The top-level code for this is as follows:

1 let main fname =
2 let loader = File loader . create File loader .EmptyCfg [] in
3 let stmt = File loader . load file loader fname in
4 let new stmt = visit stmt (new safeNil) stmt in
5 CodePrinter. print stmt stdout new stmt

First, we use RIL’s File loader module to parse the given
file (specified in the formal parameter fname), binding the
result to stmt (lines 2–3). Next, we invoke new safeNil to
create an instance of our transformation visitor, and pass
that to visit stmt to perform the transformation (line 4).
This step performs the bulk of the work, and is discussed in
detail next. Finally, we use the CodePrinter module to out-
put the transformed RIL code as syntactically valid Ruby
code, which can be directly executed (line 5). RIL also in-
cludes an ErrorPrinter module, which DRuby uses to emit
code inside of error messages—since RIL introduces many
temporary variables, the code produced by CodePrinter can
be hard to understand. Thus, ErrorPrinter omits temporary
variables (among other things), showing only the interesting
part. For instance, if t1 is a temporary introduced by RIL,
then ErrorPrinter shows the call t1 = f() as just f().

RIL’s visitor objects are modeled after those in CIL [7]. A
visitor includes a (possibly inherited) method for each RIL
syntactic variant (statement, expression, and so on) using
pattern matching to extract salient attributes. The code for
our safeNil visitor class is as follows:

1 class safeNil = object
2 inherit default visitor as super
3 method visit stmt node = match node.snode with
4 | MethodCall(, {mc target=‘ID Self}) → SkipChildren
5 | MethodCall(, {mc target=#expr as targ}) →
6 (∗ ... transform ... ∗)
7 | → super#visit stmt node
8 end

The safeNil class inherits from default visitor (line 2), which
performs no actions. We then override the inherited visit stmt
method to get the behavior we want: Method calls whose
target is self are ignored, and we skip visiting the children
(line 4). This is sensible because RIL method calls do not
have any statements as sub-expressions, thanks to the linear-
lization transformation mentioned in Section 3.2. Method
calls with non-self receivers are transformed (lines 5–6). Any
other statements are handled by the superclass visitor (line 7),
which descends into any sub-statements or -expressions. For
example, at an if statement, the visitor would traverse the
true and false branches.

To implement the transformation on line 6, we need to
create RIL code with the following structure, where E is the
receiver object and M is the method invocation:

1 if E.nil? then nil else M end

To build this code, RIL includes a partial reparsing mod-
ule [?] that lets us mix concrete and abstract syntax. To
use it, we simply call RIL’s reparse function:

1 reparse ˜env:node. locals
2 ”if %a.nil? then nil else %a end”
3 format expr targ format stmt node

Here the string passed on line 2 describes the concrete syn-
tax, just as above, with %a wherever we need “hole” in
the string. We pass targ for the first hole, and node for
the second. As is standard for the %a format specifier in
OCaml, we also pass functions (in this case, format expr and
format stmt) to transform the corresponding arguments into
strings.

Note that one potential drawback of reparsing is that
reparse will complain at run-time if mistakenly given un-
parsable strings; constructing RIL datastructures directly
in OCaml would cause mistakes to be flagged at compile-
time, but such direct construction is far more tedious. Also,
recall from Section 2 that parsing in Ruby is highly context-
dependent. Thus, on line 1 we pass node.locals as the op-
tional argument env to ensure that the parser has the proper
state to correctly parse this string in isolation.

Putting this all together, the actual visitor pattern match-
ing case for transforming a method call is

1 | MethodCall(, {mc target=#expr as targ}) →
2 let node’ = reparse ˜env:node. locals
3 reparse ˜env:node. locals
4 ”if %a.nil? then nil else %a end”
5 format expr targ format stmt node
6 in ChangeTo node’

Here we construct the new code as node′ and instruct the
visitor to replace the existing node with this new statement
(line 6).

4.2 Dataflow Analysis
The above transformation is not very efficient because it

transforms every method call with a non-self receiver. For
example, the transformation would instrument the call to +
in the following code, even though we can see that x will
always be an integer.

1 if p then x = 3 else x = 4 end
2 x + 5

To address this problem, we can write a simple static anal-
ysis to track the flow of literals through the current scope
(e.g., a method body), and skip instrumenting any method
call whose receiver definitely contains a literal.

We can write this analysis using RIL’s built-in dataflow
analysis engine. To specify a dataflow analysis [1] in RIL,
we supply a module that satisfies the following signature:

1 module type DataFlowProblem =
2 sig
3 type t (∗ abstract type of facts ∗)
4 val top : t (∗ initial fact for stmts ∗)
5 val eq : t → t → bool (∗ equality on facts ∗)
6 val to string : t → string
7

8 val transfer : t → stmt → t (∗ transfer function ∗)
9 val meet : t list → t (∗ meet operation ∗)

10 end

Given such a module, RIL includes basic support for for-
wards and backwards dataflow analysis; RIL determines that
a fixpoint has been reached by comparing old and new da-
taflow facts with eq. This dataflow analysis engine was ex-
tremely easy to construct because each RIL statement has
only a single side effect.

For this particular problem, we want to determine which
local variables may be nil and which definitely are not. Thus,
we begin our dataflow module, which we will call NilAnalysis,
by defining the type t of dataflow facts to be a map from local
variable names (strings) to facts, which are either MaybeNil
or NonNil:

1 module NilAnalysis = struct
2 type fact = MaybeNil | NonNil (∗ core dataflow facts ∗)
3 type t = fact StrMap.t

Next, we define top, which for our example will be the empty
map:

4 let top = StringMap.empty

We choose the empty map rather than a map from all vari-
ables to NonNil since that way we can avoid computing the
set of all local variables ahead of time. We omit the defini-
tions of eq and to string, which are straightforward.

Next, we define the meet function. Our meet semilattice
uses the order MaybeNil < NonNil to describe the state of a
single variable. We encode this relationship and extend it
pointwise to maps:

5 (∗ compute meet of two facts ∗)
6 let meet fact t1 t2 = match t1,t2 with
7 | MaybeNil, → MaybeNil
8 | , MaybeNil → MaybeNil
9 | NonNil, NonNil → NonNil

10

11 (∗ update : string → fact → t → t ∗)
12 (∗ replace value of s in map with the meet of itself and v ∗)
13 let update s v map =
14 let fact =
15 try join fact (StringMap.find s map) v
16 with Not found → v
17 in StringMap.add s fact map
18

19 (∗ meet : t list → t ∗)
20 (∗ compute meet of all elements of lst ∗)
21 let meet lst =
22 List . fold left
23 (fun acc map→StringMap.fold update map acc)
24 StringMap.empty lst

Finally, we define the transfer function, which, given the
input dataflow facts map and a statement stmt returns the
output dataflow facts:

1 let rec transfer map stmt = match stmt.snode with
2 | Assign(lhs , # literal) → update lhs NonNil map lhs
3 | Assign(lhs , ‘ID Var(‘Var Local, rvar)) →
4 update lhs (StrMap.find rvar map) map lhs
5 | MethodCall(Some lhs,) | Yield(Some lhs,)
6 | Assign(lhs ,) → update lhs MaybeNil map lhs
7 | → map
8

9 and update lhs fact map lhs = match lhs with
10 | ‘ ID Var(‘Var Local, var) → update var fact map
11 | # identifier → map
12 | ‘Tuple lst → List. fold left (update lhs MaybeNil) map lst
13 | ‘ Star (#lhs as l) → update lhs NonNil map l
14 end

The first case we handle is assigning a literal (line 2). Since
literals are never nil, line 2 uses the helper function update lhs
to mark the left-hand side of the assignment as non-nil. (Per-
haps surprisingly, nil itself is actually an identifier in Ruby
rather than a literal, and RIL follows the same convention.)

The function update lhs has several cases, depending on
the left-hand side. If it is a local variable, that variable’s
data flow fact is updated in the map (line 10). If the left-
hand side is any other identifier (such as a global variable),
the update is ignored, since our analysis only applies to local
variables. If the left-hand side is a tuple (i.e., it is a paral-
lel assignment), then we recursively apply the same helper
function but conservatively mark the tuple components as
MaybeNil. The reason is that parallel assignment can be
used even when a tuple on the left-hand side is larger than
the value on the right. For example x,y,z = 1,2 will store 1
in x, 2 in y and nil in z. In contrast, the star operator always
returns an array (containing the remaining elements, if any),
and hence variables marked with that operator will never be
nil (line 13). For example, x,y,∗z = 1,2 will set x and y to be
1 and 2, respectively, and will set z to be a 0-length array.

Going back to the main transfer function, lines 3–4 match
statements in which the right-hand side is a local variable.
We look up that variable in the input map, and update the
left-hand side accordingly. Lines 5–6 match other forms that
may assign to a local variable, such as method calls. In these
cases, we conservatively assume the result may be nil. Fi-
nally, line 7 matches any other statement forms that do not
involve assignments, and hence do not affect the propagation
of dataflow facts.

To use our NilAnalysis module, we instantiate the dataflow
analysis engine with NilAnalysis as the argument and then
invoke the fixpoint function, which returns two hash tables
of input and output facts at each statement:

1 module DataNil = Dataflow.Forwards(NilAnalysis)
2 let in facts , out facts = DataNil. fixpoint node in

Finally, we add a new case to our original visitor. We
now check if a method target is a local variable and skip the
instrumentation if it is:

1 ...
2 | MethodCall(,
3 {mc target=(‘ID Var(‘Var Local,var) as targ)}) →
4 let map = Hashtbl.find in facts node in
5 begin match StrMap.find var map with
6 | NilAnalysis .MaybeNil → refactor targ node
7 | NilAnalysis .NonNil → SkipChildren
8 end

The complete code for this example appears in Appendix B.

4.3 Profile-Guided Analysis
The example presented so far has brushed aside an im-

portant detail: a significant amount of Ruby code, particu-
larly in the Ruby standard library, pervasively uses highly
dynamic methods such as eval. When eval e is called, the
Ruby interpreter evaluates e, which must return a string,
and then parses and evaluates that string as ordinary Ruby
code. To precisely analyze code containing eval, then, we
need to know what strings may be passed to eval at run
time. We could try to do this with a purely static analysis
(approximating what the string arguments could be), but
that would likely be quite imprecise.

Instead, we developed a dynamic analysis library that,
among other things, lets us profile dynamic constructs. Us-
ing this library, we can keep track of what strings are passed
to eval, and then use this information in the analysis from
Section 4.2. Our most complex RIL client to date, Diamond-
back Ruby (DRuby), makes extensive use of this profiling
infrastructure to very good effect [3].

Figure 4 shows the architecture of the analysis library,
which consists of five main stages. We assume that we have
a set of test cases under which we run the program to gather
profiles.

First, we execute the target program (using the test cases),
but with a special Ruby file preloaded that redefines require,
the method that loads another file. Our new version of
require behaves as usual, except it also records all of the
files that are loaded during the program’s execution. This
is because require has dynamic behavior, like eval: Ruby
programs may dynamically construct file names to pass to
require (and related constructs) or even redefine the seman-
tics of the require method [3].

After we have discovered the set of application files, in
stage two we instrument each file to record profiling infor-
mation. This transformation is carried out like the one we
saw in Section 4.1, except we modify the Ruby code to track
strings passed to eval and several other dynamic constructs.
We then unparse the modified source files to disk (using the
CodePrinter module we already mentioned) and execute the
resulting program. Here we must be very careful to preserve
the execution environment of the process, e.g., the current
working directory, the name of the executed script (stored
in the Ruby global $0), and the name of the file (stored in

FILE in Ruby). When the execution is complete, we se-
rialize all of the profiled data to disk using YAML, a simple
markup language supported by both Ruby and OCaml.

Finally, we read in the gathered profiles and use them
to transform the original source code prior to applying our
main analysis. For example, consider NilAnalysis again. Sup-
pose our target program contains the code eval ”o.#{m}()”,
and profiling reveals that at run-time this eval is called with
string ”o.run()” (i.e., m contained string ”run” when the eval
was executed). The stage 4 transformation then replaces the
eval call by o.run() directly. (In fact, we use a more general
transformation in case x does not always evaluate to the
same string [3].) As a result, when we run NilAnalysis it can
properly instrument this method call, handling the case that
o turns out to be nil. Without profiling, NilAnalysis would
not see the call, and thus fail to eliminate a potential failure
due to a nil receiver. In our work on DRuby, we found that
this dynamic profiling technique, while potentially incom-
plete, works very well in practice, due to the restricted way
Ruby programmer use highly dynamic features [3].

Our profiling and transformation infrastructure is fairly
general, and can be used for things other than profiling dy-
namic constructs. For example, we could choose to use just
the first three stages to collect profiling information for later
analysis. For example, we might want to track all possi-
ble values of the first argument (the filename) passed to
File.open for later tabulation. We can do this quite simply
by writing

1 intercept args File , :open do |∗args | args [0]. to s end

(The instrumentation for the third stage in Figure 4 is spec-
ified partially in OCaml and partially in Ruby.) Our library

will then store the file, line number, and a list of values that
were passed to open. We were able to make good use of this
flexibility by reusing portions of the library in DRails, in
which we profile calls to special Ruby on Rails methods like
before filter and validate.

5. RELATED WORK
There are several threads of related work.
Another project that allows access to the Ruby AST is

ruby parser [?]. This parser is written in Ruby and stores
the AST as an S-expression. ruby parser performs some syn-
tactic simplifications, such as translating unless statements
into if statements, but does no semantic transformations
such as linearizing effects or reifying implicit constructs. The
authors of ruby parser have also developed several tools to
perform syntax analysis of Ruby programs [?] such as flay,
which detects structural similarities in source code; heckle, a
mutation-based testing tool; and flog, which measures code
complexity. We believe these tools could also be written
using RIL, although most of RIL’s features are tailored to-
ward developing analyses that reason about the semantics
of Ruby, not just its syntax.

Several integrated development environments [?, ?] have
been developed for Ruby. These IDEs do some source code
analysis to provide features such as code refactoring and
method name completion. However, they are not specifically
designed to allow users to develop their own source code
analyses. Integrating analyses developed with RIL into an
IDE would be an interesting direction for future work.

The Ruby developers recently released version 1.9 of the
Ruby language, which includes a new bytecode-based virtual
machine. The bytecode language retains some of Ruby’s
source level redundancy, including opcodes for both if and
unless statements [?]. At the same time, opcodes in this
language are lower level than RIL’s statements, which may
make it difficult to relate instructions back to their original
source constructs. Since this bytecode formulation is quite
new, it is not yet clear whether it might be appropriate for
uses similar to RIL.

While the Ruby language is defined by its C implementa-
tion, several other implementations exist, such as JRuby [5],
IronRuby [?], and MacRuby [?]. These projects aim to ex-
ecute Ruby programs using different runtime environments,
taking advantage of technologies present on a specific plat-
form. For example, JRuby allows Ruby programs to execute
on the Java Virtual Machine, and allows Ruby to call Java
code and vice versa. While these projects necessarily include
some analysis of the programs, they are not designed for use
as an analysis writing platform.

Finally, RIL’s design was influenced by the C Interme-
diate language [7], a project with similar goals for C. In
particular, the authors’ prior experience using CIL’s visitor
class, and CIL’s clean separation of side-effect expressions
from statements, lead to a similar design in RIL.

6. CONCLUSION
In this paper, we have presented RIL, the Ruby Interme-

diate Language. The goal of RIL is to provide a represen-
tation of Ruby source code that makes it easy to develop
source code analysis and transformation tools. Toward this
end, RIL includes a GLR parser designed for modification
and extensibility; RIL translates away redundant constructs;

/tmp/filesInstrument YAML

Transform
Document

All Files
main.rb

Document
Final Files

Require
Static Analysis

I II

III

IV
V

Figure 4: Dynamic Instrumentation Architecture

RIL makes Ruby’s order of side effecting operations clear;
and RIL makes explicit many implicit operations performed
by the Ruby interpreter. Combined, we believe these fea-
tures minimize redundant work and reduce the chances of
mishandling certain Ruby features, making RIL an effective
and useful framework for working with Ruby source code.

7. REFERENCES
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.

Compilers: Principles, Techniques, and Tools.
Addison Wesley, 1988.

[2] David Flanagan and Yukihiro Matsumoto. The Ruby
Programming Language. O’Reilly Media, Inc, 2008.

[3] Michael Furr, Jong-hoon (David) An, and Jeffrey S.
Foster. Profile-guided static typing for dynamic
scripting languages. In Proceedings of the twenty
fourth Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications,
October 2009. To appear.

[4] Michael Furr, Jong-hoon (David) An, Jeffrey S.
Foster, and Michael Hicks. Static Type Inference for
Ruby. In OOPS Track, SAC, 2009.

[5] JRuby - Java powered Ruby implementation,
February 2008. http://jruby.codehaus.org/.

[6] Xavier Leroy. The Objective Caml system, August
2004.

[7] George C. Necula, Scott McPeak, S. P. Rahul, and
Westley Weimer. CIL: Intermediate Language and
Tools for Analysis and Transformation of C Programs.
In CC, pages 213–228, 2002.

[8] Emmanuel Onzon. dypgen User’s Manual, January
2008.

[9] Bruce Stewart. An Interview with the Creator of
Ruby, November 2001. http://www.linuxdevcenter.
com/pub/a/linux/2001/11/29/ruby.html.

[10] Dave Thomas, Chad Fowler, and Andy Hunt.
Programming Ruby: The Pragmatic Programmers’
Guide. Pragmatic Bookshelf, 2nd edition, 2004.

[11] Bill Venners. The Philosophy of Ruby: A Conversation
with Yukihiro Matsumoto, Part I, September 2003.
http://www.artima.com/intv/rubyP.html.

APPENDIX
A. RIL GRAMMAR

Figure 5 gives the full grammar for RIL. In the figure,
optional elements are enclosed in []?. RIL separates state-
ments s, which may have side effects, from expressions e,
which are side-effect free.

s ::= e | s; s | lval = e, . . . , e

| if e then s else s end

| case e [when e then s]? [else s]? end

| while e do s end | for x = e in s

| begin s [rescue e => x; s]? [else s]? [ensure s]? end

| [lval =]?e.m(e, . . . , e) [blk]? | [lval =]?yield(e, . . . , e)

| def m(p) s end | module M ; s end

| class C [< D]?; s end | class << e; s end

| return e | next e | break e | redo | retry

| alias m m | undef m | defined? s

| BEGIN do s end | END do s end

lit ::= n | “str” | [e, . . . , e] | . . .
id ::= self | x | @x | @@x | $x | A | id :: A
e ::= id | lit | ∗e | &e

lval ::= id | lval, . . . , lval | ∗lval
p ::= x1, . . . , [xn = en, . . .]?, [∗xm]?

blk ::= do |p| s end

x ∈ local variable names
@x ∈ instance variable names

@@x ∈ class variable names
$x ∈ global variable names
A ∈ constants
m ∈ method names

Figure 5: Ruby Intermediate Language (RIL)

RIL comprises 24 statement forms, including expressions,
sequencing, and parallel assignment. RIL includes just two
conditional forms, an if statement, which models all of the
simple branching forms, and a case statement, which mod-
els multiple branches. RIL also includes both while and for
loops. We could translate case into a sequence of if’s or for
loops into while loops, but we chose not to on the theory
that a user may want to distinguish these constructs; we
may revisit this choice in a future version of RIL.

The next statement form in RIL represents Ruby’s ex-
ception handling construct, delimited by begin...end. Each
clause rescue e => x; s handles exceptions that are instances
of class e or its subclasses, binding x to the exception in s.
Unlike Ruby, in RIL the caught class is always included, as
discussed in Section 3.3. The optional else block acts as a fall
through case, catching any exception, and the ensure block
is executed whether the exception is caught or not.

In RIL, method calls appear one per statement, and may
not be nested, as we require all method arguments to be
expressions and may optionally store their return value to in
an expression using a assignment form. As in Ruby, method

calls may optionally pass a single code block do |p| s end.
This code block may be invoked inside the called function
using the yield construct.

Methods are defined using the def keyword. Note that,
as in Ruby, a method definition may occur anywhere in a
statement list, e.g., it may occur conditionally depending on
how an if statement evaluates. (However, no matter whether
or when a method definition is executed, the defined method
is always added to the lexically enclosing class.) After the
regular parameters in a method definition, a parameter list p
may contain zero or more optional arguments and may end
with at most one vararg parameter, written ∗xm. If a vararg
parameter is present, then any actual parameters passed in
positions m or higher are gathered into an array that is
passed as argument xm.

Modules and classes are defined using module and class, re-
spectively. Class definitions may either specify a class name
and an optional superclass, or may use the << notation to
open the eigenclass of an object. As in Ruby, methods de-
fined inside an object’s eigenclass (so-called eigenmethods)
are available only to that instance. For example, suppose x is
an instance of A. Writing class << x; def m ... end end adds
a method to x’s eigenclass but not to A; thus no instance of
A except x can be used to invoke m.

RIL contains several control flow statements. The return
construct exits the current method, as is standard in most
languages. Inside of a code block, next exits the block (us-
ing return inside the block would cause the lexically enclosing
method to return). Similarly, the break statement acts as a
remote return, returning control to the statement immedi-
ately following a block definition. For example:

1 def f ()
2 z = yield() # call code block argument
3 return z + 1
4 end
5 def g()
6 a = f() {return 2} # exits g with value 2
7 a = f() {next 3} # jumps to line 2 storing 3 in z, a=4
8 a = f() {break 5} # exits f () at line 2, a = 5
9 end

The redo and retry statements are used to re-execute a code
block or exception block respectively.

RIL also includes constructs for several special Ruby state-
ments: alias, which defines two method names to be the
same; undef, which removes a method; defined?, which tests
whether an expression or method is defined; and BEGIN and
END, which specify code that is executed when a script is
first loaded and when it exits, respectively. Note that there
is no special representation for method creation (new) or for
loading in additional files (require), since, as in Ruby, these
are simply method calls.

In addition to statements, RIL also includes side-effect free
expressions, identifiers and literals. Literals include values
for Ruby’s built in types such as integers n, strings “str”,
and arrays of expressions. Identifiers id include the dis-
tinguished variable self, local (x), instance (@x), and class
(@@x) variables, as well as globals ($x) and constants A,
which always begin with a capital letter. Constants can be
assigned to exactly once. For example, A = 1 creates the
constant A, which is read-only from the assignment state-
ment forward. Class names are also constants, but are ini-
tialized with class rather than assignment. Constants may
be nested inside of classes. The syntax C :: A extracts the

constant A in class (or module) C. RIL expressions e consist
of either a literal or an identifier and may include the ∗ and
& unary operators. These operators are used to convert ex-
pressions to and from arrays and code blocks respectively.
For example,x = [1,2]; a,b,c = 3,∗x, assigns 3 to a, 1 to b,
and 2 to c, and f(&p) calls f, passing the Proc object p (rep-
resenting a higher-order method) as if it were a code block.

Finally, an lval, which may appear on the left-hand side of
an assignment, is either an identifier or a sequence of lvals,
which can be used for parallel assignment from an array.
lvals may also use the ∗ operator to collect values into an
array.

B. EXAMPLE CODE
Below is the complete code for the dataflow analysis de-

scribed in Section 4.2.

open Cfg
open Cfg printer
open Visitor
open Utils
open Cfg refactor
open Cfg printer .CodePrinter

module NilAnalysis = struct
type fact = MaybeNil | NonNil

let meet fact t1 t2 = match t1,t2 with
| MaybeNil,
| , MaybeNil → MaybeNil
| NonNil, NonNil → NonNil

let update s v map =
let fact =

try meet fact (StrMap.find s map) v
with Not found → v

in StrMap.add s fact map

let meet lst =
List . fold left (fun acc map →

StrMap.fold update map acc)
StrMap.empty lst

let fact to s = function MaybeNil → ”MaybeNil”
| NonNil → ”NonNil”

type t = fact StrMap.t
let top = StrMap.empty
let eq t1 t2 = StrMap.compare Pervasives.compare t1 t2 = 0
let to string t = strmap to string fact to s t

let rec update lhs fact map lhs = match lhs with
| ‘ ID Var(‘Var Local, var) → update var fact map
| # identifier → map
| ‘Tuple lst → List. fold left (update lhs MaybeNil) map lst
| ‘ Star (#lhs as l) → update lhs NonNil map l

let transfer map stmt = match stmt.snode with
| Assign(lhs , # literal) → update lhs NonNil map lhs
| Assign(lhs , ‘ID Var(‘Var Local, rvar)) →

update lhs (StrMap.find rvar map) map lhs
| Class(Some lhs, ,) | Module(Some lhs, ,)
| MethodCall(Some lhs,) | Yield(Some lhs,)
| Assign(lhs ,) → update lhs MaybeNil map lhs

| → map
end

module DataNil = Dataflow.Forwards(NilAnalysis)

let refactor targ node =
let node’ = freparse ˜env:node. lexical locals

”unless %a.nil? then %a end”
format expr targ format stmt node

in ChangeTo node’

class safeNil (ifs , ofs) = object
inherit default visitor as super

method visit stmt node = match node.snode with
| MethodCall(, {mc target=‘ID Self}) → SkipChildren
| MethodCall(,
{mc target=(‘ID Var(‘Var Local,var) as targ)}) →
let map = Hashtbl.find ifs node in

begin match StrMap.find var map with
| NilAnalysis .MaybeNil → refactor targ node
| NilAnalysis .NonNil → SkipChildren

end

| MethodCall(,
{mc target=#expr as targ}) → refactor targ node

| → super#visit stmt node
end
let main fname =

let loader = File loader . create File loader .EmptyCfg [] in
let s = File loader . load file loader fname in
let () = compute cfg s in
let () = compute cfg locals s in
let df = DataNil. fixpoint s in
let s ’ = visit stmt (new safeNil df) s in

print stmt stdout s ’

