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ABSTRACT

A subset of the Marmousi data is processed
to yield an initial approximation to a kinematic
velocity model. The process described is the first
step in a gradient iteration scheme for a modified
least-squares inversion method. The approach re-
quires no picking or other extensive interaction
with the data, and appears to avoid convergence
difficulties reported for conventional least-squares
inversion.

INTRODUCTION

A critical step in migrating (or “inverting”)
the Marmousi data set is the construction of the
velocity model. It is not too strong to say that
other aspects of data treatment stand or fall along
with the success in velocity estimation. Presum-
ably velocities are equally important in treating
data from structurally complex areas in the real
world and perhaps in extracting subtle features
even in structurally simple areas.

The results presented below represent an ini-
tial attempt at noninteractive extraction of ve-
locity models directly from 2-D waveform data.
We invert only a small subset of the Marmousi
dataset, namely ten shot records from the west
end of the line. The structure there is “lay-
ered,” and we extract mainly laterally homoge-
neous velocity models. We use only two steps
of an extremely crude optimization method, and

start with a substantially wrong initial model.
Nonethelss, the algorithm moves the velocity
in the right direction. It will be clear that
larger datasets and more sophisticated optimiza-
tion methods could be used, and laterally hetero-
geneous velocites obtained, though the quality of
such results remains to be determined. Thus we
have not addressed the central topic of the work-
shop — determination of complex velocity struc-
ture — in a definitive way. Nonetheless we believe
that the present, preliminary results, though sim-
plistic and crude, justify further investigation of
our approach.

Our approach belongs to the “least-squares
inversion” genre. It is by now well established
that straightforward least-squares inversion (i.e.
model-based data fitting via gradient-type opti-
mization) of reflection seismograms is incapable
of extracting the very important slowly varying
trends in wave velocity. Therefore we have modi-
fied least-squares inversion in an essential way, to
produce a class of algorithms which can, under
some circumstances, successfully extract veloci-
ties. We call these algorithms “differential sem-
blance optimization” (DSO), or “coherency opti-
mization”, for reasons that will become apparent
below. Our previous papers on this topic have
dealt with a version appropriate to plane-wave
data sets and layered models (Symes 1988, 1990a,
Symes and Carazzone 1989, 1990, Santosa and
Symes 1989). In those papers we gave a complete



mathematical foundation for the DSO approach
to layered velocity estimation, and showed by nu-
merical experiments with both synthetic and field
data that DSO produces reasonable velocity esti-
mates (and, along with these, reasonable reflec-
tivities), essentially without human intervention.
For this article we present a version of DSO
adapted to 2-D shot gather inversion. We define
an objective function of the velocity model which
DSO is to minimize, and describe the calculation
of this function and its gradient. We implemented
this calculation, and applied it to a small part of
the Marmousi data set near the well at 2700 me-
ters. Our main result is a laterally homogeneous
velocity model obtained by two steps of the steep-
est descent method. Steepest descent is the sim-
plest of the gradient-based optimization methods.
The satisfactory nature of the steepest-descent re-
sult suggests that the DSO objective function is
actually as well-behaved as the theory indicates.
Before giving the details of our approach and
results, we interject a few remarks about the na-
ture of direct velocity estimates, and about the
possible role of non-interactive techniques.

KINEMATIC VERSUS “REAL” VELOCITIES

The velocities constructed via DSO are de-
signed to account for the moveout in the data: i.e.
to explain the kinematic features of the datain an
internally consistent way. In this respect, DSO is
similar to other velocity analysis techniques, in-
cluding reflection tomography.

It is important to understand that a velocity
model may succeed in the kinematic sense with-
out possessing many features, both obvious and
subtle, of the true distribution of compressional
velocity in the earth. Kinematic velocity models
need not make geological sense, may lack identi-
fiable horizons, and may vary sufficiently as in-
version parameters are changed to prevent asso-
ciation with well-defined geological units. These
points are well-understood in the context of stack-
ing velocities. Our point here is that “inversion
velocities” suffer from many of the same limita-
tions. For example, our prior work on layered
velocity estimation produced smoothly varying
models, very different in appearance from typi-
cal blocked sonic logs or interpreters’ facsimiles

thereof. Moreover, our experimental codes al-
lowed control over smoothing parameters, for in-
stance; varying these parameters in experiments
with “real” p-tau seismograms (processed from
field data from structurally simple areas) yielded
a range of smooth velocity models, differing sub-
stantially in point values but equally “valid”, in
the kinematic sense. Some examples with syn-
thetic and field data appear in Symes 1990a and
Symes and Carazzone 1989, 1990.

It is instructive to recall the state-of-the-
art constructions of velocity models employed
by other contributors to this workshop. These
methods yield blocked models based on horizon
picks from preliminary sections of various sorts.
The blocks are filled in with sparsely parameter-
ized (e.g. linear) velocity samples. Such models
have intrinsic structural meaning, lacked by the
smooth models produced by DSO. It is very dif-
ficult to see how an entirely automatic, pick-free
process such as DSO could emulate the judgement
inherent in blocked models. ‘

Of course, structural information is not lost
by resort to smooth, “non-geological” models,
which can encode the kinematics of reflection just
as successfully as can blocked structural mod-
els (again, this judgement is based on experience
with the layered case). Any kinematically correct
model produces a post-inversion stack in which
any structural information present in the data is
preserved, and available for interpretation. While
the eventual role, if any, of noninteractive veloc-
ity estimation is far from clear, its successful im-
plementation does not destroy geological infor-
mation, at least. Moreover, while temporarily
excluding informed human judgement from the
data process, DSO for example also excludes inad-
vertent bias implicit in sparse parameterization,
and (hopefully) yields an optimally consistent and
“objective” account of moveout.

If we accept these arguments as justifying an
interest in non-interactive estimation of kinematic
velocities, there remains the question of its feasi-
bility, to which we now turn.

DIFFERENTIAL SEMBLANCE OPTIMIZATION

We based our work on the linearized wave
equation of linear acoustics, which relates the



(smooth) velocity field v(z,z), the (oscillatory)
reflectivity r(z, z) (= év(z, z)/v(z, 2)), the source
wavelet f(t), and the seismogram (shot-gather)
S[v]r(zs, zr,t). Here z, denotes shot position, z.,
receiver position and z, z position coordinates in
the earth. The notation is chosen to emphasize
that S depends linearly on r, nonlinearly on v.
The boundary value problem defining the relation
v,7 — S has appeared in many other publica-
tions, and we do not repeat it here. We discretized
the partial differential equations and boundary
conditions using low-order finite differences in the
usual fashion.

In physical terms, our use of the linearized
wave equation amounted to neglect of multiple
reflections, while our neglect of density variations
restricted our ability to model the offset depen-
dence of reflectivity. We felt that neither of these
omissions would prevent a successful “first pass”
at velocity analysis for the Marmousi data set.
In a similar vein, we used a zero-phase Ricker
wavelet in our modeling, in full awareness that
the actual wavelet differed substantially in phase
and amplitude. Finally, we used the full two-
way wave equation, precluding the use of velocity
models with sharp interfaces. As discussed above,
we intended to use only smooth velocities any-
way, and also stayed close to “reality” by using
two-way propagation (that’s how the data were
generated). )

As mentioned in the introduction, the
straightforward application of least-squares inver-
sion in this setting fails to produce useful veloc-
ity estimates, even of the kinematic type. Our
monograph (Santosa and Symes 1989) provides
detailed explanation of this failure, with many ref-
erences. In Appendix E of that volume, we intro-
duced “coherency optimization,” since renamed
differential semblance optimization, a modifica-
tion of least-squares inversion, designed to rem-
edy its defects as a velocity estimator.

DSO is based on the use of a mazimal model
space. The model explained above is minimal in
the sense that it contains (hopefully!) precisely
the physics needed to explain the data. A single
reflectivity distribution, in particular, is required
to fit the data at all shots. This is only possible
for a very nearly correct velocity: it is this fea-

ture which accounts for the relative uselessness of
straightforward least-squares inversion. It is also
well-known that inversion of a single shot gather
(in the linearized setting) is very easy, up to the
noise level in the data. Therefore any mapping of
a model space into the data space can be factored
through the set of shot-dependent reflectivity mod-
els

{v(z,2),r(zs z,2)}

which is therefore a mazimal model space. The
minimal models, i.e. the shot-independent re-
flectivities, are characterized for instance by the
equation

or _
5 =0. (1)

For the rest of this paper reflectivity distributions
are presumed to be shot-dependent.

Of course, the earth is unique, not shot-
dependent, so we want to enforce equation (1).
The first main mathematical result of the theory
is that this constraint can only be enforced in a
soft sense, through a penalty term. (Otherwise a
pathological optimization problem results.) This
idea leads to the cost function

Z /dt (S[v)r - Sda.ta)2

+ azgf/dzdz<-aa%,)2] .

The roles of the terms in J; are clear. The first
serves to adjust r to fit the data Sy,;,. The sec-
ond forces the various reflectivities for neighbor-
ing shot locations to resemble each other, whence
the name of the technique: differential semblance.
The influence on v is indirect, through the second
(semblance) term.

Once r is determined, the second term mea-
sure the “flatness” in the common image gather,
i.e. r(z,,z,2) for fixed z, in a very strict sense:
the traces in this gather must be the same to make
the second term vanish. In other variants of mi-
gration velocity analysis, as described in other pa-
pers in this volume, common image gather traces
are merely required to be similar. We are able to
penalize the difference, rather than some looser
measure of semblance, because we deal with the

1
J10[v,7] = 5 [

(2)



(inverted) physical parameter r = év/v, which
ought to be shot independent, rather than the
migrated image, which may have shot-dependent
amplitude.

Since Jy,, contains (a simple version of) the
conventional least-squares objective function, it
must suffer from the same malady: extreme non-
linearity in v. The second main mathematical
result is that elimination of r (a quadratic mini-
mization!) yields a very smooth, nearly quadratic
function of v:

Jo[v] = min Jy o(v, 7] .

(3)

Jo is the differential semblance functional; its
minimization is DSO. Moreover, some evidence
exists (even proof, in the layered case) that J,
is strongly convex near its global minimizer, and
that secondary minima occur only outside rea-
sonable a priori definable model sets, for suitably
chosen o. For noise-free data, Sdata, = S[v7]r=, a
global minimizer of J, is clearly v*, with

Jo[v"] = N1 5[v", 7] = 0.

Thus we can expect that global minimization of
Jo is possible for at least low-noise data sets, and
would yield accurate kinematic velocity models.

The current state of the theory of DSO
for multidimensional shot gather inversion is re-
viewed in Symes 1990b. We end this section
with a brief description of the gradient calcula-
tion, which is derived in detail in Symes 1990b;
the derivation is sketched in the Appendix. Note
that the right-hand side of (3) implicitly defines
the reflectivity 7 as a function of the velocity v
and the data; thus we write r = r,[v].

The velocity models v in this approach must
be restricted to a class V' of smooth models. De-
note by P the projection operator onto V, orthog-
onal in the sense of the usual (L?) inner product.
Then the gradient of J, is given approximately
by the expression

gradJ,[v] =
P {3500+ hro (o]l (S[o] - rofo] - Saata) } ()

This formula has several features worthy of com-

ment. First, the expression inside the curly brack-
ets does not depend on the choice of V, except

that v should belong to V, at least in principle.
That is, the projection onto the “feasible” veloci-
ties in V' is a postprocess; once the quantity in the
brackets is calculated, the gradient can be com-
puted for any choice of V' containing v. For in-
stance, we can obtain both laterally homogeneous
and heterogeneous versions of the gradient from
the same “raw” section.

Second, the adjoint operator ST represents a
basic version of prestack migration (Lailly 1983).
That is, application of ST to a collection of shot
records involves (before-stack) migration of each
record, followed by a stack. This is so provided
that the shot record migrations are carried out
via two-way reverse-time extrapolation and cross-
correlation with the incident field.

Third, the gradient of J is uncannily similar
to the gradient of the usual least-squares error
(Lailly 1983, Tarantola 1984). In fact, the only
difference of substance is that S7 is evaluated
at v + hr,[v], rather than at v, for a suitable
(small) choice of the scalar A. The inclusion of
the high-frequency, shot-dependent term hr,[v]
in the background field for the migration is re-
sponsible for the presence of low-frequency trend
information in the final output.

The accuracy of the approximation is deter-
mined in part by the choice of the scalar A.

In reality, we cannot access the inverted reflec-
tivity r,[v], but only an approximation. In the
present implementation of our algorithm r,[v] is
approximated by a small, fixed number of conju-
gate gradient iterations applied to the quadratic
minimization (3). We have shown elsewhere
(Symes 1990(b)) how formula (4) can be cor-
rected to compensate for the resulting inaccuracy
in r,[v].

INITIAL APPLICATION TO THE
MARMoOUSI DATA SET

The calculations described in the preceding
pages were implemented in Fortran and C. For a
first trial with the Marmousi dataset, we selected
shot records 1 + 4(i — 1), ¢ = 1,...10, to use as
data for the inversion. That is, the shot spac-
ing in our truncated dataset of ten shot records
is Az, = 100m, with the first (westernmost) shot
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being located at 3000m from the west edge of the
model.

Our preprocessing of this small data subset
was minimal. We applied a linear mute to each
shot record, with mute ¢y = 200m/s and mute ve-
locity of 1500 m/s, to remove the water layer re-
verberations and direct wave. We also truncated
the data at 2s. The muted, truncated version of
shot 1 is displayed as Figure 1(a). We then ap-
plied a Gaussian filter with high cut at 25 Hz to
each trace; the filtered version of shot 1 appears
as Figure 1(b).

The removal of the direct wave via the lin-
ear mute is a simple way to force the data to
approximate that of a linearized model. We be-
lieve that relatively little multiply reflected en-
ergy is present in the Marmousi dataset, so that
the direct wave is the principal difference between
the actual (nonlinear) dataset and one that would
have been produced by linearization about a suit-
able smooth reference model.

The truncation to 2s in the time domain, and
25 Hz in the frequency domain, were indicated by
the limits of our computing environment, as was
the overall size of the dataset employed (10 shots).
All of the calculations reported here were carried
out on a Stardent Titan 3000 series graphics su-
per workstation, with four P3 processors and 64
Mb of core memory. The finite difference calcu-
lations were carefully parallelized and vectorized,
so that the Titan yielded roughly 20 Mflops in
the main part of the calculations. Nonetheless,
even with At = 4ms and Az = Az = 15m (a
very coarse grid), a single application of the nor-
mal operator (the main conjugate gradient calcu-
lation) required roughly 45 min. CPU. A single
gradient estimation required roughly eight hours,
and a single steepest-descent step two days. All
results presented below were obtained in the first
two weeks of November 1990.

We used a centered finite difference scheme of
order 4 in both space and time. This scheme gives
good results on the grid just described for solution
components up to about 20 Hz, and reaches its
stability limit at v = 2300 m/s. This latter fact
also restricted our attention to the upper part of
the model.

We defined the space V of velocity models by

means of a so-called multiresolution or wavelet
basis of L? (Daubechies 1988, Meyer 1990), com-
puted via the fast algorithm of Mallat 1987. We
are grateful to R.M. Lewis for coding the Mallat
algorithm. Multiresolution bases give a conve-
nient way of selecting components of a signal ac-
cording to scale, or correlation length, in a more
localized fashion than is permitted by the Fourier
transform. We implemented multiresolution pro-
jection in both 1-D (laterally homogeneous gra-
dients) and 2-D. We used a correlation length of
300m in all results reported below.

While a detailed numerical analysis of our ap-
proach remains to be accomplished, an initial con-
sideration is clearly the accuracy with which the
z,-derivative in the differential semblance condi-
tion (1) is approximated. We used the simplest
possible approximations, viz.

gz-’: % 5 (0@, +A2) = 7(z,)
For this approximation to succeed, it is essen-
tial that the traces at shot location z, + Az,
have time shifts of somewhat less than a wave-
length relative to those at shot location z,. A
quick estimation of this displacement is obtained
by examination of migrated common image gath-
ers (the (before-stack) migrations being the first
step of the conjugate gradient process for reflec-
tivity estimation). These are displayed for hori-
zontal location z = 3000m at reference velocities
v = 1500 m/s and v = 1750 m/s as figure 2(a),
(b). Clearly the traces in Figure 2(a) are com-
pletely aliased; to deal with a velocity range in-
cluding v = 1500 m/s, a smaller Az, than 100m
is required. On the other hand neighboring traces
in Figure 2(b) exhibit relative time shifts well un-
der a wavelength, for the most part — in fact the
shallower events are lined up rather well. There-
fore we used = 1750 m/s as the initial velocity
estimate. :

The gradient calculation explained in the last
section was carried out using the data set and
reference velocity described above. The penalty
parameter o2 was chosen to make the second term
in the expression (2) less than 5% the size of the
first term. The reflectivity was estimated using 10
conjugate gradient steps. The correction for re-
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migration velocity 1500 m/s.
Right: Migrated common image gather at offset 3000m for
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maining reflectivity errors, mentioned at the end
of the last section, was not employed. Thus we
expect the computed gradient to be only a crude
approximation to the true gradient.

Figure 3 displays a mesh plot of the gradient
in the space of laterally heterogeneous multires-
olution series truncated at correlation length of
300m in each direction. Considerable horizon-
tal oscillation is evident at this length scale, as
are apparent aperture and truncation artifacts.
In fact, the range of well-covered midpoints is
so small for this data set that we do not believe
any inference about lateral velocity variation. In-
stead we extract a layered velocity gradient, by
projecting the raw section (inside brackets in (4))
onto the layered multiresolution series truncated
at length scale 300m. The resulting depth profile
is displayed in Figure 4 (lower curve). We then
approximated a step of the steepest descent algo-
rithm by computing the approximate value of the
objective function J, (3) along the line segment in
(layered) velocity model space defined by adding
multiples (0.0, 0.25, 0.5, 0.75, 1.0) of the nega-
tive computed gradient to the reference velocity
( = 1750 m/s). The negative gradient was first
scaled so that all velocities generated in this way
did not exceed 2250 m/s, as dictated by the sta-
bility condition for our choice of space-time grid
and difference scheme. The resulting values for
the two summands in (2) and their sum are dis-
played in Figure 5.

We believe (based on experience with other
synthetic data sets) that the mean-square error
(first term in (2)) is heavily influenced by the er-
ror in our choice of wavelet. As mentioned in the
introduction, we used a zero-phase Ricker wavelet
with peak frequency of 10 Hz in our modeling and
migration. This choice is certainly quite differ-
ent from the “true” effective wavelet of our data
set, and by itself prevents a good fit-to-data. Ac-
cordingly we used the differential semblance (sec-
ond term in (2)) to govern our choice of steep-
est descent step. From Figure 5 one might guess
that the optimum lies between 25% and 50% of
the negative gradient step. The result of adding
37.5% of the scaled negative gradient to the ref-
erence velocity (1750 m/s) is the upper curve in
Figure 4, which we will call “the first iteration”.

This result is worth several comments. First,
the DSO variational principle has moved the
velocity in the right direction (increase), even
though its parts are contaminated by an undeter-
mined but probably large amount of noise. Sec-
ond, the increase in velocity has been placed too
shallow. That is easy to understand: the ref-
erence velocity is too low, so all aspects of the
section are interpreted as occurring at incorrectly
shallow depths. Third, the “un-geological” as-
pect of kinematic velocity estimates is obvious
in this simple instance. The smoothness of the
estimate prevents any obvious “geological” inter-
pretation. Even worse, the velocity returns to its
surface value at depth - a very unrealistic feature!
On the other hand, the velocity below 2000m has
no influence on the data set used here. There-
fore, the deep part of velocity is not constrained
by the data. It is certainly possible to build in
constraints of various sorts on the basement ve-
locity, by re-defining the projection operator in
(4). We chose not to do so in order to emphasize
the kinematic nature of our velocities.

To end the series of experiments, we computed
the gradient of J, at the first iteration. The
result, suitably scaled, is displayed as the lower
smooth curve in Figure 6. We then guessed a suit-
able proportion of the negative gradient to add to
the first iteration, and thus produced the second
iteration. This is displayed as the upper smooth
curve on Figure 6, along with the “log” velocity
profile at 2700 meters, supplied by IFP. Note that
the velocity increase has been moved closer to its
proper position in depth.

The progress of the optimization can also be
gauged by examination of common image gathers
of the estimated reflectivity. In Figure 7 we dis-
play reflectivity common image gathers at offset
3000m for the (initial) constant reference velocity
1750 m/s (left plot), first iteration (middle plot),
and second iteration (right plot). At the initial
velocity, the shallow events are lined up but the
deeper ones are undercorrected. At the first itera-
tion the deeper events are improved but the shal-
low ones are now overcorrected. The second it-
eration removes some of the overcorrection of the
shallow events and without significantly flattening
the deeper ones. The gradient has detected the
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FIGURE 3. Mesh plot of 2D multiresolution gradient at reference velocity
1750 m/s, correlation lengths 300m in each direction.
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FIGURE 4. Lower curve: profile of 1D (layered) multiresolution gradient
at reference velocity 1750m/s, correlation length 300m. Mid-
dle curve: constant reference velocity 1750 m/s.
Upper curve: result of first approximate steepest descent step
from reference velocity 1750 m/s.



velocity (m/s)

% of scaled negative mean-square | differential Jy
gradient added error semblance
0 0.5020 0.0158 0.5179
25 0.5030 0.0139 0.5169
50 0.5097 0.0148 0.5245
75 0.5385 0.0171 0.5556
100 0.6111 0.0220 0.6331

FIGURE 5. Optimization along the negative gradient direction.
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FIGURE 6. Lower smooth curve: profile of 1D (layered) multiresolu-

tion gradient at reference velocity given by upper curve in
FIGURE 4.

Upper smooth curve: final layered velocity estimate, result
of second approximate steepest descent step.

Upper rough curve: “log” velocity profile at offset 2700m.
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distinction between shallow (overcorrected) and
deeper (undercorrected) events; conceivably fur-
ther iteration (or even a better choice of step at
the second iteration) will tend to flatten further
all of the events. Since the velocity corrections are
layered, some residual moveout will remain in any
case. The correct velocity is not layered, but in-
creases substantially eastward, so that a layered
approximation cannot completely flatten any of
the common image gathers.

For completeness, we display the stacked mi-
grated section with the final velocity estimate in
Figure 8.

In Figure 9, we give the simulation of shot
record 1 using the final velocity estimate and re-
flectivity from the second iteration as input. The
discrepancies between this simulation and the in-
put data (Figure 1 (b)) are presumably due to
the causes mentioned before. The difference be-
tween this simulated data set and the input data
is roughly 20% RMS.

CoNCLUSION

We have explained a modified least-squares
inversion procedure, differential semblance opti-
mization (DSO). DSO is designed to overcome the
difficulties experienced by standard least-squares
inversion in estimating the long-wavelength com-
ponents of velocity. In common with other au-
tomatic velocity estimation methods, DSO pro-
duces kinematic velocity models, which explain
moveout in data while not necessarily admitting

immediate geological interpretation. We stated -

the DSO variational principle in a form suitable
for application to shot record inversion, and out-
lined the calculation of its gradient. The ver-
sion of DSO explained here assumes constant
density and absence of multiply reflected energy.
These simplifications are incorrect for the Mar-
mousi data set, but seem likely to allow at least
a crude velocity estimate.

We carried out two steps of steepest descent
minimization for DSO on a small subset of the
Marmousi data (ten shot records from the west
end of the line). We assumed a simple Ricker
wavelet model of the source, and a layered veloc-
ity model (but laterally heterogeneous reflectiv-
ity). These latter restrictions are grossly wrong;

nonetheless, DSO gave constructive velocity up-
dates.

None of the restrictive assumptions made in
this work are intrinsic to DSO. In future work
we plan to allow density fluctuations and non-
trivial wavelet updates, better near-surface mod-
eling, and (most importantly) laterally heteroge-
neous velocity models. It will be important to
employ larger data sets with better subsurface
coverage, especially in order to constrain lateral
velocity variations. The preliminary results re-
ported here, while crude, appear to justify further
investigation of the DSO approach.
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APPENDIX: CALCULATION OF THE GRADIENT
Recall that

Jo[ve] = 3 min,{||S[vs]r — Sgatall? + o2l D,r|?}
(5)
where we have used the commonplace notations
lull> = > luf®=
(u,v) = Z uv,
the sums being over all indices (i.e. z,,z,,t in the
first term, z,, z, z in the second), and D, = 3/dz,
or an approximation.

The minimizer of the quadratic form in r

stated above is the solution of the normal equa-
tions

{S[vs]TS[ws] + 0> DTD,}r = S[ws]TSgp1n - (6)
On the other hand, first order perturbation theory
applied to (5) gives for a perturbation év;

6J, = (6S-r,Sr— Sdata)
+ (867,51 — Sqata) + 0*(Dsér, Dyr)
(65 -7,87 - Sqata)
+ (67,(STS + o*DTD,)r
-5 Tsda.ta) .

(u,u);

(M

Now the second term in the right hand side of (7)
vanishes because of the normal equations (6). On
the other hand,

§S-r = }i_x% %{S[vb + ebvp]r — S[wp]r}

while S is already the solution of a linearized
problem:

Sloslr = lim ={Solos + hr] — Sofus]}

where Sy is the solution operator of the nonlinear
forward map. Combining these, we get

6S-r = (l’ilr_x.xo hle{So[vb + €6vy + hr] — Solvp + €6vp)
— So[vs + A7) + So[vs]}
L1 ‘
= ’lzl_r.% E{S[vb + hr]évy — S[vs]6vp}

after interchanging the ¢ and h limits and let-
ting € — 0. (This is the argument for equality of
mixed partial derivatives!) Since both vy and év,
are smooth, and the source is oscillatory, S[vs]6vs
should be negligible, and we obtain
55 . r %S[vb + hrlév, @)

for suitably small A > 0.
Combining (7) and (8), we obtain the first
equality in

0J, =

1
(ES[vb + hr]évb ’ S[‘Ub]‘l‘ - Sda.ta.)

= (60,35l + AriT(SToslr - Sgara))
= (6vy,gradJ,) . (9)

The second equality in (9) defines the adjoint or
transpose operator ST, while the third states the
definition of the gradient. Since (9) must hold for
all évy, the gradient formula (4) follows from the
last two lines in (9).

In practice, we cannot actually solve the nor-
mal equations (6) but only produce an approx-
imation to r. Then the effect of the remaining
error on the computed gradient must be under-
stood. For a treatment of one type of approxima-
tion (via Krylov subspace projection) see Symes
1990b.



